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Lattice distortion in Cu-based dilute alloys: A first-principles study
by the KKR Green-function method
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The full-potential Korringa-Kohn-Rostoker Green function method is extended to treat the lattice distortion
in the vicinity of a point defect. The method is applied to predict the atomic positions in the neighborhood of
d andsp substitutional impurities in Cu. Both the total energy and the Hellmann-Feynman force are used for
the calculation of the ground-state configuration, while the semicore states of the impurities are treated as
valence states. Our results for the atomic displacements are in very good agreement with the experimental data
from extended x-ray-absorption fine-structure and lattice-parameter measurd@86h&3-18207)07907-1

[. INTRODUCTION forces and has mostly been attempted so far for simple met-
als and semiconductors on the basis of pseudopotential treat-
The presence of a point defect in a crystal, such as @nents. The difficulty arises mainly from the fact that energy
vacancy or an impurity atom, generally causes a displacedifferences due to local atomic displacements are quite
ment of the neighboring host atoms from their ideal latticesmall, of the order of 0.1 eV, compared with, e.g., the cohe-
positions. For alloys, such a lattice distortion changes th%ive energy of the solid. The pseudopotentia| Superce” ap-
lattice constant and this change can be measured by X-rgyfoach has been used to describe structural distortion in
diffraction. However, this information is not sufficient to es- gimple-metdl and semiconductdr’ systems. Lattice relax-

timate the interatomic distances because, generally, the digyion effects around defects in semiconductors have also
tortion is different in magnitude for different atomic shells poan  treated by the pseudopotential Green-function
around the defect. More detailed information can be Obtai”eﬂwethods‘lOWithin the cluster approach a large finite cluster

by extended x-ray-absorption fine-SUUCIUEXAFS) experi- ¢ 1o mq is used to simulate the macroscopic crystal. Struc-
ments, in which the absorption spectrum of the emitted pho;:

. : - tural distortions have been studied by this method for defects
toelectrons from the excited atom, as being modified by the metalst! semiconductor& and ioni temi
backscattering from the surrounding atoms, is measured. A Metals, - semiconductors, and ionic systems. -
systematic study of the lattice relaxation around substitu- Nowqdays self-consst_ent, aII-eIectro_n calculations of Fhe
tional impurities has been reported by Scheuer ar]df:lectronlc s_tru_cture of solids can be carrle_d out by employlng
Lengeler! who measured interatomic distances, coordinatiori€ first-principles computational formalisms developed in
numbers, and Debye-Waller factors using EXAFS. Never_recent years. Among these formalisms, .the full-potential
theless, even EXAFS measurements can give reliable infol€0rringa-Kohn-RostoketkKKR) Green-function method of-
mation only for the displacement of the first nearest neighfers an elegant and efficient framework for the treatment of
bors (NN's) and, moreover, the results depend to somehe defect problem. Our aim in the present paper is to present
extent on the model used to interpret the experimental dat&@n extension of this method in order to treat the lattice dis-
Diffuse x-ray or neutron scattering can give more completgortion around point defects in crystals. The method is ap-
information on local geometries, albeit for substitutional im-plied to study the local geometry in the neighborhooddof
purities very few experiments have been performed so farand sp impurities in bulk Cu. In this respect we have per-
For many defect properties, e.g., solution or interaction enformed both total-energy and force calculations by consider-
ergies, residual resistivities, and NMR quantities, the imporing the perturbation of several atomic shells around the im-
tance of the lattice distortion is not clear and a detailed unpurity atom, while the chemical environment of the host is
derstanding is still far from being complete. described by the Green function. We first give a short de-

From the theoretical point of view the treatment of struc-scription of our method and present the formalism for the
tural relaxation due to defects in crystals is a difficult task. Inforce calculation that is based on the Hellmann-Feynman
the past this problem has been mostly dealt with on a phedHF) theorem. Section Il deals with some technical aspects
nomenological basis, e.g., by applying models of lattice statef the computation. In Sec. IV we discuss our results for
ics or continuum theory.Various semiempirical methods interatomic distances, volume changes, relaxation energies,
have been also employed, especially for defects irand local magnetism for Cu-based dilute alloys and compare
semiconductor8.A reliable microscopic description of lat- with experimental data from EXAFS and lattice-parameter
tice relaxation effects based on first-principles electronicimeasurements. Section V summarizes the main results of the
structure calculations requires very accurate total energies qaper.
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Il. THEORETICAL METHOD contribution by iterative solution of a Lippmann-Schwinger-

type integral equation. Since the anisotropic components are
generally small, the iterations converge fast and the second
Born approximation is usually sufficient to obtain well-

Within the framework of the KKR multiple-scattering converged total energies and for¢€s'® Moreover, close to
theory a crystalline solid is divided into nonoverlapping the nucleus the potential is almost spherical, so the non-
space-filling cells around each atomic drg. The effective  spherical contributions are only calculated for radii larger
one-electron potential is written as a collection of individualthan a cutoff radiuss,. For the total-energy calculation it is
potentialsV"(r), where the position vector is restricted sufficient to chooseS, to be about half the muffin-tin
within cell n. Using a site-centered expansion, the crystakadius® However, the force calculation requires more accu-

A. Full-potential multiple-scattering theory
for a crystal with a moderate lattice distortion

Green function can be written in the fotfn rate charge densites and thus we have used an
Sy=0.1%5, whereag is the Bohr radius, which ensures
G(r+Rp, I+ Ry E) =8y G(r+ Ry, 1" + Ry E) well-converged results for the forces.
The electron density in ceth can be calculated by inte-
+ 2 RE(r;E)GEEC(E)RE:(r';E), grating the site-diagonal elements of the Green function over
LL’ all occupied states, up to the Fermi enekgyy,
(o

1 Ep
n __ .
whereG! is the Green function for a single scattering poten- nir= WlmﬁxdEG(rJr Rn.r+RnE). ©)

tial in cell n in an otherwise free space. Multiple-scattering ) . .
contributions are contained in the second term through théaking advantage of the analytical properties of the Green
function, the valence density can be obtained from(Epby

. nn’ .
so-called structural Green functidB, ,(E). The indexL replacing the integral on the real energy axis with a contour
d(gnotes the angular momentum quantum numbers)(@nd  jntegral in the complex energy plane that starts below the
L(r;E) are regular partial-wave solutions of the Sehro yglence band and ends at the Fermi energy. In this way a
dinger equation for the potentia’(r) and energye. much smaller number of energy points can be used for the

The electronic structure of a crystal with a localized per-integration since the Green function is less structured as we
turbation, induced by the presence of a point defect for inmove away from the real axis.

stance, can be obtained in two StepS. We first calculate the Let us now suppose that we introduce a distortion in the

ideal host Green fUnCtiOlGO fOIIOWing a band-structure CrystaL sh|ft|ng a number of atoms w from their ideal
calculatiort>'®and obtain the host structural Green function|attice sites. The structural Green-function matrix of the ideal

GSE?' from Eq.(1). The Green function of the defect system host can be expanded around the shifted atomic positions,
can be then calculated in a second step from expar@jpn With the help of the transformatiéh**
with the structural Green function given by the solution of ~0 1
the algebraic Dyson equatith Go=ugu (6)
, , The transformation matri¥ is local in the site index and is
Gl(E)=G[" (E) given by

+ z GEE? (E)AtEHLW(E)GEWnLV(E)' (2) ULL’(SFI ,E):47Tz i|+|/,_|/CLL!LNj|N(Sn\ 2m E/ﬁ)YLH(ASn),

n”,L"”,L" L
The summations in Eq2) extend only over those cells and . . . @
angular momenta where the differenag!' ,(E) between Where |, —are spherical Bessel functions and
thet matrices of the defect and the host system is significantCLi/L»=SdrY (r)Y_.(r)Yp.(r) are the Gaunt coefficients.
Equation (2) can be abbreviated in matrix form: The following properties can be directly derived from Eqg.
G=G%+ GPAtG. Lk
For general potentials that include nonspherical contribu-

tions, we expand wave functions and potentials in real Ui (s:E)=(=1)"""Up(sy:E), 8
spherical harmonics 1
(U (s B) i =V (=5 E)=Up(s;E). (9
RI(r;E)= > Rl (T; E)Y,/ (1), (3) For lattice distortions, the defect structural Green function
L’ G, which is expanded in the shifted coordinate system, can be

related to the host structural Green function by the Dyson
UOEORHEMGE (4 cauaton

G=G°+G%(t-1°g, (10)
The nonspherical components of the potential couple the an- _
gular momentum channels and one is faced with the problemvhere t°=24°2/~* is the ideal host matrix in the expan-
of a system of coupled radial equations. We solve the probsion around the shifted sites ahdk the defect matrix. We
lem as follows. We first calculate the wave function for thehave used a tilde to denote quantities that are obtained using
spherical part of the potential and then treat the nonspherica coordinate system transformation. In EtQ) all quantities
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are expanded around the shifted centers. Alternatively, onthe distance of a face, an edge, or a vertex of the polyhedron
can transform the Dyson equati¢hO) to the unshifted co- from the centef2 Since a shape function truncates the po-

ordinate system tential within a WS cell, these discontinuities are also present
in the first derivative of the potential. For a fcc WS cell, for

G=3"+3%(t—1%9g, (1) example, the shape function introduces three kinks. To avoid

inaccuracies in the numerical integration of Salinger

equation caused by the kinks, we can restart the integration
t=u%U, G=u"'gu, (12) of the Schrdinger equation at each kink. Although this pro-

~ cedure is the one that we use in the present work, it is not

and, after solving Eqg(11), transform the defect Green func- very efficient for nonsymmetric polyhedra because the num-

with

tion back to the shifted coordinate system by ber of kinks increases and one typically has to deal with 20
. or 30 kinks. For this purpose it is preferable to replace the
G=Ugu . 13 shape function§14) by broadened function®"(r) with the

. virtue of the Fermi-Dirac distribution. Since the derivative of
Both schemeéEqs.(lO) and(11)7(13)]_are gquwalent, how- the step function is & function, the smeared shape functions
ever, the latter is more convenient since it reduces the addi:
i . . can be found from
tional computational effort when treating structural changes.
This can be easily understood since only the site-diagonal
elementsG ', (E) of the _defect structural Green.function are ®_E(r):f dx@E(r+x)§(x), (16)
needed for the calculation of the charge density and, there-
fore, only these have to be transformed to the shifted system.

A problem occurring in the transformation of the Green"
function or thet matrix is the angular momentum conver-
gence. However, for small shifts, to first order in the dis-
placement, the only nonvanishing off-diagonal elements of
the transformation matriX7) are those with|l—1'|=12%
Therefore, for moderate lattice distortions, accurate calculais the derivative of a Fermi-Dirac-like function. By optimiz-
tions up tol yax can be done if angular momentum compo-ing the “temperature” parameter we can rende®}(r)
nents up tol,+1 are included. The full-potential KKR  smooth enough in order to ensure an accurate evaluation of
Green-function method has been found to give accurateotal energies and forces.
well-converged total energi¥sand force& using a cutoff at
Imax=3. Therefore, in the present calculation we use
I max=4 in order to obtain reliable results.

In solving Schrdinger and Poisson equations the space is The calculation of the total energy is more complicated in
divided into space-filling, nonoverlapping cells, described bya defect system than in a periodic crystal. The main reason is
the shape function®"(r), which equal 1 inside celh and that Friedel screening rule cannot be satisfied exactly if one
vanish outside. The shape functions are expanded in reéimits the perturbation to a finite region of space surrounding
spherical harmonics the defect and, moreover, truncates the angular momentum

expansions. This means that the total number of electrons of
the systenN cannot be conserved so that the extremal prop-

here

—x/T

B(x) = 7 @ ¥E1)? (17

B. Total energy

n — n ¢
® (r)—; OLYLT). (14 erties of the Kohn-Sham energy functional are lost. This
_ . problem can be overcome by introducing a generalized en-
The expansion coefficients ergy functionat®
n — F@EN v _
Ou(r) fdr@ (DYL(r) (19 E{n(r)l=E{n(r)} - Er fd%n(r)—N), (18)

are calculated with the algorithm of Stefanetual > follow-
ing a semianalytical approach that can be used for any arbivhereE{n(r)} is the Kohn-Sham energy functiortdiHere
trary Voronoi polyhedron. For a distorted lattice one canand in what follows, unless otherwise statedis used to
either make a Wigner-SeitdVS) construction in the dis- denote any point in the crystal, no longer being restricted
torted geometry or keep the same space division as in th@ithin an atomic cell. The generalized functional defined by
undistorted lattice and just calculate the shape functions exEq. (18) retains its extremal properties even for non-particle-
panded around the shifted centers. The latter procedure onserving variations of the charge density. The total energy
preferable when the displacements are situdlthe order of is separated into single-particle and double-counting contri-
a few percentand is the one we have used in the presenbutions. The single-particle energy is calculated using
work. However, for larger displacements the former procedloyd's formula, adapted for complex enerdi®ésand full
dure seems to be a better choice because it optimizes thmtentialst® which sums up the energy contributions from
angular momentum convergence of the wave functions.  the charge perturbation in all space. In this way the change of
A problem connected with the use of the shape functionghe total energy due to the defect is well converged by in-
is that the expansion coefficier®s'(r) have kinks(i.e., dis-  cluding the perturbation of only a few atomic shells around
continuities of the first derivatiyeor radii that correspond to the impurity atom.
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C. Hellmann-Feynman forces density. The anisotropy of the core charge densities of the
and the core polarization problem other nuclei are here neglected since the spherical approxi-
The HF theorer? offers an attractive way to calculate Mation gives already the dominant contribution. ,
forces, since a single self-consistent calculation is sufficient Within first-order perturbation theory the nonspherical
to obtain the forces on all atoms. However. this is also @'t of the core charge density is related to the nonspherical
. L . . . n _
rather difficult scheme, because the correct charge density Rt of the effective potential in cefi, AV*(r—Ry), by the
required. As stated by the HF theorem, the force on a nucleygauation
with nuclear charg&,, at positionR,, is given by the electric
field E(R,) due to all other nuclei and all electrons Apg(r—Rn):f A3’ Y"(r—R,,r'—R)AV"(r'—R,),

(21)

where x" is the core susceptibility calculated with core or-

F'=Z E(R,)=-2Z, >, 1 Z
n ( n) n aRn|R R | n’
n n’
bitals that are eigenfunctions of the spherically symmetric

n’#n

3, 1 , component of the effective potential. Inserting E(&l) and
_f d>r aan p(ri)t, (19 Eq.(20), into (19) we obtain
where the integration extends over the whole crystal and n_
. : . S F'=-2,0 X | dr Zyy
p(r)=|e[n(r). While Eq. (19) is exact, its application in nn "[Rp— Ry

realistic calculations is problematic since highly accurate

charge densities are needed. The reason for this is that in 43 1
deriving F" as the gradient of the total energy with respect to - r aRn||”— Ry
the nuclear coordinat®,, one uses the Euler-Langrange

75<r/>]

equations, which are valid only for the correct charge den- 31 3

sity. As a consequence, one is no longer protected by the +an dr"d°r aRn—|r’—Rn|

extremal properties of the total energy and first-order errors

in the charge density lead to first-order errors in the force. Xx(r' =Ry, r"—R)AV(r"—R,), (22)

The HF force given by Eq19) is directly proportional to the ~

bare nuclear chargg,, instead of an effective ionic charge Wherep(r) is the sum of the valence density and the spheri-
as one would intuitively expect. Thus the question arise§ally symmetric core density. The second term in Ezp),
whether one can derive an “ionic” force formula equivalent which we denote by}, is the force on the nucleus due to
to the nuclear onél9). In such a treatment the core electronsthe anisotropic polarization of the local core wave functions.
would screen the nuclear charge, so that effectively the forcéhus calculating the force on the nucleus requires an aniso-
on the ion, i.e., on the nucleus and on the core electrondropic treatment of the local core electrons, at least in first-
would have to be calculated. Such an ionic formula for theorder perturbation theory. This is the major difficulty in
force has been derived by Hargs al?® In this treatment one  working with the nuclear force formulél9). The symmetry
starts with the total energy in the frozen-core approximatiorof the core susceptibility x"(r—R,.,r' —R,)=x"(r’

and then takes the derivative with respecRipby using the —R,,r—R;)) allows a different interpretation of the polar-
Euler-Langrange equations only for the valence electronization term in Eq.(22). By exchanging the order of the

and not for the core electrons. The force formula derived irandr” integration we obtain

this way is still extremal with respect to variations of the

core charge density, so that reliable forces can be calculated n _ 3.0 AN 3pr Ngpm_ '

if the valence density is accurate. In the following we will Fpo'_J' AV R”)f a1 =R 1= Ry)

give a somewhat more general derivation of the ionic HF

formula, which shows more clearly the equivalence of the %
nuclear and the ionic HF formula.

. The charge density pf thg core elgctrons in a solid can bgy considering the change of the nuclear potential
in a very good approximation considered to be spherlcallyﬁR (~=Z,/Ir'=R,|) due to an infinitesimal shift of the
symmetric. However when one calculates the HF force by ™

(19), this approximation is not sufficient for the on-site elec—nUCIeus as a small perturbatlon, theintegral can be inter-
trons, since the core density is weighted by a large l‘actoprem.d as the corresponding change of the on-site core charge
1r—R,|? and a spherical approximation for the core givesdens'ty' This change can be easily evaluated since it gives

no contribution at all. Therefore, we write the total coreJl_JSt a rigid shift of the unperturbed and spherically symmet-

charge density as ric core density. Therefore the integral is identical to

I 23
[?R“|I"—Rn| . ( )

0 O _aRnpgn(lr”_Rn|):‘7r/'Pgn(|r"_Rn|) (24)
N=p([r—Ry)+ApNr—R,)+ "(Ir=Ry]),
PN =pe' oD+ Al v n’'#n pe (| ) and thus Eq(23) becomes
(20)
whereApl(r —R,)) represents the anisotropic polarization of FBO,:f d3rAV(r—R,) 4, p2"(Ir—Ry). (25

the core states in celt due to the anisotropic part of the
potential in this cell, which is induced by the valence chargdntegrating by parts, we finally obtain
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PoI= — f d*rpd"(Ir=Ra[) V' (r=Ry),  (26) = 120
iy
whereV"(r—R,) is the total effective potential in cel, % 115 py
including also its spherical part, which gives no contribution g’ 5r {10 8
to the force. The total force on ion can therefore be ob- 5
tained by combining the force on the nucleus and the force & 18 ME
on the core electrons according to Eg2). Denoting byr § 0 o ° L‘E
again site-centered coordinates we have s -
P 1-5
F'=Z"9,VE(r)|r—o— f d*rpd(r)avi(r), (27 s} 110
whereV¢ is the Coulomb part of the effective one-electron 1°
potential in celln due to all electrons and all other nuclei _10- 1-20

outside this cell. Clearly, the first term is the force on the 05 0 05 10 15 20 25 30
nucleus, evaluated with spherical core charge densities, and ’ ' ' ’ ' ' '

the second term is the force on the core electrons. Sifide Displacement of first NN (%)

the effective Kohn-Sham potential, the latter term includes

both electrostatic and exchange-correlation contributions FIG. 1. Total-energy variation and radial force on a first NN
arising from the exchange and correlation between core anatom as a function of the change of the first NN distance, for a Pd
valence electrons. From E(R7) it is obvious that the force impurity in Cu. A linear fit for the force and a parabolic one for the
on the nucleus is to a large extent compensated by a nearigtal-energy change are shown. The force is calculated both from
equal but opposite force on the core electrons. In deriving thée HF theorem(solid line) and from the derivative of the total
ionic force formula(27) we have only assumed that the un- €nergy(broken ling.

perturbed core density is spherically symmetric. Therefore )
Eq. (27) is equally valid if one makes the frozen-core the defect was calculated self-consistently for a cluster con-

approximatiof® or if the core states are allowed to relax SiSting of severalS or 12 shells of perturbed potentials

retaining the spherical symmetry, as it is usually done idround the impurity atom, while the potentials of the outer
all-electron calculations. Cu atoms were assumed to be unperturbed.

Using the angular momentum expansidhfor the poten-

tial, one finally obtains for thé=x,y,z component of the IV. RESULTS AND DISCUSSION

force on atorm A. Are the total energy and the HF force methods consistent?
3 V2&.5(r) In a first approximation and in order to test our method
Fl=2z" yp ’r we neglect the distortion of distant neighbors and consider
r=0 only the relaxation of the first NN of the impurity, fixing all
4 9 other atoms at their ideal host positions. For symmetry rea-
—\/ = | drp®™(r)—=[r3vi.(n]. (28) sons the first NN atoms relax radially, i.e., in t di-
3 ¢ or u

rections. Their equilibrium positions can be found either
As we see from this result, within the KKR Green-function from the minimum of the total energy or from the zero-force
method the force calculation requires no additional effortcondition.

since the HF force is readily calculated from thel com- In Fig. 1 we show the change of the total energy for a Pd
ponent of the potential and since all potential components ugubstitutional impurity in Cu, which was calculated includ-
to 2| max are anyhow evaluated se]f-consistenﬂy' |ng the perturbation within a cluster of 79 atortfs atomic

shells around the impurifyfor different shifts of the first
NN. The total energy change shows a parabolic behavior in
agreement with the harmonic approximation. Figure 1 also
We have used our method to calculate the lattice distorshows the HF force exerted on the first NN for the different
tion around substitutional impurities in fcc Cu. The calcula-radial shifts. This force is compared with the force obtained
tions are based on the local-spin-density-functional théory from the derivative of the total energy. The forces vary lin-
and employ the exchange-correlation potential of Voskogarly with the displacement and agree well, thus demonstrat-
Wilk, and Nusair?’ An angular momentum cutoff,,,=4 is  ing the overall consistency of our calculation. Here one
used for the Green function, thus implying a cutoff for the should also mention that the total-energy change with dis-
potential and charge-density components kj,2=8. The placement is very small, of the order of 1 mRy. Since 79
correct shape of the WS cells is described by the propeatoms contribute, this means that an accuracy better than
shape functions expanded up th,4= 16, so that integrals 103 mRy/atom must be achieved. The use of Lloyd’s for-
over WS cells containing products of the charge density withmula is indispensable for that purpose. The HF force is rela-
the potential, which occur in the evaluation of the Coulombtively sensitive to small errors in the charge density and this
and exchange-correlation energies, are computed exactlgensitivity is probably the reason for the small differences
The lattice constant of the Cu host, as obtained from energipetween the two forces shown in Fig. 1. The parabolic be-
minimization, isa,=6.707%hg.> The perturbation due to havior of the total energy with respect to the first NN dis-

[ll. TECHNICAL ASPECTS OF THE COMPUTATION
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Ti V Cr MnFe Co Ni Cu Zn Ga Ge

N — . TABLE I. Calculated forces on the first NN and resulting dis-
tortion around a Ti impurity in Cu using three different methods to
20 (@) treat the Ti D semicore statésee the tejt
&
z 1.5 Case ForcédmRylag) Change of the first NN distand&b)
E oo A 20.01 1.67
S ost B 17.00 1.42
= 0.
g C 13.54 1.15
g 0
8
o
a8 05 Schralinger equation for the core states. Therefore, the MT
—1.0f radii must be sufficiently reduced so that they can be kept
constant for all the considered displacements. On the other
Y S

hand, reducing the radius of the MT spheres might cause
problems in the calculation of the higher cofgemicore
states, which can be rather extended. For Cu-based dilute

ST alloys this problem arises only for the impurity since the Cu
4.0 (b) core states are well localized. A way to overcome this could
a5 be to treat the higher core states as valence states in a single-

3.0
25

site approximation neglecting multiple scattering, i.e., setting
the second term of the right-hand side of Et) equal to
zero. In such a treatment one solves two problems. First, one
gets rid of the problematic boundary conditions at the MT

20 radius, since the Green functi@{ is the correct solution for
1.5} a single potentiaM"(r) in free space. Second, due to the
1ok full-potential treatment, the anisotropic polarization of the

semicore charge density is correctly described. Thus one is
0.5r 1 not limited by the first-order perturbative approach of Sec.
Il C underlying the equivalence between the ionic and the
original HF force formulas. Nevertheless, this approximation
cannot describe the weak hybridization between semicore
FIG. 2. Change of the first NN distance f@) 3d and 4pas  and valence states, which is also important for reliable force
well as(b) 4d and %p impurities in Cu. The results obtained from calculations. Since this requires the knowledge of the struc-
both total-energyfilled squaresand HF forcelempty squarescal-  tural Green function in the energy region of the semicore
culations are shown. states, both semicore and valence electrons must be treated
on an equal footing.
placement and the corresponding linear variation of the force In order to demonstrate the influence of the core treatment
are common features for all impurities examined. The differ-n the force calculation we carried out three different calcu-
ences in the equilibrium positions predicted by the derivativdations for the representative case of a Ti impurity in Cu. The
of the energy and the HF force are small, as can be seen iigsults for the force exerted on the first NN at the ideal lattice
Fig. 2, where we have plotted the first NN displacements foposition together with the resulting displacement, obtained
d andsp substitutional impurities as calculated by the aboveby fixing all more distant atoms at their ideal host positions,
procedure, i.e., by fixing all other atoms at their ideal hostare presented in Table I. In ca8ethe semicore B states of
positions. The differences become somewhat bigger for ththe impurity and of the host are treated as core states with
4d impurities and arise mainly from the difference of the spherically symmetric core charge densities. In dasiee Ti
forces for the unshifted positions, whereas the slopes of th@p state is treated as valence state, but in the single-site
force curves, i.e., the force constants, agree very well in botapproximation, i.e., by neglecting the hybridization between
approaches, as can be seen from Fig. 1. this state and the valence states of Cu. Finally, €asefers
to the situation where the Ti semicore state is considered as
part of the valence states including the multiple scattering
contributions. In casé the complex energy contour used to
The correct treatment of the core states is very importangvaluate the valence charge density from (g starts a few
in order to predict the lattice distortion around impurities. eV below the band minimum of Cu and ends at the Fermi
One problem is connected with the fact that the core statesnergy. On the contrary, for cas& and C a very large
are considered to be confined within muffin{MT) spheres contour starting 4.5 Ry below the Fermi level and encircling
so that the wave function is normalized within the MT both the valence and the shallow core states is used. While
sphere. Since the MT spheres of the neighbors are centerélde contour integral in casA can be accurately evaluated
at shifted atomic positions, they become gradually smallewith about 30 complex energy points, a larger numagout
with increasing lattice distortion. However, having different 100) is needed for the large contour. Table | shows that the
MT spheres for each atomic displacement leads to numericdbrce on the first NN host atoms and the resulting displace-
errors arising from the different radial mesh used to solve thenent are overestimated by about 50% if the Ppi &ate is

Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn

B. Treatment of the semicore states
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25 ; . . . . this valence region. Here we should also mention that only
the force on the first NN is strongly affected by the treatment
o0l of the semicore states. The forces on the more distant atoms
as well as the slope of the force curve, i.e., the coupling
u>:~|Am 15 parameters, are rather insensitive to the semicore treatment.
" Figure 3 shows that the contribution to the force arising
° from the polarization and hybridization of the semicore
S 10 states is always negative. This can be explained as follows.
& First of all we note that, compared to a spherical core treat-
5r ment, the total energy should decrease when polarization and
hybridization effects of the semicore orbitals are included.
0 Furthermore, this decrease becomes gradually larger when
the neighboring atoms come closer to the impurity because

-5 = : : . : then hybridization and polarization effects become more im-
portant. This means that the error to the total energy is a
decreasing function of the first NN distance, which implies

L% I e S — an additional repulsive force when the semicore electrons are
ol § ® | not treated correctly.
50t C. Lattice relaxation effects
- In principle, the equilibrium position of all the atoms in
‘?::1@”" 4or I the defect region can be determined by minimizing the total
~ energy. However, this approach is rather cumbersome and
§ 801 1 needs several self-consistent calculations. On the other hand,
P | the HF forces on all atoms can be reliably calculated from a
single self-consistent calculation and thus offer a more at-
10l | tractive alternative to treat the lattice-distortion problem. In
the case of impurities in bulk, lattice-statics simulations can
0 be used as a guide in order to simplify the problem of pre-
Zr Nb Mo Tc Ru Rh Pd Ag dicting the equilibrium atomic positions. Determining the

forcesF" induced by a point defect on the neighboring atoms
FIG. 3. Radial force on a first NN atom fga) 3d and (b) 4d from the ab initio calculation, we can get a very good esti-

impurities in Cu, calculated using a spherical core approximatiormate of the lattice distortion using the Kanzaki motié.
(shaded bajsand treating the shallow core states of the impurities  force patternF" will cause displacements,. In the har-
as valence state$iled bars. monic approximation we have'==,,®""'s,,, whered de-
notes the force-constant matrix of the defect system. In the
Ranzaki model the equilibrium atomic positions around a
defect can be obtained by introducing forces in the ideal
crystal. The Kanzaki force

considered as a core state. Even the single-site approxim
tion (caseB), which describes correctly the atomic polariza-
tion of the semicore state, yields too large forces.

The importance of the correct core treatment for the dif-
ferent impurities is demontrated in Fig. 3, where we have , )
plotted the force exerted on the first NN arourdi @&d 4 FR=2 ®p"s, =F"—> Ad"'s, (29)
impurities, calculated by both using a conventional core n’ n’
treatment(as described above for cas¢ and by including s the force that would induce the same local distorenin
the shallowp core states in the valence batas described the host crystal as the “direct” forcE" causes in the defect
for caseC). An exception is the case of Zr, where also thesystem, while Ad=d—®,, with &, being the force-
lower-lying 4s state is included in the large complex energy constant matrix of the host. The relaxed geometry can be
contour. As can be seen, the influence of the semicore statg®w determined by minimizing the elastic enerfy.g of
is quite important in order to obtain the correct force. This isthe hypothetical ideal crystal in the presence of the Kanzaki
particularly true for the elements Ti, V, and Cr at the begin-forces. In the harmonic approximation we have
ning of the 3 series, since the corresponding 8tates are
more extended. This effect is even more important for ithe 4 1 - n
impurities, since their @ states are less localized than the 3 Eelast:iz, $Po Sn’_; Fi S (30
states of the isoelectronicddmpurities. Due to the contrac- nn
tion of the semicore orbitals the effect can be neglected at th&/e assume that only the force constants coupling the impu-
end of both series. In line with this observation we haverity with the first NN change. This changed can be found
chosen the lowest energy of the large contour 4.5 Ry belovfrom the ab initio calculations, since it is given by the dif-
the Fermi energy, above thep 3tate of the Cu host, thus ference between the slopes of the force curiges Fig. 1
defining an energy window within which all states are fully for the impurity and the pure host system. The force-constant
treated as valence states. This means that also the shallow #atrix &4 of the Cu host can be calculated from first prin-
(4d) core states of thesp (5sp) impurities are included in  ciples or, as done in the present study, one can use Born—von
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FIG. 4. Change of the first NN distance f@) 3d and 4p as
well as(b) 4d and S p impurities in Cu, allowing for relaxation of
one(empty squaresand all(filled squaresneighboring shells. The
triangles with the error bars show the EXAFS results of Ref. 1.

FIG. 5. HF forces(empty squaresand resulting atomic dis-
placementgfilled squaresin the neighborhood dfa) an Ag and(b)
a Sn impurity in Cu.

4, in most cases the Cu lattice is dilated due to the substitu-

Karman parameters fitted to experimental phonon dispersiomional defects, except for the case of Fe, Co, and Ni impuri-
curves?® The Kanzaki forces and the corresponding atomicties. For a vacancy in Cu we predict a compression of the
displacements are obtained solving E(0) and (29) self- Ilattice with a first NN relaxation of- 1.45%. In the case of
consistently by an iterative procedure. Starting from a trialdd impurities the lattice distortion shows a parabolic behav-
displacement for the first NN, as obtained by relaxing onlyior with the minimum at Ru. In contrast to this, the behavior
the first NN (see Fig. ], we calculate the corresponding of the 31 impurities is strongly influenced by magnetism.
Kanzaki forces from Eq(29). Then, minimizing the elastic The dashed line in Fig.(4) indicates the results of non-spin-
energy given by Eq(30) with respect tos,, we deduce a polarized calculations. It can be clearly seen that the mag-
new displacement pattern for all the atoms near the impuritynetic 3 impurities experience a pronounced magnetoelastic
For this configuration we then recalculate the forces, etc. Thexpansior® which is larger for Cr and Mn since these im-
iteration stops when input and output displacements are thgurities exhibit the biggest moments in Cu. On the other
same. We have used the relaxed atomic positions obtaindthnd, the influence of lattice distortion on the magnetic mo-
from the lattice-statics simulation in a cluster of 12 shellsments is vanishingly small. Our calculation gives for the lo-
around a Pd impurity225 atomg and recalculated self- cal moments of V, Cr, Mn, Fe, and Co impurities: 0.98
consistently the forces on all these atoms in the distorted0.85), 2.96(2.91), 3.42(3.39, 2.53(2.53), and 0.96(1.01)
geometry. The forces were found to be rather small, less thaBohr magnetons, respectively, in the relaXadrelaxedl ge-
1 mRylag. ometry. These results show that outward relaxations slightly

In Fig. 4 we present the first NN relaxation obtained byincrease the moment¥, Cr, and Mn, while inward relax-
using this Kanzaki procedure. For comparison we have inations lead to a small decrease of the magnetic mo@ot
cluded the approximate results shown already in Fig. 2, afor Fe there is no relaxation of the first NN so that, in this
calculated by fixing all other atoms at their ideal host posi-case, there is no moment change. This vanishingly small
tions. Also included are experimental data from EXAFSinfluence of the local lattice distortion on the impurity mag-
measurements of Scheuer and Leng&lEixing the distant netic moment is contrary to the result obtained for, e.g., an
atoms at their ideal host positions results in an underestimaFe impurity in Al!! where the Fe magnetic moment was
tion of the outward first NN shift. As can be seen from Fig. found to vary critically with the Al-Fe distance. This differ-
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FIG. 6. Relative volume change per impurity in Cu-based dilute  FIG. 7. Relaxation energies f¢a) 3d and 4p as well agb) 4d
alloys with () 3d and 4p as well as(b) 4d and Sp impurities.  and %p impurities in Cu.

The results of lattice-parameter measurements are shown with
empty trianglegRef. 32 and empty squaredRef. 33) 1
AV=V—-V,=-_> FR-R", (31)
ent behavior can be easily understood because the spin- 3K%
polarization energy of the magnetid 3mpurities in Cu is
considerably larger than the relaxation enefgge below,  whereV andV, are the atomic volumes of the defect system
while the magnetic energy in the case of Fe in Al is ratherand the ideal host, respectively, adds the bulk modulus of
smalf® and therefore lattice distortion effects can dramati-pure Cu:K = 1.55 Mbar! In Fig. 6 we present the calcu-
cally influence the magnitude of the magnetic moment. lated relative volume changesV/V, for all the systems
It is interesting to take a closer look at our calculatedconsidered in this work, together with the experimental data
force pattern due to the impurity atom. There is a strikingas obtained from lattice-parameter measurentéritsFor
difference betweenl andsp impurities as demonstrated in cubic crystals the volume change is related to the change of
Fig. 5, where we have plotted the forces induced around athe lattice parameter bAV/Vy=3Aal/a,. The agreement
Ag and a Sn substitutional impurity in Cu, together with thewith the experiment is good. Due to the weighting of the
resulting atomic distortion. As can be seen for &gmilaris  Kanzaki forces in Eq(31) by R, the forces on the more
the behavior of all thel impurities, we have a strong force distant neighbors are quite important for the volume change.
only on the first NN, whereas the forces on more distanSince the corresponding force-constant changes are small,
neighbors vanish. This causes a displacement mainly in thine use of the direct instead of the Kanzaki forces in the
(110 directions, while we do not observe any significantvolume change calculation would influence the results only
distortion in the(100) directions. On the contrary, in the case slightly.
of Sn we find that also the forces on the second neighbors are We have also calculated the long-ranged lattice distortion
appreciable, and this force pattern induces a rather isotropior a single vacancy in Cu. The presence of isolated vacan-
distortion of the lattice at short distances. This behavior iies compresses the Cu lattice. We calculate a volume
typical for all sp impurities. change of—30%, which is in very good agreement with the
A lattice expansion or compression due to point defect®xperimental result € 25+5)%3* It is also interesting to
results in a change of the host lattice constant. In the case ¢dok at the influence of the lattice distortion on the vacancy
cubic metals the volume change due to a defect is given bjormation energy. The relaxation energy can be calculated
the first moment of the Kanzaki forces from E,o=1/22F"-5,. We find that the vacancy formation
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energy is lowered by 0.07 eV due to the lattice distortionare relatively easy, since no Pulay-type correcti@es, e.g.,
thus obtaining a value of 1.27 eV, in perfect agreement wittRef. 36 have to be applied. They also show that for impu-
the experimental value of 1.28 €¥. rities in Cu reliable forces can be obtained only if the semi-

The solution energy of impurities is another importantcore states of the impurities are treated as valence states,
quantity influenced by lattice relaxation. In the case df 3 which is particularly important for the elements at the begin-
impurities the corresponding relaxation energy is quite smallning of the transition series. The atomic positions have been
typically a few hundredths of an eV. In Fig. 7 we have plot- calculated by using lattice-statics simulations based on the
ted the relaxation energy for all the systems considered itKanzaki method. The results for the shifts of the first NN and
this work. It can be seen that the relaxation energy increasdhe macroscopic volume changes induced by the defect are in
substantially in the beginning of thel 3eries, since it essen- very good agreement with experimental data from EXAFS
tially depends on the square of the displacement. The changad lattice-parameter measurements. The present paper is an
of the elastic properties due to the defect causes only a sliglatb initio study of structural changes around point defects in
reduction in the calculated distortion energies. For the 4 transition metals within the framework of the KKR Green-
impurities we have calculated large energies, especially fofunction method. It opens the way to investigate dynamical
the first elements of the row. However, the solubility of theseproperties of solids, structural relaxations at surfaces or
impurities is quite small. around defects at surfaces where the reduced coordination

number implies a greater structural flexibility.
V. CONCLUSION
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