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Lattice distortion in Cu-based dilute alloys: A first-principles study
by the KKR Green-function method
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Institut für Festkörperforschung, Forschungszentrum Ju¨lich D-52425 Ju¨lich, Germany

N. Stefanou
University of Athens, Section of Solid State Physics, Panepistimioupolis GR-15784 Athens, Greece

~Received 13 September 1996!

The full-potential Korringa-Kohn-Rostoker Green function method is extended to treat the lattice distortion
in the vicinity of a point defect. The method is applied to predict the atomic positions in the neighborhood of
d andsp substitutional impurities in Cu. Both the total energy and the Hellmann-Feynman force are used for
the calculation of the ground-state configuration, while the semicore states of the impurities are treated as
valence states. Our results for the atomic displacements are in very good agreement with the experimental data
from extended x-ray-absorption fine-structure and lattice-parameter measurements.@S0163-1829~97!07907-1#
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I. INTRODUCTION

The presence of a point defect in a crystal, such a
vacancy or an impurity atom, generally causes a displa
ment of the neighboring host atoms from their ideal latt
positions. For alloys, such a lattice distortion changes
lattice constant and this change can be measured by x
diffraction. However, this information is not sufficient to e
timate the interatomic distances because, generally, the
tortion is different in magnitude for different atomic she
around the defect. More detailed information can be obtai
by extended x-ray-absorption fine-structure~EXAFS! experi-
ments, in which the absorption spectrum of the emitted p
toelectrons from the excited atom, as being modified by
backscattering from the surrounding atoms, is measured
systematic study of the lattice relaxation around subst
tional impurities has been reported by Scheuer a
Lengeler,1 who measured interatomic distances, coordinat
numbers, and Debye-Waller factors using EXAFS. Nev
theless, even EXAFS measurements can give reliable in
mation only for the displacement of the first nearest nei
bors ~NN’s! and, moreover, the results depend to so
extent on the model used to interpret the experimental d
Diffuse x-ray or neutron scattering can give more compl
information on local geometries, albeit for substitutional im
purities very few experiments have been performed so
For many defect properties, e.g., solution or interaction
ergies, residual resistivities, and NMR quantities, the imp
tance of the lattice distortion is not clear and a detailed
derstanding is still far from being complete.

From the theoretical point of view the treatment of stru
tural relaxation due to defects in crystals is a difficult task.
the past this problem has been mostly dealt with on a p
nomenological basis, e.g., by applying models of lattice s
ics or continuum theory.2 Various semiempirical method
have been also employed, especially for defects
semiconductors.3 A reliable microscopic description of lat
tice relaxation effects based on first-principles electron
structure calculations requires very accurate total energie
550163-1829/97/55~7!/4157~11!/$10.00
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forces and has mostly been attempted so far for simple m
als and semiconductors on the basis of pseudopotential t
ments. The difficulty arises mainly from the fact that ener
differences due to local atomic displacements are q
small, of the order of 0.1 eV, compared with, e.g., the co
sive energy of the solid. The pseudopotential supercell
proach has been used to describe structural distortion
simple-metal4 and semiconductor5–7 systems. Lattice relax-
ation effects around defects in semiconductors have
been treated by the pseudopotential Green-func
method.8–10Within the cluster approach a large finite clust
of atoms is used to simulate the macroscopic crystal. St
tural distortions have been studied by this method for defe
in metals,11 semiconductors,12 and ionic systems.13

Nowadays self-consistent, all-electron calculations of
electronic structure of solids can be carried out by employ
the first-principles computational formalisms developed
recent years. Among these formalisms, the full-poten
Korringa-Kohn-Rostoker~KKR! Green-function method of-
fers an elegant and efficient framework for the treatmen
the defect problem. Our aim in the present paper is to pre
an extension of this method in order to treat the lattice d
tortion around point defects in crystals. The method is
plied to study the local geometry in the neighborhood od
and sp impurities in bulk Cu. In this respect we have pe
formed both total-energy and force calculations by consid
ing the perturbation of several atomic shells around the
purity atom, while the chemical environment of the host
described by the Green function. We first give a short
scription of our method and present the formalism for t
force calculation that is based on the Hellmann-Feynm
~HF! theorem. Section III deals with some technical aspe
of the computation. In Sec. IV we discuss our results
interatomic distances, volume changes, relaxation energ
and local magnetism for Cu-based dilute alloys and comp
with experimental data from EXAFS and lattice-parame
measurements. Section V summarizes the main results o
paper.
4157 © 1997 The American Physical Society
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II. THEORETICAL METHOD

A. Full-potential multiple-scattering theory
for a crystal with a moderate lattice distortion

Within the framework of the KKR multiple-scatterin
theory a crystalline solid is divided into nonoverlappin
space-filling cells around each atomic citeRn . The effective
one-electron potential is written as a collection of individu
potentialsVn(r ), where the position vectorr is restricted
within cell n. Using a site-centered expansion, the crys
Green function can be written in the form14

G~r1Rn ,r 81Rn8;E!5dnn8Gs
n~r1Rn ,r 81Rn8;E!

1 (
L,L8

RL
n~r ;E!GLL8

nn8 ~E!RL8
n8~r 8;E!,

~1!

whereGs
n is the Green function for a single scattering pote

tial in cell n in an otherwise free space. Multiple-scatteri
contributions are contained in the second term through

so-called structural Green functionGLL8
nn8 (E). The indexL

denotes the angular momentum quantum numbers (l ,m) and
RL
n(r ;E) are regular partial-wave solutions of the Schr¨-

dinger equation for the potentialVn(r ) and energyE.
The electronic structure of a crystal with a localized p

turbation, induced by the presence of a point defect for
stance, can be obtained in two steps. We first calculate
ideal host Green functionG0 following a band-structure
calculation15,16 and obtain the host structural Green functi

GLL8
0nn8 from Eq.~1!. The Green function of the defect syste

can be then calculated in a second step from expansion~1!,
with the structural Green function given by the solution
the algebraic Dyson equation14

GLL8
nn8 ~E!5GLL8

0nn8~E!

1 (
n9,L9,L-

GLL9
0nn9~E!DtL9L-

n9 ~E!GL-L8
n9n8 ~E!. ~2!

The summations in Eq.~2! extend only over those cells an
angular momenta where the differenceDtLL8

n (E) between
the t matrices of the defect and the host system is signific
Equation ~2! can be abbreviated in matrix form
G5G01G0DtG.

For general potentials that include nonspherical contri
tions, we expand wave functions and potentials in r
spherical harmonics

RL
n~r ;E!5(

L8
RL8L
n

~r ;E!YL8~ r̂ !, ~3!

Vn~r !5(
L

VL
n~r !YL~ r̂ !. ~4!

The nonspherical components of the potential couple the
gular momentum channels and one is faced with the prob
of a system of coupled radial equations. We solve the pr
lem as follows. We first calculate the wave function for t
spherical part of the potential and then treat the nonsphe
l

l

-
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-
l
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m
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contribution by iterative solution of a Lippmann-Schwinge
type integral equation. Since the anisotropic components
generally small, the iterations converge fast and the sec
Born approximation is usually sufficient to obtain we
converged total energies and forces.16–18Moreover, close to
the nucleus the potential is almost spherical, so the n
spherical contributions are only calculated for radii larg
than a cutoff radiusS0. For the total-energy calculation it i
sufficient to chooseS0 to be about half the muffin-tin
radius.16 However, the force calculation requires more acc
rate charge densities and thus we have used
S050.15aB , where aB is the Bohr radius, which ensure
well-converged results for the forces.

The electron density in celln can be calculated by inte
grating the site-diagonal elements of the Green function o
all occupied states, up to the Fermi energyEF ,

nn~r !52
1

p
ImE

2`

EF
dEG~r1Rn ,r1Rn ;E!. ~5!

Taking advantage of the analytical properties of the Gre
function, the valence density can be obtained from Eq.~5! by
replacing the integral on the real energy axis with a cont
integral in the complex energy plane that starts below
valence band and ends at the Fermi energy. In this wa
much smaller number of energy points can be used for
integration since the Green function is less structured as
move away from the real axis.19

Let us now suppose that we introduce a distortion in
crystal, shifting a number of atoms bysn from their ideal
lattice sites. The structural Green-function matrix of the id
host can be expanded around the shifted atomic positi
with the help of the transformation20,21

G̃05UG0U21. ~6!

The transformation matrixU is local in the site index and is
given by

ULL8~sn ;E!54p(
L9

i l1 l 92 l 8CLL8L9 j l 9~snA2mE/\!YL9~ ŝn!,

~7!

where j l are spherical Bessel functions an
CLL8L95*dr̂YL( r̂ )YL8( r̂ )YL9( r̂ ) are the Gaunt coefficients
The following properties can be directly derived from E
~7!:

ULL8~sn ;E!5~21! l1 l 8UL8L~sn ;E!, ~8!

@U21~sn ;E!#LL85ULL8~2sn ;E!5UL8L~sn ;E!. ~9!

For lattice distortions, the defect structural Green funct
G, which is expanded in the shifted coordinate system, can
related to the host structural Green function by the Dys
equation

G5 G̃01 G̃0~ t2 t̃ 0!G, ~10!

where t̃ 05Ut0U21 is the ideal hostt matrix in the expan-
sion around the shifted sites andt is the defectt matrix. We
have used a tilde to denote quantities that are obtained u
a coordinate system transformation. In Eq.~10! all quantities
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55 4159LATTICE DISTORTION IN Cu-BASED DILUTE . . .
are expanded around the shifted centers. Alternatively,
can transform the Dyson equation~10! to the unshifted co-
ordinate system

G
>
5G01G0~ t2t0!G

>
, ~11!

with

t5U21tU, G
>
5U21GU, ~12!

and, after solving Eq.~11!, transform the defect Green func
tion back to the shifted coordinate system by

G5UG
>
U21. ~13!

Both schemes@Eqs.~10! and~11!–~13!# are equivalent; how-
ever, the latter is more convenient since it reduces the a
tional computational effort when treating structural chang
This can be easily understood since only the site-diago
elementsGLL8

nn (E) of the defect structural Green function a
needed for the calculation of the charge density and, th
fore, only these have to be transformed to the shifted sys

A problem occurring in the transformation of the Gre
function or thet matrix is the angular momentum conve
gence. However, for small shifts, to first order in the d
placement, the only nonvanishing off-diagonal elements
the transformation matrix~7! are those withu l2 l 8u51.21

Therefore, for moderate lattice distortions, accurate calc
tions up tolmax can be done if angular momentum comp
nents up tolmax11 are included. The full-potential KKR
Green-function method has been found to give accur
well-converged total energies16 and forces22 using a cutoff at
lmax53. Therefore, in the present calculation we u
lmax54 in order to obtain reliable results.

In solving Schro¨dinger and Poisson equations the spac
divided into space-filling, nonoverlapping cells, described
the shape functionsQn(r ), which equal 1 inside celln and
vanish outside. The shape functions are expanded in
spherical harmonics

Qn~r !5(
L

QL
n~r !YL~ r̂ !. ~14!

The expansion coefficients

QL
n~r !5E dr̂Qn~r !YL~ r̂ ! ~15!

are calculated with the algorithm of Stefanouet al.23 follow-
ing a semianalytical approach that can be used for any a
trary Voronoi polyhedron. For a distorted lattice one c
either make a Wigner-Seitz~WS! construction in the dis-
torted geometry or keep the same space division as in
undistorted lattice and just calculate the shape functions
panded around the shifted centers. The latter procedur
preferable when the displacements are small~of the order of
a few percent! and is the one we have used in the pres
work. However, for larger displacements the former pro
dure seems to be a better choice because it optimizes
angular momentum convergence of the wave functions.

A problem connected with the use of the shape functi
is that the expansion coefficientsQL

n(r ) have kinks~i.e., dis-
continuities of the first derivative! for radii that correspond to
e
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the distance of a face, an edge, or a vertex of the polyhed
from the center.23 Since a shape function truncates the p
tential within a WS cell, these discontinuities are also pres
in the first derivative of the potential. For a fcc WS cell, f
example, the shape function introduces three kinks. To av
inaccuracies in the numerical integration of Schro¨dinger
equation caused by the kinks, we can restart the integra
of the Schro¨dinger equation at each kink. Although this pr
cedure is the one that we use in the present work, it is
very efficient for nonsymmetric polyhedra because the nu
ber of kinks increases and one typically has to deal with
or 30 kinks. For this purpose it is preferable to replace
shape functions~14! by broadened functionsQ̄n(r ) with the
virtue of the Fermi-Dirac distribution. Since the derivative
the step function is ad function, the smeared shape functio
can be found from

Q̄L
n~r !5E dxQL

n~r1x!d̄~x!, ~16!

where

d̄~x!5
1

t

e2x/t

~e2x/t11!2
~17!

is the derivative of a Fermi-Dirac-like function. By optimiz
ing the ‘‘temperature’’ parametert we can renderQ̄L

n(r )
smooth enough in order to ensure an accurate evaluatio
total energies and forces.

B. Total energy

The calculation of the total energy is more complicated
a defect system than in a periodic crystal. The main reaso
that Friedel screening rule cannot be satisfied exactly if
limits the perturbation to a finite region of space surround
the defect and, moreover, truncates the angular momen
expansions. This means that the total number of electron
the systemN cannot be conserved so that the extremal pr
erties of the Kohn-Sham energy functional are lost. T
problem can be overcome by introducing a generalized
ergy functional18

Ẽ$n~r !%5E$n~r !%2EFS E d3rn~r !2ND , ~18!

whereE$n(r )% is the Kohn-Sham energy functional.24 Here
and in what follows, unless otherwise stated,r is used to
denote any point in the crystal, no longer being restric
within an atomic cell. The generalized functional defined
Eq. ~18! retains its extremal properties even for non-partic
conserving variations of the charge density. The total ene
is separated into single-particle and double-counting con
butions. The single-particle energy is calculated us
Lloyd’s formula, adapted for complex energies18 and full
potentials,16 which sums up the energy contributions fro
the charge perturbation in all space. In this way the chang
the total energy due to the defect is well converged by
cluding the perturbation of only a few atomic shells arou
the impurity atom.
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C. Hellmann-Feynman forces
and the core polarization problem

The HF theorem25 offers an attractive way to calculat
forces, since a single self-consistent calculation is suffic
to obtain the forces on all atoms. However, this is also
rather difficult scheme, because the correct charge dens
required. As stated by the HF theorem, the force on a nuc
with nuclear chargeZn at positionRn is given by the electric
field E(Rn) due to all other nuclei and all electrons

Fn5ZnE~Rn!52ZnH (
n8Þn

S ]Rn
1

uRn2Rn8u
DZn8

2E d3r 8S ]Rn
1

ur 82Rnu D r~r 8!J , ~19!

where the integration extends over the whole crystal
r(r )5ueun(r ). While Eq. ~19! is exact, its application in
realistic calculations is problematic since highly accur
charge densities are needed. The reason for this is tha
derivingFn as the gradient of the total energy with respect
the nuclear coordinateRn , one uses the Euler-Langrang
equations, which are valid only for the correct charge d
sity. As a consequence, one is no longer protected by
extremal properties of the total energy and first-order err
in the charge density lead to first-order errors in the for
The HF force given by Eq.~19! is directly proportional to the
bare nuclear chargeZn , instead of an effective ionic charg
as one would intuitively expect. Thus the question ari
whether one can derive an ‘‘ionic’’ force formula equivale
to the nuclear one~19!. In such a treatment the core electro
would screen the nuclear charge, so that effectively the fo
on the ion, i.e., on the nucleus and on the core electro
would have to be calculated. Such an ionic formula for
force has been derived by Harriset al.26 In this treatment one
starts with the total energy in the frozen-core approximat
and then takes the derivative with respect toRn by using the
Euler-Langrange equations only for the valence electr
and not for the core electrons. The force formula derived
this way is still extremal with respect to variations of th
core charge density, so that reliable forces can be calcul
if the valence density is accurate. In the following we w
give a somewhat more general derivation of the ionic
formula, which shows more clearly the equivalence of
nuclear and the ionic HF formula.

The charge density of the core electrons in a solid can
in a very good approximation considered to be spheric
symmetric. However when one calculates the HF force
~19!, this approximation is not sufficient for the on-site ele
trons, since the core density is weighted by a large fac
1/ur2Rnu2 and a spherical approximation for the core giv
no contribution at all. Therefore, we write the total co
charge density as

rc~r !5rc
0n~ ur2Rnu!1Drc

n~r2Rn!1 (
n8Þn

rc
0n8~ ur2Rn8u!,

~20!

whereDrc
n(r2Rn) represents the anisotropic polarization

the core states in celln due to the anisotropic part of th
potential in this cell, which is induced by the valence cha
nt
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density. The anisotropy of the core charge densities of
other nuclei are here neglected since the spherical appr
mation gives already the dominant contribution.

Within first-order perturbation theory the nonspheric
part of the core charge density is related to the nonsphe
part of the effective potential in celln, DVn(r2Rn), by the
equation

Drc
n~r2Rn!5E d3r 8xn~r2Rn ,r 82Rn!DV

n~r 82Rn!,

~21!

wherexn is the core susceptibility calculated with core o
bitals that are eigenfunctions of the spherically symme
component of the effective potential. Inserting Eqs.~21! and
Eq. ~20!, into ~19! we obtain

Fn52ZnH (
n8Þn

S ]Rn
1

uRn2Rn8u
DZn8

2E d3r 8S ]Rn
1

ur 82Rnu D r̃~r 8!J
1ZnE d3r 8d3r 9S ]Rn

1

ur 82Rnu D
3xn~r 82Rn ,r 92Rn!DV

n~r 92Rn!, ~22!

wherer̃(r ) is the sum of the valence density and the sphe
cally symmetric core density. The second term in Eq.~22!,
which we denote byFpol

n , is the force on the nucleus due t
the anisotropic polarization of the local core wave functio
Thus calculating the force on the nucleus requires an an
tropic treatment of the local core electrons, at least in fir
order perturbation theory. This is the major difficulty
working with the nuclear force formula~19!. The symmetry
of the core susceptibility xn(r2Rn ,r 82Rn)5xn(r 8
2Rn ,r2Rn) allows a different interpretation of the pola
ization term in Eq.~22!. By exchanging the order of ther 8
and r 9 integration we obtain

Fpol
n 5E d3r 9DVn~r 92Rn!E d3r 8xn~r 92Rn ,r 82Rn!

3S ]Rn
Zn

ur 82Rnu
D . ~23!

By considering the change of the nuclear poten
]Rn(2Zn /ur 82Rnu) due to an infinitesimal shift of the

nucleus as a small perturbation, ther 8 integral can be inter-
preted as the corresponding change of the on-site core ch
density. This change can be easily evaluated since it g
just a rigid shift of the unperturbed and spherically symm
ric core density. Therefore ther 8 integral is identical to

2]Rnrc
0n~ ur 92Rnu!5] r9rc

0n~ ur 92Rnu! ~24!

and thus Eq.~23! becomes

Fpol
n 5E d3rDVn~r2Rn!] rrc

0n~ ur2Rnu!. ~25!

Integrating by parts, we finally obtain



on-
s
ter

od
der
ll
ea-

er
ce

Pd
d-

r in
lso
nt
ed
n-
trat-
ne
is-
79
than
r-
la-
his
es
be-
is-

N
Pd
e
rom
l
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Fpol
n 52E d3rrc

0n~ ur2Rnu!] rVn~r2Rn!, ~26!

whereVn(r2Rn) is the total effective potential in celln,
including also its spherical part, which gives no contribution
to the force. The total force on ionn can therefore be ob-
tained by combining the force on the nucleus and the forc
on the core electrons according to Eq.~22!. Denoting byr
again site-centered coordinates we have

Fn5Zn] rVC
n ~r !ur502E d3rrc

0n~r !] rV
n~r !, ~27!

whereVC
n is the Coulomb part of the effective one-electron

potential in celln due to all electrons and all other nuclei
outside this cell. Clearly, the first term is the force on the
nucleus, evaluated with spherical core charge densities, a
the second term is the force on the core electrons. SinceVn is
the effective Kohn-Sham potential, the latter term include
both electrostatic and exchange-correlation contribution
arising from the exchange and correlation between core a
valence electrons. From Eq.~27! it is obvious that the force
on the nucleus is to a large extent compensated by a nea
equal but opposite force on the core electrons. In deriving th
ionic force formula~27! we have only assumed that the un-
perturbed core density is spherically symmetric. Therefor
Eq. ~27! is equally valid if one makes the frozen-core
approximation26 or if the core states are allowed to relax
retaining the spherical symmetry, as it is usually done i
all-electron calculations.

Using the angular momentum expansion~4! for the poten-
tial, one finally obtains for thei5x,y,z component of the
force on atomn

Fi
n5ZnA 3

4p

VC;1i
n ~r !

r
U
r50

2A4p

3 E drrc
0n~r !

]

]r
@r 2V1i

n ~r !#. ~28!

As we see from this result, within the KKR Green-function
method the force calculation requires no additional effor
since the HF force is readily calculated from thel51 com-
ponent of the potential and since all potential components u
to 2lmax are anyhow evaluated self-consistently.

III. TECHNICAL ASPECTS OF THE COMPUTATION

We have used our method to calculate the lattice disto
tion around substitutional impurities in fcc Cu. The calcula
tions are based on the local-spin-density-functional theory24

and employ the exchange-correlation potential of Vosko
Wilk, and Nusair.27 An angular momentum cutofflmax54 is
used for the Green function, thus implying a cutoff for the
potential and charge-density components at 2lmax58. The
correct shape of the WS cells is described by the prop
shape functions expanded up to 4lmax516, so that integrals
over WS cells containing products of the charge density wit
the potential, which occur in the evaluation of the Coulomb
and exchange-correlation energies, are computed exact
The lattice constant of the Cu host, as obtained from energ
minimization, isa056.7071aB .

15 The perturbation due to
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the defect was calculated self-consistently for a cluster c
sisting of several~5 or 12! shells of perturbed potential
around the impurity atom, while the potentials of the ou
Cu atoms were assumed to be unperturbed.

IV. RESULTS AND DISCUSSION

A. Are the total energy and the HF force methods consistent?

In a first approximation and in order to test our meth
we neglect the distortion of distant neighbors and consi
only the relaxation of the first NN of the impurity, fixing a
other atoms at their ideal host positions. For symmetry r
sons the first NN atoms relax radially, i.e., in the^110& di-
rections. Their equilibrium positions can be found eith
from the minimum of the total energy or from the zero-for
condition.

In Fig. 1 we show the change of the total energy for a
substitutional impurity in Cu, which was calculated inclu
ing the perturbation within a cluster of 79 atoms~5 atomic
shells around the impurity! for different shifts of the first
NN. The total energy change shows a parabolic behavio
agreement with the harmonic approximation. Figure 1 a
shows the HF force exerted on the first NN for the differe
radial shifts. This force is compared with the force obtain
from the derivative of the total energy. The forces vary li
early with the displacement and agree well, thus demons
ing the overall consistency of our calculation. Here o
should also mention that the total-energy change with d
placement is very small, of the order of 1 mRy. Since
atoms contribute, this means that an accuracy better
1023 mRy/atom must be achieved. The use of Lloyd’s fo
mula is indispensable for that purpose. The HF force is re
tively sensitive to small errors in the charge density and t
sensitivity is probably the reason for the small differenc
between the two forces shown in Fig. 1. The parabolic
havior of the total energy with respect to the first NN d

FIG. 1. Total-energy variation and radial force on a first N
atom as a function of the change of the first NN distance, for a
impurity in Cu. A linear fit for the force and a parabolic one for th
total-energy change are shown. The force is calculated both f
the HF theorem~solid line! and from the derivative of the tota
energy~broken line!.
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placement and the corresponding linear variation of the fo
are common features for all impurities examined. The diff
ences in the equilibrium positions predicted by the derivat
of the energy and the HF force are small, as can be see
Fig. 2, where we have plotted the first NN displacements
d andsp substitutional impurities as calculated by the abo
procedure, i.e., by fixing all other atoms at their ideal h
positions. The differences become somewhat bigger for
4d impurities and arise mainly from the difference of th
forces for the unshifted positions, whereas the slopes of
force curves, i.e., the force constants, agree very well in b
approaches, as can be seen from Fig. 1.

B. Treatment of the semicore states

The correct treatment of the core states is very impor
in order to predict the lattice distortion around impuritie
One problem is connected with the fact that the core st
are considered to be confined within muffin-tin~MT! spheres
so that the wave function is normalized within the M
sphere. Since the MT spheres of the neighbors are cent
at shifted atomic positions, they become gradually sma
with increasing lattice distortion. However, having differe
MT spheres for each atomic displacement leads to nume
errors arising from the different radial mesh used to solve

FIG. 2. Change of the first NN distance for~a! 3d and 4sp as
well as~b! 4d and 5sp impurities in Cu. The results obtained from
both total-energy~filled squares! and HF force~empty squares! cal-
culations are shown.
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Schrödinger equation for the core states. Therefore, the
radii must be sufficiently reduced so that they can be k
constant for all the considered displacements. On the o
hand, reducing the radius of the MT spheres might ca
problems in the calculation of the higher core~semicore!
states, which can be rather extended. For Cu-based d
alloys this problem arises only for the impurity since the C
core states are well localized. A way to overcome this co
be to treat the higher core states as valence states in a si
site approximation neglecting multiple scattering, i.e., sett
the second term of the right-hand side of Eq.~1! equal to
zero. In such a treatment one solves two problems. First,
gets rid of the problematic boundary conditions at the M
radius, since the Green functionGs

n is the correct solution for
a single potentialVn(r ) in free space. Second, due to th
full-potential treatment, the anisotropic polarization of t
semicore charge density is correctly described. Thus on
not limited by the first-order perturbative approach of S
II C underlying the equivalence between the ionic and
original HF force formulas. Nevertheless, this approximat
cannot describe the weak hybridization between semic
and valence states, which is also important for reliable fo
calculations. Since this requires the knowledge of the str
tural Green function in the energy region of the semico
states, both semicore and valence electrons must be tre
on an equal footing.

In order to demonstrate the influence of the core treatm
in the force calculation we carried out three different calc
lations for the representative case of a Ti impurity in Cu. T
results for the force exerted on the first NN at the ideal latt
position together with the resulting displacement, obtain
by fixing all more distant atoms at their ideal host position
are presented in Table I. In caseA the semicore 3p states of
the impurity and of the host are treated as core states
spherically symmetric core charge densities. In caseB the Ti
3p state is treated as valence state, but in the single-
approximation, i.e., by neglecting the hybridization betwe
this state and the valence states of Cu. Finally, caseC refers
to the situation where the Ti semicore state is considere
part of the valence states including the multiple scatter
contributions. In caseA the complex energy contour used
evaluate the valence charge density from Eq.~5! starts a few
eV below the band minimum of Cu and ends at the Fe
energy. On the contrary, for casesB and C a very large
contour starting 4.5 Ry below the Fermi level and encircli
both the valence and the shallow core states is used. W
the contour integral in caseA can be accurately evaluate
with about 30 complex energy points, a larger number~about
100! is needed for the large contour. Table I shows that
force on the first NN host atoms and the resulting displa
ment are overestimated by about 50% if the Ti 3p state is

TABLE I. Calculated forces on the first NN and resulting di
tortion around a Ti impurity in Cu using three different methods
treat the Ti 3p semicore state~see the text!.

Case Force~mRy/aB) Change of the first NN distance~%!

A 20.01 1.67
B 17.00 1.42
C 13.54 1.15
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considered as a core state. Even the single-site approx
tion ~caseB), which describes correctly the atomic polariz
tion of the semicore state, yields too large forces.

The importance of the correct core treatment for the d
ferent impurities is demontrated in Fig. 3, where we ha
plotted the force exerted on the first NN around 3d and 4d
impurities, calculated by both using a conventional co
treatment~as described above for caseA) and by including
the shallowp core states in the valence band~as described
for caseC). An exception is the case of Zr, where also t
lower-lying 4s state is included in the large complex ener
contour. As can be seen, the influence of the semicore s
is quite important in order to obtain the correct force. This
particularly true for the elements Ti, V, and Cr at the beg
ning of the 3d series, since the corresponding 3p states are
more extended. This effect is even more important for thed
impurities, since their 4p states are less localized than thep
states of the isoelectronic 3d impurities. Due to the contrac
tion of the semicore orbitals the effect can be neglected at
end of both series. In line with this observation we ha
chosen the lowest energy of the large contour 4.5 Ry be
the Fermi energy, above the 3p state of the Cu host, thu
defining an energy window within which all states are fu
treated as valence states. This means that also the shallod
~4d! core states of the 4sp ~5sp! impurities are included in

FIG. 3. Radial force on a first NN atom for~a! 3d and ~b! 4d
impurities in Cu, calculated using a spherical core approxima
~shaded bars! and treating the shallowp core states of the impuritie
as valence states~filled bars!.
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this valence region. Here we should also mention that o
the force on the first NN is strongly affected by the treatm
of the semicore states. The forces on the more distant at
as well as the slope of the force curve, i.e., the coupl
parameters, are rather insensitive to the semicore treatm

Figure 3 shows that the contribution to the force arisi
from the polarization and hybridization of the semico
states is always negative. This can be explained as follo
First of all we note that, compared to a spherical core tre
ment, the total energy should decrease when polarization
hybridization effects of the semicore orbitals are include
Furthermore, this decrease becomes gradually larger w
the neighboring atoms come closer to the impurity beca
then hybridization and polarization effects become more
portant. This means that the error to the total energy i
decreasing function of the first NN distance, which impli
an additional repulsive force when the semicore electrons
not treated correctly.

C. Lattice relaxation effects

In principle, the equilibrium position of all the atoms i
the defect region can be determined by minimizing the to
energy. However, this approach is rather cumbersome
needs several self-consistent calculations. On the other h
the HF forces on all atoms can be reliably calculated from
single self-consistent calculation and thus offer a more
tractive alternative to treat the lattice-distortion problem.
the case of impurities in bulk, lattice-statics simulations c
be used as a guide in order to simplify the problem of p
dicting the equilibrium atomic positions. Determining th
forcesFn induced by a point defect on the neighboring ato
from theab initio calculation, we can get a very good es
mate of the lattice distortion using the Kanzaki model.2 A
force patternFn will cause displacementssn . In the har-
monic approximation we haveFn5(n8F

nn8sn8, whereF de-
notes the force-constant matrix of the defect system. In
Kanzaki model the equilibrium atomic positions around
defect can be obtained by introducing forces in the id
crystal. The Kanzaki force

FK
n5(

n8
F0

nn8sn85Fn2(
n8

DFnn8sn8 ~29!

is the force that would induce the same local distortionsn8 in
the host crystal as the ‘‘direct’’ forceFn causes in the defec
system, whileDF5F2F0, with F0 being the force-
constant matrix of the host. The relaxed geometry can
now determined by minimizing the elastic energyEelast of
the hypothetical ideal crystal in the presence of the Kanz
forces. In the harmonic approximation we have2

Eelast5
1

2(n,n8
snF0

nn8sn82(
n

FK
n
•sn . ~30!

We assume that only the force constants coupling the im
rity with the first NN change. This changeDF can be found
from theab initio calculations, since it is given by the dif
ference between the slopes of the force curves~see Fig. 1!
for the impurity and the pure host system. The force-cons
matrix F0 of the Cu host can be calculated from first pri
ciples or, as done in the present study, one can use Born–

n
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Kármán parameters fitted to experimental phonon dispers
curves.28 The Kanzaki forces and the corresponding atom
displacements are obtained solving Eqs.~30! and ~29! self-
consistently by an iterative procedure. Starting from a t
displacement for the first NN, as obtained by relaxing o
the first NN ~see Fig. 1!, we calculate the correspondin
Kanzaki forces from Eq.~29!. Then, minimizing the elastic
energy given by Eq.~30! with respect tosn , we deduce a
new displacement pattern for all the atoms near the impu
For this configuration we then recalculate the forces, etc.
iteration stops when input and output displacements are
same. We have used the relaxed atomic positions obta
from the lattice-statics simulation in a cluster of 12 she
around a Pd impurity~225 atoms! and recalculated self
consistently the forces on all these atoms in the disto
geometry. The forces were found to be rather small, less
1 mRy/aB .

In Fig. 4 we present the first NN relaxation obtained
using this Kanzaki procedure. For comparison we have
cluded the approximate results shown already in Fig. 2
calculated by fixing all other atoms at their ideal host po
tions. Also included are experimental data from EXAF
measurements of Scheuer and Lengeler.1 Fixing the distant
atoms at their ideal host positions results in an underesti
tion of the outward first NN shift. As can be seen from F

FIG. 4. Change of the first NN distance for~a! 3d and 4sp as
well as~b! 4d and 5sp impurities in Cu, allowing for relaxation of
one~empty squares! and all~filled squares! neighboring shells. The
triangles with the error bars show the EXAFS results of Ref. 1.
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4, in most cases the Cu lattice is dilated due to the subs
tional defects, except for the case of Fe, Co, and Ni impu
ties. For a vacancy in Cu we predict a compression of
lattice with a first NN relaxation of21.45%. In the case o
4d impurities the lattice distortion shows a parabolic beha
ior with the minimum at Ru. In contrast to this, the behav
of the 3d impurities is strongly influenced by magnetism
The dashed line in Fig. 4~a! indicates the results of non-spin
polarized calculations. It can be clearly seen that the m
netic 3d impurities experience a pronounced magnetoela
expansion,29 which is larger for Cr and Mn since these im
purities exhibit the biggest moments in Cu. On the oth
hand, the influence of lattice distortion on the magnetic m
ments is vanishingly small. Our calculation gives for the
cal moments of V, Cr, Mn, Fe, and Co impurities: 0.9
~0.85!, 2.96 ~2.91!, 3.42 ~3.39!, 2.53 ~2.53!, and 0.96~1.01!
Bohr magnetons, respectively, in the relaxed~unrelaxed! ge-
ometry. These results show that outward relaxations slig
increase the moments~V, Cr, and Mn!, while inward relax-
ations lead to a small decrease of the magnetic moment~Co!.
For Fe there is no relaxation of the first NN so that, in th
case, there is no moment change. This vanishingly sm
influence of the local lattice distortion on the impurity ma
netic moment is contrary to the result obtained for, e.g.,
Fe impurity in Al,11 where the Fe magnetic moment wa
found to vary critically with the Al-Fe distance. This differ

FIG. 5. HF forces~empty squares! and resulting atomic dis-
placements~filled squares! in the neighborhood of~a! an Ag and~b!
a Sn impurity in Cu.
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55 4165LATTICE DISTORTION IN Cu-BASED DILUTE . . .
ent behavior can be easily understood because the s
polarization energy of the magnetic 3d impurities in Cu is
considerably larger than the relaxation energy~see below!,
while the magnetic energy in the case of Fe in Al is rath
small30 and therefore lattice distortion effects can drama
cally influence the magnitude of the magnetic moment.

It is interesting to take a closer look at our calculat
force pattern due to the impurity atom. There is a striki
difference betweend and sp impurities as demonstrated i
Fig. 5, where we have plotted the forces induced around
Ag and a Sn substitutional impurity in Cu, together with t
resulting atomic distortion. As can be seen for Ag~similar is
the behavior of all thed impurities!, we have a strong force
only on the first NN, whereas the forces on more dist
neighbors vanish. This causes a displacement mainly in
^110& directions, while we do not observe any significa
distortion in thê 100& directions. On the contrary, in the cas
of Sn we find that also the forces on the second neighbors
appreciable, and this force pattern induces a rather isotr
distortion of the lattice at short distances. This behavio
typical for all sp impurities.

A lattice expansion or compression due to point defe
results in a change of the host lattice constant. In the cas
cubic metals the volume change due to a defect is given
the first moment of the Kanzaki forces2

FIG. 6. Relative volume change per impurity in Cu-based dil
alloys with ~a! 3d and 4sp as well as~b! 4d and 5sp impurities.
The results of lattice-parameter measurements are shown
empty triangles~Ref. 32! and empty squares~Ref. 33.!
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DV5V2V05
1

3K(
n

FK
n
•Rn, ~31!

whereV andV0 are the atomic volumes of the defect syste
and the ideal host, respectively, andK is the bulk modulus of
pure Cu:K 5 1.55 Mbar.31 In Fig. 6 we present the calcu
lated relative volume changesDV/V0 for all the systems
considered in this work, together with the experimental d
as obtained from lattice-parameter measurements.32,33 For
cubic crystals the volume change is related to the chang
the lattice parameter byDV/V053Da/a0. The agreement
with the experiment is good. Due to the weighting of t
Kanzaki forces in Eq.~31! by Rn the forces on the more
distant neighbors are quite important for the volume chan
Since the corresponding force-constant changes are sm
the use of the direct instead of the Kanzaki forces in
volume change calculation would influence the results o
slightly.

We have also calculated the long-ranged lattice distort
for a single vacancy in Cu. The presence of isolated vac
cies compresses the Cu lattice. We calculate a volu
change of230%, which is in very good agreement with th
experimental result (22565)%.34 It is also interesting to
look at the influence of the lattice distortion on the vacan
formation energy. The relaxation energy can be calcula
from Erel51/2(nF

n
•sn . We find that the vacancy formatio

e

ith

FIG. 7. Relaxation energies for~a! 3d and 4sp as well as~b! 4d
and 5sp impurities in Cu.
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energy is lowered by 0.07 eV due to the lattice distorti
thus obtaining a value of 1.27 eV, in perfect agreement w
the experimental value of 1.28 eV.35

The solution energy of impurities is another importa
quantity influenced by lattice relaxation. In the case ofd
impurities the corresponding relaxation energy is quite sm
typically a few hundredths of an eV. In Fig. 7 we have plo
ted the relaxation energy for all the systems considered
this work. It can be seen that the relaxation energy increa
substantially in the beginning of the 3d series, since it essen
tially depends on the square of the displacement. The cha
of the elastic properties due to the defect causes only a s
reduction in the calculated distortion energies. For thed
impurities we have calculated large energies, especially
the first elements of the row. However, the solubility of the
impurities is quite small.

V. CONCLUSION

We have presented a method to calculate the lattice
tortion around point defects in crystalline solids. The meth
was applied for the calculation of the equilibrium atom
positions aroundd andsp substitutional impurities as well a
a single vacancy in Cu. Both the total energy and the
force have been used in order to obtain the ground-s
structure in the vicinity of the defect. The calculations sh
that within the full-potential KKR method force calculation
ev
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are relatively easy, since no Pulay-type corrections~see, e.g.,
Ref. 36! have to be applied. They also show that for imp
rities in Cu reliable forces can be obtained only if the sem
core states of the impurities are treated as valence st
which is particularly important for the elements at the beg
ning of the transition series. The atomic positions have b
calculated by using lattice-statics simulations based on
Kanzaki method. The results for the shifts of the first NN a
the macroscopic volume changes induced by the defect a
very good agreement with experimental data from EXA
and lattice-parameter measurements. The present paper
ab initio study of structural changes around point defects
transition metals within the framework of the KKR Gree
function method. It opens the way to investigate dynami
properties of solids, structural relaxations at surfaces
around defects at surfaces where the reduced coordina
number implies a greater structural flexibility.
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