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Magnetic correlations in the two-dimensional Anderson-Hubbard model
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The two-dimensional Hubbard model in the presence of diagonal and off-diagonal disorder is studied at
half-filling with a finite-temperature quantum Monte Carlo method. Magnetic correlations as well as the
electronic compressibility are calculated to determine the behavior of local magnetic moments, the stability of
antiferromagnetic long-range ord@&FLRO), and properties of the disordered phase. The existence of random
potentials(diagonal or “site” disorder leads to a suppression of local magnetic moments which eventually
destroys AFLRO. Randomness in the hopping eleméffsdiagonal disorder on the other hand, does not
significantly reduce the density of local magnetic moments. For this type of disorder, at half-filling, there is no
“sign problem” in the simulations as long as the hopping is restricted between neighbor sites on a bipartite
lattice. This allows the study of sufficiently large lattices and low temperatures to perform a finite-size scaling
analysis. For off-diagonal disorder, AFLRO is eventually destroyed when the fluctuations of antiferromagnetic
exchange couplings exceed a critical value. The disordered phase close to the transition appears to be incom-
pressible, and shows an increase of the uniform susceptibility at low temperaf0&63-18207)10007-9

. INTRODUCTION i andj are lattice vectors. The distributions of the random
hopping elements; ; and random local potentialg will be
Electrons in crystals are scattered both by their mutuakpecified later on. Note that hopping processes are restricted
interaction and by static disorder potentials. These processggtween nearest neighbors on a square lattice; hence there is
typically lead to quite different or even competing effects.no magnetic frustration.
For example, on a bipartite lattice close to half-filling the  Model (1) has been investigated within various ap-
strongly screened Coulomb interaction between electrongroaches: the formation of localized magnetic moments has
can generate antiferromagnetic long-range of@éfLRO),  peen studied irD=3 for a very broad distribution of;
while disorder tends to destroy such correlations. The simulwithin an unrestricted Hartree-Fock approximatfofhe
taneous presence of interaction and disorder cannot in gegase of random potentials has been treated by a real-space
eral be considered as a simple superposition of both contrienormalization-group method iB=1 and 3(Ref. 4 and
butions, but interesting many-body phenomena may emerggy=2 5 |n D=2 this treatment provides a transition from a
This has been found for instance in the study of the metal\ott to an Anderson insulator with no metallic phase. How-
insulator transitions in doped semiconductass in the sta-  ever, in these investigations the formation of AFLRO which
bility of AFLRO against disorder within a dynamical mean- wijl| set in, at least in the unfrustrated case close to half-
field theory? In spite of the great progress that has beerfjjling, is not taken into account. Thén)stability of AFLRO
achieved in understanding interacting as well as disorderegjth respect to diagonal disorder and two types of metal-
systems in recent years, there is still no controlled and at thgysulator transition were examingéh a dynamical mean-
same time tractable theoretical method to describe their confie|d theory which becomes exact in the limit Bf—.®
bined effects, in particular when the interactions and/or diSDiagonaI disorder has also been studie®in 3 by Hartree-
order cannot be considered as small. _ Fock approximation$.The strong-coupling limit of model
It is the purpose of the present paper to provide y) yith diagonal disorder was studfedsing a slave-boson
approximation-free results for a very simple microscopiC,mjation of the correspondingd model. In the case of
model that incorporates e_Iectron interactions as well as disc')ff-diagonal disorder at half-filing the model maps in this
order, namely, the disordered Hubbard model, Ofjinit onto the spiny Heisenberg model with randorfnot
Anderson-Hubbard model” in two dimensionB=2. The  sirated exchange couplings. This model has also been
Hamiltonian of the model in the usual notation reads: investigated numerically inD=22 Finally, the one-
dimensional Hubbard model with either type of disorder was
studied using quantum Monte Ca®@MC) simulations:°
Here we will concentrate on the effect of disorder on the
magnetic correlations. We will address the following ques-
tions:
(1) (i) How are short- and long-range magnetic correlations
affected by the two different kinds of disorder?

H= E ti'jai)roaitf—*'z (ei_/J«)ﬁig
+U2 (A=) —3).

0163-1829/97/547)/41498)/$10.00 55 4149 © 1997 The American Physical Society



4150 M. ULMKE AND R. T. SCALETTAR 55

(ii) Is there a critical disorder strength where AFLRO .

ceases to exist? (Ans=11 U deiPs(€)
(iiif) How do the magnetic susceptibility and charge com- '

pressibility behave in the disordered state? (A) denotes the thermal expectation value of the operator

A for a given disorder configuratior; ), stands for the
Il. COMPUTATIONAL METHOD average over hoppingsite) disorder. We will assume uni-
We will study the Anderson-Hubbard model =2 us- form distributions of either the hopping elem-et\'g§wlith an
ing a finite-temperature, grand-canonical QMC meffiod 2verage value of=—1 or the on-site potentialg; with an
which is stabilized at low temperatures by the use of or-2verage of zero. The width of the distributioRs) is de-
thogonalization techniquéd® The algorithm is based on a "oted byA,
functional-integral representation of the partition function by 1 /A
discretizing the “imaginary-time” intervdl0,8], whereg is Ph(ti))= —®(— — It —t| ) (6)
the inverse temperature. The interaction is decoupled by a voAT2 '
two-valued Hubbard-Stratonovich transformatibgielding
a bilinear time-dependent fermionic action. For the positive- Pe)= i@(é—k-l). )
U model, theD+1-dimensional auxiliary field §,=+1, soAT 2

wherei is the .Iatti.ce and the “time” inde>_<) cpuples to the (We use the same symbol for the width since each type of
local magnetization r;;—n;|). The fermionic degrees of gisorder is considered separatgliRestricting to the half-
freed_om can be integrated out analytlcally,_ and the partitionjjied band case 4=0) the remaining three parameters are
function (as well as observablegan be written as a sum interaction U, disorder strengthA, and temperature
over the configurations of the auxiliary field with a weight T=1/8

proportional to the product of two determinants, one for each In the present study we will concentrate on the following

spin species. The two determinants are not equal, SiCe ,pqeryaplesti) magnetic correlation functions
couples with different sign to the two fermion species, and,

in general, their product is not positive definite and thus can- 1 o

not serve as a weight function in an importance sampling Ch= NE ((mymy ). 8
procedure. The formally exact treatment of this “minus-sign !

problem” can lead in some regimes of the model parametergigre r”njzgggﬁjg is the local spin operator, anl is the

to very small signal-to-noise ratios in physical quantities,yta| number of lattice sites/C(0,0) measures the density of
that become in fact exponentially small with inverse tem-q.4) magnetic moments and is equahte 2d with the elec-

peratures and system size. . L n . i
In the case of a bipartite lattice, under the particle—holetronIC densityn=3.,((n;,)) and the density of doubly oc

(AY({el). (5)

transformation of one spin species, cupied sitesd=2,((n;;n;,)). (The indicesh ands of the
disorder averages are suppressed for convenietiogeMag-
Cii—(—1)ie! 2 netic structure factors and the Fourier transformation of
Cll ( ) C|l . ( ) C(l)
Hamiltonion (1) is mapped onto thenegativeU Hubbard ’
model: iq-
S(a)=2 C(he'™, ©)
H(U)—’H(_U)’LZ (6i—p)(1—2n;)). (3)  [note that8S(0,0) is equal to the uniform spin susceptibil-

ity]. (iii) Charge compressibility

If the Hamiltonion is now spin symmetric, i.es,= u for all
i, the two determinants for spin-up and -down are identical, on B E ARy N2
since in the case of the negatite-model the Hubbard- du N| 4 {(miny))=Nn
Stratonovich field couples to the chargg(+n;)), that is, _ . .
with the same sign for the two fermion species. Hence thavith local charge operatar;==,n;, .
determinant product is positiveem) definite and thereisno ~~ We foundS(q) to be largest at the commensurate vector
“minus-sign problem.” For this reason the local random po-q= (7, 7). At sufficiently low temperatures the magnetic
tentialse; lead to a minus-sign problem even at half-filling, correlation length exceeds the system size, 8, 7) satu-
whereas the sign is always positive at half-filling for off- rates with g for a given system size. Using the saturated
diagonal disorder as long as the hopping remains restrictedalues we can extrapolate the behavior in the thermodynamic
between nearest neighbors. limit by a finite-size scaling according to spin-wave thebty,

We will consider the case of static, uncorrelated disordewhich in the case of AFLRO in the ground state with sub-
in either the hopping elements; or the on-site potentials lattice magnetizatioM predicts
¢,. Therefore we have to average all quantities over a suffi- M2
cient number of disorder realizations, and calculate the aver- C(N,/2,N,/2) = — + O(N )
aged expectation values 3

: (10

R 2
fdti.jPh(ti,j)}<A>({ti.j}), (4) S(K;W) =M?+0(N;1), (12)

(Am=11
(i.j)
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FIG. 1. Local momentC(0,0) (triangles, longest-range spin FIG. 2. Compressibilityx at U=0 (triangles and U=4
correlationC(2,2) (squaresand antiferromagnetic structure factor (squarelon 4x4 lattices and’=3, as a function of site disorder
S(,)/N (circles on 4x4 lattices al=4 andT=3, as a function ~ A. The very different behavior at=0 reflects the suppression of
of site disorderA. The noninteracting values of each quantity havethe divergent density of states in the noninteracting limit and the
been subtracted. opening of a charge gap.

where (N,/2,N,/2) is the maximal separation on a squarethe pure tight-binding model without interaction and disor-
lattice of linear sizeN,= /N with periodic boundary condi- der, x diverges logarithmically withl at half-filling due to
tions. Thus we have two independent quantities to extrapoperfect nesting’ Turning on the disorder removes the van
late the value of the ground-state order parameter. The finiteddove singularity, leading to a finite DOS at the Fermi level
size extrapolation is technically only possible in the case ofind to a broadening of the DOS. For lardethe DOS is
off-diagonal disorder, where there is no “minus-sign prob-dominated by the disorder spectrum, giving a bandwidth pro-
lem” and hence sufficiently large lattices at low tempera-portional toA, and due to normalization a value at the Fermi

tures can be simulated. energy proportional to &/. This relation is also observed for
the compressibility a=0 at a finite temperaturé-ig. 2).
Ill. DIAGONAL DISORDER On the other hand, when the interaction strengths

_ _ ) ) ) L nonzero, for small values af the compressibility vanishes
Diagonal disorder describes the idealized situation of g,e 1o the charge gap induced by antiferromagnetic ordering.
random alloy with negligible lattice distortions but varying ar| RO is strictly present only in the ground state, but for a

values of the chemical potentials of the constituents. Whilgjnje |attice the AF correlation length at a finite temperature
the repulsive interactiotd tends to induce singly occupied

sites, i.e., local magnetic moments, a wide spectrum of ran-
dom potentials has the opposite effect because electrons tend
to doubly occupy the lower potentials. Intuitively one would
expect that a disorder strength of the order ofU may be
sufficient to destroy AFLRO. This has actually been ob- & N=dx4
served in the limitD—,? where the disorder effects are
exactly treated by the coherent potential approximatfon.
Since the magnetic moment formation is a local effect, we
expect qualitatively the same behavior In=2. Figure 1
shows the local spin-spin correlation fucti@y(0,0) on a
4X 4 lattice atU=4 as a function ofA. C(0,0) decreases
monotonically withA, and reaches the noninteracting value
0.5 aboutA =2U. This local effect is indeed independent of
dimensionality and has been observe®ir1 (Ref. 10 and

D =.2 A similar behavior is seen in the spin-spin correlation o ! L !
function at the largest separati@{(2,2), and the AF struc-
ture factorS(,7)/N. They are slightly more stable than 8
C(0,0) for small disorder, and decrease more rapidly for

A>4, also reaching their noninteracting values of 0 and g, 3. Average sigr{(s)) for the site-disordered problem at
0.0508, respectively, abodt=2U. U=4 andA =3 as a function of inverse temperatyeCircles are

More interesting is the behavior of the compressibilty  4x4 lattices, while squares and triangles are 6x6 and 8x8 lattices,
(Fig. 2. In a Fermi liquid in the limitT— 0, « is equal to the  respectively. This sign problem is absent in the case of hopping
one-particle density of statéBOS) at the Fermi energy. For disorder at half-filling.

U=4 A=6

0.8

0.6

0.2
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FIG. 5. Local moment(0,0) (circles, longest range spin cor-
rrrTT ':'Az'“ relation C(5,5) (squares and antiferromagnetic structure factor
| [b] — _A=08 i S(r,)IN (triangles on 10x10 lattices at)=4 and Tzl—lo, as a

- b=1.6 function of site disordeA. The noninteracting values of each quan-
tity have been subtracted.

0.2

IV. OFF-DIAGONAL DISORDER

()

In the case of random hopping elementsrestricted to
near-neighbor sites on a bipartite lattice, there is no “minus
sign problem” at half-filling. Therefore we can do a much
more detailed analysis of the phase diagram. We study
i square lattices with periodic boundary conditions up to the

©0) (20) (40) B.1) (53) (5) (33 (L) size N=100 (N,=10). For a given disorder configuration,
(10) (30) (50) (5.2) (6.4 (44) (2.2) 500-700 Monte Carlo sweeps were performed for equilibra-
tion, followed by 1000—-1500 measurement sweeps. Then all

FIG. 4. Spin-spin correlations as a function of separatiofiapn Measured gquantities were averaged over 10—20 different dis-
6x6 and(b) 10x10 lattices afl = 15 andU =4. The value shown order configurations. The disorder average is the main source
at (0,0) isC(0,0)— 3. of the statistical errors.

As in Sec. Ill, we first study the spin-spin correlations as
can exceed the lattice siZ&Even with a fully established a function of disorder strength for a given lattice size.
charge gapx is always finite at finite temperature, however Figure 4a) showsC(l) over a path in real space for different
exponentially suppressé#lig. 2). « starts to increase signifi- values ofA on a 6x 6 lattice. AF correlations are present for
cantly for A>2, and reaches a maximum at abadw#=6. all values ofA. They are only slightly reduced fak<0.8
Since thex vs A curve forU=4 approaches the noninter- and much more significantly reduced whAr-1.6. Larger
acting curve for larged, the finite compressibility is quite lattices show a quite similar pictuldrig. 4(b)]. The local
likely not thermally activated, but due to the closing of the momentsm are apparently stable for off-diagonal dis-
charge gap. Furthers becomes finite for relatively small order, as is shown in Fig. 5, where the behavioCgf) for
values ofA<4, where the AF correlations are still strong. |=(0,0) and {(,/2,N,/2) and the AF structure factor
Although the lattice size is much too small for a definite S(7 7)/N are plotted as a function @. Unlike the case of
conclusion, this indicates that the charge gap may closgandom site energigfig. 1), C(0,0) is almost unchanged by
within the AF phase. Evidence of a disorder- |nduced AFA. However, measures of the long-range order are strongly
metal at half-filling has previously been found[Dn:oo and  affected. While the longer-range correlations break down for
also in a Hartree-Fock treatment iv=3.” Note, however, strong disorder & ~2), they slightlyincreasefor small A.
that in the presence of disorder a finite compressibility doeghjs slight increase betweeli=0.0 and 0.2 might be due to

not necessarily lmply metallicity because of localization ef-an enhanced averaged Heisenberg exchange coup”ng
fects.

Fig. 3 shows why we cannot study large lattices and low < ) A2
temperatures in the case of diagonal disorder. The averaged (3= - (12)
values of the sign of the product of determinani&y)), . 3U"
vanishes rapidly with spatial lattice side and inverse tem-
peratureB. A value ((o)) smaller than about 0.2 precludes with Jo=4t%/U for the undisordered case. However, this is
reliable simulations due to a vanishing signal-to-noise raticessentially a strong-coupling argumenly€t), while the
in the data. present value is onlyy=t.
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FIG. 6. Finite size scaling analysis of the AF structure factor and long-range spin correlations. These quantities, appropriately scaled, are

plotted as a function of the linear lattice sizé&\1l/ A nonzero extrapolation to ll,=0 indicates AFLRO. The extrapolated values should
be identical.

In order to answer the question if there is AFLRO in the obvious for this type of disorder. There is no magnetic frus-
ground state, we calculat€(N,/2,N,/2) and S(7,7r) for  tration and also no destruction of local moments. One pos-
different lattice sizes, and extrapolate the results assuming gible approach to understanding the transition is a weak-
finite-size scaling according to E(L1). For the present lat- coupling analysis. Within the random-phase approximation
tice sizes(up to 10x 10 siteg the magnetic correlations are (RPA) the magnetic susceptibility of the interacting system
saturated at a temperature of abdut -, where the finite  xgrpa iS expressed in terms of the noninteracting vapge
system is essentially in its ground state. For disorder strength
A=<1.2 bothC(N,/2,N,/2) andS(, ) extrapolate to a non-
zero order parametevl at N,—oo (Fig. 6). The values for
M are obtained by a least-square fit of the data with
N,=6. ForN,=4 there are apparently deviations from scal-The perfect nesting relation of the pure tight-binding model
ing (11). Within the statistical error the independent extrapo-without interactions and disorder(q+ (7, 7))=—¢(q) at
lations lead to the same value bf. For A=1.6, however, half-filling leads to a divergent susceptibility
there is no long-range order.

The values ofM as a function ofA are shown in Fig. 7
where the value foA =0 is taken from the literaturt M is
apparently stable for small disorder strengtk<0.8, and For the square lattice at half-filling we haye=2 due to the
then decreases and eventually vanishes abboutl.4. The logarithmic van Hove singularity in the DOS at the Fermi
slight increase of magnetic correlation for small disorder at @&nergy. In general, for bipartite lattices without this DOS
given system sizéFig. 5 is not observed in the values of the singularity, like the simple cubic lattice the exponent be-
order parameter. comesy=1. Sincey, diverges afT=0 the RPA predicts

The physical reason for the destruction of AFLRO is notthat the system will order at any finité.

XO(W! 77)

XRPA('”'!TT):—]__UXO(W’TF)- (13

xo(r,m)oc(InT)?. (14
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U=4 x(m,m)
o Xrpa(T,T)= m mXapprox.(ﬂ'ﬂT)
o
(x(m,m))
Ty a—— (15
1-U{(x(m,m))
; B . In particular the estimated Negemperatures for a gived
obtained from the divergence ofygpa(7,7) and
=

Xapprox( 7, 7) are identical within the errors due to disorder
N averaging(Fig. 8. We observe thajyrpa(q) for different

ol N momentaq# (7, 7) is always more strongly suppressed by
disorder tharnyrpa( 7, 7). We conclude that off-diagonal dis-
order does not remove the low-temperature divergence of the
AF susceptibility. Thus an explanation of the transition

e ' , . based, for example, on the inducement of a fikltg,>4 as
0 05 1 15 2 ; N . ;
the disorder is increased is not viable.
A While the above considerations might be suited in the

. . case of weak interaction, we will now consider the opposite
FIG. 7. The order paramet# inferred from Fig. 6 as a func- case ofU>t. Here the half-filled Hubbard model with ran-

tion of A. ForA<A.~1.4 there is AFLRO. FoA>Ac~1.4 there  domt, ; at half-filling becomes equivalent to the disordered,

is a transition into a disordered phase. but unfrustrated AF spin4 Heisenberg model with random
One effect of the disorder is removing the perfect nesting?@UPIiNgsJi;, see Eq(12). This model has been studied in
relation of the pure tight-binding model, reducing and =2 by a quantum Monte Carlo technique in the case of a

leading to the destruction of AFLRO within this RPA analy- binary distribution ofJ; €{J1,3,}.7 This numerical work
sis. However, off-diagonal disorder does not the remove thécorporated disorder in two ways—both through the differ-
bipartite structure of the lattice, so we expect Eig)) stillto  ence of the exchange energigs-|J; —J,| and also through
hold with y=1 althoughq is no longer a good quantum different concentrations of strong and weak bonds. Depend-
number. Since there exists no analytic solution(fpfq)) for ~ ing on the concentratiop of, say theJ; bonds, and the
the disordered lattice even without interaction, we calculataifferenceA, AF ordered and disordered phases were identi-
it numerically for finite latticesyq(, ) is indeed well de- fied. The basic physics is that spin singlets form on the
scribed by a logarithmic fitFig. 8). In fact, we further ob-  strong bonds, driving the formation of a paramagnetic phase,
serve that in the disorder-averaged RPA susceptibiliyas has been discussed by Bhatt and'femd Kirkpatrick
xrea(, ) for finite U, one can to a very good approxima- and Belitz2’ We have made a quantitative comparison of our
tion replacey(, ) for a given disorder configuration by its data for the Hubbard model dt=4 with this strong-
average valuéy(m,m)), coupling theory, which incorporates spin degrees of freedom
only. We first note that the result of Ref. 9, for the phase
boundary in thgg— A plane, is reasonably well described by
setting the variance af

A=1.6

i
(ij>_<3i,j>2: p(1-p)A?
<ij> pJi+(1-p)J5’

- to a critical valuev =v,.2! That is, the fact that there are two
. distinct types of randomness appears irrelevant—they can be
e modeled together in a simple way by their effect on the vari-
' ance ofJ; ;. The fit to the calculated phase boundary is best
5 ] for v,~0.40-0.42. The variance dfin the Hubbard model

;‘k 8X gpprox(TT) with disorder distributior(6) is independent obJ, and reads

v (16)

| Ax'1rp°(1\',ﬂ')

%% | oxo(wl,ﬂ) ti4' — tiz. 2 9 A%+ 60t%A2
:< () _ ( ) a7

0 01 02 03 v (th T 9l A%+ 40:2A2+ 80

T v has its maximum of at A=4./5t. If we now apply the

FIG. 8. The behavior of the noninteracting susceptibility same crltgr|0m=vc as in the Heisenberg quel, we qbtam
(circles with temperatureT in the presence of disordeg, still & critical disorder strength af=1.7—1.8. This estimation
diverges logarithmically asT—0. The full line is a fit with IS Surprisingly close to the critical obtained by finite-size
Xo=0.054-0.245 IfT. Also shown are the inverse RPA suscepti- SCaling atU=4 (Fig. 7) in spite of the fact thatl=4, cor-
bility xgea(7, ) (triangles and the approximatiowgptmx,(w,w) responding tdy=1 is not in the strong-coupling limit of the
(squares They are indistinguishable within the statistical errors Hubbard modet® The agreement might be due to the fact
and vanish at the same critical temperature. The dotted line is onlthat for U=4 the double occupancies are already strongly
a guide to the eye. suppressed, and the density of local moments has reached
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(A=1.6). For A<0.8 there is no significant effect on

g [e] x(0,0) due to disorder at the lowest temperature under con-

- F B sideration =t/10). In the present temperature regime at
" A=1.6, x(0,0) decreases monotonically with a behavior

also found in the disordered phase of the random bond

Heisenberg modeél. Stronger disordef A=2.4; see Fig.

9(b)], where some of the hopping elements become negative,

8 B 7 leads to a further enhancement pf0,0). In systems with
longer-range interactions a low-temperature divergence of
x(0,0) has been predictéd This divergence is explained by
the presence of localized moments, i.e., spins on lattice sites

- e " | - which are effectively decoupled from the rest of the system.

Such isolated sites are particulary likely in the case of a
special type of correlated hopping randomness with

T ti;=xx;, Where the site variable{x;; are randomly
distributed?? In contrast to the uncorrelated distributi¢s),

A . here a sitd with a small variable; is weakly connected to
all its neighbors. We consider a bimodal, symmetric distri-
- L | bution of site variables,
1\ 1/2 1\ 112
~ L { | P(XI):Z 5Xi_(t_7 + 0 Xi— t+7} ,
(18)
- L II - with A’ <2t. This distribution corresponds to a binary alloy
h‘x.__f_ N where the hopping amplitudes; depend only on théthree
e possible combinations of atoms on neighboring sitgg.are
o : : always positive, and can take the valudgs-A'/2,

Vt2=(A’/2)?, andt+A’/2. The average Heisenberg cou-
pling remains(Ji'j)=J0=4t2/U independent oAA’. We find

FIG. 9. Uniform susceptibility(0,0) vsT on a 88 lattice.(a)  that, for A’=1.6, x(0,0) increases for lower temperatures,
x(0,0) for U=4 and A=1.6 (triangles; x(0,0) for U=4, and is enhanced by almost one order of magnitude at
T=t/10, andA=0.0, 0.4, and 0.8circle) are indistinguishable T=t/10 compared to the case without disorder. Although the
within the error-bars. Also shown is the noninteracting x(0,0)  statistical errors and limited temperatures do not allow us to
for A=0.0(dotted ling andA =1.6 (full line). The compressibility  extract the functional dependence @n this dramatic in-

« for U=4 and A=1.6 (squarep vanishes exponentially at low crease supports the existence of a finite density of localized
temeratures. The key point of this data is that while randomnesgy,gments.
suppresses the susceptibilitylat=0, it enhances it for nonzetd. As in the interacting case without disorder, the compress-
(b) x=x(0,0) forU=A=0 (dashed lineandx(0,0) forU=4and  jijity , for A=1.6 shows activated behavior with tempera-
A=1.6(triangles are again sh0\ivn as i@). However, here they are ture [Fig. A@)], with an estimated charge gap of $.5A
zggeclgtr:girsspmg"r;%gérf:r:eAsg 3\'{%?‘1@?5‘:‘32 S;o(rsgh: tceax;e of  quite similar behavior is found even for stronger disorder
' A=2.4, and also for the correlated hopping randomness with
A=1.6" (not shown: « is very small[ ~O(10 3)], and de-
about 75% of the maximal value 1.0 independent of disordetreases strongly for lowél consistent with an activated be-
strength(see Fig. . Further,A; is small compared to3,  havior. Hence the systems remains uncompressible even in
so that the average;;) is only slightly enhancedby a  the absence of long-range magnetic order.
factor of ~1.25) according to Eq12), which is a consis-
tency check of the arguments above.

To characterize the properties of the disordered phase
(A>1.4), we study the temperature dependence of the uni- In this paper we have presented gquantum Monte Carlo
form spin susceptibilityy(0,0)= 85(0,0) [Eg. (9)] and the calculations for the magnetic phase diagram of the disor-
charge compressibilityc [Eg. (10)]. In the noninteracting dered repulsive Hubbard model at half-filling. When the ran-
case both guantities are identical, and diverge logarithmidomness is in the site energy, the sign problem precludes the
cally in D=2 for A=0, as mentioned befofé.This singu-  study of large systems at low temperatures necessary for a
larity is removed by interactions, and0,0) reaches a maxi- proper finite-size scaling analysis. However, on 4x4 lattices
mum at a finite temperature, approaching a finite value atve are able to see the destruction of local moments and
T=0.2 Disorder suppresses the noninteracting susceptibilitjonger-range spin-spin correlations. We also studied the
too, but for a different reason because it removes the vanompressibilityx as a function of disorder strength. The in-
Hove singularity in the density of statgBig. 9a)]. In the  compressible state withk=0 at nonzerdJ in the absence of
interacting case, however, disorder has the opposite effect disorder is replaced by a finite at A=~2, indicating a
enhancing x(0,0) if the disorder is strong enough disorder-induced closing of the charge gap.

V. SUMMARY AND CONCLUSIONS
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When the randomness is in the hoppirigs a particle-  ently activated even for strong disorder where there are no
hole transformation proves that the product of determinanttong-range magnetic correlations. We are currently studying
which gives the Boltzmann weight is positive at half-filling. the dependence of the density of states in this model, as it
That is, there is no sign problem at arbitrarily low tempera-has recently been suggested that this may provide an alter-
tures and large lattices. In this case we were able to do aate way to describe transitions in the Anderson-Hubbard
finite-size scaling analysis of our results, and determinednodel and its experimental realizatiofs.

A.~1.4 for the destruction of antiferromagnetism. This
value was in reasonable agreement with that obtained for the
disordered Heisenberg modelThe paramagnetic phase is
driven by singlet formation. Unlike the random-site energy R.T.S. was supported by Grant No. NSF-DMR-9528535
case, the local moments remain well formed through theand by Associated Western Universities under a grant from
transition. The strong enhancement of the uniform susceptihe DOE. M.U. was supported by a grant from the Office of
bility at low temperatures, in particular for the correlated Naval Research, ONR N00014-93-1-0495 and by the Deut-
hopping randomness, indicates the formation of effectivelysche Forschungsgemeinschaft. Computations were carried
localized magnetic moments. The compressibility is appareut at the San Diego Supercomputer Center.

ACKNOWLEDGMENTS

*Electronic mail: uimke@physik.uni-augsburg.de the smallest energy-level distane@7/N, . The weight of the
1D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phy66, 261(1994. Curie divergence also vanishes @a$/N, .

M. Ulmke, V. Janis and D. Vollhardt, Phys. Rev. B1, 10411  18A. Ww. Sandvik and D. J. Scalapino, Phys. Rev. L@@, 2777

(1995. (1994; R. T. Scalettar, J. W. Cannon, D. J. Scalapino, and R. L.

3M. Milovanovic, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett. Sugar, Phys. Rev. B0, 13 419(1994).

, 63, 82(1989. 19R. N. Bhatt and P. A. Lee, Phys. Rev. LetB, 344 (1982.

5'\/'- Ma, Phys. Rev. B26, 5097(1981). 20T, R, Kirkpatrick and D. Belitz, Phys. Rev. Left6, 2571(1996.

J. Vi, L. Zhang, and G. S. Canright, Phys. Rev4B, 15920  21gyicqly atJ,=0 (dilute limit) the lattice is disconnected for con-
5 (1994 centrationsp below the percolation threshold @f,e=0.5. In

W. Metzner and D. Vollhardt, Phys. Rev. Lefi2, 324 (1989, the limit of smallJ,, however, one expects a finitrot vanish-

7
M. A. Tusch and D. E. Logan, Phys. Rev.4B, 14 843(1993. . .

ing) concentration of strong bonds to be necessary to destro
8G. T. Zimanyi and E. Abrahams, Phys. Rev. Le#t, 2719 9 g y y

(1990 LRO (Ref. 9. This discontinuity al,=0 is not described by the
N Sandvik and M. VeKicPhys. Rev. Lett74, 1226(1995. simple criterionv:vc_, which provides a.continuous phase
10A, sandvik and D. J. Scalapino, Phys. R4V, 10 090(1993; A. boundary up to the poinp=0, ‘,]2:0)' The dlso.rdered phase at
Sandvik, D. J. Scalapino, and P Hilenitigid. 50, 10 474 J2=0 extends to a concentratign=1-u, which was found
(1994). to be larger tharp,e,c due to quantum fluctuations.
11R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. I%ZThis,mOdel has been studied in the lindit—cc: V. Dobrosavl-
24, 2278(198). jevic and G. Kotliar, Phys. Rev. LetZ1, 3218 (1993; Phys.
12G. sugiyama and S.E. Koonin, Ann. Phyk68 1 (1986); S. Rev. B50, 1430(1994.
Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. L&tt. >-The charge gap of the undisordered modelUat4 has been
663(1989. estimated from the decay of the time-dependent one-particle
1335, R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu- propagator to be about 0.7: F. F. Assaad and M. Imada, Phys.
bernatis, and R. T. Scalettar, Phys. Rev4® 506 (1989. Rev. B76, 3176(1996; N. Furukawa and M. Imada, J. Phys.
143, E. Hirsch, Phys. Rev. B8, 4059(1983. Soc. Jpn62, 2557 (1994.
15D, A. Huse, Phys. Rev B7, 2380(1988. 24D. Belitz and T.R. Kirkpatrick, Phys. Rev. B2, 13 922(1995.
18R, Vlaming and D. Vollhardt, Phys. Rev. &5, 4637(1992. Note, however, a central result of this work is the low-

Note, however, that on finite lattices there is a Curie contribution temperature scale necessary to model this “glassy” transition, a
to the compressibility §<T~ 1) for temperatures smaller than scale which could preclude effective numerical work.



