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Magnetic correlations in the two-dimensional Anderson-Hubbard model
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The two-dimensional Hubbard model in the presence of diagonal and off-diagonal disorder is studied at
half-filling with a finite-temperature quantum Monte Carlo method. Magnetic correlations as well as the
electronic compressibility are calculated to determine the behavior of local magnetic moments, the stability of
antiferromagnetic long-range order~AFLRO!, and properties of the disordered phase. The existence of random
potentials~diagonal or ‘‘site’’ disorder! leads to a suppression of local magnetic moments which eventually
destroys AFLRO. Randomness in the hopping elements~off-diagonal disorder!, on the other hand, does not
significantly reduce the density of local magnetic moments. For this type of disorder, at half-filling, there is no
‘‘sign problem’’ in the simulations as long as the hopping is restricted between neighbor sites on a bipartite
lattice. This allows the study of sufficiently large lattices and low temperatures to perform a finite-size scaling
analysis. For off-diagonal disorder, AFLRO is eventually destroyed when the fluctuations of antiferromagnetic
exchange couplings exceed a critical value. The disordered phase close to the transition appears to be incom-
pressible, and shows an increase of the uniform susceptibility at low temperatures.@S0163-1829~97!10007-8#
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I. INTRODUCTION

Electrons in crystals are scattered both by their mut
interaction and by static disorder potentials. These proce
typically lead to quite different or even competing effec
For example, on a bipartite lattice close to half-filling th
strongly screened Coulomb interaction between electr
can generate antiferromagnetic long-range order~AFLRO!,
while disorder tends to destroy such correlations. The sim
taneous presence of interaction and disorder cannot in
eral be considered as a simple superposition of both co
butions, but interesting many-body phenomena may eme
This has been found for instance in the study of the me
insulator transitions in doped semiconductors1 or in the sta-
bility of AFLRO against disorder within a dynamical mea
field theory.2 In spite of the great progress that has be
achieved in understanding interacting as well as disorde
systems in recent years, there is still no controlled and at
same time tractable theoretical method to describe their c
bined effects, in particular when the interactions and/or d
order cannot be considered as small.

It is the purpose of the present paper to prov
approximation-free results for a very simple microsco
model that incorporates electron interactions as well as
order, namely, the disordered Hubbard model,
‘‘Anderson-Hubbard model’’ in two dimensions,D52. The
Hamiltonian of the model in the usual notation reads:

Ĥ5 (
^ i,j &,s

t i,j ĉis
† ĉjs1(

is
~e i2m!n̂is

1U(
i

~ n̂i↑2
1
2 !~ n̂i↓2

1
2 !. ~1!
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i and j are lattice vectors. The distributions of the rando
hopping elementst i,j and random local potentialse i will be
specified later on. Note that hopping processes are restri
between nearest neighbors on a square lattice; hence the
no magnetic frustration.

Model ~1! has been investigated within various a
proaches: the formation of localized magnetic moments
been studied inD53 for a very broad distribution oft i,j
within an unrestricted Hartree-Fock approximation.3 The
case of random potentials has been treated by a real-s
renormalization-group method inD51 and 3~Ref. 4! and
D52.5 In D52 this treatment provides a transition from
Mott to an Anderson insulator with no metallic phase. Ho
ever, in these investigations the formation of AFLRO whi
will set in, at least in the unfrustrated case close to ha
filling, is not taken into account. The~in!stability of AFLRO
with respect to diagonal disorder and two types of me
insulator transition were examined2 in a dynamical mean-
field theory which becomes exact in the limit ofD→`.6

Diagonal disorder has also been studied inD53 by Hartree-
Fock approximations.7 The strong-coupling limit of mode
~1! with diagonal disorder was studied8 using a slave-boson
formulation of the correspondingt-J model. In the case of
off-diagonal disorder at half-filling the model maps in th
limit onto the spin-12 Heisenberg model with random~not
frustrated! exchange couplings. This model has also be
investigated numerically inD52.9 Finally, the one-
dimensional Hubbard model with either type of disorder w
studied using quantum Monte Carlo~QMC! simulations.10

Here we will concentrate on the effect of disorder on t
magnetic correlations. We will address the following que
tions:

~i! How are short- and long-range magnetic correlatio
affected by the two different kinds of disorder?
4149 © 1997 The American Physical Society
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4150 55M. ULMKE AND R. T. SCALETTAR
~ii ! Is there a critical disorder strength where AFLR
ceases to exist?

~iii ! How do the magnetic susceptibility and charge co
pressibility behave in the disordered state?

II. COMPUTATIONAL METHOD

We will study the Anderson-Hubbard model inD52 us-
ing a finite-temperature, grand-canonical QMC metho11

which is stabilized at low temperatures by the use of
thogonalization techniques.12,13 The algorithm is based on
functional-integral representation of the partition function
discretizing the ‘‘imaginary-time’’ interval@0,b#, whereb is
the inverse temperature. The interaction is decoupled b
two-valued Hubbard-Stratonovich transformation14 yielding
a bilinear time-dependent fermionic action. For the positi
U model, theD11-dimensional auxiliary field (sil561,
wherei is the lattice andl the ‘‘time’’ index! couples to the
local magnetization (ni↑2ni↓). The fermionic degrees o
freedom can be integrated out analytically, and the partit
function ~as well as observables! can be written as a sum
over the configurations of the auxiliary field with a weig
proportional to the product of two determinants, one for ea
spin species. The two determinants are not equal, sincsil
couples with different sign to the two fermion species, a
in general, their product is not positive definite and thus c
not serve as a weight function in an importance samp
procedure. The formally exact treatment of this ‘‘minus-si
problem’’ can lead in some regimes of the model parame
to very small signal-to-noise ratios in physical quantitie
that become in fact exponentially small with inverse te
peratures and system size.

In the case of a bipartite lattice, under the particle-h
transformation of one spin species,

ĉi↓→~21! iĉi↓
† . ~2!

Hamiltonion ~1! is mapped onto thenegative-U Hubbard
model:

Ĥ~U !→Ĥ~2U !1(
i

~e i2m!~122n̂i↓!. ~3!

If the Hamiltonion is now spin symmetric, i.e.,e i5m for all
i, the two determinants for spin-up and -down are identic
since in the case of the negative-U model the Hubbard-
Stratonovich field couples to the charge (ni↑1ni↓), that is,
with the same sign for the two fermion species. Hence
determinant product is positive~semi! definite and there is no
‘‘minus-sign problem.’’ For this reason the local random p
tentialse i lead to a minus-sign problem even at half-fillin
whereas the sign is always positive at half-filling for o
diagonal disorder as long as the hopping remains restri
between nearest neighbors.

We will consider the case of static, uncorrelated disor
in either the hopping elementst i,j or the on-site potentials
e i . Therefore we have to average all quantities over a su
cient number of disorder realizations, and calculate the a
aged expectation values

^^Â&&h5)̂
i,j &

F E dti–jPh~ t i,j !G^Â&~$t i–j%!, ~4!
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^^Â&&s5)
i

F E de iPs~e i!G^Â&~$e i%!. ~5!

^Â& denotes the thermal expectation value of the opera
Â for a given disorder configuration;^ &h(s) stands for the
average over hopping~site! disorder. We will assume uni
form distributions of either the hopping elementst i,j with an
average value oft[21 or the on-site potentialse i with an
average of zero. The width of the distributionsPh(s) is de-
noted byD,

Ph~ t i,j !5
1

D
QS D

2
2ut i,j2tu D , ~6!

Ps~e i!5
1

D
QS D

2
2ue iu D . ~7!

~We use the same symbol for the widthD, since each type of
disorder is considered separately.! Restricting to the half-
filled band case (m50) the remaining three parameters a
interaction U, disorder strengthD, and temperature
T[1/b.

In the present study we will concentrate on the followi
observables:~i! magnetic correlation functions

C~ l!5
1

N(
j

^^m̂jm̂j1l&&. ~8!

Here m̂j5(ssn̂js is the local spin operator, andN is the
total number of lattice sites.AC(0,0) measures the density o
local magnetic moments and is equal ton22d with the elec-
tronic densityn5( js^^n̂js&& and the density of doubly oc
cupied sitesd5( j^^n̂j↑n̂j↓&&. ~The indicesh and s of the
disorder averages are suppressed for convenience.! ~ii ! Mag-
netic structure factors and the Fourier transformation
C( l),

S~q!5(
l
C~ l!eiq–l, ~9!

@note thatbS(0,0) is equal to the uniform spin susceptib
ity#. ~iii ! Charge compressibility

k[
]n

]m
5

b

N F(
i,j

^^n̂in̂j&&2Nn2G , ~10!

with local charge operatorn̂j5(sn̂js .
We foundS(q) to be largest at the commensurate vec

q5(p,p). At sufficiently low temperatures the magnet
correlation length exceeds the system size, andS(p,p) satu-
rates withb for a given system size. Using the saturat
values we can extrapolate the behavior in the thermodyna
limit by a finite-size scaling according to spin-wave theory15

which in the case of AFLRO in the ground state with su
lattice magnetizationM predicts

C~Nx/2,Nx/2!5
M2

3
1O~Nx

21!

S~p,p!

N
5
M2

3
1O~Nx

21!, ~11!
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55 4151MAGNETIC CORRELATIONS IN THE TWO- . . .
where (Nx/2,Nx/2) is the maximal separation on a squa
lattice of linear sizeNx5AN with periodic boundary condi-
tions. Thus we have two independent quantities to extra
late the value of the ground-state order parameter. The fin
size extrapolation is technically only possible in the case
off-diagonal disorder, where there is no ‘‘minus-sign pro
lem’’ and hence sufficiently large lattices at low tempe
tures can be simulated.

III. DIAGONAL DISORDER

Diagonal disorder describes the idealized situation o
random alloy with negligible lattice distortions but varyin
values of the chemical potentials of the constituents. Wh
the repulsive interactionU tends to induce singly occupie
sites, i.e., local magnetic moments, a wide spectrum of r
dom potentials has the opposite effect because electrons
to doubly occupy the lower potentials. Intuitively one wou
expect that a disorder strengthD of the order ofU may be
sufficient to destroy AFLRO. This has actually been o
served in the limitD→`,2 where the disorder effects ar
exactly treated by the coherent potential approximatio16

Since the magnetic moment formation is a local effect,
expect qualitatively the same behavior inD52. Figure 1
shows the local spin-spin correlation fuctionC(0,0) on a
434 lattice atU54 as a function ofD. C(0,0) decreases
monotonically withD, and reaches the noninteracting val
0.5 aboutD52U. This local effect is indeed independent
dimensionality and has been observed inD51 ~Ref. 10! and
D5`.2 A similar behavior is seen in the spin-spin correlati
function at the largest separationC(2,2), and the AF struc-
ture factorS(p,p)/N. They are slightly more stable tha
C(0,0) for small disorder, and decrease more rapidly
D.4, also reaching their noninteracting values of 0 a
0.0508, respectively, aboutD52U.

More interesting is the behavior of the compressibilityk
~Fig. 2!. In a Fermi liquid in the limitT→0, k is equal to the
one-particle density of states~DOS! at the Fermi energy. Fo

FIG. 1. Local momentC(0,0) ~triangles!, longest-range spin
correlationC(2,2) ~squares! and antiferromagnetic structure facto
S(p,p)/N ~circles! on 4x4 lattices atU54 andT5

1
8, as a function

of site disorderD. The noninteracting values of each quantity ha
been subtracted.
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the pure tight-binding model without interaction and diso
der, k diverges logarithmically withT at half-filling due to
perfect nesting.17 Turning on the disorder removes the va
Hove singularity, leading to a finite DOS at the Fermi lev
and to a broadening of the DOS. For largeD the DOS is
dominated by the disorder spectrum, giving a bandwidth p
portional toD, and due to normalization a value at the Fer
energy proportional to 1/D. This relation is also observed fo
the compressibility atU50 at a finite temperature~Fig. 2!.

On the other hand, when the interaction strengthU is
nonzero, for small values ofD the compressibility vanishe
due to the charge gap induced by antiferromagnetic order
AFLRO is strictly present only in the ground state, but for
finite lattice the AF correlation length at a finite temperatu

FIG. 2. Compressibilityk at U50 ~triangles! and U54
~squares! on 4x4 lattices andT5

1
8, as a function of site disorde

D. The very different behavior atD50 reflects the suppression o
the divergent density of states in the noninteracting limit and
opening of a charge gap.

FIG. 3. Average sign̂ ^s&& for the site-disordered problem a
U54 andD53 as a function of inverse temperatureb. Circles are
4x4 lattices, while squares and triangles are 6x6 and 8x8 latti
respectively. This sign problem is absent in the case of hopp
disorder at half-filling.
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4152 55M. ULMKE AND R. T. SCALETTAR
can exceed the lattice size.13 Even with a fully established
charge gap,k is always finite at finite temperature, howev
exponentially suppressed~Fig. 2!. k starts to increase signifi
cantly for D.2, and reaches a maximum at aboutD56.
Since thek vs D curve forU54 approaches the noninte
acting curve for largeD, the finite compressibility is quite
likely not thermally activated, but due to the closing of t
charge gap. Further,k becomes finite for relatively sma
values ofD,4, where the AF correlations are still stron
Although the lattice size is much too small for a defin
conclusion, this indicates that the charge gap may cl
within the AF phase. Evidence of a disorder-induced
metal at half-filling has previously been found inD5`,2 and
also in a Hartree-Fock treatment inD53.7 Note, however,
that in the presence of disorder a finite compressibility d
not necessarily imply metallicity because of localization
fects.

Fig. 3 shows why we cannot study large lattices and l
temperatures in the case of diagonal disorder. The avera
values of the sign of the product of determinants,^^s&&,
vanishes rapidly with spatial lattice sizeN and inverse tem-
peratureb. A value ^^s&& smaller than about 0.2 preclude
reliable simulations due to a vanishing signal-to-noise ra
in the data.

FIG. 4. Spin-spin correlations as a function of separation on~a!
636 and~b! 10310 lattices atT5

1
10 andU54. The value shown

at (0,0) isC(0,0)2 1
2 .
e

s
-

ed

o

IV. OFF-DIAGONAL DISORDER

In the case of random hopping elementst i,j restricted to
near-neighbor sites on a bipartite lattice, there is no ‘‘min
sign problem’’ at half-filling. Therefore we can do a muc
more detailed analysis of the phase diagram. We st
square lattices with periodic boundary conditions up to
sizeN5100 (Nx510). For a given disorder configuration
500–700 Monte Carlo sweeps were performed for equilib
tion, followed by 1000–1500 measurement sweeps. Then
measured quantities were averaged over 10–20 different
order configurations. The disorder average is the main so
of the statistical errors.

As in Sec. III, we first study the spin-spin correlations
a function of disorder strengthD for a given lattice size.
Figure 4~a! showsC( l) over a path in real space for differen
values ofD on a 636 lattice. AF correlations are present fo
all values ofD. They are only slightly reduced forD<0.8
and much more significantly reduced whenD;1.6. Larger
lattices show a quite similar picture@Fig. 4~b!#. The local
momentsAC(0,0) are apparently stable for off-diagonal di
order, as is shown in Fig. 5, where the behavior ofC( l… for
l5(0,0) and (Nx/2,Nx/2) and the AF structure facto
S(p,p)/N are plotted as a function ofD. Unlike the case of
random site energies~Fig. 1!, C(0,0) is almost unchanged b
D. However, measures of the long-range order are stron
affected. While the longer-range correlations break down
strong disorder (D;2), they slightly increasefor small D.
This slight increase betweenD50.0 and 0.2 might be due to
an enhanced averaged Heisenberg exchange coupling

^Ji–j&5
4^t i,j

2 &
U

5J01
D2

3U
, ~12!

with J054t2/U for the undisordered case. However, this
essentially a strong-coupling argument (J0!t), while the
present value is onlyJ05t.

FIG. 5. Local momentC(0,0) ~circles!, longest range spin cor
relation C(5,5) ~squares! and antiferromagnetic structure facto
S(p,p)/N ~triangles! on 10x10 lattices atU54 andT5

1
10, as a

function of site disorderD. The noninteracting values of each qua
tity have been subtracted.
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FIG. 6. Finite size scaling analysis of the AF structure factor and long-range spin correlations. These quantities, appropriately s
plotted as a function of the linear lattice size 1/Nx . A nonzero extrapolation to 1/Nx50 indicates AFLRO. The extrapolated values shou
be identical.
he

ng

e

g
-

it
al
o

t
e

o

s-
os-
ak-
ion
m

el

i
S
e-
In order to answer the question if there is AFLRO in t
ground state, we calculateC(Nx/2,Nx/2) and S(p,p) for
different lattice sizes, and extrapolate the results assumi
finite-size scaling according to Eq.~11!. For the present lat-
tice sizes~up to 10310 sites! the magnetic correlations ar
saturated at a temperature of aboutT5 1

10, where the finite
system is essentially in its ground state. For disorder stren
D<1.2 bothC(Nx/2,Nx/2) andS(p,p) extrapolate to a non
zero order parameterM at Nx→` ~Fig. 6!. The values for
M are obtained by a least-square fit of the data w
Nx>6. ForNx54 there are apparently deviations from sc
ing ~11!. Within the statistical error the independent extrap
lations lead to the same value ofM . For D51.6, however,
there is no long-range order.

The values ofM as a function ofD are shown in Fig. 7
where the value forD50 is taken from the literature.13M is
apparently stable for small disorder strengthD<0.8, and
then decreases and eventually vanishes aboutD'1.4. The
slight increase of magnetic correlation for small disorder a
given system size~Fig. 5! is not observed in the values of th
order parameter.

The physical reason for the destruction of AFLRO is n
a

th

h
-
-

a

t

obvious for this type of disorder. There is no magnetic fru
tration and also no destruction of local moments. One p
sible approach to understanding the transition is a we
coupling analysis. Within the random-phase approximat
~RPA! the magnetic susceptibility of the interacting syste
xRPA is expressed in terms of the noninteracting valuex0,

xRPA~p,p!5
x0~p,p!

12Ux0~p,p!
. ~13!

The perfect nesting relation of the pure tight-binding mod
without interactions and disorder«„q1(p,p)…52«(q) at
half-filling leads to a divergent susceptibility

x0~p,p!}~ lnT!g. ~14!

For the square lattice at half-filling we haveg52 due to the
logarithmic van Hove singularity in the DOS at the Ferm
energy. In general, for bipartite lattices without this DO
singularity, like the simple cubic lattice the exponent b
comesg51. Sincex0 diverges atT50 the RPA predicts
that the system will order at any finiteU.
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4154 55M. ULMKE AND R. T. SCALETTAR
One effect of the disorder is removing the perfect nest
relation of the pure tight-binding model, reducingx0 and
leading to the destruction of AFLRO within this RPA anal
sis. However, off-diagonal disorder does not the remove
bipartite structure of the lattice, so we expect Eq.~14! still to
hold with g51 althoughq is no longer a good quantum
number. Since there exists no analytic solution for^x(q…‹ for
the disordered lattice even without interaction, we calcul
it numerically for finite lattices.x0(p,p) is indeed well de-
scribed by a logarithmic fit~Fig. 8!. In fact, we further ob-
serve that in the disorder-averaged RPA susceptib
xRPA(p,p) for finite U, one can to a very good approxima
tion replacex(p,p) for a given disorder configuration by it
average valuêx(p,p)&,

FIG. 7. The order parameterM inferred from Fig. 6 as a func-
tion of D. ForD,Dc'1.4 there is AFLRO. ForD.Dc'1.4 there
is a transition into a disordered phase.

FIG. 8. The behavior of the noninteracting susceptibilityx0

~circles! with temperatureT in the presence of disorder.x0 still
diverges logarithmically asT→0. The full line is a fit with
x050.05420.245 lnT. Also shown are the inverse RPA suscep
bility xRPA

21 (p,p) ~triangles! and the approximationxapprox.
21 (p,p)

~squares!. They are indistinguishable within the statistical erro
and vanish at the same critical temperature. The dotted line is
a guide to the eye.
g

e

e

y

xRPA~p,p!5 K x~p,p!

12Ux~p,p! L 'xapprox.~p,p!

5
^x~p,p!&

12U^x~p,p!&
. ~15!

In particular the estimated Nee´l temperatures for a givenU
obtained from the divergence ofxRPA(p,p) and
xapprox.(p,p) are identical within the errors due to disord
averaging~Fig. 8!. We observe thatxRPA(q) for different
momentaqÞ(p,p) is always more strongly suppressed
disorder thanxRPA(p,p). We conclude that off-diagonal dis
order does not remove the low-temperature divergence of
AF susceptibility. Thus an explanation of the transitio
based, for example, on the inducement of a finiteUcrit.4 as
the disorder is increased is not viable.

While the above considerations might be suited in
case of weak interaction, we will now consider the oppos
case ofU@t. Here the half-filled Hubbard model with ran
dom t i–j at half-filling becomes equivalent to the disordere
but unfrustrated, AF spin-12 Heisenberg model with random
couplingsJi,j , see Eq.~12!. This model has been studied i
D52 by a quantum Monte Carlo technique in the case o
binary distribution ofJi,jP$J1 ,J2%.

9 This numerical work
incorporated disorder in two ways—both through the diffe
ence of the exchange energiesD̃5uJ12J2u and also through
different concentrations of strong and weak bonds. Depe
ing on the concentrationp of, say theJ1 bonds, and the
differenceD̃, AF ordered and disordered phases were ide
fied. The basic physics is that spin singlets form on
strong bonds, driving the formation of a paramagnetic pha
as has been discussed by Bhatt and Lee19 and Kirkpatrick
and Belitz.20We have made a quantitative comparison of o
data for the Hubbard model atU54 with this strong-
coupling theory, which incorporates spin degrees of freed
only. We first note that the result of Ref. 9, for the pha
boundary in thep2D̃ plane, is reasonably well described b
setting the variance ofJi,j ,

v[
^Ji,j

2 &2^Ji,j&
2

^Ji,j
2 &

5
p~12p!D̃2

pJ1
21~12p!J2

2 , ~16!

to a critical valuev5vc .
21 That is, the fact that there are tw

distinct types of randomness appears irrelevant—they ca
modeled together in a simple way by their effect on the va
ance ofJi,j . The fit to the calculated phase boundary is b
for vc'0.40–0.42. The variance ofJ in the Hubbard model
with disorder distribution~6! is independent ofU, and reads

v5
^t i,j
4 &2^t i,j

2 &2

^t i,j
4 &

5
4

9 S D4160t2D2

D4140t2D2180D . ~17!

v has its maximum of59 at D54A5t. If we now apply the
same criterionv5vc as in the Heisenberg model, we obta
a critical disorder strength ofDc51.7t–1.8t. This estimation
is surprisingly close to the criticalD obtained by finite-size
scaling atU54 ~Fig. 7! in spite of the fact thatU54, cor-
responding toJ051 is not in the strong-coupling limit of the
Hubbard model.18 The agreement might be due to the fa
that for U54 the double occupancies are already stron
suppressed, and the density of local moments has rea
ly
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55 4155MAGNETIC CORRELATIONS IN THE TWO- . . .
about 75% of the maximal value 1.0 independent of disor
strength~see Fig. 5!. Further,Dc is small compared to 3U,
so that the averaged̂Ji,j& is only slightly enhanced~by a
factor of ;1.25) according to Eq.~12!, which is a consis-
tency check of the arguments above.

To characterize the properties of the disordered ph
(D.1.4), we study the temperature dependence of the
form spin susceptibilityx(0,0)5bS(0,0) @Eq. ~9!# and the
charge compressibilityk @Eq. ~10!#. In the noninteracting
case both quantities are identical, and diverge logarith
cally in D52 for D50, as mentioned before.17 This singu-
larity is removed by interactions, andx(0,0) reaches a maxi
mum at a finite temperature, approaching a finite value
T50.13 Disorder suppresses the noninteracting susceptib
too, but for a different reason because it removes the
Hove singularity in the density of states@Fig. 9~a!#. In the
interacting case, however, disorder has the opposite effe
enhancing x(0,0) if the disorder is strong enoug

FIG. 9. Uniform susceptibilityx(0,0) vsT on a 838 lattice.~a!
x(0,0) for U54 and D51.6 ~triangles!; x(0,0) for U54,
T5t/10, andD50.0, 0.4, and 0.8~circle! are indistinguishable
within the error-bars. Also shown is the noninteractingk5x(0,0)
for D50.0 ~dotted line! andD51.6 ~full line!. The compressibility
k for U54 andD51.6 ~squares! vanishes exponentially at low
temeratures. The key point of this data is that while randomn
suppresses the susceptibility atU50, it enhances it for nonzeroU.
~b! k5x(0,0) forU5D50 ~dashed line! andx(0,0) forU54 and
D51.6 ~triangles! are again shown as in~a!. However, here they are
now compared withx(0,0) forD52.4 ~squares! and for the case of
correlated hopping randomness withD851.6 ~circles! ~see text!.
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(D51.6). For D<0.8 there is no significant effect o
x(0,0) due to disorder at the lowest temperature under c
sideration (T5t/10). In the present temperature regime
D51.6, x(0,0) decreases monotonically withT, a behavior
also found in the disordered phase of the random b
Heisenberg model.9 Stronger disorder@D52.4; see Fig.
9~b!#, where some of the hopping elements become nega
leads to a further enhancement ofx(0,0). In systems with
longer-range interactions a low-temperature divergence
x(0,0) has been predicted.19 This divergence is explained b
the presence of localized moments, i.e., spins on lattice s
which are effectively decoupled from the rest of the syste
Such isolated sites are particulary likely in the case o
special type of correlated hopping randomness with
t i,j5xixj , where the site variables$xi% are randomly
distributed.22 In contrast to the uncorrelated distribution~6!,
here a sitei with a small variablexi is weakly connected to
all its neighbors. We consider a bimodal, symmetric dis
bution of site variables,

P~xi!5
1

2 FdFxi2S t2 D8

2 D 1/2G1dS xi2S t1 D8

2 D G1/2,
~18!

with D8<2t. This distribution corresponds to a binary allo
where the hopping amplitudest i,j depend only on the~three
possible! combinations of atoms on neighboring sites.t i,j are
always positive, and can take the valuest2D8/2,
At22(D8/2)2, and t1D8/2. The average Heisenberg co
pling remainŝ Ji,j&5J054t2/U independent ofD8. We find
that, for D851.6, x(0,0) increases for lower temperature
and is enhanced by almost one order of magnitude
T5t/10 compared to the case without disorder. Although
statistical errors and limited temperatures do not allow us
extract the functional dependence onT, this dramatic in-
crease supports the existence of a finite density of locali
moments.

As in the interacting case without disorder, the compre
ibility k for D51.6 shows activated behavior with temper
ture @Fig. 9~a!#, with an estimated charge gap of 0.523. A
quite similar behavior is found even for stronger disord
D52.4, and also for the correlated hopping randomness w
D51.68 ~not shown!: k is very small@;O(1023)#, and de-
creases strongly for lowerT consistent with an activated be
havior. Hence the systems remains uncompressible eve
the absence of long-range magnetic order.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented quantum Monte Ca
calculations for the magnetic phase diagram of the dis
dered repulsive Hubbard model at half-filling. When the ra
domness is in the site energy, the sign problem precludes
study of large systems at low temperatures necessary f
proper finite-size scaling analysis. However, on 4x4 lattic
we are able to see the destruction of local moments
longer-range spin-spin correlations. We also studied
compressibilityk as a function of disorder strength. The in
compressible state withk50 at nonzeroU in the absence of
disorder is replaced by a finitek at D'2, indicating a
disorder-induced closing of the charge gap.
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When the randomness is in the hoppingst i,j, a particle-
hole transformation proves that the product of determina
which gives the Boltzmann weight is positive at half-fillin
That is, there is no sign problem at arbitrarily low tempe
tures and large lattices. In this case we were able to d
finite-size scaling analysis of our results, and determin
Dc'1.4 for the destruction of antiferromagnetism. Th
value was in reasonable agreement with that obtained for
disordered Heisenberg model9. The paramagnetic phase
driven by singlet formation. Unlike the random-site ener
case, the local moments remain well formed through
transition. The strong enhancement of the uniform susce
bility at low temperatures, in particular for the correlat
hopping randomness, indicates the formation of effectiv
localized magnetic moments. The compressibility is app
ts

-
a
d

he

e
ti-

y
r-

ently activated even for strong disorder where there are
long-range magnetic correlations. We are currently study
the dependence of the density of states in this model, a
has recently been suggested that this may provide an a
nate way to describe transitions in the Anderson-Hubb
model and its experimental realizations.24
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