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Three-particle approximation for transition-metal oxides
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Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained wéthin the
initio self-interaction-corrected local-spin dens{§IC-LSD) and LSD+U approximations. On-site Coulomb
correlations are described by a multiband Hubbard model, which is treated within Igarashi's three-patrticle
approximation. The transition-metdistate spectral weight is split into a maifiL peak and al"~ ! satellite.

We show that mean-field band structures in this way can lead to a good description of the experimental
photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is
concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.
[S0163-182697)11507-7

[. INTRODUCTION results are obtained from LDA calculations with constrained
occupancied! For spectral predictions, many-body calcula-
During the last three decades band-structure calculatiortions on the Anderson impurity model have been used, and
based on the locdbpin) density approximatiofL(S)DA) to  good agreement with photoemission data has been
the density-functional theory have been extremely successfulbtained:*® On the other hand, ground-state properties, in
in predicting not only ground-state propertigike total en-  particular the magnetic structures, have been calculated with
ergies and magnetic momeptbut also excitation spectra of success in mean-field schemes like the self-interaction-
solids?! It has long been known, however, that several classesorrected local-spin-densitIC-LSD) formalismt*~or the
of materials are poorly described by the LDA theory. Promi-LDA +U method<$ In both methods one essentially tries to
nent examples of LDA failure are band-gap calculations inobtain a more correct first-order treatment of the Coulomb
semiconductor$,bandwidths of metals, excited states andrepulsion, and they both reproduce the metal-insulator tran-
magnetic structures of transition-metal oxides)d quasipar- sition as a result of strong orbital polarization. In addition,
ticle spectra, as well as total energies and magnetic structur@sore or less reasonable values for the band gaps are ob-
of various systems with partially filledl shells? Since the tained. ~However, the comparison with actual
density-functional theory is formally a ground-state theory,photoemission—or inverse-photoemission spétras not
the problems with ground-state properties are, of course, theo good. This is to be expected from mean-field theories
more disturbing ones. On the other hand, it is an empiricakince the experimental spectra include various aspects of
fact that the LDA usually gives good spectral predictions,strong electron-electron correlation effects, such as band nar-
and it is natural to ask what makes the above-mentionedowing, and well-defined satellite structures clearly separated
cases different. from the main peaks. In order to test whether the SIC-LSD
The band-gap problem in semiconductors has to a largand LDA+U models of the ground state are compatible with
extent been resolved by the application of tl@W  the experimental spectra, it is thus of interest to calculate the
approximation (essentially a perturbative approacihis  many-body corrections to their band structures. This is the
method has also had some success when applied fwimary goal of the present study.
transition-metal oxide$,but not nearly as impressive as in  Many-body calculations based on realistic band structures
the semiconductor case. Indeed, the systems are quite diffeare extremely complicated, and one has to rely on approxi-
ent. The oxides are characterized by the presence of inconmations for the self-energy operator. In the present work we
pletely filled d shells, giving rise to a set of narrow bands will focus attention on an approach particularly suited to the
around the Fermi energy in LDA calculations. It is com- problem at hand, namely the three-particle approximation
monly accepted that the failure of the LDA theory has to dooriginally formulated by Igarasi®® In the three-particle
with incomplete screening effects for theselectrons, mak- approximation, an initial photoinduced hole may generate a
ing the on-site Coulomb repulsion an important paramefter. single electron-hole pair, from which it subsequently scat-
This repulsion suppresses the hybridization, since the eleders. Multiple scatterings are allowed, but not the generation
trons tend to avoid each other by localizing, and this will inof more than one electron-hole pair. The three-particle ap-
turn make the LDA less adequate, based as it is on correlgroximation is inherently nonperturbative, i.e., the theory can
tion effects in a uniform electron gas. be formulated without appealing to @ossibly divergent
A suitable scheme for studying these systems might thuseries expansion in the interaction strength. Furthermore, it
be based on the Hubbard or Anderson mo@éfsyhere on-  has an exact strong-coupling limit, as shown by Igar&%hi.
site Coulomb repulsions are explicitly included in a modelWe will discuss the range of validity of this approach, and
Hamiltonian. The parameters of the models would be underuse it to calculate photoemission spectra for NiO and CuO
stood to be renormalized quantities, and their calculation i®n the basis of SIC-LSD and LSBU band structures. It will
in principle not trivial. However, it has been shown that goodbe shown that the mean-field picture of p@und statef
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these materials to a large extent can be reconciled with phaadial function not extending beyond nearest-neighbor dis-
toemission data, when many-body effects in tlecited tance. The Bloch sums of these orbitals will in general not be
statesare taken into account. Essential for the three-particleeigenfunctions of the single-particle Hamiltonian, and this
approximation to be appropriate is that the Hartree-Foclgives the model some additional complications compared
ground state of the model system is a good approximation ofvith the simple case of a single orbital, which has been
the true ground state. This will only be the case if there iswidely studied in model calculations. Throughout this paper
strong orbital polarization, since the available phase spacee shall denote band indices by Roman letters, and atomic
for electron-electron scattering in this way is reduced. In theorbital indices by Greek letters.
abovementioned methods such a strong orbital polarization is In order to calculate photoemission spectra we must con-
produced. Eight or nindfor NiO and CuO respectively sider theN-electron ground stateN being the number of
metal 3 states turn out to be fully occupied, while the re- electrons in the neutral crysjalas well as the spectrum of
maining are partially filled and strongly hybridized with the N—1 particle states. In the three-particle approximation to
O 2p statest>178 the single-band Hubbard mod#&i?! the N-particle ground
The rest of this paper is organized as follows: In Sec. lIstate is taken to be the mean-figldF) solution, while the
the derivation of the multiband three-particle theory is brieflyN—1 particle states are expanded in the set of states with
reviewed. For a more thorough discussion we refer to thewo holes and one electron added to the ground state. In the
Appendix, and to the papers of Igards$ti’ and of Calandra multiband case we shall also describe the ground state in this
and co-workerg!?2In Sec. Ill we discuss the range of va- way, and expand the—1 particle states in the set of single
lidity of the method, while in Sec. IV we present our numeri- hole stategs),
cal results for the spectra of NiO and CuO. Section V sum-
marizes our conclusions. |S>=6nk0|0>, enk,<Er (4)

Il. FORMAL THEORY and states with two holes and one electriaj,

In this work we will assume that the quasiparticle spectra
of transition-metal oxides are well described by a multiband
Hubbard modél of the form

ot A ~
|t> - Cnlklcnzkzcn3k3|0>v

nk, = EBRy EnglyEngk,<Er, ®)

H=Hy+V, (1)
k3+ kz_ k]_: ko.

The N-particle HF ground state is denoted [§). In this
z nkanan ) way the many-particle problem is effectively reduced to a
nk three-particle one, which may be described by the Faddeev
theory?® We use the labels andt as combined indices for
single- and three-particle states, respectively. The basic pro-
cesses that can occur in our subspace are electron-hole scat-
E nR nR)(nB—nB) (3)  tering and hole-hole scattering. Accordingly, the interaction
at in Eq. (3) is partitioned as follows:

with

and

I\)D—‘

Here thee s are single-particléband energies, while the A a

U“P's represent the Coulomb repulsion of two particles oc- V=VetVh+Vis. (6)
cupying orbitalsaee and 8 on the same sitéR specifies lattice

translations, whilen andk label the band index and point in HereV, andV,, are the electron-hole and hole-hole scatter-

the first Brillouin zone, respectivelyr and 8 are combined ing terms, respectively, is the term coupling the single
orbital and spin indicesng denotes the mean value of the one-particle state to the set of three-particle states.
operatomR in the ground state. We assume that the Hartreet The central quantity to evaluate is the hole Green'’s func-
Fock (HF) Coulomb energy is included in the single-particle lon

energies, which is why it is explicitly subtracted in the sec-
ond term. As mentioned in Sec. |, one should keep in mind () -1 s @
that the single-particle energies as well as the interaction nk w—H '

parametergthe U’s) are renormalized quantities. In particu-
lar, we are going to assume that teparameters are negli- Here w=—w+Eq+i6, whereE, is the N-particle ground-
gible (presumably due to screening effeotxcept for some state energy, in the three-particle approximation taken to be
limited subset of orbitals, which in the transition-metal ox- the Hartree-Fock energy. From this, the spectral function for
ides will be taken to be the metat3states. angle-resolved photoemission may be obtained as

If the Hubbard model is to be a reasonable approximation
to the real solid, it is necessary that the orbitaland 8 are 1
well localized on the individua)I/sites, which meanslBthat we DEO(‘”): P ; Imngo(‘”)' (8)
cannot take them to be just the Wannier orbitals of the bands
indexed byn. Instead one must use some kind of atomicWe will primarily concern ourselves with the angle-
orbitals, for instance spherical or cubic harmonics times antegrated spectral function given by
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operators due to the presence of several orbitals, and the fact
D"(w)=2 Di(w) C) 3 | i i ic orbi -
o K that D is not diagonal in the atomic orbital representation,

while the scattering matrice, and T}, are not diagonal in
the band representation. In order to get around this problem,
and obtain simple equations for the scattering matrices and

which gives the total photoemission density of staf@®5).
With the definitions

1 A, we shall need several approximations, which will be
Ry ={t| ——=—5—|t' (100  stated below. We will discuss their validity in Sec. Ill.
o—(H=Vyy The full Coulomb potential in momentum space is given
and by
Ve=(slViqt), 11 ;ﬁ U“'@Z 6Zk+p6ak6;k'_peﬁk’- (19
one may show that, within the three-particle kk'p
approximatiorﬁl As mentioned earlier, it is understood théis are only non-
1 zero for a limited subset of orbitals. The,’s are Bloch

_ (12) sums of the atomic-orbital creation operators. Thus, if an
w=&nk, 2w ViR Vs injected hole is sitting in an orbitak, it may create an

. . electron-hole pair in orbitaB, by the Coulomb interaction,
Therefore, the hole self-energy in the band representation iSrovided that orbitalsr and 8 are part of the “interacting”
subset. The complexity of the above equations comes partly

Eﬂko(w)= —E VsRy' Vs (13)  from the fact that thé operator can scatter the particles to
t’ different orbitals, and partly from the ability of the Coulomb
These formulas are derived assuming that the self-energgotential to annihilate the electron-hole pair and recreate it
operator(and therefore the hole Green’s functigmdiagonal ~ on another orbital.
in the band representation. This is consistent with an as- In order to simplify the equations, we therefore assume
sumption made later on in this section, that the hybridizatiorthat theD operator cannot take an electr@r a hole from
between differentd orbitals can be neglected in the self- one of the Coulomb-interacting orbitals to another. Thus, in
energy calculations. A similar formalism may of course beNiO we would neglect hybridization, in a particular band,
set up for calculating electron Green’s functidnslating to  between Ni 3 orbitals with different quantum numbers,
inverse photoemission datéSince this is completely analo- while allowing for hybridization between Niddand O 2
gous to the hole case, only the latter will be treated explicitlystates. Furthermore, we shall neglect the above-mentioned
here. terms in the Coulomb potential, that take an electron-hole
The Faddeev analysis of these equations is carriefhair from one orbital to another. With these approximations,
through in the Appendix. Here we only want to summarizeexpressior(13) for the self-energy can be written
the results relevant for our discussion. The resolvent operator

ngo(w):

R, introduced in Eq(10), can be expressed as: Egko(w): _za: |a§k0|2[§a (Uaﬁ)Zg Rt‘tfg. (20)
. 1 AA A A . . . . .
R=————=—=(1+DTy)(D+A). (14)  Our physical picture is now the following: When a hole is
w—(H=Vyy injected in bandh, it will be on orbital & with probability

|aﬁko|2 (this guantity being the projection of barmd onto

TheD andT operators are defined by ¢ o
orbital @ at kg). If an electron-hole pair is now created on

R 1 orbital B8, all subsequent Coulomb scattering processes must
D=—F+, (15  take place on these orbitals, within the approximations men-
w—Hg tioned above. These multiple scatterings are summed up in
the R*# operator. To obtain the total self-energy one must
F.=V,+VDF = 1A V., (16) then sum over aI} interacting orbital_s. The complicatgd
1-V.D many-orbital equation thus separates into a set of effective
“two-band problems” which are much more tractable from
o 1 A an analytical as well as a numerical point of view. The
Th=Vh+VDT= 1.5 Vi (17)  R*B operator is determined from the equations
~—Vh
~ . . . Baf _ A aBTaBy\ /A a A
The operatoA is to be determined from the operator identity R=(1+D*PTgP) (D P+ AF), (21)
A=DT.D@A+T(D+A)), (18) AP=DBTPHB(1+TEA(D*F+A%)). (22

In the single-band case the above equations constitute amere A2, -‘rgﬁ, andD*8 denote theéd, T, andD operators
integral equation forA in three-dimensional momentum in the variouse3 subspaces.

space, which is in itself a difficult computational task. In the Finally, we are going to assume, that the so-called local
multiband case a complicated matrix structure is added to thepproximatioA* is valid. As discussed by Mier-
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Hartmanr?® this corresponds to the neglect of momentumand

conservation at the vertices of the Coulomb interaction. With

this approximation thé-space convolutions entailed in the

above equations can be replaced by integrals over the orbita& 1 Y+ y-

€ —
projected density of states since no expliitdependence (w)= o lw—U(l—n —U(1-n '
remains in the operators. In this way one ends up with the 2\Vn?+3 0= U - o=l s
formulas given in the Appendix, as originally derived by (26)
Manghi, Calandra, and Ossiciffi.

with pole strengths
I1l. RANGE OF VALIDITY

In Sec. Il we approximated the many-body calculation of y.=2—n*\n?+1%, (27
the N—1 particle state by a set of effective two-band prob-
lems, where the band structures were given by the orbitafps the three-particle approximation does not show the cor-
projections of theN-particle mean-field density of states. We rect strong-coupling limit in the case of two partially filled
will, of course, only obtain a nonvanishing contribution 10 hands. Actually, the above result is quite disturbing, since
the self-energy from a given pair of orbitals if at least one ofthe apsence of a well-defined Fermi level is evident: The
them is partially filled, so that scattering processes can 0CCURigh pole ofG" lies above the low pole dB¢. Consider, for

Thus two distinct cases of interest emerge. instance, the case af=3. In this case both the hole and
. . electron Green’s functions will have poles at(U/2y2),
A. One partially filled band and we cannot find a single value for the Fermi energy sepa-

When only one of the orbitals is partially filled, the only rating the hole and electron contributions to the spectral
nontrivial process is electron or hole injection in the otherfunction. This problem is easily seen to be a consequence of
orbital (depending on whether it is empty or fullin this  the fact that we are not treating tie-particle state on the
case the method is correct in the ldwimit, since the only ~same footing as theN=1 particle states. Denoting the
process that can occur, to second ordediris the creation N-particle ground state enerdsy and the energies of the
and subsequent annihilation of an electron-hole pair in thexcited state€y.,; (m labeling the excited states of the
partially filled orbital. It is also correct in the strong-coupling N=1 system, a necessary condition for the existence of a
limit, which may be defined as the limit were the bandwidthsFermi level i€®
go to zero. In this limit it was shown by Igarashthat the
three-particle approximation to the Green'’s function for the m 0 0 —m’
two-band problem becomes EnrimEN=ENTEn-g (28)

he . 1—n n for all values ofm andm’. If the system is metallic in the
G (w)=—+ (23 : L . .
® w—U"’ mean-field approximation, the equality will hold for

. S ) m=m’=0. In the three-body approach, thi-particle
Here we c0n3|der_hole Injection in a f'".Ed ba_nd, andle- ._ground state energy is equal to the mean-field value, while
notes the occupation fraction of the partially filled one. Th'sthe energies of théi+ 1 states are lowered due to correla-
is also the result of an exact treatment of this limit, so that, " 4 \ve see at once that the requirent@sy is vio-
the three-particle method in the case of only one partiall)1 '

' : . ) ~Jlated, leading to an instability of the many-particle system.
filled band has the highly desirable property of mterpolatlng.l.hiS is of course an unphysical result, and we conclude that
between two correct limits: The noninteracting limit '

N A . ' the three-particle method is not suited for handling correla-
U<W, and the atomic limit, U>W, whereW is a mea- tion effects between partially occupied bandsthere are
sure of the bandwidths. gaps in the Hartree-Fock bands of a size comparable to, or
_ _ larger than, the value dfi, one might obtain a well-defined

B. Two partially filled bands Fermi energy, and one might even, to some extent, justify the

In this case the many-body problem is considerably moréeglect of ground-state correlations compared to the ones in

complicated, and both hole and electron Green’s functionghe N= 1 states. However, this is a case of limited interest,
are nontrivial. The three-particle approximation is no longersince it could equally well be treated by ordinary perturba-
correct in the lowt) limit, since two electron-hole paitone  tion theory.
in each bangmay now be created and destroyed in a second- It is difficult to see how the approach may be resurrected
order process. Evaluating the strong-coupling limit with anfrom these limitations. One might formulate the problem

occupation fraction of in both orbitals, one finds with time-ordered Green’s functions, which treat ground-
and excited-state correlations on an equal footing, and write
1 X4 X_ down the Feynman diagrams corresponding to the three-

G'(w)= - ., (29 particle approximation. This approach is, however, numeri-
24 /(1—n)2+% o—Unx.  wo—-Unx, cally more cumbersome than the present formalism, and we

have not been able to verify any correct strong-coupling limit

where the pole strengths are given by of the equations. Indeed, being inherently perturbative in its

character, such an approach is probably not suited for the
Xi=2-n*+(1-n)°+3 (25 highU calculations that interest us.
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erator was diagonal in the atomic orbital representation. The
approximation made in Sec. Il is, however, more stringent
u than this, since hybridizations to other orbitals with nonzero
U are neglected throughout the self-energy calculation. At
the same time hybridizations to other orbitéésg., the O
[ Minority spin m ] 2p states in NiO and Cufare included. Thus we must ex-
—4 . . . amine the band structures we are going to use as input in the
-5 =2 A 0 ! calculation in order to determine whether the approximation
is justified.
 rul corooton From the discussion in Sec. IlI B it followed that the
~- Local approximation three-particle method is not suited to treat correlation effects
| between partially filled orbitals. This means that the outputs
' of conventional LSD calculations on, e.g., transition-metal
oxides, would be an inadequate starting point for us, since in
these band structures thd 8rbitals usually end up being all
= partially filled. Furthermore, one may argue that whatever
-3 -2 -1 0 1 . - . ;
(b) w/W treatment the LSD approximation gives of a Hubbard-like
correlation term, it certainly is not the Hartree-Fock treat-
FIG. 1. Comparison of thk-independent spectral functiggq. ~ ment implied in our single-particle energies in E2). In this
(9)] for a one-dimensional Hubbard model withW=1.5, calcu- respect a more natural approach would be to start out from
lated in the three-particle formalism with and without the local ap-the results of SIC-LSD or LDAU calculations, since in
proximation.(a) shows the unperturbed ferromagnetic bands, whilethese schemes one attempts more or less explicitly to include
(b) shows the correlated spectral functions. The energies are megr correct first-order treatment of the on-site Coulomb inter-

4 L
Majority spin

DOS (States/(W site))
=)

£
~
=

D"(w)

sured relative to the Hartree-Fock Fermi level. actions. For the transition-metal oxides these models give
o o band structures which are quite different from the LSD re-

C. Validity of approximations sults, with sizable band gaps caused mainly by a splitting of

1. Local approximation the 3d density of states. This splitting is in turn caused by

strong orbital polarization effects, so that some &bitals
are fully occupied, while others remain empty. At the same
time hybridization betweendorbitals is suppressed. This is

we are going to treat three-dimensional crystals where Jparticularly evident in SIC calculations, where a set of local-

least some of the bandwidths may be a sizable fraction o'lzted .3d S;f”,:t?;’ ‘.’,E’rt"Ch ar?l gsseﬂuzll_)(/j_BI?cg sums of tthe
U, it is not immediately clear how the approximation can pedtomic oroitaisiwith a sma 3 hybridization, appear a

justified. Indeed, our primary reason for its inclusion is theg{?hctblrg%ngmen deé%ﬁ:'sggzt'pg??glg? triaglfg;gg%ksgag?
great calculational simplifications it entails. A fairly simple uctu provi pictu ! u

test of its validity can be performed by investigating theture' though with very large gaps. Thus the three-particle

single-band ferromagnetic Hubbard model in one dimension\?vchhenmt(;j'1'S fif?n trcé breéalrl?/ Vr:/]%” JL;fSt'f'tEd '? therse crclnm{f)rou?dds,
where a calculation without the local approximation is more en the Tirst-order Loulo etects are properly treated.
This is quite fortunate, since our main interest is precisely

tractable than in three dimensions. Calculations of this kinqhe manv-bodv corrections to the various mean-field models
were first reported by Igarastfl.In Fig. 1 we compare y-body X
of the on-site interaction effects.

k-integrated spectral functions for hole injection in a filled The last approximation made in Sec. Il was the nealect of
band, calculated with and without the local approximation. ppro . o 9 .
Coulomb scatterings, taking the excited electron-hole pair

IP ?hzagg\:\éilgrlc '?i"uer:j'tytgr']sdlif’oagd Itth iesogggﬁattﬁloar: f{ﬁgtlt(\),\? o from one partially occupied orbital to another. If only one

X " o rbital is partially occupiedthis will be the case in Cu
calcula't|ons agree almost perfect!y on the energy posmops Q[ e approgimatign is efac(t:(. If two or more orbitals areppar-
Fhe various structures. On analyzing theesolved spectra, it tially occupied(as in NiO), such processes can occur, but
is found that the primary effect of the local approximation IS oven if we had a WaXpe;haps approximateof includin’g

to suppress the band narrowing induced by the correlation§hem it would probably be dangerous to do so. The reason

thus smoothing out the peak aroumsd= —0.4. This calcula- . h Id thereby includ lati . b
tion is by no means a rigorous proof of the validity of the IS, that we would thereby include correlation effects between
two partially filled orbitals in theN+1 andN—1 particle

local approximation in three-dimensional crystals with com- tates. without treating similar effects in_ tHé-particle
plex band structures. However, it is somewhat reassuring 3 ' 9 P

see that the approximation has little effect on the integrateground state, where_ they might equally well be present. We
, . Shall therefore continue to neglect these processes in all of
spectra for a moderatd value, even in the lowest possible

spatial dimension the following calculations. It should, however, be noted that
' this approximation is not exact in the atomic limit. Consider,
for simplicity, a density of states with one filled band and
two degenerate bands with filling fraction all of zero band-
The natural generalization of the local approximation to awidth. Our approximation will account for the presence of
multiband case would be to assume that the self-energy opgwo partially filled bands by simply multiplying the self-

It is well known that the local approximation to the self-
energy becomes exact in either the strong-coupliragrow-
band limit, or the limit of infinite dimensionality*?° Since

2. Orbital decoupling
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@ 2+ U=2.0 EEF 4 2k
z i
> ! 5
jul ' g
:"9 1+ E i [«
22 :
) )
o
20 . 0
-3 -2 -1 0 1 -3
(a) w/W (d)
u=2b ‘ FIG. 2. Three-particle calculations for a simple two-
2r 2r P 1 band model. (a) shows the Hartree-Fock bands for
= . b U=2.0.(b)—(e) show the majority spin spectral function
= 2 : resulting from the three-particle calculation, for different
ST o Lo i U values. The positions and widths of the upper band are
the same in all calculations. The lower unperturbed band
o 0 Lo . is shown with a dashed line. It is always centered around
_3 _3 9 1 0 —U/2. Energies are measured relative to the Hartree-
(b) (e) w/W Fock Fermi level.
2 |
3
o1l i
0
-3
(c) w/W

energy by a factor of 2there being two orbital to sum  factor of \7/2~1.3, i.e., about 30%, due to our neglect of

over in Eq.(20)]; that is, correlations between the “metallic” electrons. It should be
emphasized that this is not a failure of the three-particle ap-
GN(w)= 1 (29) proximation as such, but of our orbital decoupling scheme.
w+U(l-n)—23%(w)’
with IV. NUMERICAL RESULTS AND DISCUSSION
1 n 1—n A. Model calculations

(30 We shall begin by illustrating the basic physics of our

. _ _ method considering some simple model calculations with flat
measuring the energy relative to the HF _Ferm| level. One capsnds. Our generic picture of the mean-field ensity of
readlly, show t.hat. this leads to the following form of the hole giates in NiO and CuO will be that of a set of low-lying
Green’s function: narrow d bands, all fully occupied, and a set of broader
W bands around the Fermi level, predominantly op@harac-

G"(w)= + , (31) ter, with some metatl character mixed in. This is the band
T OTO4 picture emerging from a SIC-LSD calculation. To mimic this
where situation we shall consider a two-band model where holes
are injected in a fully occupied band, Coulomb interacting
n—1 with electrons in a partially filled oné&orresponding to par-
s 8 (320  tially filled d orbitals in the oxides We shall take the par-
Vv1+4n(1-n) tially filled band to be metallic and half-filled, and set its
width to unity. The filled band is taken to be of width 0.5 and
is centered around-U/2. The bands are pictured in Fig.
2(a). In Figs. 2b)—2(e) the quasiparticle spectra resulting
w.=7+U ztn(1-n). (33 from the three-particle calculations for differdtvalues are
displayed. We see that the filled band splits into two main
If we take n=3 as an example, we find from the above structures with a splitting in energy given hy. The high-
formulas, that the hole Green’s function will have two poleslying structure essentially corresponds to final states where
with weights ¥ (1/2\7) in w=(U/2)=U(\/7/4). Thus the the injected hole is bound to an electréor, in the atomic
guasiparticle DOS is correctly centered arows®, but the picture, the hole is introduced on a doubly occupied)site
splitting in energy of the two peaks is overestimated by aThe lower peak corresponds to hole-hole binditig hole is

0t U(1-n -3 o-U' o

N| =

W, =

and

C



4144 J. LEGSGAARD AND A. SVANE 55

introduced at a singly occupied sit&Ve note that the center

of gravity of the total quasiparticle density of states is shifted

downwards relative to the unperturbed case, because of the
kinetic-energy cost of creating the bound states. The shift is =5
approximately equal to the energy difference between the &
centers of gravity of the filled and empty parts of the metallic °f
band. It is characteristic that the energy splitting between the A ok
two structures is close t0 even in the intermediate case of o ‘ A
. . . -16 —12 -8 -4 0
U=1.0. The main effect of increasirlg (apart from chang- (a) w(eV)

ing the energy scale of the splittings thus to change the

distribution of spectral weight between the two peaks, and 8
eliminate the intermediate structures in the energy region of ‘ _ Totol DOS
the unperturbed band. For the intermedidtevalues the m -~ -Cu-3d DOS

——Total DOS
10k ----Cu—3d DOS 4

/

D"(w)
IS

peaks represent states of finite lifetime, signified by a non- :
vanishing imaginary part of the self-energy. As thevalue | l\

is increased, the imaginary term tends to zero in accordance M ﬁ j\w\m
with the limiting form (23). ol A\ an SN

If the initial position of the fully occupied band is shifted, -1 -12 -8 -4 0
the entire quasiparticle structure is shifted rigidly by the
same amount. This follows at once from the equations in the
Appendix. If a gap is introduced in the partially filled band  FIG. 3. (@ SIC-LSD density of states for CuO in the NaCl
(as is seen in the transition-metal oxitlethe spectrum is Structure, obtained by d.iago.nalizing tl.qenatrix. The Fermi level is
shifted further down in energy, since the cost of creating art Zero energy(b) Quasiparticle density of hole states in CuO cal-
electron-hole pair is increased. Finally, changing the widttfulated from the unperturbed DOS ia) within the three-particle
of the fully occupied band results mainly in a change in theap_proxmatlonu was taken to be 10.2 eV. Units are states/formula
widths of the corresponding quasiparticle structures. Th&Mitand ev.
atomic limit is essentially realized beyord=2.

From these simple model calculations, we see that thdure. The self-interaction corrected orbitals give rise to nine
three-particle approximation is capable of bringing the meannarrow bands lying~11 eV below the valence-band maxi-
field picture of the transition-metal oxides into better agreesmum. These bands are almost entirely made up of Gu 3
ment with photoemission experiments by introducing exactlyorbitals, with only a small O @ hybridization. The highest
the splitting between main band and satellite structures seestcupied bands are mainly composed of @<ates hybrid-
in these measuremeri .t is interesting to note that the jzed with the last Cu orbital, which is <B‘g(x2—y2) spatial
present model entails no modifications of theparticle  symmetry, and has an occupation fraction of 0.35. The band
ground state of the materials. This may to some extent exgap is 1.4 eV. A first-principles estimate for the Cd 8
plain the success of the SIC-LSD and LBAJ models in  parameter may, within the SIC-LSD approximation, be ob-
predicting ground-state properties like, for instance, the magtained as the difference between the highest occupied and
netic structures. To test the mean-field picture in more detaiowest unoccupied SIC orbital, before diagonalization of the
it is, however, necessary to go beyond the simple model matrix3° This yields a value folU of 10.2 eV, and is
calculations and insert realistic band structures in the equaargely given as the average expectation value of the SIC
tions. This will be the subject of the following subsections. potential. Other estimates of this parameter are somewhat

smaller, e.g., 8 eV in Ref. 13 or 7.5 eV in Ref. 8.
With only one partially occupied orbital, CuO is an ideal
B. CuO case for study with the three-particle approximation. As al-

In this subsection we shall discuss the quasiparticle spedeady indicated, we shall assume that the Hublbiid only
trum of CuO on the basis of the formalism described abovesignificant on the Cu @ orbitals. With an antiferromagnetic
Our first starting point will be a self-consistent SIC-LSD structure we should in principle consider 20 such orbitals,
calculation with linear muffin-tin orbitals as described in but since orbitals on different sites do not interact in the
Ref. 28. In order to simplify the calculations we have re-Hubbard model, and are pairwise equivalent, we only have to
placed the complicated crystal structure of CuO with aconsider ten orbitals within our approximations. In Figo)3
simple NaCl structure. The SIC ground state in this structurve show the quasiparticle spectrum obtained by a three-
is antiferromagnetic, with a moment of 0,65 particle calculation with & value of 10.2 eV. Similar to the

It is not obvious how one should obtain a band structurgmodel studies of Sec. IV A, the low-lying Cud3bands are
within the SIC-LSD scheme. Pederson, Heaton, and®Lin split into a high-lying @°L) peak, around 7 eV below the
suggested diagonalizing the matrix of Lagrange-multipliersvalence-band edge, and a low-lyind®j satellite structure.
(the “\ matrix”) that ensure orthonormality of the SIC-LSD The splitting is slightly smaller than the value, due to the
one-particle orbitals. This procedure leads to the SIC-LSDsmall O 2p component of the SIC orbitals. The experimental
equivalent of the Kohn-Sham band structure, and a Koop€uO photoemission spectra of Gunnarson, Jepsen, and
man’s theorem exists for the diagonalizing orbiflsyhich ~ Shert® show thed®L structure around-5 to —1 eV below
in periodic systems become Bloch states. In Fip) 3ve  the valence-band edge, and ifepeak at—11 eV, i.e., the
show the density of states of CuO obtained by this proceealculated energy positions of the Cd-8erived peaks are

)

£

(b) w(eV)
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~4 eV too low compared to experiment. Taking a lower
value forU (for instance, 8 eYdoes not improve the situa-
tion very much.

The trouble is that the SIC-LSD band structure is some-
what at variance with our expectations for a multiband Hub-
bard model. In a first-order treatment of the Hubbard model,
we would expect an energy splittingpart from hybridiza-
tion effects of U(1—n) between a fully occupied orbital
and one with occupation fractian In the SIC-LSD approxi-
mation the splitting is always- U, since the self-interaction-
corrected orbitals are shifted down by approximately this
quantity, while the partially filledd orbitals are left un-
changed. The net result is, as can be seen from Ra). 3
that the A bands reproduce the experimental position of
the d®—d® satellite directly, but make no particular contri-
bution to thed®L structure, which experimentally has the
larger weight. This is in accord with the fact, observed

D'(w)

D'{(w)

2

0

— Total DOS
~-- Cu—-3d DOS

I

/

J

"
i

e,

-8

-4 0
w(eV)

|
|

—— Total DOS
Cu=3d DOS

A

/'

n

‘\\\
LN
N

W,

|
s 4

o]

4145

previously'*?*that atomiclike excitations are well described ®)
by SIC-LSD eigenvalues, but also implies that these energies
include some correlation effects, though clearly not all. FIG. 4. (a) LSD+U DOS of CuO with aJ value of 7.5 eV. The

In light of the aforementioned prObIe_ms' WE NOW UM 10 co i jevel is at zero energyb) Quasiparticle hole DOS calculated
the LSD+U approach as another candidate scheme for pagom the mean-field spectrum i)

rametrizing the Hubbard model to first order. We assume the
mean-field Hamiltonian:lo in Eq. (2) to be given by

w(eV)

experimental “hump” rather well. The weight of the lower
peak seems somewhat too high compared to the experimen-
tal spectrum. This can partly be ascribed to matrix-element
effects, and partly to the fact that the LS calculation
slightly overestimates the antiferromagnetic moment of the

whereH sp is the usual LSD Hamiltonian, while the second €U 10ns(0.74ug , as compared to 0.6&; from e>_<perimerﬁ).

term represents the mean-field contribution from the on-site Since the spectrum dfi+1 particle states is not altered

Coulomb interaction. As in Sec. Iy and 8 are orbital indi- Py our model, we see that the small gap of the 3D

ces. understood to be restricted to metdl Qatesn® de- calculation is closed by the correlation calculation, so the
1 - o'ﬁ

h 8 ion in th in ch | of orbital system becomes metallic. It is to be expected that a correla-
hotes the meandoccupation in the spin channel of orbital ;5 cajculation will narrow the gap compared to the mean-

B. UsingH, in Eq. (34) as the mean-field Hamiltonian of our fie|g result, so this problem should probably be cured by
multiband Hubbard model assumes that the LSD approximarefining the mean-field scheme. Since we are mainly inter-

tion describes the effects of on-site Coulomb interactiongsted in the photoemission spectrum in this paper, we have
correctly in the absence of orbital polarization. Biparam-  not made any attempts in this direction.

eter is employed, i.e., it is assumed that the LSD approxima-
tion properly describes exchange effects. In Figa) 4he
DOS emerging from a diagonalization of E&4) is shown.
The metal 3l states are now broadened, higher in energy, With the above experiences in mind, we now turn to NiO.
and more hybridized with the O2states. TheJ value was This is a somewhat more complicated problem since there
here taken to be 7.5 eV, as given by Anisimov, Zaanen, andre two partially filled Ni 3l orbitals. In principle we should,
Anderserf Performing again the self-energy calculations,therefore, also calculate self-energy corrections for these or-
now with a new value ofU, we obtain the quasiparticle bitals. However, as explained in Sec. Il this cannot be done
spectrum shown in Fig.(®). The peak positions are now within the framework of the three-particle formalism, so we
closer to the experimental ones, ti2 peak being about 9 will contend ourselves with correcting the filled orbitals, as
eV below the top of the valence band, and ti& structure  before. The unperturbed DOS is shown in Figa)5 We

in the range from 2 to 5 eV below the highest-lying stateshave, again, employed the LS formalism, this time
The fact that the experimentdf peak is somewhat lower with aU value of 8.2 eV. The main part of the Nd3orbital

than calculated here indicates that a slightly highevalue  weight lies between 5 and 8 eV below the valence-band
may be appropriate for CuO. The form of the spectrum als@dge, but there is now substantial hybridization to the higher-
matches the photoemission results rather well. A valencelying O states. These aspects of the valence-band structure
band edge of mixed O and Cu character is seen, the main Gare in agreement with first-principles Hartree-Fock
3d peak coming up 1-2 eV below the Fermi energy. Thiscalculations,’ as well as SIC-LSD calculations including
constitutes asomewhat crudedescription of the so-called self-interaction on the @ states"’

Zhang-Rice singlet! Earlier calculations by Gunnarson, The quasiparticle DOS obtained in the three-particle cal-
Jepsen, and Shéhbased on the Anderson model tended toculation is shown in Fig. ). Similar to CuO, the correlated
produce a split-off state at this point, but, as anticipated byspectral density compares much better with the experimental
these authors, the Hubbard-model treatment reproduces tiphiotoemission data than the unperturbed ESDdensity of

Ho=Hisp+U > ((n)—nC )nga, (34
Ra# B B

C. NiO
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heavy fermion compounds, exdoes not appear to be fea-

[ —Total DOS 1 sible with the present formalism.
-- Ni—3d DOS

(2]
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cdl e APPENDIX: DERIVATION OF FADDEEV EQUATIONS

& f j In this appendix we shall give a more thorough review of
2F /,'5\ w} 7 the derivation of the three-particle formalism. We begin by
. J RNy deriving Egs.(14) and(18) for the resolvent operator defined
e T s L o in Eq. (14). We first note the identities

(b) w(eV) L ~ . ~

1+VenR=(D 1=V, R (A1)
FIG. 5. (@) LSD+U DOS for NiO, with aU value of 8.2 eV. and

The Fermi level is at zero energfb) Quasiparticle density of hole

states in NiO calculated within the three-particle approximation 1 1
with the unperturbed DOS i(a). D—— —_ . (A2)
1-VenD D7 1-Vg
states. Most significantly, for NiO the metdl states are . .

pushed all the way up to the highest-lying valence states, anlgtroducmg the quantity
a steep valence-band edge develops. Below the main peak, a A=DV.R (A3)
broad mixture of Ni and O states extend down to the er

satellite structure~10.5 eV below the top of the valence we see from the above identities that

band. The satellite is, as expected, primarily ofd\¢harac-

ter. The position of the satellite i1 eV lower than ob-
served in experiment. This is probably due to our rather
crude treatment of the multiorbital self-energy, as discussed

~ 1 A
R=—7—(1+VR
S ACAAZ

in Sec. lll C. 1 R A L
=D1 g ﬁ(D‘l—Vh+Vh)D(1+VeR)
V. CONCLUSIONS AND OUTLOOK h
=(1+DT,)(D+A). (A4)

We have shown that the three-particle approximation is

well suited for evaluating many-body corrections to the specyye can picture the operatd® as the sum of all possible
tra of filled orbitals, but is not appropriate for studying par- electron-hole and hole-hole scattering procesiaien cor-

tially filled ones. We have performeab initio calculations . ) . .

with this formalism on NiO and CuO, and have d(_}mon_responds to the part_lal sum in wh_|ch t_he last process is an

strated that the method reproduces the splitting spectral electron-hole scattering. THE matrices mtroduc_ed n Egs.
(16) and (17) can similarly be pictured as partial sums of

P H n H n—-1 H
we|gh.t Into ad’L main structure and d satellite. Gogd . _electron-hole and hole-hole processes, respectively. Our next
guantitative agreement with experimental photoemission

data is obtained using as input uncorrelated electronic level@SK is to derive an integral equation far
the orbital polarized band structures derived from LSD

ab initio calculations. It is of importance that these levels A_pjy R= 1A __ PV (1_[5\‘/ )R=DT 5(1+\‘/h§)
mimic a correct first-order treatment of the multiband Hub- 71—V, ¢ ¢ ¢ ’
bard model, which means that SIC-LSD bands derived with (A5)

the “A-matrix procedure” are a less adequate starting poin
for our calculations, since the levels come out too deep in
energy. A_AT A Ao 2

An interesting application of the present formalism would A=DTD(L+ThD+ThA). (A6)
be a comparison between spectra of CuO and fiighuper-  The first term represents the sums where @nlyscatterings
conductors, in order to clarify to what extent variations in theoccur, the next term the sums where a seriek-bf scatter-
DOS can be described within our rather unsophisticatednhgs is followed by a series a-h scatterings, and the final
many-body theory. Also earlier transition-metal compoundgerm contains all the remaining contributions to the sum in
and somef-electron systemglike Yb) should be within the A operator.
reach of the method. On the other hand, a description of In order to obtain a formula for the self-energy, we must
correlation effects in metallic systenflike transition metals, evaluate the quantities

thich, after a few manipulations, yields



(A7)

> R

tt’
according to Eq(20). The three-particle states in the sum are
now restricted to the orbitale andB and can thus be labeled
by threek indices. As seen from Ed21), we only need to
know the object

>

kokskikokg

(akaBkoBki|A®F| Bk Bkhaks),  (AB)

where momentum conservation is taken to be implicit in the
k sums. Herek; is the momentum of the excited electron.

The result follows from the fact that the operafdg? is

independent of the ingoing and outgoing hole coordinates

(because the Hubbard potentialksndependent and thus
only depends on the electron moment(winich is conserved
in the h-h scattering processesAccordingly, we only need
to solve an integral equation in one variable. This is the main
objective behind the above manipulations.

The T matrices can be summed exactly:

Tet (,)=(aksBko Bk, | Te?| Bki Bkyaks)

—yeB

= A9
1-U*D (w) (A9)
Tﬁfl(w)z(ak3/3k2,8k1|:|'ﬁ5|,8k1,8kéaké>
Uk
=g Al

with the definitions

DEf(w)= 3, (akqBkypky| D BkiBkaks), (A1)
182

Dif(@)= 2 (akaBkopka|D | BkiSkoaks).  (A12)

We can now insert intermediate states in E86), and sum

up over the relevark variables to obtain an integral equa-
tion for the quantitngﬁ. Using the local approximation, the
momentum conservation implicit in the above summations is
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E n¢%
Dgh(w):f;ds%, (A13)
Dgﬁ’(w)=Fdsnﬁ(s)Dgh(mS), (A14)
E¢
Ef
Dﬁﬁ(w)=J7 denf(e)D&(w—e), (A15)
—yaeB
T )= TG ) (16
af UCV,B
Th (w):WDﬁB(w)’ (A17)
Rgﬁ(w,s)=R§(§3(w,s)+fmds’nﬁ(s’)
Ef
XK*(w,e,e" )R (w,e), (A18)

af Es T AB( ! a ’ af ’
Ry (w,e)= B de'nP(e’)Dg{w—¢’'+&)Tg"(w—¢")

Dgﬁ(w—s')— . de"nP(e")
f

X

XD w—e'+&"\Dif(w+e") TP (w+e") |,
(A19)
Ef
K“ﬁ(w,s,s’)ZJ de"nP(e")DYy w—s”+8)T3B

><(w—s")Dgh(w—s”-l—s’)Tﬁ‘ﬁ(w-l-s'),
(A20)

> Rif(w)=
ttr

1 0
aﬁf denf(e)TEP(w+e)(RP(w,e)
Ut Je,

— D (w+e)). (A21)

relaxed, and one can transform the sums into density-ofThe self-energy can hereafter be found by Exf)), and the
states integrals. In this way we end up with the following setquasiparticle spectrum may then be obtained as the imagi-
of formulas, first given by Manghi, Calandra, and Ossiéi: nary part of the Green’s function defined by Efj2).
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