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Three-particle approximation for transition-metal oxides

J. Lægsgaard and A. Svane
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

~Received 6 May 1996; revised manuscript received 27 September 1996!

Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained within theab
initio self-interaction-corrected local-spin density~SIC-LSD! and LSD1U approximations. On-site Coulomb
correlations are described by a multiband Hubbard model, which is treated within Igarashi’s three-particle
approximation. The transition-metald-state spectral weight is split into a maindnL peak and adn21 satellite.
We show that mean-field band structures in this way can lead to a good description of the experimental
photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is
concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.
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I. INTRODUCTION

During the last three decades band-structure calculat
based on the local~spin! density approximation~L~S!DA! to
the density-functional theory have been extremely succes
in predicting not only ground-state properties~like total en-
ergies and magnetic moments!, but also excitation spectra o
solids.1 It has long been known, however, that several clas
of materials are poorly described by the LDA theory. Prom
nent examples of LDA failure are band-gap calculations
semiconductors,2 bandwidths of metals, excited states a
magnetic structures of transition-metal oxides,3 and quasipar-
ticle spectra, as well as total energies and magnetic struct
of various systems with partially filledf shells.4 Since the
density-functional theory is formally a ground-state theo
the problems with ground-state properties are, of course,
more disturbing ones. On the other hand, it is an empir
fact that the LDA usually gives good spectral prediction
and it is natural to ask what makes the above-mentio
cases different.

The band-gap problem in semiconductors has to a la
extent been resolved by the application of theGW
approximation5 ~essentially a perturbative approach!. This
method has also had some success when applied
transition-metal oxides,6 but not nearly as impressive as
the semiconductor case. Indeed, the systems are quite d
ent. The oxides are characterized by the presence of inc
pletely filled d shells, giving rise to a set of narrow band
around the Fermi energy in LDA calculations. It is com
monly accepted that the failure of the LDA theory has to
with incomplete screening effects for thesed electrons, mak-
ing the on-site Coulomb repulsion an important paramete7,8

This repulsion suppresses the hybridization, since the e
trons tend to avoid each other by localizing, and this will
turn make the LDA less adequate, based as it is on corr
tion effects in a uniform electron gas.

A suitable scheme for studying these systems might t
be based on the Hubbard or Anderson models,9,10 where on-
site Coulomb repulsions are explicitly included in a mod
Hamiltonian. The parameters of the models would be und
stood to be renormalized quantities, and their calculatio
in principle not trivial. However, it has been shown that go
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results are obtained from LDA calculations with constrain
occupancies.11 For spectral predictions, many-body calcul
tions on the Anderson impurity model have been used,
good agreement with photoemission data has b
obtained.12,13 On the other hand, ground-state properties,
particular the magnetic structures, have been calculated
success in mean-field schemes like the self-interact
corrected local-spin-density~SIC-LSD! formalism14–17or the
LDA1U methods.8 In both methods one essentially tries
obtain a more correct first-order treatment of the Coulo
repulsion, and they both reproduce the metal-insulator tr
sition as a result of strong orbital polarization. In additio
more or less reasonable values for the band gaps are
tained. However, the comparison with actu
photoemission—or inverse-photoemission spectra18—is not
so good. This is to be expected from mean-field theor
since the experimental spectra include various aspect
strong electron-electron correlation effects, such as band
rowing, and well-defined satellite structures clearly separa
from the main peaks. In order to test whether the SIC-L
and LDA1U models of the ground state are compatible w
the experimental spectra, it is thus of interest to calculate
many-body corrections to their band structures. This is
primary goal of the present study.

Many-body calculations based on realistic band structu
are extremely complicated, and one has to rely on appr
mations for the self-energy operator. In the present work
will focus attention on an approach particularly suited to t
problem at hand, namely the three-particle approximat
originally formulated by Igarashi.19,20 In the three-particle
approximation, an initial photoinduced hole may generat
single electron-hole pair, from which it subsequently sc
ters. Multiple scatterings are allowed, but not the genera
of more than one electron-hole pair. The three-particle
proximation is inherently nonperturbative, i.e., the theory c
be formulated without appealing to a~possibly divergent!
series expansion in the interaction strength. Furthermor
has an exact strong-coupling limit, as shown by Igarash19

We will discuss the range of validity of this approach, a
use it to calculate photoemission spectra for NiO and C
on the basis of SIC-LSD and LSD1U band structures. It will
be shown that the mean-field picture of theground statesof
4138 © 1997 The American Physical Society
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55 4139THREE-PARTICLE APPROXIMATION FOR . . .
these materials to a large extent can be reconciled with p
toemission data, when many-body effects in theexcited
statesare taken into account. Essential for the three-part
approximation to be appropriate is that the Hartree-F
ground state of the model system is a good approximatio
the true ground state. This will only be the case if there
strong orbital polarization, since the available phase sp
for electron-electron scattering in this way is reduced. In
abovementioned methods such a strong orbital polarizatio
produced. Eight or nine~for NiO and CuO respectively!
metal 3d states turn out to be fully occupied, while the r
maining are partially filled and strongly hybridized with th
O 2p states.15–17,8

The rest of this paper is organized as follows: In Sec
the derivation of the multiband three-particle theory is brie
reviewed. For a more thorough discussion we refer to
Appendix, and to the papers of Igarashi19,20 and of Calandra
and co-workers.21,22 In Sec. III we discuss the range of va
lidity of the method, while in Sec. IV we present our nume
cal results for the spectra of NiO and CuO. Section V su
marizes our conclusions.

II. FORMAL THEORY

In this work we will assume that the quasiparticle spec
of transition-metal oxides are well described by a multiba
Hubbard model9 of the form

Ĥ5Ĥ01V̂, ~1!

with

Ĥ05(
nk

«nkĉnk
† ĉnk ~2!

and

V̂5 1
2 (
R,aÞb

Uab~ n̂R
a2nR

a!~ n̂R
b2nR

b!. ~3!

Here the«nk’s are single-particle~band! energies, while the
Uab’s represent the Coulomb repulsion of two particles o
cupying orbitalsa andb on the same site.R specifies lattice
translations, whilen andk label the band index and point i
the first Brillouin zone, respectively.a andb are combined
orbital and spin indices.nR

a denotes the mean value of th

operatorn̂R
a in the ground state. We assume that the Hartr

Fock ~HF! Coulomb energy is included in the single-partic
energies, which is why it is explicitly subtracted in the se
ond term. As mentioned in Sec. I, one should keep in m
that the single-particle energies as well as the interac
parameters~theU ’s! are renormalized quantities. In particu
lar, we are going to assume that theU parameters are negli
gible ~presumably due to screening effects! except for some
limited subset of orbitals, which in the transition-metal o
ides will be taken to be the metal 3d states.

If the Hubbard model is to be a reasonable approxima
to the real solid, it is necessary that the orbitalsa andb are
well localized on the individual sites, which means that
cannot take them to be just the Wannier orbitals of the ba
indexed byn. Instead one must use some kind of atom
orbitals, for instance spherical or cubic harmonics time
o-
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radial function not extending beyond nearest-neighbor d
tance. The Bloch sums of these orbitals will in general not
eigenfunctions of the single-particle Hamiltonian, and th
gives the model some additional complications compa
with the simple case of a single orbital, which has be
widely studied in model calculations. Throughout this pap
we shall denote band indices by Roman letters, and ato
orbital indices by Greek letters.

In order to calculate photoemission spectra we must c
sider theN-electron ground state (N being the number of
electrons in the neutral crystal!, as well as the spectrum o
N21 particle states. In the three-particle approximation
the single-band Hubbard model19–21 the N-particle ground
state is taken to be the mean-field~HF! solution, while the
N21 particle states are expanded in the set of states
two holes and one electron added to the ground state. In
multiband case we shall also describe the ground state in
way, and expand theN21 particle states in the set of sing
hole statesus&,

us&5 ĉnk0u0&, «nk0<EF ~4!

and states with two holes and one electron,ut&,

ut&5 ĉn1k1
† ĉn2k2ĉn3k3u0&,

«n1k1>EF , «n2k2,«n3k3<EF , ~5!

k31k22k15k0 .

The N-particle HF ground state is denoted byu0&. In this
way the many-particle problem is effectively reduced to
three-particle one, which may be described by the Fadd
theory.23 We use the labelss and t as combined indices fo
single- and three-particle states, respectively. The basic
cesses that can occur in our subspace are electron-hole
tering and hole-hole scattering. Accordingly, the interact
in Eq. ~3! is partitioned as follows:

V̂5V̂e1V̂h1V̂13. ~6!

Here V̂e and V̂h are the electron-hole and hole-hole scatt
ing terms, respectively.V̂13 is the term coupling the single
one-particle state to the set of three-particle states.

The central quantity to evaluate is the hole Green’s fu
tion

Gnk0
h ~v!5K sU 21

v̄2Ĥ
UsL . ~7!

Here v̄52v1E01 id, whereE0 is theN-particle ground-
state energy, in the three-particle approximation taken to
the Hartree-Fock energy. From this, the spectral function
angle-resolved photoemission may be obtained as

Dk0
h ~v!5

1

p (
n

ImGnk0
h ~v!. ~8!

We will primarily concern ourselves with the angle
integrated spectral function given by
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4140 55J. LÆGSGAARD AND A. SVANE
Dh~v!5(
k
Dk
h~v!, ~9!

which gives the total photoemission density of states~DOS!.
With the definitions

Rtt85K tU 1

v̄2~Ĥ2V̂13!
U t8L ~10!

and

Vst5^suV̂13ut&, ~11!

one may show that, within the three-partic
approximation,21

Gnk0
h ~v!5

1

v2«nk01( tt8VstRtt8Vt8s
. ~12!

Therefore, the hole self-energy in the band representatio

Snk0
h ~v!52(

tt8
VstRtt8Vt8s . ~13!

These formulas are derived assuming that the self-en
operator~and therefore the hole Green’s function! is diagonal
in the band representation. This is consistent with an
sumption made later on in this section, that the hybridizat
between differentd orbitals can be neglected in the se
energy calculations. A similar formalism may of course
set up for calculating electron Green’s functions~relating to
inverse photoemission data!. Since this is completely analo
gous to the hole case, only the latter will be treated explic
here.

The Faddeev analysis of these equations is car
through in the Appendix. Here we only want to summar
the results relevant for our discussion. The resolvent oper
R̂, introduced in Eq.~10!, can be expressed as:

R̂[
1

v̄2~Ĥ2V̂13!
5~11D̂T̂h!~D̂1Â!. ~14!

The D̂ and T̂ operators are defined by

D̂5
1

v̄2Ĥ0

, ~15!

T̂e5V̂e1V̂eD̂T̂e5
1

12V̂eD̂
V̂e , ~16!

T̂h5V̂h1V̂hD̂T̂h5
1

12V̂hD̂
V̂h . ~17!

The operatorÂ is to be determined from the operator ident

Â5D̂T̂eD̂„11T̂h~D̂1Â!…, ~18!

In the single-band case the above equations constitute
integral equation forÂ in three-dimensional momentum
space, which is in itself a difficult computational task. In t
multiband case a complicated matrix structure is added to
is

gy

s-
n

y

d

or

an

e

operators due to the presence of several orbitals, and the
that D̂ is not diagonal in the atomic orbital representatio
while the scattering matricesT̂e and T̂h are not diagonal in
the band representation. In order to get around this probl
and obtain simple equations for the scattering matrices
Â, we shall need several approximations, which will
stated below. We will discuss their validity in Sec. III.

The full Coulomb potential in momentum space is giv
by

(
aÞb

Uab (
kk8p

ĉak1p
† ĉakĉbk82p

† ĉbk8. ~19!

As mentioned earlier, it is understood thatU ’s are only non-
zero for a limited subset of orbitals. Theĉak’s are Bloch
sums of the atomic-orbital creation operators. Thus, if
injected hole is sitting in an orbitala, it may create an
electron-hole pair in orbitalb, by the Coulomb interaction
provided that orbitalsa andb are part of the ‘‘interacting’’
subset. The complexity of the above equations comes pa
from the fact that theD̂ operator can scatter the particles
different orbitals, and partly from the ability of the Coulom
potential to annihilate the electron-hole pair and recreat
on another orbital.

In order to simplify the equations, we therefore assu
that theD̂ operator cannot take an electron~or a hole! from
one of the Coulomb-interacting orbitals to another. Thus
NiO we would neglect hybridization, in a particular ban
between Ni 3d orbitals with different quantum numbers
while allowing for hybridization between Ni 3d and O 2p
states. Furthermore, we shall neglect the above-mentio
terms in the Coulomb potential, that take an electron-h
pair from one orbital to another. With these approximatio
expression~13! for the self-energy can be written

Snk0
h ~v!52(

a
uank0

a u2 (
bÞa

~Uab!2(
tt8

Rtt8
ab . ~20!

Our physical picture is now the following: When a hole
injected in bandn, it will be on orbital a with probability
uank0

a u2 ~this quantity being the projection of bandn onto

orbital a at k0). If an electron-hole pair is now created o
orbital b, all subsequent Coulomb scattering processes m
take place on these orbitals, within the approximations m
tioned above. These multiple scatterings are summed u
the R̂ab operator. To obtain the total self-energy one mu
then sum over all interacting orbitals. The complicat
many-orbital equation thus separates into a set of effec
‘‘two-band problems’’ which are much more tractable fro
an analytical as well as a numerical point of view. T
R̂ab operator is determined from the equations

R̂ab5~11D̂abT̂h
ab!~D̂ab1Âab!, ~21!

Âab5D̂abT̂e
abD̂ab

„11T̂h
ab~D̂ab1Âab!…. ~22!

HereÂab, T̂e,h
ab , andD̂ab denote theÂ, T̂, andD̂ operators

in the variousab subspaces.
Finally, we are going to assume, that the so-called lo

approximation24 is valid. As discussed by Mu¨ller-
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55 4141THREE-PARTICLE APPROXIMATION FOR . . .
Hartmann,25 this corresponds to the neglect of momentu
conservation at the vertices of the Coulomb interaction. W
this approximation thek-space convolutions entailed in th
above equations can be replaced by integrals over the or
projected density of states since no explicitk dependence
remains in the operators. In this way one ends up with
formulas given in the Appendix, as originally derived b
Manghi, Calandra, and Ossicini.22

III. RANGE OF VALIDITY

In Sec. II we approximated the many-body calculation
theN21 particle state by a set of effective two-band pro
lems, where the band structures were given by the orb
projections of theN-particle mean-field density of states. W
will, of course, only obtain a nonvanishing contribution
the self-energy from a given pair of orbitals if at least one
them is partially filled, so that scattering processes can oc
Thus two distinct cases of interest emerge.

A. One partially filled band

When only one of the orbitals is partially filled, the on
nontrivial process is electron or hole injection in the oth
orbital ~depending on whether it is empty or full!. In this
case the method is correct in the low-U limit, since the only
process that can occur, to second order inU, is the creation
and subsequent annihilation of an electron-hole pair in
partially filled orbital. It is also correct in the strong-couplin
limit, which may be defined as the limit were the bandwidt
go to zero. In this limit it was shown by Igarashi19 that the
three-particle approximation to the Green’s function for t
two-band problem becomes

Gh~v!5
12n

v
1

n

v2U
. ~23!

Here we consider hole injection in a filled band, andn de-
notes the occupation fraction of the partially filled one. Th
is also the result of an exact treatment of this limit, so t
the three-particle method in the case of only one partia
filled band has the highly desirable property of interpolat
between two correct limits: The noninteracting lim
U!W, and the ‘‘atomic’’ limit, U@W, whereW is a mea-
sure of the bandwidths.

B. Two partially filled bands

In this case the many-body problem is considerably m
complicated, and both hole and electron Green’s functi
are nontrivial. The three-particle approximation is no long
correct in the low-U limit, since two electron-hole pairs~one
in each band! may now be created and destroyed in a seco
order process. Evaluating the strong-coupling limit with
occupation fraction ofn in both orbitals, one finds

Gh~v!5
1

2A~12n!21 1
4

S x1

v2Unx2

2
x2

v2Unx1

D , ~24!

where the pole strengths are given by

x65 1
22n6A~12n!21 1

4 ~25!
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Ge~v!5
1

2An21 1
4

S y1

v2U~12n!y2

2
y2

v2U~12n!y1

D ,
~26!

with pole strengths

y65 1
22n6An21 1

4 . ~27!

Thus the three-particle approximation does not show the
rect strong-coupling limit in the case of two partially fille
bands. Actually, the above result is quite disturbing, sin
the absence of a well-defined Fermi level is evident: T
high pole ofGh lies above the low pole ofGe. Consider, for
instance, the case ofn5 1

2. In this case both the hole an
electron Green’s functions will have poles at6(U/2A2),
and we cannot find a single value for the Fermi energy se
rating the hole and electron contributions to the spec
function. This problem is easily seen to be a consequenc
the fact that we are not treating theN-particle state on the
same footing as theN61 particle states. Denoting th
N-particle ground state energyEN

0 and the energies of the
excited statesEN61

m (m labeling the excited states of th
N61 system!, a necessary condition for the existence o
Fermi level is26

EN11
m 2EN

0>EN
02EN21

m8 ~28!

for all values ofm andm8. If the system is metallic in the
mean-field approximation, the equality will hold fo
m5m850. In the three-body approach, theN-particle
ground state energy is equal to the mean-field value, w
the energies of theN61 states are lowered due to correl
tions, and we see at once that the requirement~28! is vio-
lated, leading to an instability of the many-particle syste
This is of course an unphysical result, and we conclude
the three-particle method is not suited for handling corre
tion effects between partially occupied bands~if there are
gaps in the Hartree-Fock bands of a size comparable to
larger than, the value ofU, one might obtain a well-defined
Fermi energy, and one might even, to some extent, justify
neglect of ground-state correlations compared to the one
theN61 states. However, this is a case of limited intere
since it could equally well be treated by ordinary perturb
tion theory!.

It is difficult to see how the approach may be resurrec
from these limitations. One might formulate the proble
with time-ordered Green’s functions, which treat groun
and excited-state correlations on an equal footing, and w
down the Feynman diagrams corresponding to the th
particle approximation. This approach is, however, nume
cally more cumbersome than the present formalism, and
have not been able to verify any correct strong-coupling lim
of the equations. Indeed, being inherently perturbative in
character, such an approach is probably not suited for
high-U calculations that interest us.
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C. Validity of approximations

1. Local approximation

It is well known that the local approximation to the se
energy becomes exact in either the strong-coupling~narrow-
band! limit, or the limit of infinite dimensionality.24,25Since
we are going to treat three-dimensional crystals where
least some of the bandwidths may be a sizable fraction
U, it is not immediately clear how the approximation can
justified. Indeed, our primary reason for its inclusion is t
great calculational simplifications it entails. A fairly simp
test of its validity can be performed by investigating t
single-band ferromagnetic Hubbard model in one dimens
where a calculation without the local approximation is mo
tractable than in three dimensions. Calculations of this k
were first reported by Igarashi.20 In Fig. 1 we compare
k-integrated spectral functions for hole injection in a fille
band, calculated with and without the local approximatio
The bandwidth is unity,U is 1.5, and the occupation fractio
of the partially filled band is 0.5. It is seen that the tw
calculations agree almost perfectly on the energy position
the various structures. On analyzing thek-resolved spectra, i
is found that the primary effect of the local approximation
to suppress the band narrowing induced by the correlati
thus smoothing out the peak aroundv520.4. This calcula-
tion is by no means a rigorous proof of the validity of th
local approximation in three-dimensional crystals with co
plex band structures. However, it is somewhat reassurin
see that the approximation has little effect on the integra
spectra for a moderateU value, even in the lowest possib
spatial dimension.

2. Orbital decoupling

The natural generalization of the local approximation t
multiband case would be to assume that the self-energy

FIG. 1. Comparison of thek-independent spectral function@Eq.
~9!# for a one-dimensional Hubbard model withU/W51.5, calcu-
lated in the three-particle formalism with and without the local a
proximation.~a! shows the unperturbed ferromagnetic bands, wh
~b! shows the correlated spectral functions. The energies are
sured relative to the Hartree-Fock Fermi level.
at
of

n,

d

.

of

s,

-
to
d

a
p-

erator was diagonal in the atomic orbital representation. T
approximation made in Sec. II is, however, more string
than this, since hybridizations to other orbitals with nonze
U are neglected throughout the self-energy calculation.
the same time hybridizations to other orbitals~e.g., the O
2p states in NiO and CuO! are included. Thus we must ex
amine the band structures we are going to use as input in
calculation in order to determine whether the approximat
is justified.

From the discussion in Sec. III B it followed that th
three-particle method is not suited to treat correlation effe
between partially filled orbitals. This means that the outp
of conventional LSD calculations on, e.g., transition-me
oxides, would be an inadequate starting point for us, sinc
these band structures the 3d orbitals usually end up being a
partially filled. Furthermore, one may argue that whate
treatment the LSD approximation gives of a Hubbard-li
correlation term, it certainly is not the Hartree-Fock tre
ment implied in our single-particle energies in Eq.~2!. In this
respect a more natural approach would be to start out f
the results of SIC-LSD or LDA1U calculations, since in
these schemes one attempts more or less explicitly to inc
a correct first-order treatment of the on-site Coulomb int
actions. For the transition-metal oxides these models g
band structures which are quite different from the LSD
sults, with sizable band gaps caused mainly by a splitting
the 3d density of states. This splitting is in turn caused
strong orbital polarization effects, so that some 3d orbitals
are fully occupied, while others remain empty. At the sa
time hybridization between 3d orbitals is suppressed. This i
particularly evident in SIC calculations, where a set of loc
ized 3d states, which are essentially Bloch sums of t
atomic orbitals~with a small O 2p hybridization!, appear at
high binding energies. First-principles Hartree-Fock ba
structures27 provide the same picture of the electronic stru
ture, though with very large gaps. Thus the three-part
scheme is seen to be fairly well justified in these compoun
when the first-order Coulomb effects are properly treat
This is quite fortunate, since our main interest is precis
the many-body corrections to the various mean-field mod
of the on-site interaction effects.

The last approximation made in Sec. II was the neglec
Coulomb scatterings, taking the excited electron-hole p
from one partially occupied orbital to another. If only on
orbital is partially occupied~this will be the case in CuO!,
the approximation is exact. If two or more orbitals are p
tially occupied~as in NiO!, such processes can occur, b
even if we had a way~perhaps approximate! of including
them, it would probably be dangerous to do so. The rea
is, that we would thereby include correlation effects betwe
two partially filled orbitals in theN11 andN21 particle
states, without treating similar effects in theN-particle
ground state, where they might equally well be present.
shall therefore continue to neglect these processes in a
the following calculations. It should, however, be noted th
this approximation is not exact in the atomic limit. Consid
for simplicity, a density of states with one filled band an
two degenerate bands with filling fractionn, all of zero band-
width. Our approximation will account for the presence
two partially filled bands by simply multiplying the self

-
e
a-
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FIG. 2. Three-particle calculations for a simple tw
band model. ~a! shows the Hartree-Fock bands fo
U52.0. ~b!–~e! show the majority spin spectral functio
resulting from the three-particle calculation, for differe
U values. The positions and widths of the upper band
the same in all calculations. The lower unperturbed ba
is shown with a dashed line. It is always centered arou
2U/2. Energies are measured relative to the Hartr
Fock Fermi level.
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energy by a factor of 2@there being two orbitalsb to sum
over in Eq.~20!#; that is,

Gh~v!5
1

v1U~12n!22S~v!
, ~29!

with

1

v1U~12n!2S~v!
5

n

v2U
1
12n

v
, ~30!

measuring the energy relative to the HF Fermi level. One
readily show that this leads to the following form of the ho
Green’s function:

Gh~v!5
W2

v2v2
1

W1

v2v1
, ~31!

where

W65
1

2
6

n2 1
2

A114n~12n!
, ~32!

and

v65
U

2
6UA 1

41n~12n!. ~33!

If we take n5 1
4 as an example, we find from the abov

formulas, that the hole Green’s function will have two pol
with weights 1

27(1/2A7) in v5(U/2)6U(A7/4). Thus the
quasiparticle DOS is correctly centered aroundU/2, but the
splitting in energy of the two peaks is overestimated by
n

a

factor of A7/2;1.3, i.e., about 30%, due to our neglect
correlations between the ‘‘metallic’’ electrons. It should b
emphasized that this is not a failure of the three-particle
proximation as such, but of our orbital decoupling schem

IV. NUMERICAL RESULTS AND DISCUSSION

A. Model calculations

We shall begin by illustrating the basic physics of o
method considering some simple model calculations with
bands. Our generic picture of the mean-field 3d density of
states in NiO and CuO will be that of a set of low-lyin
narrow d bands, all fully occupied, and a set of broad
bands around the Fermi level, predominantly of Op charac-
ter, with some metald character mixed in. This is the ban
picture emerging from a SIC-LSD calculation. To mimic th
situation we shall consider a two-band model where ho
are injected in a fully occupied band, Coulomb interacti
with electrons in a partially filled one~corresponding to par-
tially filled d orbitals in the oxides!. We shall take the par-
tially filled band to be metallic and half-filled, and set i
width to unity. The filled band is taken to be of width 0.5 an
is centered around2U/2. The bands are pictured in Fig
2~a!. In Figs. 2~b!–2~e! the quasiparticle spectra resultin
from the three-particle calculations for differentU values are
displayed. We see that the filled band splits into two m
structures with a splitting in energy given byU. The high-
lying structure essentially corresponds to final states wh
the injected hole is bound to an electron~or, in the atomic
picture, the hole is introduced on a doubly occupied si!.
The lower peak corresponds to hole-hole binding~the hole is
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introduced at a singly occupied site!. We note that the cente
of gravity of the total quasiparticle density of states is shif
downwards relative to the unperturbed case, because o
kinetic-energy cost of creating the bound states. The shi
approximately equal to the energy difference between
centers of gravity of the filled and empty parts of the meta
band. It is characteristic that the energy splitting between
two structures is close toU even in the intermediate case
U51.0. The main effect of increasingU ~apart from chang-
ing the energy scale of the splitting! is thus to change the
distribution of spectral weight between the two peaks, a
eliminate the intermediate structures in the energy region
the unperturbed band. For the intermediate-U values the
peaks represent states of finite lifetime, signified by a n
vanishing imaginary part of the self-energy. As theU value
is increased, the imaginary term tends to zero in accorda
with the limiting form ~23!.

If the initial position of the fully occupied band is shifted
the entire quasiparticle structure is shifted rigidly by t
same amount. This follows at once from the equations in
Appendix. If a gap is introduced in the partially filled ban
~as is seen in the transition-metal oxides!, the spectrum is
shifted further down in energy, since the cost of creating
electron-hole pair is increased. Finally, changing the wi
of the fully occupied band results mainly in a change in
widths of the corresponding quasiparticle structures. T
atomic limit is essentially realized beyondU52.

From these simple model calculations, we see that
three-particle approximation is capable of bringing the me
field picture of the transition-metal oxides into better agr
ment with photoemission experiments by introducing exac
the splitting between main band and satellite structures s
in these measurements.18 It is interesting to note that the
present model entails no modifications of theN-particle
ground state of the materials. This may to some extent
plain the success of the SIC-LSD and LDA1U models in
predicting ground-state properties like, for instance, the m
netic structures. To test the mean-field picture in more de
it is, however, necessary to go beyond the simple mo
calculations and insert realistic band structures in the eq
tions. This will be the subject of the following subsection

B. CuO

In this subsection we shall discuss the quasiparticle sp
trum of CuO on the basis of the formalism described abo
Our first starting point will be a self-consistent SIC-LS
calculation with linear muffin-tin orbitals as described
Ref. 28. In order to simplify the calculations we have r
placed the complicated crystal structure of CuO with
simple NaCl structure. The SIC ground state in this struct
is antiferromagnetic, with a moment of 0.65m.

It is not obvious how one should obtain a band struct
within the SIC-LSD scheme. Pederson, Heaton, and L29

suggested diagonalizing the matrix of Lagrange-multipli
~the ‘‘l matrix’’ ! that ensure orthonormality of the SIC-LS
one-particle orbitals. This procedure leads to the SIC-L
equivalent of the Kohn-Sham band structure, and a Ko
man’s theorem exists for the diagonalizing orbitals,29 which
in periodic systems become Bloch states. In Fig. 3~a! we
show the density of states of CuO obtained by this pro
d
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dure. The self-interaction corrected orbitals give rise to n
narrow bands lying;11 eV below the valence-band max
mum. These bands are almost entirely made up of Cud
orbitals, with only a small O 2p hybridization. The highest
occupied bands are mainly composed of O 2p states hybrid-
ized with the last Cu orbital, which is ofeg(x

22y2) spatial
symmetry, and has an occupation fraction of 0.35. The b
gap is 1.4 eV. A first-principles estimate for the Cu 3d U
parameter may, within the SIC-LSD approximation, be o
tained as the difference between the highest occupied
lowest unoccupied SIC orbital, before diagonalization of t
l matrix.30 This yields a value forU of 10.2 eV, and is
largely given as the average expectation value of the
potential. Other estimates of this parameter are somew
smaller, e.g., 8 eV in Ref. 13 or 7.5 eV in Ref. 8.

With only one partially occupied orbital, CuO is an ide
case for study with the three-particle approximation. As
ready indicated, we shall assume that the HubbardU is only
significant on the Cu 3d orbitals. With an antiferromagnetic
structure we should in principle consider 20 such orbita
but since orbitals on different sites do not interact in t
Hubbard model, and are pairwise equivalent, we only hav
consider ten orbitals within our approximations. In Fig. 3~b!
we show the quasiparticle spectrum obtained by a thr
particle calculation with aU value of 10.2 eV. Similar to the
model studies of Sec. IV A, the low-lying Cu 3d bands are
split into a high-lying (d9L) peak, around 7 eV below the
valence-band edge, and a low-lying (d8) satellite structure.
The splitting is slightly smaller than theU value, due to the
small O 2p component of the SIC orbitals. The experimen
CuO photoemission spectra of Gunnarson, Jepsen,
Shen13 show thed9L structure around25 to 21 eV below
the valence-band edge, and thed8 peak at211 eV, i.e., the
calculated energy positions of the Cu 3d-derived peaks are

FIG. 3. ~a! SIC-LSD density of states for CuO in the NaC
structure, obtained by diagonalizing thel matrix. The Fermi level is
at zero energy.~b! Quasiparticle density of hole states in CuO ca
culated from the unperturbed DOS in~a! within the three-particle
approximation.U was taken to be 10.2 eV. Units are states/form
unit and eV.
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;4 eV too low compared to experiment. Taking a low
value forU ~for instance, 8 eV! does not improve the situa
tion very much.

The trouble is that the SIC-LSD band structure is som
what at variance with our expectations for a multiband Hu
bard model. In a first-order treatment of the Hubbard mod
we would expect an energy splitting~apart from hybridiza-
tion effects! of U(12n) between a fully occupied orbita
and one with occupation fractionn. In the SIC-LSD approxi-
mation the splitting is always;U, since the self-interaction
corrected orbitals are shifted down by approximately t
quantity, while the partially filledd orbitals are left un-
changed. The net result is, as can be seen from Fig.~a!
that the l bands reproduce the experimental position
the d8→d9 satellite directly, but make no particular contr
bution to thed9L structure, which experimentally has th
larger weight. This is in accord with the fact, observ
previously,14,29 that atomiclike excitations are well describe
by SIC-LSD eigenvalues, but also implies that these ener
include some correlation effects, though clearly not all.

In light of the aforementioned problems, we now turn
the LSD1U approach as another candidate scheme for
rametrizing the Hubbard model to first order. We assume
mean-field HamiltonianĤ0 in Eq. ~2! to be given by

Ĥ05ĤLSD1U (
RaÞb

~^n̂R
b&2nsb

0 !n̂R
a , ~34!

whereĤLSD is the usual LSD Hamiltonian, while the secon
term represents the mean-field contribution from the on-
Coulomb interaction. As in Sec. II,a andb are orbital indi-
ces, understood to be restricted to metal 3d states.nsb

0 de-

notes the mean 3d occupation in the spin channel of orbit
b. UsingĤ0 in Eq. ~34! as the mean-field Hamiltonian of ou
multiband Hubbard model assumes that the LSD approxi
tion describes the effects of on-site Coulomb interactio
correctly in the absence of orbital polarization. NoJ param-
eter is employed, i.e., it is assumed that the LSD approxi
tion properly describes exchange effects. In Fig. 4~a! the
DOS emerging from a diagonalization of Eq.~34! is shown.
The metal 3d states are now broadened, higher in ener
and more hybridized with the O 2p states. TheU value was
here taken to be 7.5 eV, as given by Anisimov, Zaanen,
Andersen.8 Performing again the self-energy calculation
now with a new value ofU, we obtain the quasiparticle
spectrum shown in Fig. 4~b!. The peak positions are now
closer to the experimental ones, thed8 peak being about 9
eV below the top of the valence band, and thed9L structure
in the range from 2 to 5 eV below the highest-lying stat
The fact that the experimentald8 peak is somewhat lowe
than calculated here indicates that a slightly higherU value
may be appropriate for CuO. The form of the spectrum a
matches the photoemission results rather well. A valen
band edge of mixed O and Cu character is seen, the main
3d peak coming up 1–2 eV below the Fermi energy. T
constitutes a~somewhat crude! description of the so-called
Zhang-Rice singlet.31 Earlier calculations by Gunnarson
Jepsen, and Shen13 based on the Anderson model tended
produce a split-off state at this point, but, as anticipated
these authors, the Hubbard-model treatment reproduces
r
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experimental ‘‘hump’’ rather well. The weight of the lowe
peak seems somewhat too high compared to the experim
tal spectrum. This can partly be ascribed to matrix-elem
effects, and partly to the fact that the LSD1U calculation
slightly overestimates the antiferromagnetic moment of
Cu ions~0.74mB , as compared to 0.65mB from experiment8!.

Since the spectrum ofN11 particle states is not altere
by our model, we see that the small gap of the LSD1U
calculation is closed by the correlation calculation, so
system becomes metallic. It is to be expected that a corr
tion calculation will narrow the gap compared to the mea
field result, so this problem should probably be cured
refining the mean-field scheme. Since we are mainly in
ested in the photoemission spectrum in this paper, we h
not made any attempts in this direction.

C. NiO

With the above experiences in mind, we now turn to Ni
This is a somewhat more complicated problem since th
are two partially filled Ni 3d orbitals. In principle we should
therefore, also calculate self-energy corrections for these
bitals. However, as explained in Sec. III this cannot be do
within the framework of the three-particle formalism, so w
will contend ourselves with correcting the filled orbitals,
before. The unperturbed DOS is shown in Fig. 5~a!. We
have, again, employed the LSD1U formalism, this time
with aU value of 8.2 eV. The main part of the Ni 3d orbital
weight lies between 5 and 8 eV below the valence-ba
edge, but there is now substantial hybridization to the high
lying O states. These aspects of the valence-band struc
are in agreement with first-principles Hartree-Fo
calculations,27 as well as SIC-LSD calculations includin
self-interaction on the Op states.17

The quasiparticle DOS obtained in the three-particle c
culation is shown in Fig. 5~b!. Similar to CuO, the correlated
spectral density compares much better with the experime
photoemission data than the unperturbed LSD1U density of

FIG. 4. ~a! LSD1U DOS of CuO with aU value of 7.5 eV. The
Fermi level is at zero energy.~b! Quasiparticle hole DOS calculate
from the mean-field spectrum in~a!.
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states. Most significantly, for NiO the metald states are
pushed all the way up to the highest-lying valence states,
a steep valence-band edge develops. Below the main pe
broad mixture of Ni and O states extend down to thed7

satellite structure;10.5 eV below the top of the valenc
band. The satellite is, as expected, primarily of Nid charac-
ter. The position of the satellite is;1 eV lower than ob-
served in experiment. This is probably due to our rat
crude treatment of the multiorbital self-energy, as discus
in Sec. III C.

V. CONCLUSIONS AND OUTLOOK

We have shown that the three-particle approximation
well suited for evaluating many-body corrections to the sp
tra of filled orbitals, but is not appropriate for studying pa
tially filled ones. We have performedab initio calculations
with this formalism on NiO and CuO, and have demo
strated that the method reproduces the splitting ofd spectral
weight into adnL main structure and adn21 satellite. Good
quantitative agreement with experimental photoemiss
data is obtained using as input uncorrelated electronic le
the orbital polarized band structures derived from LSD1U
ab initio calculations. It is of importance that these leve
mimic a correct first-order treatment of the multiband Hu
bard model, which means that SIC-LSD bands derived w
the ‘‘l-matrix procedure’’ are a less adequate starting po
for our calculations, since thed levels come out too deep i
energy.

An interesting application of the present formalism wou
be a comparison between spectra of CuO and high-Tc super-
conductors, in order to clarify to what extent variations in t
DOS can be described within our rather unsophistica
many-body theory. Also earlier transition-metal compoun
and somef -electron systems~like Yb! should be within
reach of the method. On the other hand, a description
correlation effects in metallic systems~like transition metals,

FIG. 5. ~a! LSD1U DOS for NiO, with aU value of 8.2 eV.
The Fermi level is at zero energy.~b! Quasiparticle density of hole
states in NiO calculated within the three-particle approximat
with the unperturbed DOS in~a!.
nd
, a

r
d

s
-

-

n
ls

-
h
t

d
s

of

heavy fermion compounds, etc.! does not appear to be fea
sible with the present formalism.
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APPENDIX: DERIVATION OF FADDEEV EQUATIONS

In this appendix we shall give a more thorough review
the derivation of the three-particle formalism. We begin
deriving Eqs.~14! and~18! for the resolvent operator define
in Eq. ~14!. We first note the identities

11V̂e,hR̂5~D̂212V̂h,e!R̂ ~A1!

and

D̂
1

12V̂e,hD̂
5

1

D̂212V̂e,h

. ~A2!

Introducing the quantity

Â5D̂V̂eR̂, ~A3!

we see from the above identities that

R̂5
1

D̂212V̂h

~11V̂eR̂!

5D̂
1

12V̂hD̂
~D̂212V̂h1V̂h!D̂~11V̂eR̂!

5~11D̂T̂h!~D̂1Â!. ~A4!

We can picture the operatorR̂ as the sum of all possible
electron-hole and hole-hole scattering processes.Â then cor-
responds to the partial sum in which the last process is
electron-hole scattering. TheT matrices introduced in Eqs
~16! and ~17! can similarly be pictured as partial sums
electron-hole and hole-hole processes, respectively. Our
task is to derive an integral equation forÂ:

Â5D̂V̂eR̂5
1

12D̂V̂e

D̂V̂e~12D̂V̂e!R̂5D̂T̂eD̂~11V̂hR̂!,

~A5!

which, after a few manipulations, yields

Â5D̂T̂eD̂~11T̂hD̂1T̂hÂ!. ~A6!

The first term represents the sums where onlye-h scatterings
occur, the next term the sums where a series ofh-h scatter-
ings is followed by a series ofe-h scatterings, and the fina
term contains all the remaining contributions to the sum
theA operator.

In order to obtain a formula for the self-energy, we mu
evaluate the quantities

n
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(
tt8

Rtt8
ab ~A7!

according to Eq.~20!. The three-particle states in the sum a
now restricted to the orbitalsa andb and can thus be labele
by threek indices. As seen from Eq.~21!, we only need to
know the object

Rek1
ab 5 (

k2k3k18k28k38
^ak3bk2bk1uÂabubk18bk28ak38&, ~A8!

where momentum conservation is taken to be implicit in
k sums. Herek1 is the momentum of the excited electro
The result follows from the fact that the operatorT̂h

ab is
independent of the ingoing and outgoing hole coordina
~because the Hubbard potential isk independent!, and thus
only depends on the electron momentum~which is conserved
in the h-h scattering processes!. Accordingly, we only need
to solve an integral equation in one variable. This is the m
objective behind the above manipulations.

TheTab matrices can be summed exactly:

Tek3
ab ~v,![^ak3bk2bk1uT̂e

abubk18bk28ak3&

5
2Uab

12UabDek3
ab ~v!

, ~A9!

Thk1
ab ~v![^ak3bk2bk1uT̂h

abubk1bk28ak38&

5
Uab

11UabDhk1
ab ~v!

, ~A10!

with the definitions

Dek3
ab ~v![ (

k1k2
^ak3bk2bk1uD̂abubk1bk2ak3&, ~A11!

Dhk1
ab ~v![ (

k2k3
^ak3bk2bk1uD̂abubk1bk2ak3&. ~A12!

We can now insert intermediate states in Eq.~A6!, and sum
up over the relevantk variables to obtain an integral equ
tion for the quantityRe

ab . Using the local approximation, th
momentum conservation implicit in the above summation
relaxed, and one can transform the sums into density
states integrals. In this way we end up with the following
of formulas, first given by Manghi, Calandra, and Ossicin22
A

hr
e

s

in

is
f-
t

Deh
a ~v!5E

2`

Ef
d«

na~«!

v2«2 id
, ~A13!

De
ab~v!5E

Ef

`

d«nb~«!Deh
a ~v1«!, ~A14!

Dh
ab~v!5E

2`

Ef
d«nb~«!Deh

a ~v2«!, ~A15!

Te
ab~v!5

2Uab

12UabDe
ab~v!

, ~A16!

Th
ab~v!5

Uab

11UabDh
ab~v!

, ~A17!

Re
ab~v,«!5Re0

ab~v,«!1E
Ef

`

d«8nb~«8!

3Kab~v,«,«8!Re
ab~v,«!, ~A18!

Re0
ab~v,«!5E

2`

Ef
d«8nb~«8!Deh

a ~v2«81«!Te
ab~v2«8!

3SDe
ab~v2«8!2E

Ef

`

d«9nb~«9!

3Deh
a ~v2«81«9!Dh

ab~v1«9!Th
ab~v1«9! D ,

~A19!

Kab~v,«,«8!5E
2`

Ef
d«9nb~«9!Deh

a ~v2«91«!Te
ab

3~v2«9!Deh
a ~v2«91«8!Th

ab~v1«8!,

~A20!

(
tt8

Rtt8
ab~v!5

1

UabE
Ef

`

d«nb~«!Th
ab~v1«!„Re

ab~v,«!

2Dh
ab~v1«!…. ~A21!

The self-energy can hereafter be found by Eq.~20!, and the
quasiparticle spectrum may then be obtained as the im
nary part of the Green’s function defined by Eq.~12!.
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