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Defect modes of stratified dielectric media
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We present a transfer matrix treatment of the defect modes in a periodic stratified dielectric media containing
an inserted array of defects. The eigenfrequency equation for the defect modes is given. Using the eigenfre-
guency equation we discuss the dependence of the defect modes on the structure parameters, and calculate the
dispersion relations of the guided modgsS0163-182@7)08407-3

extensively studied for over several decades. As a result of M ,(Az)=
the translational symmetry, the electromagnetic wave func-

tions in periodic media are Bloch waves, and the frequency (2)
spectra have a band structure. The optical Bloch waves anghere

the band structures of periodic stratified media were studied

Electromagnetic propagation in periodic media has been ( cok, Az —a;lsinkMAz
’ M:AlBl

o ,Sink Az cok,Az

in the previous papers and works of Yehal.! who treated _ ( n2— Bzcz) v 3)
the media as a one-dimensional periodic lattice and solved Tu=\ D™ 7]

the eigenvalue problem. Recently, there has been great

progress in the study of wave propagation in periodic media. w? , |\

The band theory has been used to deal with three- K= ?nﬂ_'g ' )

dimensional periodic dielectric structures called photonic )
crystals, and a complete forbidden gap, irrespective of propa@ iS thex component ané,, is thez component of the wave
gation direction of the electromagnetic waves, has beeMector. Wheng>(w/c)n,, the electromagnetic field be-

discovered. comes evanescent, akg should be replaced by
In analogy to the impurity levels of semiconductors, de- 2 U2
fect modes will be created in photonic band gaps if an ir- | g2 @ 2 - —ik 5
. . . . .y Ky B 2 n” I o ( )
regular region is introduced into the perfect periodic c

structures. Much interest has been attracted to the defect
modes for them having various applications in devices sucrél
as cavities, filters, and lase?s.” A supercell methotland a
Green’s function approach’ were employed to calculate y(d)=eKdy(0), (6)
the frequency of the defect modes.

In this paper, we report a transfer matrix treatment of thevhered=a+b is the period anK is the Bloch wave num-
defect modes for 1D photonic band gap structures. The ad2er. On the other hang(d) is related tox(0) by
vantage of using the transfer matrix method to solve the
eigenvalue problem is that it can avoid evaluating a high x(d)=Qx(0), @)
order determinant and makes the calculation of wave funcyhere
tions more easy.

We consider a multilayered system composed of dielec- Q=Mg(b)M4(a). (8)
tric slabsA andB stacked alternately along ttzeaxis. The
refractive indexes of the slabs arg andng, and their thick-
nesses ara andb, respectively. We concern ourselves with
the TE waves. The treatment of the TM waves is similar. The 1
electromagnetic field of the TE waves is described by a two- cogKd)= > TrQ. (9)
component wave function

In periodic systems, the wave function has the form of
och wave, i.e.,

Substituting(7) into (6) yields the following dispersion rela-
tion:

According to Eq.(9), the allowed band is given by the con-
E dition |1/2TQ|<1. On this conditionK is a real number,
X=( Y ) (1) and the Bloch wave is propagating. The forbidden gap oc-
curs when|1/2TQ|>1. In the forbidden gap, the Bloch
wave number takes the fofmof K=max/d+iK;, and the
whereE, and B, are the tangential components of electro-Bloch wave is evanescent.
magnetic field, which are continuous across the interfaces, Suppose that we insert an array Nf defects into the
andc is the velocity of light in vacuum. The transfer matrix perfect periodic structure. As a result, the defect levels will
relatedy(z+Az) to x(z) can be written as be introduced into the forbidden gap. Since the frequency of

icBy
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the defect modes lie in the forbidden gap, the wave function
is evanescent in the periodic region. The electromagnetic
field, therefore, is confined in the irregular region. It is the
localized property that makes the defect modes useful.

Let zy andzy denote the coordinates of the beginning and
the end of the inserted region, aad andb, represent the

@

=

thicknesses of the slabs of the detects, théry) is related » E
to x(zg) through a matrix Iy P g
© =1 =

X(Zn) =Wx(20). 10 S 1o} S

where £ =1 8
:

W=[Mg(by)Ma(az)]". (11 E “E,

s =

We regarded the system as two semi-infinite periodic lat-
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tices coupled by an array of defects. Since we are interested
in the localized modes, we sBt=ms«/d+iK; in the semi-
infinite periodic regions, then the eigenfrequency equation . . . T
for the defect modes can be obtained as the following: 4

00 05 10 15 20
Kd/= z
L(Wygt Ewqp) — (Wor+ EW,p) =0, (12
wherew;; are the elements of matriw/, and FIG. 1. (a) The dispersion relation of frequency vs the Bloch
wave number and the levels of the defect modes for the disturbed
icBy(zg) periodic layered system with 16 defectb) The electric field dis-
= E,(zo) = (022~ @)/ 012, (13)  tributions of the five-defect modes indicated(a.
B icBy(zy) B above mentioned structure of 16 defects. There are exactly
"Bz == (qu—a)/dzz, (14 16 branches in a defect band, as shown in the figure. It

should be noted that, compared with the finite multichannel
are two quantities proportional to the surface admittancesyaveguides,the couple of the defects at present is stronger,
and since the couple is through a propagating field rather than an
evanescent field. This stronger couple results in the wider
separations of the defect modes.

Figure 3 shows the case that we keagga,+ngh, as a
constant 0.5y, and varya, and b, simultaneously. In the
figure the defect mode frequency is plotted as a function of
naa,. Whennaa,=0.25\, the system is reduced to a per-

with g;; being the elements of matri@. fect periodic system, thus, no defect mode exists. The defect
First, we let3=0. The band gap structure and the defect P 4 ’ ' '
contmuum /

modes for a typical disturbed periodic layered system are
shown in Fig. 1a), and the corresponding wave functions of
the defect modes are plotted in Figbl. The refractive in-

contmuum

dexes arep,=1.5 andng=2.5, and the thicknesses and
0.3

a= sgn(n)(n—n*=1),

(19

1
n= E TI'Q, (16)

1.2

b, for the host periodic part are such that,a;
=ngbh;=\o/4, while those for the inserted part are such that
npa,= 0.1\ g andngb,=0.4\o, where\, is a characteristic
wavelength corresponding to the midgap frequency of a
guarter-wavelength stuck. The inserted part contdlrsl6
defects, but we only see five defect modes appear in the gap.

Generally, wherN slabs are coupled with each other, the
eigenfrequency of the individual slabs will split into a band
of N nondegenerate modéghe separation of the modes is
dependent on the couple strength. The stronger the couple,
the wider the separation. When the separations are suffi-
ciently large, part of the defect modes may be embedded into
the continuum of the host periodic structure. On the other
hand, the levels of the defect modes fall with an increasing of
the size defects. Thus, the defect modes may be pulled out FiG. 2. The frequency of the defect modes as a function of
from the upper continuum as the defect size increases. Thisptical thickness,a, for the 16-defect system, the optical thick-
is illustrated in Fig. 2, where we plot the defect mode fre-nessngh, is kept as a constant 0. The shaded regimes are the
guency as a function afsa,, keepingngh,=0.4\,, for the  continuum of the host periodic structure.
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FIG. 3. The frequency of the defect modes as a function of
optical thicknessnaa, for a 16-defect system, the total optical
thickness of a bilayern,a,+ngh,) is kept as a constant O\§.

The dashed lines indicate the band edges of a periodic structure
with the unit cell beinga,b,. The shaded regimes are the con-
tinuum of the host periodic structure with the unit cell being

aiby. B (in units of 2n/A, )

modes appear if the periodicity is br(_)ken .by Var}’“’"@z. FIG. 4. The dispersion relation of guided modes for a disturbed
(and ngh,) from 0.25\,. The dashed lines in the figure in- periodic layered system with four defects. The shaded regimes are
dicate the band edges of a periodic structure witphb” the continuum of the host periodic structure.

being the unit cell. The regime closed by the dashed lines is
the common forbidden gap regime. In this regime, no defect
mode is found.

Now we consider the case @+ 0. The disturbed peri- o
odic stratified system, in fact, is a multichannel waveguideVhereno andny are the refractive indexes of the bulk ma-
confined by two Bragg reflectors. To obtain a waveguide€rials inz<z, andz>zy. The dispersion curves of a four-
one must confine the wave propagation. One of the purposéd1annel waveguide obtained by replacing the semi-infinite
of searching photonic band gap structures is to find materialgeriodic regions with bulk material afo=ny=n,=1.5 are
able to confine the electromagnetic propagation. Yeh anghown in Fig. 5. The result is in agreement with those cal-
Yariv have Suggested using a Bragg reﬂection to Obtain &UIIated-”—] Ref 1. S|nce the Conﬂnement effect Of bulk ma-
lossless confined electromagnetic propagdtiand the 1D  terials is caus-ed.by the total mtemgl reflection, thus, the
photonic band gap materials have been used to perform ph¥t@ve number is limited by the conditigh>n,w/c. In the
tonic tunneling experiments recenfly® The confinement ef-  regime above the line = Bc/n,, the field in the bulk ma-
fect of photonic band gap materials to the wave propagatiorierial becomes propagating, thus, there is no confined mode.
physically, is caused by the Bragg reflection. This confine-This is different from the case shown in Fig. 4, where the
ment is different from that caused by the total internal reflec\vave number is not subjected to such a limit. For the con-
tion or by the negative dielectric function. In Fig. 4, we plot finement of Bragg reflection, the evanescent field is the de-
the dispersion relation ofw vs B obtained from (12) c_ayin_g Bloc_h wave, not the electromagnetic _field itself. The
for a four-defect system withny=1.5, ng=3.5 and f|eld_|n the |nd|V|du:_aI slabs may be propagating. _
Nad;=Nghy=\o/4, Npaa,=0.1\g, Ngb,=0.4\. The shaded Finally, we consider an example t_hatl the defects in the
regimes in the figure are the continuous bands of the hodfSerted region are not arranged periodically. Suppose that
periodic structure. Whegs is small, some defect modes are the symbol “0” stands for the defect bilayera;b,,” and
embedded in the continuum. Wit increasing, all defect the symbol “1” stands for the normal bilayera;b,,” and
modes escape out from the continuum. In the regime of largé'ey are arranged following the Fibonacci sequence, which is
B, each of the defect bands consists of four branches dg§enerated following the recursion ru =S, 1S, , with
guided modes. Sy=0 andS;=1. The successive Fibonacci chainis 0, 1, 01,

The eigenfrequency equatigh?) is also applicable to the 010, 01001, 01001010, 0100101001001 . The total
finite multilayered system. If the semi-infinite periodic re- Number of the bilayers for theth generation is~,, and the
gions are replaced by bulk materials, Etp) is still suitable, ~number of the defects i,_,, whereF, is the Fibonacci
but £ and ¢ should be changed as number defined af,=F,_1+F,_, with Fo=F;=1. By

matching the product order in E¢l1) with the Fibonacci
sequence we can calculate the defect modes. The defect
£=—(B*c? w®—nj)"?, (17 modes in a forbidden gap are shown in Fig. 6 for different

{= (B2 w?=n* (18
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; . FIG. 6. The frequencies of the defect modes for the case that the
I 4 ] defects in the inserted region are arranged following the Fibonacci
S sequencen is the generation order of the sequence.

0 —_— . dia. The dependence of defect modes on the structure param-
eters is discussed. The eigenfrequency equation can be used
B (in units of 2n/Ay) to determine the resonant frequency and to calculate the dis-
persion relations in device designs. It can also be used to
FIG. 5. The dispersion relation of guided modes for a finite deal with a variety of eigen,value problems of multilayered
four-channel waveguide. systems as long as we modify properly the form of the trans-

fer matrix.

generations of the Fibonacci sequence, where we keep . .
B=6m/\, as a constant. The number of the modes is exact! The author would like to thank Professor Ruibao Tao and
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