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Defect modes of stratified dielectric media
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We present a transfer matrix treatment of the defect modes in a periodic stratified dielectric media containing
an inserted array of defects. The eigenfrequency equation for the defect modes is given. Using the eigenfre-
quency equation we discuss the dependence of the defect modes on the structure parameters, and calculate the
dispersion relations of the guided modes.@S0163-1829~97!08407-5#
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Electromagnetic propagation in periodic media has b
extensively studied for over several decades. As a resu
the translational symmetry, the electromagnetic wave fu
tions in periodic media are Bloch waves, and the freque
spectra have a band structure. The optical Bloch waves
the band structures of periodic stratified media were stud
in the previous papers and works of Yehet al.,1 who treated
the media as a one-dimensional periodic lattice and so
the eigenvalue problem. Recently, there has been g
progress in the study of wave propagation in periodic me
The band theory has been used to deal with thr
dimensional periodic dielectric structures called photo
crystals, and a complete forbidden gap, irrespective of pro
gation direction of the electromagnetic waves, has b
discovered.2

In analogy to the impurity levels of semiconductors, d
fect modes will be created in photonic band gaps if an
regular region is introduced into the perfect period
structures.3 Much interest has been attracted to the def
modes for them having various applications in devices s
as cavities, filters, and lasers.327 A supercell method3 and a
Green’s function approach527 were employed to calculat
the frequency of the defect modes.

In this paper, we report a transfer matrix treatment of
defect modes for 1D photonic band gap structures. The
vantage of using the transfer matrix method to solve
eigenvalue problem is that it can avoid evaluating a h
order determinant and makes the calculation of wave fu
tions more easy.

We consider a multilayered system composed of die
tric slabsA andB stacked alternately along thez axis. The
refractive indexes of the slabs arenA andnB , and their thick-
nesses area andb, respectively. We concern ourselves wi
the TE waves. The treatment of the TM waves is similar. T
electromagnetic field of the TE waves is described by a tw
component wave function

x5S Ey

icBx
D , ~1!

whereEy andBx are the tangential components of electr
magnetic field, which are continuous across the interfa
andc is the velocity of light in vacuum. The transfer matr
relatedx(z1Dz) to x(z) can be written as
550163-1829/97/55~7!/4097~4!/$10.00
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Mm~Dz!5S coskmDz 2sm
21sinkmDz

smsinkmDz coskmDz
D , m5A,B,

~2!

where

sm5S nm
22

b2c2

v2 D 1/2, ~3!

km5S v2

c2
nm
22b2D 1/2, ~4!

b is thex component andkm is thez component of the wave
vector. Whenb.(v/c)nm , the electromagnetic field be
comes evanescent, andkm should be replaced by

km5S b22
v2

c2
nm
2 D 1/252 ikm . ~5!

In periodic systems, the wave function has the form
Bloch wave, i.e.,

x~d!5eiKdx~0!, ~6!

whered5a1b is the period andK is the Bloch wave num-
ber. On the other hand,x(d) is related tox(0) by

x~d!5Qx~0!, ~7!

where

Q5MB~b!MA~a!. ~8!

Substituting~7! into ~6! yields the following dispersion rela
tion:

cos~Kd!5
1

2
TrQ. ~9!

According to Eq.~9!, the allowed band is given by the con
dition u1/2TrQu,1. On this condition,K is a real number,
and the Bloch wave is propagating. The forbidden gap
curs whenu1/2TrQu.1. In the forbidden gap, the Bloch
wave number takes the form1 of K5mp/d1 iK i , and the
Bloch wave is evanescent.

Suppose that we insert an array ofN defects into the
perfect periodic structure. As a result, the defect levels w
be introduced into the forbidden gap. Since the frequency
4097 © 1997 The American Physical Society
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the defect modes lie in the forbidden gap, the wave funct
is evanescent in the periodic region. The electromagn
field, therefore, is confined in the irregular region. It is t
localized property that makes the defect modes useful.

Let z0 andzN denote the coordinates of the beginning a
the end of the inserted region, anda2 andb2 represent the
thicknesses of the slabs of the detects, thenx(zN) is related
to x(z0) through a matrix

x~zN!5Wx~z0!, ~10!

where

W5@MB~b2!MA~a2!#
N. ~11!

We regarded the system as two semi-infinite periodic
tices coupled by an array of defects. Since we are intere
in the localized modes, we setK5mp/d1 iK i in the semi-
infinite periodic regions, then the eigenfrequency equat
for the defect modes can be obtained as the following:

z~w111jw12!2~w211jw22!50, ~12!

wherewi j are the elements of matrixW, and

j5
icBx~z0!

Ey~z0!
5~q222a!/q12, ~13!

z5
icBx~zN!

Ey~zN!
52~q112a!/q12, ~14!

are two quantities proportional to the surface admittanc
and

a5 sgn~h!~h2Ah221!, ~15!

h5
1

2
TrQ, ~16!

with qi j being the elements of matrixQ.
First, we letb50. The band gap structure and the defe

modes for a typical disturbed periodic layered system
shown in Fig. 1~a!, and the corresponding wave functions
the defect modes are plotted in Fig. 1~b!. The refractive in-
dexes arenA51.5 andnB52.5, and the thicknessesa1 and
b1 for the host periodic part are such thatnAa1
5nBb15l0/4, while those for the inserted part are such th
nAa250.1l0 andnBb250.4l0, wherel0 is a characteristic
wavelength corresponding to the midgap frequency o
quarter-wavelength stuck. The inserted part containsN516
defects, but we only see five defect modes appear in the

Generally, whenN slabs are coupled with each other, t
eigenfrequency of the individual slabs will split into a ba
of N nondegenerate modes.1 The separation of the modes
dependent on the couple strength. The stronger the cou
the wider the separation. When the separations are s
ciently large, part of the defect modes may be embedded
the continuum of the host periodic structure. On the ot
hand, the levels of the defect modes fall with an increasing
the size defects. Thus, the defect modes may be pulled
from the upper continuum as the defect size increases.
is illustrated in Fig. 2, where we plot the defect mode f
quency as a function ofnAa2, keepingnBb250.4l0, for the
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above mentioned structure of 16 defects. There are exa
16 branches in a defect band, as shown in the figure
should be noted that, compared with the finite multichan
waveguides,1 the couple of the defects at present is strong
since the couple is through a propagating field rather than
evanescent field. This stronger couple results in the wi
separations of the defect modes.

Figure 3 shows the case that we keepnAa21nBb2 as a
constant 0.5l0, and varya2 and b2 simultaneously. In the
figure the defect mode frequency is plotted as a function
nAa2. WhennAa250.25l0, the system is reduced to a pe
fect periodic system, thus, no defect mode exists. The de

FIG. 1. ~a! The dispersion relation of frequency vs the Bloc
wave number and the levels of the defect modes for the distur
periodic layered system with 16 defects.~b! The electric field dis-
tributions of the five-defect modes indicated in~a!.

FIG. 2. The frequency of the defect modes as a function
optical thicknessnAa2 for the 16-defect system, the optical thick
nessnBb2 is kept as a constant 0.4l0. The shaded regimes are th
continuum of the host periodic structure.
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modes appear if the periodicity is broken by varyingnAa2
~andnBb2) from 0.25l0. The dashed lines in the figure in
dicate the band edges of a periodic structure with ‘‘a2b2’’
being the unit cell. The regime closed by the dashed line
the common forbidden gap regime. In this regime, no de
mode is found.

Now we consider the case ofbÞ0. The disturbed peri-
odic stratified system, in fact, is a multichannel wavegu
confined by two Bragg reflectors. To obtain a wavegui
one must confine the wave propagation. One of the purpo
of searching photonic band gap structures is to find mate
able to confine the electromagnetic propagation. Yeh
Yariv have suggested using a Bragg reflection to obtai
lossless confined electromagnetic propagation,8 and the 1D
photonic band gap materials have been used to perform
tonic tunneling experiments recently.9,10The confinement ef-
fect of photonic band gap materials to the wave propagat
physically, is caused by the Bragg reflection. This confi
ment is different from that caused by the total internal refl
tion or by the negative dielectric function. In Fig. 4, we pl
the dispersion relation ofv vs b obtained from ~12!
for a four-defect system withnA51.5, nB53.5 and
nAa15nBb15l0/4, nAa250.1l0, nBb250.4l0. The shaded
regimes in the figure are the continuous bands of the h
periodic structure. Whenb is small, some defect modes a
embedded in the continuum. Withb increasing, all defect
modes escape out from the continuum. In the regime of la
b, each of the defect bands consists of four branches
guided modes.

The eigenfrequency equation~12! is also applicable to the
finite multilayered system. If the semi-infinite periodic r
gions are replaced by bulk materials, Eq.~12! is still suitable,
but j andz should be changed as

j52~b2c2/v22n0
2!1/2, ~17!

FIG. 3. The frequency of the defect modes as a function
optical thicknessnAa2 for a 16-defect system, the total optic
thickness of a bilayer (nAa21nBb2) is kept as a constant 0.5l0.
The dashed lines indicate the band edges of a periodic struc
with the unit cell beinga2b2. The shaded regimes are the co
tinuum of the host periodic structure with the unit cell bei
a1b1.
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z5~b2c2/v22nN
2 !1/2, ~18!

wheren0 andnN are the refractive indexes of the bulk m
terials inz,z0 andz.zN . The dispersion curves of a four
channel waveguide obtained by replacing the semi-infin
periodic regions with bulk material ofn05nN5nA51.5 are
shown in Fig. 5. The result is in agreement with those c
culated in Ref. 1. Since the confinement effect of bulk m
terials is caused by the total internal reflection, thus,
wave number is limited by the conditionb.nAv/c. In the
regime above the linev5bc/nA , the field in the bulk ma-
terial becomes propagating, thus, there is no confined m
This is different from the case shown in Fig. 4, where t
wave number is not subjected to such a limit. For the c
finement of Bragg reflection, the evanescent field is the
caying Bloch wave, not the electromagnetic field itself. T
field in the individual slabs may be propagating.

Finally, we consider an example that the defects in
inserted region are not arranged periodically. Suppose
the symbol ‘‘0’’ stands for the defect bilayer ‘‘a2b2,’’ and
the symbol ‘‘1’’ stands for the normal bilayer ‘‘a1b1,’’ and
they are arranged following the Fibonacci sequence, whic
generated following the recursion ruleSn5Sn21Sn22 with
S050 andS151. The successive Fibonacci chain is 0, 1, 0
010, 01001, 01001010, 0100101001001, . . . . The total
number of the bilayers for thenth generation isFn , and the
number of the defects isFn21, whereFn is the Fibonacci
number defined asFn5Fn211Fn22 with F05F151. By
matching the product order in Eq.~11! with the Fibonacci
sequence we can calculate the defect modes. The de
modes in a forbidden gap are shown in Fig. 6 for differe

f

re

FIG. 4. The dispersion relation of guided modes for a disturb
periodic layered system with four defects. The shaded regimes
the continuum of the host periodic structure.
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generations of the Fibonacci sequence, where we k
b56p/l0 as a constant. The number of the modes is exac
equal toFn21, i.e., the number of the defects, although som
modes are too close to be resolved in the figure.

To summarize, we have given the eigenfrequency eq
tion for the defect modes of disturbed periodic layered m

FIG. 5. The dispersion relation of guided modes for a fini
four-channel waveguide.
ep
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e
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dia. The dependence of defect modes on the structure par
eters is discussed. The eigenfrequency equation can be u
to determine the resonant frequency and to calculate the
persion relations in device designs. It can also be used
deal with a variety of eigenvalue problems of multilayere
systems as long as we modify properly the form of the tran
fer matrix.
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FIG. 6. The frequencies of the defect modes for the case that
defects in the inserted region are arranged following the Fibona
sequence,n is the generation order of the sequence.
-
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