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Line shape of resonant tunneling between fractional quantum Hall edges

I. J. Maasilta and V. J. Goldman
Department of Physics, State University of New York, Stony Brook, New York 11794-3800
(Received 29 October 1996

We report experiments on resonant tunneling of ch&/@equasiparticlesthrough states bound on a quan-
tum antidot. We find that at a given temperatiiré¢he line shape of resonances fits predictions of Fermi and
Luttinger liquid theories equally well, the difference betweenttieoreticalline shapes being well within 1%.
As T is varied, the experimental resonances scale linearly Wjths expected for both Fermi and Luttinger
tunneling for quasiparticles, and not &&° predicted by the Luttinger theory for electrons.
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The low-energy properties of an interacting one- e? I' T
dimensional(1D) fermion system are expected to be de- GT:% (i—eg)2+T2" ©)
scribed by the Luttinger liquid theofywith many properties
qualitatively different from the more familiar Fermi liquid. Experimental line shapes of resonances in the Coulomb
Unambiguous experimental observation of a Luttinger liquidblockade regim&agree well with the above theory in both
in 1D quantum wires is a difficult task, though. Problemsthermally broadened E@2) and intrinsic Eq.{3) regimes.
arise because any impurities in the conducting channel can On the other hand theoretical work for RT between Lut-
backscatter or localize the carriers and therefore destroy thgnger quuidé"g predicts a universal line Shaﬁ}determined
Luttinger-like character of the system. Fortunately, there isonly by the parametey:
another possible way of realizing a Luttinger liquid: at the
edges of a two-dimensional electron syst&bDES in the L = €—n
fractional quantum Hal(FQH) regime? In such chiral Lut- GT:G( )
tinger liquid backscattering is not a problem since the left
and right moving carriers are separated in the opposite edgagherec is a nonuniversal constant.
of the sample by a macroscopic distance, so that localization In this paper we report experiments on resonant tunneling
does not occur, even with finite disordedlso in contrastto  of Laughlin quasiparticles through states bound on a litho-
guantum wires, in FQH systems the only parameter of theyraphically defined potential hillquantum antidgtbetween
Luttinger theory has a gquantized valge- v, wherev is the  two edges of FQH liquid at=1/3. We study the evolution
filling fraction. Thus in FQH regime the Luttinger liquid of several resonances as a function of temperature, and find
resonant tunnelingdRT) conductance has a truly universal that at a giverT the line shape of resonances fits predictions
line shape, independent ahy sample parametefsGener-  of Fermi and Luttinger liquid theories equally well, the dif-
ally, in FQH regime two kinds of charge carriers can turfnel: ference between the theoretical line shapes being well within
electrons, but also fractionally charged quasiparticles. Initiaexperimental uncertainty. However, asis varied the RT
indications consistent with Luttinger behavior have been repeak width scales a&-%> %% consistent with quasiparticle
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ported in RT experiments on electron tunneltng. tunneling for both Fermi and Luttinger liquids, and not as
The RT conductance of particles of charg/® between T2 predicted by the Luttinger theory for electron tunneling.
1D Fermi liquids can be calculated eadilyn the low- Samples were fabricated from very low disorder

temperatur&k T<AE, low biasV—0 limit, whereAE isthe  GaAs/Al,Ga;_,As heterostructure material. The antidot-in-
energy separation of the quantized resonant states at chenai-constriction geometry was defined by standard electron
cal potentialu, the linear response conductance is a convobeam lithography on a pre-etched mesa with ohmic contacts
lution of the intrinsic Lorentzian line shape with the deriva- [Fig. 1(a)]. A global back gate is separated from the 2DES
tive of the Fermi function: by an insulating GaAs of thickness430 um. The two
) front gates were contacted independently and were used
G _& FLFRJ . 1 cosh 2 e (1) to vary electron densityr (and thusv) in the constriction
T73h 4kT (e—€g)?+T2%" 2kT |° and to bring the two edges close enough to the antidot for
HereI'| andI'k are the tunneling rates through the left andf[unnelllrpg t?] occur.hlnf_'ilhe efxperlmemr:lnbﬂ}i conj_tncuon d
right barriers,I'=3(I'_+T'g) and ¢, is the energy of the IS smaller tharvg, the filling factor in the bulk, as discusse

) 9T <o | in Ref. 10. We prepared 2DES witl~1x 10'* cm™2 and
resonant state. Fdr<kT, this simplifies to mobility 2x 16° cn?/V s by exposing the sample to red light
o T Tr = €0~k at 4.2 K: Experiments were perfprmed in a dilution refrig-

T =57 ——cosh , 2 erator with sample probe wires filtered at mK temperatures
3h T' 4kT 2kT ; ;
so that the total electromagnetic background at the sample’s
whereas in the opposite limit>kT the resonance takes the contacts<2 wuV rms. The four-terminal magnetoresistance
usual Breit-WignerLorentzian form’ R(2-3;1-4) Was measured with a lock-in amplifier at 12 Hz
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FIG. 1. (@) lllustration of an antidot sample. Numbered rect- 0.00
angles are Ohmic contacts, black areas are front gates in etched
trenches and lines are edge channels. The back gate extends over 600 800 1000 1200
the entire sample on the opposite side of the substrate. Dotted line Vgg(mV)

represents tunnelingb) Schematic energy landscape of the antidot.
The excitation gap of the=1/3 condensate forms the two barriers FIG. 2. (a) Tunneling conductance of quasielectrons vs back

for tunneling, and the ladder of quantized states around the antid%tate voltage av=1/3, B=8.18 T. (b) An experimental resonant
has filled @) and empty ©) states. Tunneling from left edge at tunneling conductance pe#ttiamonds$. Solid line is the best fit to

chem_ical potentiak, to the right edge at occurs through single Fermi liquid line shape, Eq(2), dashed line to Lorentzian line
level if u, —pur,KT<AE. shape Eq(3).

using excitation current 50 pA. Tunneling conductage
between the two edges can then be calculated from G-FrDszcoshZ(
Ri2-3:1-4), if v andvg both have a quantized vald&This
condition was satisfied by tuning the sample to a platea
region v=1/3, vg=3/5, and it was confirmed by measuring
longitudinal and Hall resistance in the absence of tunnelin
between the RT peaks.

Veg— VrBG) )

w

lfor Eq. (2), whereVgg is the position of the peak. We find
that the FD line shape fits our data well, whereas the Lorent-
g2ian does not fit well. This holds true for all measured tem-

Figure Ib) shows schematically the energy landsca eperatures and for different resonant peaks.
9 y 9y P€ " This result shows that the experiment is not in the intrin-

near the antidot. There is an edge channel aro'und each of t & width regimel'>kT. The distinction between FD and
front gates; a_\t the edges the energy spec_trum is con_tlnuous E‘Gttinger behavior cannot be made from the data of Fig) 2
w and there is no gap for charged excitations. The size of thgecayse at a fixe@ the two line shapes differ less than
antldot is small enough t_hat the quaS|part!cIe states enciry g of G, . This can be seen in Fig. 3, where we compare the
cling the antidot are quantized. These quantized states are thgg |ine shapes on linear and logarithmic scales. We note
resonant levels through which tunneling can occur, and foghat there is no visible difference between the two on the
small enough Hall voltagey; — ug) and low enoughl tun-  Jinear scale. Only when the two functions are plotted on a
neling takes place through a single leveThese resonant |og-log scale do we see that the tails of the functions differ.
levels can then be moved in energy relativeutby changing The  Luttinger peak has a power law fail
either magnetic field or back gate voltag&/ss and thus  GL(X)=3.3546€2/3h)X 6, X>1, whereas the FD peak is
line shapes of RT peaks can be measufed. an exponential in this regim&§P(X) = 4(e?/3h) exp(—2X).
Figure 2a) shows representative experimen@} as a  In our experiment the rms noise level4s2% of Gy, so the
function of Vg at v=1/3. We clearly observe an interval of signal to noise ratio is 1 8~ 3.
quasiperiodic resonant tunneling peaks on top of the In Fig. 4 we show the evolution of the width of a single
v=1/3, vg=3/5 plateau. The noise level in these data isresonance with temperature. The experimental temperature
~0.00%2/3h. Corresponding data can also be meastiied  range from 12 to 70 mK is limited by the base temperature of
sweepingB. In Fig. 2b) we plot an experimental RT peak the refrigerator, and, at high by the fact that the resonances
and best fits to a Lorentzidieq. (3)] and thermally broad- start to overlap so much that meaningful analysis is impos-
ened Fermi liquit® (FD) [Eq. (2)] line shapes. The fits were sible. W was obtained from a two-parameter fit of E§).
done with two free parameters, the pe@k and the width  Note that use of FD line shape in fitting does not bias our
W of the resonance, analysis, since at eachthe Luttinger line shape is identical
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the intrinsicW regime, (ii) electron Joule heating by excita-
tion bias and electromagnetic noise, diiig smearing by the
ac excitation voltage.

(i) If we approach the intrinsic regime, a contribution
from I' in the full convoluted line shape E¢l) would make
W less temperature dependent at [dwbut would also add a
constant to it at hight, i.e., W=aT+W,. It is clear from
Fig. 2(b) thatI" cannot be large, since the RT line shape is
g Y sufficiently distinct from Lorentzian even at 14 mK. Fur-
0.1 1 10 themore, by determiningV, from the data of Fig. 4 we get
| an estimatd"<0.5 mK. This definitely rules out significant
'y broadening from finitd".

(i) It is well known that at lowT the electron system can
00 e S have temperatur&, higher than the lattice temperatufe
A I I I S (assumed to equal the bafh) due to weak electron-phonon
0 1 2 3 4 5 coupling. Steady state is reached when the electron-phonon
X relaxation rater ! is such that the heat input powe¥, to
the electron system is equal to power dissipated to the lattice.

FIG. 3. Comparison of Fermi-liquid RT line shape E@) Assuming that the dominant relaxation mechanism is
(dashed ling with the Luttinger liquid result (dots. piezoelectric coupling to acoustic phonons {~T?),
X~(Vge—Vpa)/T?? for Luttinger peak,X~(Vgc—Vpg)/T for — we havé® P,=pg(T3—T°). Using W~T, we get
Fermi peak.G(X—0) is normalized to é2/3h)(1_—>_(2)._ Inset  \=A(BP;,+T%)¥5, introducing only one extra fitting pa-
s_hows the same func_tlons in a qu-log scale: solid line is the LUI'rameter,,BPin. B is a function of sample parameters that are
tinger result, dashed is the Fermi peak. impossible to estimate reliably, therefore we do not attempt

- . ) .. to extract numerical value fd?;,. Below we will show that
within our experimental accuracy. The tail contributions i) is the dominant broadening mechanism in our sample.

from the nearest anq the second hearest n(.eig'hboring PE3XS iiii) The effect of finite excitation voltag®,. can be
\r/]v_eLe also included r']n the a_nal);ss, Wh'CT IS Irppr?rtaf\nt Alevaluated by calculating the response of the sample for
igher T. We note that no simple power law of the form V.= Vo sin(wt). Since the experimental value g&* VP~

W=aT’, as expected from Eqe2) or (4), fits the data in the 0.9 neV is known, we do not introduce any additional un-

whole experimental temperature range, although in the high=_ 7.~ - -
o~ . ' ) certainty in the analysis, and get an experimental value for
T limit the data approach the linear dependeli¢ée T, in y y g b

agreement with Eq2). Below ~25 mK the width saturates, the ac broadening at any givén Specifically, aff = 14 mK

hich can be caused by several mechanisiaspproach of the extra width due to finit¥/ . is ~1 mK, which is poten-
whi us y Sever ! PP tially measurable, but cannot explain the full experimental

broadening, and is therefore a secondary effect compared to
electron heating.
Figure 4 shows a two-parameter fit of FD resonance with
heating andV,. included(solid curve. We see that the low-
T saturation of the width can be explained by the two dis-
cussed mechanisms. The fit gives us an estimatd fas a
function of T, e.g.,T,=19 mK atT, = 14 mK. In addition,
instead of assuming the power law '~ T3, we can let the
exponentp be an additional free parameter. The best fit then
gives p=3.3, a further confirmation of the validity of the
analysis. The line shape &f = 14 mK with effects of heat-
ing andV .. included also fits the experimental RT peak well,
being practically indistinguishable from the FD fit given in
Fig. 2(b).
Finally, we note that it is not absolutely clear whether the
. . . theory*® can be applied to quasiparticle tunneling in a situa-
0 20 40 60 80 tion Where_Gp<e2/3h. Also, the confining potential in ex-
T (MK) periments is smooth, _and o) _far chiral Luttinger liquid the_o_ry
has only been considered in the case of sharp confining
FIG. 4. Width of a quasiparticle resonance as a function ofPotentials.” In Ref. 14 a RT line shape for quasiparticles was
temperaturgsize of diamonds gives error bar®otted line gives ~ calculated based on chiral Luttinger edge picture in the re-
W~T23 (expected for electron Luttinger tunnelinglashed line is  9ime Gr<e?/3h using perturbative techinques. We com-
W~T (expected for quasiparticle tunneling in both Fermi and Lut-Pared our results also with these predictions in the same way
tinger liquid9. Solid curve is a two-parameter best fit including @s with Eq.(2) but did not find satisfactory agreement.
effects of Joule heating and ac excitation voltage. Inset shows the In conclusion, we have measured the line shape of quasi-
same in a log-log scale. particle tunneling resonancesat 1/3 between two edges of
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the FQH condensate through states circulating an antidoare significantly similar to those of E) in the regime of
Line-shape analysis at a fixed temperature is consistent withur experiments.

both Luttinger and Fermi liquid pictures of edge excitations, \ye would like to thank P. Fendley for providing the Lut-
which cannot be distinguished experimentally. The temperagnger curve, M. P. A. Fisher, L. I. Glazman, and X. G. Wen
ture evolution of the resonances in our sample geometry beor discussions, and B. Su for expert sample fabrication. This
have, at least phenomenologically, as Fermi liquids. Rework was supported by NSF under Grant No. DMR-9318749
cently theoretical treatment of quasiparticle resonantnd by ONR under Grant No. N0014-93-1090. I.J.M thanks
tunneling has been introducé¥the predictions of Ref. 18 the Finnish Cultural Foundation for financial support.
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