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Critical conductivity of the quantum Hall system at higher Landau levels
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The two-particle spectral functio®q, ) is studied at the mobility edge on the quantum Hall system, in the
lowest and higher Landau level. The profile and its scaling properti€§mqiv) are numerically clarified. Our
result shows that, in higher Landau level with the long-range random potential, the critical dissipative conduc-
tivity oS, is approximately equal to the universal valuee/®. This suggests that the critical conductivity
a5, on the gquantum Hall system with the long-range potential is independent of the Landau-leveNindex
[S0163-18297)12507-3

In recent years, the localization-delocalization transitionrange potential and the Gaussian-scattefleng-rangé po-
in the quantum Hall(QH) system has attracted much tential. The crossover fof5(q,w) is shown between the
attention'? At the mobility edge, scaling behaviors have small g% regime and largeg®/ » regime. In addition, we
been studied in the localization lengtithe spatial structure clarify the critical dissipative conductivity5, in the higher
(multifractality) of the wave functiodf;® the static and dy- Landau level with the short-range and the long-range random
namic conductivity® and the two-particle spectral potential, using the method of Chalker and Darldlh the
function®*' The localization length diverges as  higher Landau level\=1) with the long-range potential,
<|E—E¢ ™" at the mobility edgeE=E_ at the center of the the critical dissipative conductivity o, becomes
Landau level, where’ is the critical exponent. The critical ¢, =0.5e/h within the statistical uncertainty.
properties in the higher Landau level have not been fully The Hamiltonian of the QH system is given by
clarified. It is shown that, for the correlation length of the
random potentiabr=I (I is the magnetic lengjhthe scaling
behavior in the higher Landau level is indeed the same as H=E INX)
that in the lowest Landau level, i. ex~2.3 is independent NX
of the Landau leve.

A lot of work has been devoted to the critical conductivity +2 S INXYNXVIN/ X WNX| (1)
oS, at E=E, in the QH system&!'~The self-consistent NX N7/

Born approximation predicted the conductivity, depends

on the Landau-level inde and the range of the potentidl.  with the Landau wave functiodN X), the cyclotron fre-
Recently the critical dissipative conductivits, atE=Eis  quencyw., and a random potentisl. We treat each Landau
claimed to be universal in the lowest Landau level,level separately, assuming that the magnetic field is strong
oS, =0.5?/h, irrespective of the range of the potenfil. enough with |[(NX|V|N'X")|<Aw (N#N'). We consider
Chalker and Daniell have calculated numerically the two-the short-rangeg scatterer potential as

particle spectral functior8(q,w) for a QH system in the

lowest Landau level and with white-noise potentialsing

their numerical method, Huo, Hetzel, and Bhatt have per- V(=2 V,8(r—r,). 2)
formed the numerical calculations of the critical conductivity i

o, in the lowest Landau level with different kinds of ran-

dom potential* They showed that the dissipative conductiv- Here the position of the scattergris randomly distributed

ity 0%, at E=E, takes the universal value @5h in the  with a concentratiort;, while its strengthv; is assumed to
lowest Landau level. Lee, Wang, and Kivelson have arguedake either attractive or repulsive valudg= +V,, with an
that the critical conductivityr$, is related to the fixed-point equal probability to make the broadened Landau level sym-
scaling amplitude\ ;.*° Their result and the reported value metric. The concentratiog, is defined as;=N; /N, , where

of the scaling amplitude\ . would support the universal N; andN__ is the number of scatterers and the degeneracy of
critical conductivity o$,=0.5?/h. While recent numerical each Landau level, respectively. We also consider the scat-
results fora?, in the lowest Landau level seem to agree wellterers finite ranged with Gaussian potentials,

with the universal value, the value of;, in higher Landau

level is still an open question.

In this paper, we study the two-particle spectral function V(r)zz
S(q,w) of noninteracting electrons in the center of the Lan- !
dau level. We clarify the behavior of the two-particle spectral
function S(q,w) in the lowest and higher Landau level for This makes the correlation of the random potential Gaussian
two different random potentials, witl# scatterer(short- as well.

fiw(NX|

Nl
"2

V
e~ [r=r; 2/202_ (3)
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In the following we take the unit =1. The two-particle
spectral function is defined by

w
E———Ea)

S<r,w;E>E<E )
a,B 2

X 6

E+ %—Eﬁ) wa<0>w§(r>wﬁ<r)¢z<0>>,

(4)

whereE, and,(r) is the energy of the eigenstateand its
eigenvector, respectively, and the angular bracket denotes
the ensemble average of the disordered system. The Fourier
transform of the spectral functio®(q, ) can be written as

_p(E)  ¢’D(q.0)
7 0’+[0°D(q,w)]*’

S(q,w) (5 FIG. 1. The wave-number and frequency dependence of
S(g,w) for N=1 with Gaussian-scatterer potentig’=1.5).

for small g and w, whereD(q,w) is the wave-vector- and

frequency-dependent diffusion function, ae(E) is the den-  agonalized for calculatingS(q,w) by the Lanczos

sity of states per unit ar€a' At the mobility edge, the dif- algorithm® It makes the numerical calculations of E)

fusion functionD(q,w) depends only om*/w and Eq.(5)  quite effective with high accuracy. To check the finite-size

can be rewritten as effect, we also stud(q,») on QH system for several dif-
b = ferent system sizes. The calculated results show that the sys-
0S(q,0)= p(Ec)  (97w)D(gw) ®) tem size dependence is negligibly small fox 150, and the

results forL=150 andL =200 make no difference within

- the statistical error. This shows that the system size we treat
whereD (g% )=D(q,w).”** Chalker and co-workers have in these calculationslL(=200) is large enough. We have
shown that the wave function on the QH system showslso performed an average over twelve samples.
anomalous diffusive behavior at the mobility edg&or Figure 1 shows the profile of the wave-number and fre-
g% w<a (a is a numerical constantD(q?/w) becomes a quency dependence &(q,w) for N=1 with Gaussian-
diffusion constantD. For q?/w>a, D(q%w) reflects the ~Scatterer potential °=1+(o/1)>=1.5] at E=E, for

7T 1+[(q%w)D(q¥ w)]?’

property of anomalous diffusion and behaves as smallq andw. This is the first observation &(q,w) on a
_ QH system in the higher Landau level. Figures 2 and 3 show
D(g% w) (g w)~ "2, (7)  the rescaled plot of the product af and S(q,w) at E=E,

for variousq and w. Figure 2 shows»S(q,w) versusqg?/
where » describes the anomalous diffusive behavior of the a @ g (,0) g o

- X on QH system in the lowest Landau levéll€0). Filled
electron qt the F“Ob""y edgeand re.'?‘ted to the genergllzed squares show the result @$S(q,w) for & scatterer po-
fractal dimension D, of the critical wave functions

(n=2-D,). From Egs.(6) and(7), ®S(q,») behaves as

10"1- v ML | v Ty v LA |
p(Ec)D F
0S(q,0)~ —— (0% w) t:)
for smallq?/ w, and
102F 3
®S(q, ) (g% w) 7?71 ©) EN:
o
for largeq?/ w. From Einstein’s relation, the dissipative con- 4
ductivity at E=E, can be obtained & 03F  + neo et 3
o,=e?p(Eo) lim limD(q¥w). (10) f o N=O.p-LS |
g% w—0@—0 +
From Eqgs.(8) and (10), the critical conductivityo, can be 10"1‘04 —= 1(')0 —= 1(')1 — 1(')2
obtained by studying the behavior obS(q,w) for o

q’/w<a. And the power-law dependence 6fS(q,w) for
2 . . . .
q°/w>a gives the value of the generalized fractal dimension g5 » Theq¥w dependence of»S(q,w) for N=0. Filled

D, of the critical wave function. squares show the result faf scatterer potential #2=1.0). The

In this paper, we consider a QH system of sizeinder  concentration of the scatterers is taken tacpe 10.0. Filled circles
periodic boundary conditions i andy directions. We take  show the result for the Gaussian-scatterer potengai(1.5). The
system size ak =200, which is larger than those in previ- concentration of the scattererscis=3.0. The dotted lines shows the
ous studies 0f5(q,w).>! The Hamiltonian[Eq. (1)] is di-  relation written by Eq(11).
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FIG. 3. Theq?» dependence of»S(q,w) for N=1. Filled
squares show the results for thescatterer potentiald®=1.0). The
concentration of the scatterers is taken tacpe 10.0. Filled circles
show the results for the Gaussian-scatterer potensiz=(L.5). The
concentration of the scattererscs=3.0. The dotted lines show the
relation written by Eq(11).

tential (32=
to bec;=10.0. Filled circles show the result afS(q, ) for
Gaussian-scatterer potentigt{=1.5) and the concentration
of scatterers is taken to bg=3.0. Both results show that
two-particle spectral function &=E,_ satisfies Eq(6) and
0S(q,w) depends only o/ w. Each dotted line shows the
relation

(0% w)D
1+[(g*/w)D]?’

where the diffusion constaiii is estimated from the numeri-
cal results for smaly?/ w in Fig. 2. We show the crossover
for wS(q,0) at q’w~10.0 for B?=1.0, and at
g%/ w~25.0 for B2=1.5. For smallg?/ w, the calculated re-
sults are in good agreement with Bd1), where the diffu-
sion function is equal to the diffusion constdnt For large

p(E¢)

wS(q,w)= 11

g%/ w, the property of anomalous diffusion appears an

0S(q, ») shows the power-law behavior written by Hg).°
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TABLE |. The values of critical conductivityr;, and the gen-
eralized fractal dimensio®, of the wave function at the mobility
edge, for different Landau level indices and the range of the random
potential[ B2=1+ (o/1)?]. Each value oD, is estimated from the
anomalous diffusion exponent in Eq. (9).

N ,82 o'ix D2

0 1.0 (0.51:0.03)%h 1.54+0.06
0 1.5 (0.49-0.03¢%h 1.48+0.09
1 1.0 (1.06-0.08),? h 1.80+0.09
1 15 (0.47:0.05%%h 1.45+0.08

for B2=1.0 with the concentration of scatterezs=10.0.
Filled circles show the result fog2=1.5 with the concen-
tration of scatterers;=3.0. Crossover fowS(q, w) between
small g/w and largeq® w is shown atq?/w~7.0 for
B?=1.0, and aig?/ w~35.0 for B2=1.5. The values of the
critical conductivity o5, and the generalized fractal dimen-
sionD, for N=1 are shown in Table I. The value of,, for
B?=1.5 is approximately equal to @%h, in accordance
with that in the lowest Landau level. The value @f, for
B?=1.0 is, however, apparently larger than €. These
results show that the critical conductivits§, in higher Lan-

1.0), and the concentration of scatterers is takeny,y, |evel depends on the correlation length of the potential,

which is different from that in the lowest Landau level. This
disagreement coincides with the scaling property of localiza-
tion in the QH system. A recent finite-size scaling study
suggested that, if one introduces an irrelevant scaling length
&, the apparent lack of universality is reconciled on length
scale> &, .22 And in the higher Landau level, the irrelevant
length scaleg;, rapidly decreases and the single-parameter
scaling is recovered for large when the correlation length
of the potentialr is increased fromgl to ~1. The values of
the generalized fractal dimensi@, are in agreement with
our former results obtained from the multifractal analysis of
the critical wave function within the statistical erfor.

In conclusion, the scaling properties of the two-particle
spectral functiorS(q, ) at the mobility edge are studied on
the QH system for the lowest and the higher Landau level
numerically. The crossover f@(q,w) between smalyy?/ o

0.regime and largg?/ » regime is clearly observed. It is also
shown that the critical conductivity$, in the higher Landau

Table | shows the values of the critical dissipative conduc/€Vel is approximately equal to @%h with long-range po-

tivity oy, and the generalized fractal dimensi@n, esti-
mated from the anomalous diffusion exponenin Eq. (9).
In both casesrS, takes the universal value;S,=0.5e%/h,
which is consistent with the previous studfés.

Figure 3 shows the calculated result ©®5(q,») in the

tential, in accordance with that in the lowest Landau level.
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higher Landau levelN=1). Filled squares show the result of the facilities.
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