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Diffraction pattern of a defect: Two-dimensional angular correlation of positron-annihilation
radiation studies of defects in semiconductors
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Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000

~Received 21 November 1995; revised manuscript received 22 October 1996!

Electron-positron momentum spectra of defects in semiconductors contain more information about the
nature of the defects than has been recognized previously. Diffraction patterns that arise both from the nature
of the electronic states and from the geometric structure can be seen in the simulated two-dimensional angular
correlation of annihilation radiation spectra for positrons annihilating at a model vacancy in a tetrahedrally
coordinated semiconductor. These should be experimentally observable in high-resolution spectra.
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We present model calculations that show that detailed
formation about the electronic and geometric structure of
fects can be obtained from two-dimensional angular corr
tion of annihilation radiation~2D ACAR! spectra originating
from positrons trapped at defects. This is because
e2-e1 momentum spectrum from a defect-trapped posit
is, basically, the diffraction pattern of the defect. Informati
about the detailed structure of defects in semiconductor
difficult to obtain and requires a variety of techniques. T
information is, nevertheless, extremely useful in controlli
the properties of materials for use in semiconductor devic
This work shows that 2D ACAR is a valuable addition to t
available techniques.

Positron annihilation~PA! has been used extensively
study both the electronic structure of crystalline materi
and the properties of defects in metals and semiconduc
Variable energy positron beams~VEPB’s! allow PA tech-
niques to be used as depth-profiling methods with sub-mm
resolution over depths down to severalmm below the sur-
face. At a few facilities, these beams are becoming inte
enough for depth-sensitive 2D ACAR measurements to
made, so that epilayer materials, interfaces, and multila
structures can be studied.1

Until recently, high-resolutione2-e1 momentum spec-
troscopy using 1D and 2D ACAR techniques have been u
only for Fermi-surface investigations in defect-free mate
als. Although defects have been studied extensively by
this has been done using only the lower-resolution mom
tum technique of Doppler broadening, and bye1 lifetime
measurements.2,3 An interesting question is to what exte
detailed structure of defects can be extracted from 2D AC
data, or if the uncertainty principle momentum broaden
that would result from the localization of the positron and t
falloff of electron wave functions on the scale of a po
defect obscure structural information. We will show in th
paper that more detailed information can be extracted fr
2D ACAR than has previously been appreciated.

By the electronic structure we mean the charge state
the nature of the occupied orbitals at the defect. The arran
ment of the neigboring atoms, including lattice relaxati
and symmetry-lowering distortions, is called the geome
structure. The electronic and geometric structures can
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closely related, as in the ‘‘large lattice relaxation’’ class
defects such asEL2 andDX, where changes in the charg
state drive the large geometric rearrangements. A sim
model based on vacancies in tetrahedrally coordinated s
conductors is used to show how the diffraction pattern p
duced by the electronic and geometric structure of a de
appears in ane2-e1 momentum spectrum. This patter
arises from the phase correlations and occupancy of the
lence states around the defect.

A 2D ACAR spectrum is a two-dimensional projection
the three-dimensionale2-e1 momentum densityn(p). We
consider a model in which the electron and positron sta
are each represented by a single spherically symme
Gaussian. Even though the valence orbitals in semicond
tors aresp3 hybrids, this model illustrates the basic structu
that would appear in simulations using more complete ba
sets. In formulating the model, we suppose that the posi
is trapped in a vacancy at the origin, with thee1 state
uw1& ansGaussian with decay parametera0. In addition, we
represent an atomic orbital centered on each of thei th neigh-
boring atoms located atRi by a Gaussian with decay param
eter a i . If the electron states are a linear combination
these Gaussian atomic orbitals,

uc j&5(
i
ai

~ j !uw i&, ~1!

the momentum density is the superposition of contributio
from each of these,

n~\k!5(
j
n~ j !~\k!, ~2!

where

n~ j !~\k!5U E d3reik•rw1~r !c j~r !U2 ~3!

is the contribution of thej th electron stateuc j&. The indi-
vidual integrals needed are the momentum amplitudes,

f ~kua i ,Ri ![E d3reik•rw1~r !w i~r !, ~4!
4046 © 1997 The American Physical Society
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FIG. 1. Contours of constant momentum densityn( j )(p) for the a1 and t2 states. The momentump is given in multiples ofmec for a
lattice parameter of 5.65 Å.
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and the contributions to the momentum density may be w
ten in terms of these as

n~ j !~\k!5U(
i
ai

~ j ! f ~kua i ,Ri !U2. ~5!

The simplicity of this model is now evident, since th
integral~4! can be evaluated analytically for Gaussians w
the result

f ~kua,R!5S 2a0a

a0
21a2D 3/2expS 2

a0
2a2

a0
21a2R

2D
3expS 2

k2

4~a0
21a2!

D expS a2

a0
21a2 @ ik•R# D .

~6!

The spatial extent of the orbitals is reflected in the falloff
the momentum space Gaussian in this expression. The s
metry of the defect electronic state gives rise to an inter
ence that can be seen in the cross terms in Eq.~5!.

To illustrate how this information is contained in th
e2-e1 momentum density, we chose the Gaussians to mi
roughly a positron trapped at the vacancyVAs

2 in GaAs. In
order to choose appropriate Gaussians, we computed the
itron density for a positron trapped at an ideal~i.e., undis-
torted! negative As vacancy using a superimposed ion po
tial and a locale1-e2 correlation potential.2,4–8 The e1

density falls off more sharply in the direction of a neighb
than it does in the opposite direction, with the best Gauss
fits in these two extreme directions given bya0a0.0.32 and
a0a0.0.19, wherea050.529 Å is the Bohr radius. The
model used here requires spherically symmetric Gaussi
so we chose the Gaussian decay parametera0a050.22 as a
compromise. For the electrons, we computed the 4s and
4p wave functions for a Ga0 atom using the local spin den
sity approximation. The radial wave functions were rep
sented well in the outer overlap region beyond;1.5a0 by
single Gaussians with decay parametersaa050.38 for the
t-

f
m-
r-

ic

os-

n-

n

s,

-

4s and aa050.26 for the 4p. We used the average
a ia050.32, for the four neighboring atoms in our model.

An ideal vacancy in a semiconductor with a diamond
zinc-blende structure has four neighbors. Its ionization lev
correspond to filling the lower-energya1 states and the
higher-energyt2 states.

9 Thea1 state can hold two electrons
and thet2 states can hold six. In GaAs, for example, t
neutral As vacancy lacks the five As electrons that provid
complete octet in the perfect crystal. Three electrons rem
in the a1 and t2 linear combinations formed from the dan
gling bonds. Thus, thea1 states are filled with two electrons
and the remaining electron is in at2 state. The singly nega
tive vacancyV As

2 has one more electron in thet2 state.
The symmetry of these states is reflected in the mom

tum density and hence the 2D ACAR spectrum. Figure
compares the surfaces of constant momentum den
n( j )(p) for thea1 state

1

2A113S
~ uw1&1uw2&1uw3&1uw4&) ~7!

and thet2 state

1

2A12S
~ uw1&2uw2&2uw3&1uw4&), ~8!

whereS is the overlap integral, calculated using our mod
with the parameters given above. The atoms 1,. . . ,4 have
coordinates~1,1,1!, (1,21,21), (21,1,21), (21,21,1)
timesa/4, wherex̂, ŷ, and ẑ are along the crystal axes an
a55.65 Å for GaAs. Both constant momentum density co
tours are in the relatively low momentum region, with th
for thea1 state at 1/4 of the maximum central peak, and t
for the t2 state around 1/3 of its maximum.

The momentum space symmetries shown in Fig. 1
dramatically different because of the symmetries~7! and~8!
of the spatial orbitals. The total momentum density is t
superposition~2! of contributions from the occupied elec
tronic states. Changing orbital occupancies, i.e., charge s
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of the defect, will alter their weightings in the total mome
tum density. As levels become filled, there may be cance
tions analogous to those from a filled band in a solid. Wh
there are various orientations of degenerate levels, it ma
necessary to strain the sample to see clear signatures o
electronic state symmetries.

Geometric information lies in the higher momentum r
gion. This comes from the

U(
i
ai

~ j !expS a2

a0
21a2 @ ik•Ri # DU2 ~9!

interference term in Eqs.~5! and ~6!. To illustrate, Fig. 2
shows apz50 cut through our modele2-e1 momentum
density for thea1 state. The entire peak appears more or l
circularly symmetric, and at 1/4 of the maximum height
just thekz50 circle on the sphere of Fig. 1 (a1 state!. Figure
2 shows an expanded scale in which the low intensity str
ture (<1% of maximum! out in the higher momentum tail
is evident. The square pattern of troughs results from
minima caused by the interference term~9!, which gives

n~a1!~\kxx̂1\kyŷ!;cos2S a2

a0
21a2

kxa

4 D , ~10!

and has nodes at

a2

a0
21a2

kxa

4
5S n1

1

2Dp, ~11!

and similarly for ky . The first of these values is, for ou
parameters, atkx ,ky.9.25/a.6.331023mec/\, and is the
origin of the structure shown in Fig. 2.

A 2D ACAR measurement gives the two components
momentum that lie in a plane normal to the line joining t
two detectors. Consequently, a 2D ACAR spectrum is
result of line integrals in momentum space in the direct
joining the detectors. The structure resulting from the int
ference term~10! is most pronounced when the integratio
line passes along maxima or minima. The experimental c
sequences are illustrated in Fig. 3, which shows the ani
ropy in the simulated 2D ACAR spectrum. The dip
;6.331023mec comes from the troughs in Fig. 2. Aniso
ropy resembling that of our model~Fig. 3! can be seen in the
data already reported by Ambigapathyet al.,10,11 Manuelet

FIG. 2. The momentum densityn(a1)(p) in the pz50 plane for
thea1 state showing an enlarged view of the structure at 0→1% of
the peak height. This structure gives the separation of neighbo
atoms. The momentump is given in multiples ofmec for a lattice
parameter of 5.65 Å.
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al.,12 and Penget al.13 for the experimental 2D ACAR spec
tra for positrons trapped at vacancies in GaAs. For exam
the basic structure of peaks in Fig. 11 of Ref. 10 is the sa
as we obtain for that orientation, which is a projection of t
momentum density into a plane perpendicular to the@110#
direction. The projection shown in Fig. 3 is into a plan
perpendicular to@001# instead, because that most clear
shows the structure arising from the minima.

We next ask what is required for an experiment to obse
this geometric structural information in the 2D ACAR spe
trum. Suppose that one wished to have sufficiently good
tistical resolution to detect the change in this structure t
would result from a 1% relaxation of the nearest neighb
about the vacancy. Using the simulated spectrum prese
in this paper, this change in the nearest-neighbor separa
produces, relative to the intensity atp50, a
;0.5% change in the 2D ACAR spectrum aroun
631023mec. The core contribution, which is;10% of the
total annihilation rate, but with a momentum width that is
times that of the valence electrons, is negligible in compa
son at this momentum. In our simulation, the magnitude
the 2D ACAR spectrum at;631023mec is ;1% of the
intensity atp50. Because of this, we suppose that a sta
tical resolution of65% in the channels in this momentum
region is sufficient. The probability thatn positrons annihi-
late in a momentum channel (Dp)2 follows the Poisson dis-
tribution, so that the counting error in each square mom
tum bin is61/An. This means that in this momentum bin w
need a statistical resolution of 1 in 20, or a total number
counts of 400. Let us assume the same histogram bin siz
in Refs. 10 and 11 of 4013401 bins of size
0.1530.15(1023mec)

2 over an angular range o
60360(1023mec)

2. This means that the total number o
counts in the entire spectrum needs to be about 23108, the
same order of magnitude as in Refs. 10 and 11. Meas
ments of small changes in structure, such as a 1% relaxa
of the atoms neighboring a vacancy, seem entirely feasib

The structures in 2D ACAR spectra that contain this ge
metric information do have quite low intensities, and wou
be clearer if the full three-dimensional momentum dens
were reconstructed from measurements in differently o

g FIG. 3. Anisotropy in the 2D ACAR spectrum for thea1 state.
The anisotropy is given as a fraction of the height of the cen
peak of the 2D ACAR spectrum. The momentump is given in
multiples ofmec for a lattice parameter of 5.65 Å.
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ented planes. Although this would be experimentally ch
lenging, the wealth of information obtained would be w
worth the effort.

The pattern shown in Fig. 2 will be recognized as a par
the Fourier transform of a tetrahedron. Equations~5! and~6!
show that, in general, thee2-e1 momentum density is the
Fourier transform of the neighbors, with form factors arisi
from the orbital coefficientsai

( j ) and the nature of these o
bitals. Since the diffraction pattern of an object is its Four
transform, thee2-e1 momentum density for a vacancy
trappede1 is the diffraction pattern of the defect. The inte
pretation of this diffraction pattern is not totally straightfo
ward, because the transform involves not just exp(ik•Ri),
but exp(iAk•Ri), whereA is a scale factor as in Eq.~9!
containing wave-function coefficients. This means that co
puter simulation, with realistic electronic structure inform
tion, will be needed to interpret the data properly.

A better representation of the wave functions requi
multiple Gaussians. These will smear out the structure
some extent, because they produce different scale fac
A. We expect the structure to survive, because thee1

samples the outer regions of the atoms, and the wave f
tions in theouter regions are represented quite well by t
single Gaussians used here. It is possible to find a genera
function for the Fourier transforms of higher angular m
mentum Gaussians, so the simples Gaussian model de
s
ys
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scribed here can be extended to realistic electrone2 and
e1 states by using Gaussian basis sets,14,15with no need for
numerical multidimensional Fourier transformation. Th
should give an efficient computer simulation procedure
the interpretation of 2D ACAR spectra. Although the calc
lations presented here do not include corrections for
many-body enhancement of the annihilation rate, these h
been shown to have a relatively weak momentu
dependence,16,17 at least for the electron gas.

Because electron-positron momentum spectra fr
defect-trapped positrons give diffraction patterns of defe
2D ACAR is a promising tool for the study of the electron
and geometric structures of defects. Our simples Gaussian
model illustrates how the nature of the electronic states
the geometry of the atoms neighboring the defect is reflec
in the 2D ACAR spectra. The most important features
that the overall shape gives the symmetry of the electro
state, and patterns in the higher momentum tails are rel
to the geometry of the neighbors.

We are grateful to D. R. Harshman and K. G. Lynn f
urging us to think about defect ACAR, and for helpful di
cussions. R. M. Nieminen pointed out the similarity of o
computed anisotropies to the measurements reported in
11, and A. A. Manuel kindly provided a copy of Ref. 11
This work was supported in part by Brookhaven Nation
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