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Influence of electron-electron scattering on the electrical resistivity
caused by oriented line imperfections
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By means of an exact solution of the Boltzmann transport equation, it is shown for a free-electron metal at
low temperatures that electron-electron scattering has no effect~not even aT2 term! on the electrical resistivity
caused by oriented line imperfections.@S0163-1829~97!04007-1#
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I. INTRODUCTION

It is of interest to consider the effect of electron-electr
scattering on the electrical resistivity caused by oriented
imperfections. This question is not merely of academic int
est, but is also related to a mechanism that has somet
been invoked to explain anomalies in the low-temperat
electrical resistivity of metals, as will be discussed in mo
detail later.

II. THEORY

We consider a free-electron metal at low temperatu
supposing that the only scattering mechanisms are isotr
impurity scattering, scattering by oriented line imperfectio
and electron-electron scattering. For a homogeneous sy
in a uniform applied electric field, the Boltzmann equati
for the electron distributionf k is

] f k
]t

2
eE

\
•“k f k5S ] f k

]t D
coll

, ~1!

where f k is the number of electrons having wave vectork
and (] f k /]t)coll is the rate of change of the electron dist
bution due to scattering processes.1 It is convenient to repre-
sent the rate of change of the electron distribution due
collisions by a collision operator acting on the electron d
tribution,C( f k). Making this substitution gives

] f k
]t

2
eE

\
•“k f k5C~ f k!. ~2!

The total collision operator is the sum of the collision ope
tors for scattering by isotropic impurities, scattering by o
ented line imperfections, and electron-electron scatter
For scattering by static defects such as impurities and
imperfections, the collision operator in the Boltzmann eq
tion has the form

C~ f k!5(
k8

@Wkk8 f k8~12 f k!2Wk8k f k~12 f k8!#, ~3!

whereWk8k is the transition rate for electron scattering fro
the plane-wave statek to the plane-wave statek8.
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Scattering by oriented line imperfections is treated fir
For randomly distributed line imperfections, we make t
usual approximation that interference terms from scatter
by different line imperfections can be neglected. The tran
tion rateWk8k for electron scattering by oriented line impe
fections is then

Wk8k5Ndwk8k , ~4!

whereNd is the number of line imperfections andwk8k is the
transition rate for scattering by a single line imperfectio
Because of translation invariance in thez direction, the tran-
sition ratewk8k for electron scattering by a line imperfectio
parallel to thez axis conserves thez component of wave
vectorkz ; moreover, forkz5kz8 , the transition rate is inde
pendent ofkz . Since the scattering is elastic, electron ene
is also conserved, i.e.,«5«8. Because of cylindrical symme
try, wk8k does not depend upon the direction of wave-vec
transfer~in the xy plane! q5k82k. It is assumed thatwk8k
is also independent of the magnitude of wave-vector tran
for q<2kF ; this assumption corresponds to the leading te
for low-energy scattering by a short-range potential, i.e.,
an expansion of the scattering rate in powers of the elec
energy in thexy plane,E5\2(kx

21ky
2) /2m.2 In order to

illustrate a scattering rate having these properties, we
V(r) with r5Ax21y2 be the scattering potential of a lin
imperfection, treat the scattering byV(r) in Born approxi-
mation, and assume that the Fourier transformL(q) of
V(r) is independent ofq for q<2kF , giving

wk8k5
2p

\

L2

A2 dkz ,kz8d~«2«8!, ~5!

whereA is the cross-sectional area of the sample in thexy
plane. SinceL(q) is constant forq<2kF , so iswk8k . Con-
servation ofkz in Eq. ~5! implies that a current in thez
direction is not degraded by scattering from line imperfe
tions oriented in thez direction; this is the ultimate reaso
why oriented line imperfections do not contribute to the ele
trical resistivity in the direction parallel to their orientation
4019 © 1997 The American Physical Society
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Substituting Eqs.~4! and~5! into the Boltzmann collision
operator, Eq.~3!, yields for the scattering by oriented lin
imperfections,

Cd~ f k!5
2p

\

nd
A

L2(
k8

dkz ,kz8d~«2«8!~ f k82 f k!, ~6!

whereCd is the collision operator for oriented line imperfe
tions andnd is the number of line imperfections per un
area. If f k5g(«)kz , whereg depends only on the electro
energy «5\2k2/2m, then it follows from conservation o
energy andz component of the wave vector that

Cd@g~«!kz#50, ~7!

i.e., g(«)kz is an exact eigenfunction of the collision oper
tor with eigenvalue 0. On the other hand, iff k5g(«)ka with
a5x or y, then because the scattering~in the xy plane! is
isotropic, the net scattering into the statek vanishes, leaving
the net scattering out of the statek. Equation~6! then gives

Cd@g~«!ka#52
2p

\
ndL

2r~E!g~«!ka , a5x or y,

~8!

whereE5\2(kx
21ky

2)/2m is the electron energy in thexy
plane andr(E) is the two-dimensional density of states p
unit area ~for a single spin direction!. But the two-
dimensional density of states is a constant, independen
bothE andkz . If this were not the case, then different slic
of the Fermi sphere parallel to thexy plane, having different
values ofE andkz at the Fermi energy, would relax at di
ferent rates due to scattering by line imperfections, and
steady-state electron distribution in an applied electric fi
would be distorted from a uniformly shifted Fermi sphe
Substitutingr(E)5m/2p\2 in Eq. ~8!, we obtain

Cd@g~«!ka#52
1

td
@g~«!ka#, a5x or y, ~9!

where 1/td5ndL
2m/\3, i.e., g(«)ka with a5x or y is an

exact eigenfunction of the collision operator with eigenva
21/td .

3

We treat next isotropic impurity scattering. Surprising
the eigenfunctions of the collision operatorCd for scattering
by oriented line imperfections exhibited in Eqs.~7! and ~9!
are also exact eigenfunctions of the collision operatorCi for
scattering by isotropic impurities. Iff k5g(«)ka with
a5x, y, or z, then the effect of scattering by isotropic im
purities is

Ci@g~«!ka#52
1

t i~«!
@g~«!ka#, a5x, y, or z,

~10!

where 1/t i5*nivs(u)(12cosu)dV,ni is the density of im-
purities,v5\k/m is the electron velocity,s(u) is the dif-
ferential cross section for scattering by an impurity, and
integration is over solid angleV.4 Although, in general, the
relaxation timet i depends upon electron energy, in a me
only the electron distribution near the Fermi surface is p
of

e
d
.

e

e

l
r-

turbed from equilibrium by an applied electric field. Cons
quently, for the electrical resistivity of a metal,t i is evalu-
ated at the Fermi energy«F .

The effects of scattering by isotropic impurities and o
ented line imperfections are now combined to derive
electrical resistivity. Expanding the steady-state electron
tribution to the first order in the applied electric field,

f5 f 01 f 1 , ~11!

where f 0(«) is the equilibrium Fermi distribution, substitut
ing in the Boltzmann equation, Eq.~2!, and noting that the
equilibrium distribution f 0 is unchanged by collisions, we
obtain to the first order in the applied electric field,

2eE•v
d f0
d«

5Ci~ f 1!1Cd~ f 1!. ~12!

Making use of the eigenfunctions of the collision operato
in Eqs.~7!, ~9!, and~10!, we find that, if the applied electric
field is in thez direction, the solution forf 1 is

f 15t ieE•v
d f0
d«

~13!

and the electrical resistivity is

rzz5
m

ne2t i
; ~14!

whereas, if the applied electric field is in thexy plane,

f 15
t itd

t i1td
E•v

d f0
d«

~15!

and the electrical resistivity is

rxx5ryy5
m

ne2 S 1t i 1 1

td
D . ~16!

Two theorems are immediate. First, a comparison of E
~14! and ~16! proves theorem I: oriented line imperfection
do not contribute to the electrical resistivity in the directio
parallel to their orientation. Second, the solutions forf 1 in
Eqs.~13! and~15! show that the steady-state electron dist
bution is a uniformly shifted Fermi sphere~to the first order
in the applied electric field!, even in the presence of aniso
tropic scattering by oriented line imperfections. Although t
magnitude of the shift of the electron distribution depen
upon the direction of the applied electric field, the shape
the shifted distribution remains spherical. But electro
electron collisions do not affect a uniformly shifted Ferm
sphere, as is evident by making a Galilean transformatio
the frame of reference in which the drift velocity of the ele
trons vanishes. This proves theorem II: electron-elect
scattering has no effect~to the leading order! on the electrical
resistivity caused by oriented line imperfections.

If one were to describe~incorrectly! the anisotropic scat-
tering caused by oriented line imperfections by postulat
an anisotropic wave-vector-dependent relaxation ti
td(u), wheretd(u) is a ~non-negative! function of the angle
u between the wave vectork and the orientation axis of the
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line imperfections, then it is easily seen that both theore
proven above are violated. First, such a postulate implies
an electron excited at the Fermi surface with wave vectok
is relaxed to equilibrium uniformly over the entire Ferm
surface by collisions with oriented line imperfections. Th
the component of electron velocity parallel to the orientat
axis would not be conserved by these collisions, leading
nonzero contribution by line imperfections to the electric
resistivity in the direction parallel to their orientation, whic
contradicts theorem I. To show this explicitly, we substitu

Cd~ f 1!52
f 1

td~u!
~17!

in Eq. ~12! and solve forf 1, obtaining

f 15
t itd~u!

t i1td~u!
E•v

d f0
d«

. ~18!

Evidently, for E5Ezẑ, the electrical conductivity
szz5 j z /Ez is affected by the scattering from line imperfe
tions oriented in thez direction. Second, it is seen from th
solution for f 1 in Eq. ~18! that the steady-state electron di
tribution is no longer a uniformly shifted sphere~to the first
order in the applied electric field!, but is distorted from its
original spherical shape. Since the effect of electron-elec
scattering is to restore the spherical shape of the elec
distribution, electron-electron scattering would modify t
steady-state electron distribution, thereby increasing the e
trical resistivity caused by oriented line imperfections, whi
contradicts theorem II.~The increase of the resistivity whe
the distribution is modified follows from the variationa
theorem.5! Thus the assumption of a wave-vector-depend
relaxation time, which is often a physically appealing a
proximation, leads in this instance to qualitatively incorre
conclusions, and therefore the exact eigenfunctions of
collision operator must be used.

III. DISCUSSION

At temperatures sufficiently low that electron-phon
scattering can be neglected, the electrical resistivity o
metal is expected to have the form,

r5r01AT2, ~19!

wherer0 is the temperature-independent residual resistiv
due to scattering by impurities, dislocations, and other st
defects; andAT2 is the contribution to the resistivity from
fo
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electron-electron scattering. This behavior has been obse
in potassium metal below about 1.5 K.6 Contrary to the ex-
pectation for a free-electron metal, however, the coeffici
of theT2 term was found to be sample dependent, varying
as much as a factor of 15. Two explanations of this sam
dependence have been proposed. One attributes
temperature-dependent term to electron-electron scatte
and electron-phason scattering in the presence of a cha
density wave; and explains the sample dependence as a
sequence of the uncontrolled orientational texture of
charge–density-waveQ-domain distribution.7 The other pos-
tulates a wave-vector-dependent relaxation timetd(k) due to
scattering by oriented dislocations~the scattering being
caused primarily by the dislocation cores! and attributes the
temperature-dependent term to the effect of electron-elec
scattering on the resistivity from oriented dislocations in a
dition to the direct effect of electron-electron scattering; t
sample dependence is then a consequence of variations i
dislocation density.8,9

Neutron-scattering experiments on potassium show th
well-annealed, carefully grown single crystal has a mos
block structure, the block size being about 1 mm and
angular spread being about 0.1°.10,11 Dislocations occur
mainly in the small-angle boundaries between adjacent
saic blocks, the average distance between dislocations b
about 500 lattice parameters and the average dislocation
sity being less than 106 cm22. Since the distance betwee
dislocations is much larger than the electron Fermi wa
length, the dislocations can be treated as independent
terers. Since the mosaic block size is about 1 mm, it is lik
that the dislocations are oriented over a length scale o
electron mean free path, which is about 0.1 mm in hig
purity potassium at low temperatures.~In any case, this as
sumption is required by the mechanism proposed in Ref.!
Since large-angle scattering, which is important for the el
trical resistivity, is caused mainly by the dislocation core
dislocation can be approximated by a short-range l
potential.12 Consequently the foregoing theory is applicab
to the mechanism proposed in Ref. 8. It has thus been sh
here, using the exact eigenfunctions of the Boltzmann co
sion operator, that this mechanism vanishes in the lead
order.~Even if it were present in the leading order, the d
location density required is at least several orders of ma
tude too large, as pointed out by Gugan.13!
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