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Influence of electron-electron scattering on the electrical resistivity
caused by oriented line imperfections
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By means of an exact solution of the Boltzmann transport equation, it is shown for a free-electron metal at
low temperatures that electron-electron scattering has no éffeceven ar? term) on the electrical resistivity
caused by oriented line imperfectiof§0163-18207)04007-1

I. INTRODUCTION Scattering by oriented line imperfections is treated first.

For randomly distributed line imperfections, we make the

It is of interest to consider the effect of electron-electronusual approximation that interference terms from scattering

scattering on the electrical resistivity caused by oriented lindy different line imperfections can be neglected. The transi-

imperfections. This question is not merely of academic intertion rateW, . for electron scattering by oriented line imper-

est, but is also related to a mechanism that has sometiméactions is then
been invoked to explain anomalies in the low-temperature
electrical resistivity of metals, as will be discussed in more

detail later. Wik = NaWieric, (4)

Il. THEORY whereNy is the number of line imperfections amg/ is the

_ transition rate for scattering by a single line imperfection.
We consider a free-electron metal at low temperaturésgecq e of translation invariance in thelirection, the tran-

Supposing that _the only sqattermg .mechamsms are 'Sqtmpgtion ratew, ., for electron scattering by a line imperfection
impurity scattering, scattenng_ by oriented line |mperfect|ons,para”e| to thez axis conserves the component of wave
and electron-electron scattering. For a homogeneous SyStevn%ctorkz; moreover, fork,=k_ , the transition rate is inde-

in a uniform applied electric field, the Boltzmann equation . L .
for the electron distributior,, is pendent ok, . Smcg the scattering is elastlp, ellectron energy
is also conserved, i.es=¢'. Because of cylindrical symme-
of, eE of try, wy, does not depend upon the direction of wave-vector
K k=( ) , (1)  transfer(in the xy plane q=k’ —k. It is assumed that,,
coll is also independent of the magnitude of wave-vector transfer

wheref, is the number of electrons having wave vector fOr d=<Z2kg; this assumption corresponds to the leading term
and (f/dt) o is the rate of change of the electron distri- for low-energy scattering by a short-range potential, i.e., in
bution due to scattering processdsis convenient to repre- &N expansion of the scattering r:;\te N POWers of the electron
sent the rate of change of the electron distribution due t&Nergy in thexy plane, E=#i%(k;+ky) /2m.? In order to

collisions by a collision operator acting on the electron dis-llustrate a scattering rate having these properties, we let

tribution, C(f,). Making this substitution gives V(p) with p=yx“+y* be the scattering potential of a line
imperfection, treat the scattering b(p) in Born approxi-

of, eE B mation, and assume that the Fourier transfofrfq) of
E‘?'kak—c(fk)- 2 V(p) is independent of] for q=<2kg, giving

otk ot

The total collision operator is the sum of the collision opera-

tors for scattering by isotropic impurities, scattering by ori- 2m A? ,

ented line imperfections, and electron-electron scattering. Wirk= 7~ Az 9%, .k, 0(e —&"), ®)
For scattering by static defects such as impurities and line

imperfections, the collision operator in the Boltzmann equa- , . .
tion has the form whereA is the cross-sectional area of the sample inxke

plane. Since\ (q) is constant folg=<2kg, so isw,,,. Con-
servation ofk, in Eq. (5) implies that a current in the
C(fk)zz [Wik: fir (1= 1) = Wik fk(1=fx)], (3 direction is not degraded by scattering from line imperfec-
k tions oriented in the direction; this is the ultimate reason
whereW,.,, is the transition rate for electron scattering from why oriented line imperfections do not contribute to the elec-
the plane-wave state to the plane-wave state'. trical resistivity in the direction parallel to their orientation.

0163-1829/97/54)/40194)/$10.00 55 4019 © 1997 The American Physical Society



4020 BRIEF REPORTS 55

Substituting Egqs(4) and(5) into the Boltzmann collision  turbed from equilibrium by an applied electric field. Conse-
operator, Eq.3), yields for the scattering by oriented line quently, for the electrical resistivity of a metai, is evalu-
imperfections, ated at the Fermi energyk .

The effects of scattering by isotropic impurities and ori-
2mng , ) ented line imperfections are now combined to derive the
Ca(fi)= h KA 2 5kzvk;5(8_8 )(fiw=f), (6 electrical resistivity. Expanding the steady-state electron dis-
k tribution to the first order in the applied electric field,

whereC, is the collision operator for oriented line imperfec-
tions andny is the number of line imperfections per unit f=fo+fy, (11)
area. Iff,=g(e)k,, whereg depends only on the electron
energy e =#2k?/2m, then it follows from conservation of
energy andz component of the wave vector that

wherefy(g) is the equilibrium Fermi distribution, substitut-
ing in the Boltzmann equation, E€2), and noting that the
equilibrium distributionfy is unchanged by collisions, we
obtain to the first order in the applied electric field,

Cqlg(e)k,]=0, ()
i.e.,g(e)k, is an exact eigenfunction of the collision opera- —eE.v %:Ci(f1)+cd(fl)_ (12)
tor with eigenvalue 0. On the other handfif=g(g)k, with de

a=X ory, then because the scatterifig the xy plang is
isotropic, the net scattering into the st&teanishes, leaving
the net scattering out of the state Equation(6) then gives

Making use of the eigenfunctions of the collision operators
in Egs.(7), (9), and(10), we find that, if the applied electric
field is in thez direction, the solution fof, is

2w ) _ df
Calg(e)ka]=— 5 NeA%p(E)g(e)ky,  a=x oOr Y, fi=reE-v 20 13
®) de
where E=#%2(k;+k3)/2m is the electron energy in they and the electrical resistivity is
plane andp(E) is the two-dimensional density of states per m
unit area (for a single spin direction But the two- pZZ:nezri ; (14)

dimensional density of states is a constant, independent of
bothE andk, . If this were not the case, then different slices whereas, if the applied electric field is in thg plane,

of the Fermi sphere parallel to tkxg plane, having different

values ofE andk, at the Fermi energy, would relax at dif- Ty df,

ferent rates due to scattering by line imperfections, and the fi= - -vd— (15
steady-state electron distribution in an applied electric field it Td &

would be distorted from a uniformly shifted Fermi sphere.gng the electrical resistivity is

Substitutingp(E) =m/2742 in Eq. (8), we obtain

1 1

—+—].
Ti  Td

m
1 XX~ =
Cd[g(«?)ka]=—7—d[g(e)ka], a=xory, (9 Pxx=Pyy= 2

Two theorems are immediate. First, a comparison of Egs.
where 1fy=ngA?m/%3, ie., g(e)k, with a=x ory is an  (14) and (16) proves theorem I: oriented line imperfections
exact eigenfunction of the collision operator with eigenvaluedo not contribute to the electrical resistivity in the direction
—1ry.2 parallel to their orientation. Second, the solutions frin

We treat next isotropic impurity scattering. Surprisingly, Egs.(13) and(15) show that the steady-state electron distri-
the eigenfunctions of the collision operatdyg for scattering  bution is a uniformly shifted Fermi sphef® the first order
by oriented line imperfections exhibited in Eq3) and (9)  in the applied electric field even in the presence of aniso-
are also exact eigenfunctions of the collision oper&tpfor  tropic scattering by oriented line imperfections. Although the
scattering by isotropic impurities. Iff,=g(e)k, with magnitude of the shift of the electron distribution depends
a=X, Y, orz, then the effect of scattering by isotropic im- upon the direction of the applied electric field, the shape of
purities is the shifted distribution remains spherical. But electron-
electron collisions do not affect a uniformly shifted Fermi
sphere, as is evident by making a Galilean transformation to
[9(e)ka], a=Xx,y, orz the frame of reference in which the drift velocity of the elec-
(10)  ftrons vanishes. This proves theorem II: electron-electron
scattering has no effe@o the leading ordermn the electrical
where 1f= [njvo(6)(1—cost)dQ,n; is the density of im-  resistivity caused by oriented line imperfections.
purities,v =#Ak/m is the electron velocityg(6) is the dif- If one were to describéncorrectly the anisotropic scat-
ferential cross section for scattering by an impurity, and thdering caused by oriented line imperfections by postulating
integration is over solid angl@.* Although, in general, the an anisotropic wave-vector-dependent relaxation time
relaxation timer; depends upon electron energy, in a metalry(6), wherery4(6) is a(non-negativefunction of the angle
only the electron distribution near the Fermi surface is per# between the wave vectér and the orientation axis of the

(16)

Cilg(e)ka]=~

Ti(€)
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line imperfections, then it is easily seen that both theoremelectron-electron scattering. This behavior has been observed
proven above are violated. First, such a postulate implies than potassium metal below about 1.5°Contrary to the ex-
an electron excited at the Fermi surface with wave vektor pectation for a free-electron metal, however, the coefficient
is relaxed to equilibrium uniformly over the entire Fermi of the T2 term was found to be sample dependent, varying by
surface by collisions with oriented line imperfections. Thusas much as a factor of 15. Two explanations of this sample
the component of electron velocity parallel to the orientationdependence have been proposed. One attributes the
axis would not be conserved by these collisions, leading to éemperature-dependent term to electron-electron scattering
nonzero contribution by line imperfections to the electricaland electron-phason scattering in the presence of a charge-
resistivity in the direction parallel to their orientation, which density wave; and explains the sample dependence as a con-
contradicts theorem |. To show this explicitly, we substitutesequence of the uncontrolled orientational texture of the
charge—density-wav@-domain distributiorf. The other pos-

Cylfy)=— fa (17) tulates_a wave-ve_ctor-dep_endent_ relaxation tha(d;) due to
74(0) scattering by oriented dislocationghe scattering being
. - caused primarily by the dislocation coyemnd attributes the
in Eq. (12) and solve forf,, obtaining temperature-dependent term to the effect of electron-electron
scattering on the resistivity from oriented dislocations in ad-
7i74(60) dfg dition to the direct effect of electron-electron scattering; the
1:m ‘Vg- (18) sample dependence is then a consequence of variations in the
A dislocation density:?
Evidently, for E=E,z, the electrical conductivity Neutron-scattering experiments on potassium show that a

o,,~],/E, is affected by the scattering from line imperfec- well-annealed, carefully grown single crystal has a mosaic
tions oriented in the direction. Second, it is seen from the block structure, the block size being about 1 mm and the
solution forf, in Eq. (18) that the steady-state electron dis- angular spread being about 0X¥! Dislocations occur
tribution is no longer a uniformly shifted spheft® the first mainly in the small-angle boundaries between adjacent mo-
order in the applied electric fieldbut is distorted from its saic blocks, the average distance between dislocations being
original spherical shape. Since the effect of electron-electrombout 500 lattice parameters and the average dislocation den-
scattering is to restore the spherical shape of the electrosity being less than focm 2. Since the distance between
distribution, electron-electron scattering would modify thedislocations is much larger than the electron Fermi wave-
steady-state electron distribution, thereby increasing the ele¢ength, the dislocations can be treated as independent scat-
trical resistivity caused by oriented line imperfections, whichterers. Since the mosaic block size is about 1 mm, it is likely
contradicts theorem liThe increase of the resistivity when that the dislocations are oriented over a length scale of an
the distribution is modified follows from the variational electron mean free path, which is about 0.1 mm in high-
theorent) Thus the assumption of a wave-vector-dependenpurity potassium at low temperaturgén any case, this as-
relaxation time, which is often a physically appealing ap-sumption is required by the mechanism proposed in Ref. 8.
proximation, leads in this instance to qualitatively incorrectSince large-angle scattering, which is important for the elec-
conclusions, and therefore the exact eigenfunctions of th&ical resistivity, is caused mainly by the dislocation core, a
collision operator must be used. dislocation can be approximated by a short-range line
potential'? Consequently the foregoing theory is applicable
to the mechanism proposed in Ref. 8. It has thus been shown
here, using the exact eigenfunctions of the Boltzmann colli-
. sion operator, that this mechanism vanishes in the leading

At temperatures sufficiently low that electron-phonon o ger, (Even if it were present in the leading order, the dis-
scattering can be neglected, the electrical resistivity of 3qcation density required is at least several orders of magni-
metal is expected to have the form, tude too large, as pointed out by Gugan.

[ll. DISCUSSION

p=po+AT? (19

. . . L ACKNOWLEDGMENT
wherep, is the temperature-independent residual resistivity
due to scattering by impurities, dislocations, and other static We are grateful to the National Science Foundation, Di-
defects; andAT? is the contribution to the resistivity from vision of Materials Research, for support.

IFor an introduction to the Boltzmann transport equation, see, for
example, N. W. Ashcroft and N. D. Mermiolid State Physics
(Saunders College, Philadelphia, 1976

2This expansion is given by an effective range theory in two di-
mensions. For a derivation in three dimensions, see H. A. Bethe,
Phys. Rev.76, 38 (1949.

3This agrees with the result given by E. A. Kaner and E. P. Feld-

man, Fiz. Tverd. TeldLeningrad 10, 3046 (1968 [Sov. Phys.
Solid Statel0, 2401 (1969]. More generally, any distribution
fi can be decomposed into an axially symmetric part, obtained
by averagingf, over the azimuthal angle of the wave veckor
and a nonsymmetric part, which is the remainder. Within the
approximation that the transition rate is a constant, the symmet-
ric and nonsymmetric parts are exact eigenfunctions of the col-



4022 BRIEF REPORTS 55

lision operator with eigenvalues 0 andl/ry, respectively. 8M. Kaveh and N. Wiser, J. Phys. EO, L37 (1980; 12, 935
4R. E. Peierls,Quantum Theory of Solid§Oxford University (1982.

Press, London, 1955 9M. Kaveh and N. Wiser, Adv. Phy&3, 257 (1984.
5J. M. Ziman, Electrons and Phononxford University Press, 1°A. W. Overhauser, Phys. Rev. B 3173(1971), Sec. Il

London, 1960. 11w, Adlhart, G. Stetter, G. Fritsch, and E. Luscher, J. Phys1F
5For a review, see J. Bass, W. P. Pratt, and P. A. Schroeder, Rev. 1347(1981).

Mod. Phys.62, 645 (1990. 12R. A. Brown, Can. J. Phys0, 766 (1981).

M. F. Bishop and W. E. Lawrence, Phys. Rev3R 7009(1985.  °D. Gugan, J. Phys. E2, L173 (1982



