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Generalized Gutzwiller method for n>2 correlated bands:
First-order metal-insulator transitions
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Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany

~Received 20 February 1996; revised manuscript received 27 September 1996!

We have generalized the Gutzwiller method to the cases ofn>2 correlated bands and report studies on a
degenerate two-band model with Hund’s rule type on-site interactions. At half band filling the metal-insulator
transitions are usually of first order.@S0163-1829~97!09804-4#
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I. INTRODUCTION

The Gutzwiller variational method has long been used
the study of ground-state properties of Hubbard-type mod
for correlated fermions.1 The one-band~one orbital! formu-
lation has been extended in various ways to treat, e
antiferromagnetism2,3 or to include additional, uncorrelate
orbitals.4–6 The Gutzwiller ansatz has also been investiga
analytically.7 However, attempts to extend the method
n52 correlated orbitals per site have, so far, led to unsa
factory results.8

In this paper we generalize the Gutzwiller method
cases of arbitrary numbersn of correlated orbitals per site
The extension makes it possible to study the ground-s
properties of realistic models for magnetic 3d transition met-
als and compounds. As a first application, we examin
two-band model with more general on-site interactions a
focus on the metal-insulator transition9 at quarter and half
band fillings.

II. GENERALIZATION OF THE GUTZWILLER METHOD

For one band, the Gutzwiller variational wave functio
reads as

uC&[gD̂uC0&5)
s51

L

@12~12g!D̂s#uC0&, ~1!

whereuC0& is an uncorrelated wave function on a lattice
L sites and the operatorsD̂s[n̂s↑n̂s↓ measure the double
occupancy of sitess. The variational parameterg will reduce
the total numberD[M̄12 of doubly occupied sites and ma
vary betweeng51 (M̄125M1M2 /L) and g50 (M̄1250).
HereM1(M2) are the gross numbers of spin up~down! sites.
The norm of Eq.~1! is approximated by10

^CuC&5P1P2(
D

g2DND~L,M1 ,M2!, ~2!

with the probabilitiesPk5Mk!(L2Mk)!/L! and the combi-
natorial weight factors

ND[
L!

M̄0! M̄1! M̄2! M̄12!
. ~3!
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Here we have introduced net numbers of occupied s
M̄k5Mk2M̄12 and of empty sitesM̄05(L2M̄12M̄2

2M̄12). In the thermodynamic limit the sum of Eq.~2! is
replaced by its largest term, leading to the relation

g25m̄0m̄12/~m̄1m̄2! ~4!

with m̄05M̄0 /L, etc. Also the expectation values

^Cuĉss
1 ĉtsuC&/^CuC&5qs^ĉss

1 ĉts&0 , sÞt, ~5!

are found by combinatorics. Here the ‘‘loss factors’’

qk[
1

mk~12mk!
@Am̄km̄01Am̄klm̄l #

2 ~6!

with k,l51,2 andkÞ l represent the step sizes of the m
mentum distribution functions at the Fermi level (qk51 for
g51).

When we extend the Gutzwiller method to cases
n>2 correlated orbitals per site, the number of different s
occupanciesJn54n will increase enormously. Forn52
and using the notationa↑5̂1, a↓5̂2, b↑5̂3, b↓5̂4 the 16
occupancies are ~i! empty (M̄ 0); ~ii ! four single
(M̄k ,k51, . . . ,4); ~iii ! six double (M̄ kl ,k,l51, . . . ,4;k
Þ l ); ~iv! four triple (M̄ klp); and ~v! quadruple (M̄1234). In
general, theJn occupancies are labeled by subscriptsI j ,
which are assigned to the multiple orbital-spin subscripts

$I 1 ;I 2 , . . . ,I 2n11 ;I 2n12 , . . . ;I ~n11!2, . . . ; . . . ;I Jn%

5$~0!;~1!, . . . ,~2n!;~12!, . . . ;~123!, . . . ; . . . ;

~1, . . . 2n!%. ~7!

The net and gross occupancies are measured by approp
operators, e.g.,

M̄
ˆ

123[(
s
n̂s↑

~a!n̂s↓
~a!n̂s↑

~b!~12n̂s↓
~b!!5M̂1232M̂1234. ~8!

There are nowKn5Jn2(2n11) multiple occupancies so
that the generalized Gutzwiller operator reads as

gD̂→ )
j52n12

Jn

~gI j !
M̂̄ I j. ~9!

Note that in contrast to Ref. 8, we found it essential to
cludeall multiple occupancies and to use net multiple occ
pancy operators. The norm is given by
4011 © 1997 The American Physical Society



y

f

f

s

an
rb

sit

i
l-

-

e of

nd

c, or
pli-
s or
-

ion
. 6.

ith
-
us-
ts

-

ed

r

e.
ve

n

d

-

4012 55BRIEF REPORTS
^CuC&5)
k51

n

Pk(
D̃

ND̃ )
j52n12

Jn

~gI j !
2M̄ I j ~10!

with thePk factors of Eq.~2!, and

ND̃[L! F)
j51

Jn

M̄ I j
! G21

. ~11!

The sum of Eq.~10! includes all sets of multiple occupanc
configurationsD̃5$M̄ I j

% with j5(2n12), . . . ,Jn . Replac-

ing the sum by its largest term leads to theKn relations

gI j
25)

i51

Jn

~M̄ I i
!x i j with x i j5

]M̄ I i

]M̄ I j

. ~12!

Keeping the gross numbersmk fixed, we get the sequence o
equations

gkl
2 5m̄0m̄kl /~m̄km̄l !,

gklp
2 5m̄0m̄klp/~m̄km̄lm̄p!,

. . . ,

gk . . .q
2 5~m̄0!

~g21!m̄k . . .q /~m̄k . . . m̄q!, ~13!

whereg is the number of subscripts inm̄k•••q . For each of
the generalized ‘‘loss factors’’qkl the evaluation of 42n21

terms is required. Nevertheless, the resulting equations
theqkl factors look remarkably simple:

qkk5
1

mk~12mk! FAm̄km̄01( 8
l

Am̄klm̄l1( 9
l ,p

Am̄klpm̄lp

1 (-
l ,p,q

Am̄klpqm̄lpq1•••G2, ~14a!

qkl
2 5qkkqll . ~14b!

Here the summation primes excludek5 l , etc. Obviously
Eqs.~14! are a straightforward generalization of Eq.~6! and
of results obtained in Ref. 4. Simpler forms of theqkk equa-
tions are obtained, when certain multiple occupancies are
to zero, as was assumed in Ref. 11. Recently, Eqs.~14! have
also been found by Okabe.12

Using the generalized Gutzwiller wave function, we c
now investigate extensions of the Hubbard model for a
trary numbers of orbitalsa,b:

Ĥ5 (
a,b,s,t,s

Tst
abâss

1 b̂ ts1 ( 8
a,b,s,s,s8

Uabn̂ss
a n̂ss8

b

1 ( 8
a,b,s,s,s8

Jabâss
1 b̂ss8

1 âss8b̂ss , ~15!

which include, apart from general hopping terms, the on-
interactionU, both orbital-diagonal (Uaa) and off-diagonal
(Uab,aÞb), and the on-site or Hund’s rule exchangeJab.
The primes exclude nonphysical orbital-spin combinations
the respectiveU andJ summations. For the expectation va
ues of the on-site exchange only the terms
or

et

i-

e

n

2 ( 8
a,b,s

Jabn̂ss
a n̂ss

b ~16!

survive, i.e., all spin fluctuations are ignored.
By assumingJab,Uab,Uaa, it is possible to achieve

the filling of incompleted shells in the atomic limit accord
ing to Hund’s rules. Thus, the Hamiltonian of Eq.~15! rep-
resents realistic models for the valence electron structur
both 3d transition metal elements and of magnetic 3d oxides
and halides, provided that a sufficient number of orbitals a
sites are included. TheN-particle wave functionsuC&,uC0&
can be chosen to represent paramagnetic, ferromagneti
antiferromagnetic states, and in principle, even more com
cated cases, such as orbital ordering. Also, ligand orbital
s,p type orbitals on thed sites may be incorporated. How
ever, any additional complexity of the wave functionsuC0&
leads to further variational parameters inuC0& representing
effective orbital energy shifts or effective hoppings, etc.4 The
problem of orbital density depletion caused by the reduct
of multiple occupancies can be treated in analogy to Ref

III. TWO-BAND MODEL WITH ORBITAL DEGENERACY

In the following, we investigate then52 Hamiltonian,
i.e., we assume one atomic site on a simple cubic lattice w
two, degenerated(eg) orbitals, and we study only paramag
netic solutions. The single particle bands are constructed
ing realistic 1NN and 2NN hopping matrix elemen
Tdds(1NN)51 eV, Tdds(2NN)50.25 eV, and
Tddd : Tddp : Tdds50.1:20.3:1. There are three interac
tion parametersUaa[U, Uab[U8, andJab[J, which, in
the limit of vanishing configuration interaction, are relat
by13

J5
1

2
~U2U8!. ~17!

For the paramagnetic case we havemk[m, m̄klp[t,
m1234[ f , m̄125m̄34[dd , m̄145m̄23[do , and m̄135m̄24
[dt . All qkl are equal,

q5
1

m~12m!
@~Add1Ado1Adt!~Am̄1At !

1Am̄0m̄1At f #2. ~18!

The energy function fore/a[4m ~number of electrons pe
atom! is

E52qe~m!12Udd12U8do12~U82J!dt

1~2U14U822J!~2t1 f !. ~19!

Here 2e(m) is the kinetic energy of the uncorrelated cas
E has been minimized numerically with respect to the fi
variational parametersdd , do , dt , t, f and has been
studied at severalm values and for various sets of interactio
parametersU andu8[U8/U, keeping 2J5U2U8 accord-
ing to Eq.~17!.

There are twom regions of interest. The first is aroun
m50.25 ~or m50.75), the other aroundm50.5. For these
integer fillings (e/a51,2,3) we observe metal-insulator~MI !
transitions in the (U,u8) plane. However, there are big dif
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ferences between the two cases, mainly concerning
shapes of the phase diagrams in the (U,u8) plane and the
order of the MI transitions.

Form50.25, the MI phase diagram is shown in Fig. 1~a!.
Foru851, we findUC'13.8 in agreement with Ref. 11. Fo
u8.1/3 (U8.J) the system will avoid all multiple occupan
cies in the limitU→`, so that there is always a MI trans
tion. This transition is of second order inq, very similar to
that of the one-band model.9 Near any critical values
(UC ,uC8 ), q behaves likeq'q0(12U/UC), when we ap-
proachUC from the metallic side, i.e., the effective ma
m*5me /q diverges with (12U/UC)

21.9,10 For u8<1/3
(U8<J) the system is always metallic.

In contrast, the MI transition form50.5 is very different
@see Fig. 1~a!#. The transition is generally of first order i
q. This means that theq values change discontinuously
critical values (UC ,uC8 ) from a metal~typically q'0.6) to
an insulator (q50) @see Fig. 1~b!#. Only at the point
u851 (i.e., UC5UC8 ) the MI transition is second order i
q. Note that apart from the pointu851 the ground-state
energyE varies at the transition in such a way that its fi
derivatives with respect to all relevant system parame
change discontinuously. In particular we observe a finite d
continuity of the chemical potentialm(m)5]E(m)/]m at
m50.5 for all u8,1 if U exceedsUC by any infinitesimal
amount.

In the insulating region we havet5 f50, and because o
particle hole symmetry,m̄05m̄50. Foru8,1 only the spin
triplet occupancydt prevails:dt50.5, dd5do50. The case
u851 is special, as there is no preference for one of the th
double occupancies. We believe, because of this kind of f
tration the metallic phase extends so far out nearu8&1.

In the metallic regime all multiple occupancies are no
zero ~see Fig. 2!. For u8,1, dt increases withU, typically

FIG. 1. ~a! Phase diagrams in the (U,u8) plane of metallic and
insulating phases form50.25 ~dashed line, LH scaleU1) and for
m50.5 ~solid line, RH scaleU2). The lines separate the metall
phases ~small U) from the insulating phases~large U). For
m50.5 the insulating phase is a triplet state (dt50.5) for u8,1,
and a singlet state (dd50.5) foru8.1. ~b! Loss factorqC at the MI
transition points (UC ,uC8 ).
he

t
rs
-

e
s-

-

up todt'0.25. Then, atUC , dt jumps up to 0.5, representin
a low-to-high-spin transition. For certain band filling valu
close tom50.5, the first order step is still present in th
q(U,u8) and dt(U,u8) curves. Further away fromm50.5,
the curves smoothen, yet still vary rapidly in the range
critical parameters (UC ,uC8 ) as shown in Fig. 2. A typical
phase diagram in the (U,u8) plane of this ‘‘good-to-bad’’
metal or low-to-high-spin transition is shown in Fig. 3.

Note that for our evaluation a homogeneous phase
assumed. However, in the vicinity of the low-to-high-sp
transition, the homogeneous phase is unstable against p
separation. As a consequence there exists a sur
mps(U,u8) in the space of (U,u8,m) which divides the ho-
mogeneous from the separated region~see Fig. 3!. At any
point (U,u8,m) with mps,m,0.5 ~or mps8 .m.0.5), the
system breaks up into one part with densitym150.5 and
another one withm25mps(mps8 ). It is an open question
however, whether the phase separation is an artefac
Hubbard-type models, because of, e.g., the neglect of l
range Coulomb interaction.

The first order behavior of the MI transition form50.5 is
caused by the competition of two different energy minim
now possible due to the much larger space of variatio
parameters. We expect that the first order nature will surv

FIG. 2. Double (dt ,dd ,do), triple (t), and quadruple (f ) occu-
pancies form50.5 (e/a52) as a function ofU, with u850.8
~solid lines!. Also shown aredt(U) curves form50.49, 0.48, and
0.47, respectively, indicating the ‘‘good-to-bad’’ metal transitio
away fromm50.5.

FIG. 3. Phase diagrams in the (U,m) plane, withu850.8: Lines
dividing the ‘‘good metal’’ from the ‘‘bad metal’’ phases are ind
cated bymgb , lines dividing the homogeneous from the phase se
rated regions are denoted bymps . For the part ofmgb given by
dashed lines, the discontinuity inq(U,u8) has disappeared; her
inflection points are used to determine the phase boundary.
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when we include antiferromagnetic states in the minimi
tion. First order, low-to-high spin transitions are also o
served for two-band, itinerant ferromagnetic states.14 In fact,
we suspect that first order changes in the electronic struc
of incomplete 3d shells may drive many phase transitions
magnetic 3d compounds. It should be interesting to reexa
ine the MI phase transitions observed, e.g., for NiS, NiJ2, or
RENiO3 ~Refs. 15–17! with respect to their first order be
havior.

Very recently, a dynamical mean field study about the
transition in a degenerate (n52) Hubbard model has bee
presented.18 The authors only consider the casesJ50 and/or
m<0.25 ~in our notation!. In aggreement with our results
they find a qualitative feature, which is very similar to th
n51 case. Nevertheless, their more general remark tha
nature of the Mott transition is not qualitatively changed
orbital degeneracy is not supported by our results, conc
ing the casesJ.0, m'0.5.
-
-

re
f
-

I
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IV. CONCLUDING REMARKS

In conclusion, we have extended the Gutzwiller method
arbitrary numbersn>2 of correlated orbitals per site an
have reported studies on the simplestn52 model. We find a
wealth of new features, not present in then51 models, such
as first order metal-insulator transitions or low-to-high sp
transitions. Numerical studies appear to be feasible even
n55 realistic models of 3d transition metals and com
pounds.

ACKNOWLEDGMENTS

This work has been partly supported by the Europe
Union Human Capital and Mobility program, Project N
CHRX-CT 93-0332.
v,

M.

Ch.
1M. C. Gutzwiller, Phys. Rev. Lett.10, 159 ~1963!; Phys. Rev.
137, A1726 ~1965!.

2T. Ogawa, K. Kanda, and T. Matsubara, Prog. Theor. Phys.53,
614 ~1975!; F. Takano and M. Uchinami,ibid. 53, 1267~1975!;
J. Florencio and K. A. Chao, Phys. Rev. B14, 3121~1976!.

3W. Metzner, Z. Phys. Condens. Matter77, 253 ~1989!; P. Faze-
kas, B. Menge, and E. Mu¨ller-Hartmann,ibid. 78, 69 ~1990!.

4C. M. Varma, W. Weber, and L. J. Randall, Phys. Rev. B33,
1015 ~1985!.

5T. M. Rice and K. Ueda, Phys. Rev. B34, 6420~1986!.
6V. Z. Vulovic and E. Abrahams, Phys. Rev. B36, 2614~1987!.
7W. Metzner and D. Vollhardt, Phys. Rev. B37, 7382~1988!.
8K. A. Chao and M. C. Gutzwiller, J. Appl. Phys.42, 1420~1971!;
K. A. Chao, Phys. Rev. B4, 4034~1971!; 8, 1088~1973!.

9W. F. Brinkmann and T. M. Rice, Phys. Rev. B2, 4302~1970!.
10D. Vollhardt, Rev. Mod. Phys.56, 99 ~1984!.
11J. P. Lu, Phys. Rev. B49, 5687~1994!, and unpublished.
12T. Okabe, J. Phys. Soc. Jpn.65, 1056~1996!.
13S. Sugano, Y. Tanabe, and H. Kamimura, Pure Appl. Phys.33, 38

~1970!.
14J. Bünemann and W. Weber~unpublished!.
15M. P. Pasternak, R. D. Taylor, A. Chen, C. Meade, L. M. Falico

A. Giesekus, R. Jeanloz, and P. Y. Yu, Phys. Rev. Lett.65, 790
~1990!.

16J. T. Sparks and T. Komoto, Phys. Lett.25A, 398 ~1967!; A.
Fujimori, K. Terakura, M. Taniguchi, S. Ogawa, S. Suga,
Matoba, and S. Anzai, Phys. Rev. B37, 3109~1988!.

17J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and
Niedermayer, Phys. Rev. B45, 8209~1992!.

18H. Kajueter and G. Kotliar~unpublished!.


