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Generalized Gutzwiller method for n=2 correlated bands:
First-order metal-insulator transitions
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We have generalized the Gutzwiller method to the cases=a? correlated bands and report studies on a
degenerate two-band model with Hund’s rule type on-site interactions. At half band filling the metal-insulator
transitions are usually of first orddiS0163-18207)09804-4

I. INTRODUCTION Here we have introduced net numbers of occupied sites
M =M, —M,, and of empty sitesMy=(L—M;—M,
The Gutzwiller variational method has long been used for—M ). In the thermodynamic limit the sum of E@) is
the study of ground-state properties of Hubbard-type modelgeplaced by its largest term, leading to the relation
for correlated fermiond.The one-bandone orbita) formu- P —
lation has been extended in various ways to treat, e.g., g°=momyp/(mymy) (4)
anti_ferran;agnetisﬁf’ or to include additional, uncorrelated \ith m;=M,/L, etc. Also the expectation values
orbitals” ™" The Gutzwiller ansatz has also been investigated
analytically’ However, attempts to extend the method to (W[CL Cio|WY(P|W)=0q,(CL Ci)o, S#E, (5
n=2 correlated orbitals per site have, so far, led to unsatis
factory result$
In this paper we generalize the Gutzwiller method to 1 -
cases of arbitrary numbers of correlated orbitals per site. Ak m[ Vmymo -+ ymym; 1 ®
The extension makes it possible to study the ground-state .
properties of realistic models for magnetid &ansition met-  With k,1=1,2 andk+1 represent the step sizes of the mo-
als and compounds. As a first application, we examine &nentum distribution functions at the Fermi levej & 1 for
two-band model with more general on-site interactions an@=1).

focus on the metal-insulator transittat quarter and half ~ When we extend the Gutzwiller method to cases of
band fillings. n=2 correlated orbitals per site, the number of different site

occupanciesJ,=4" will increase enormously. Fon=2

are found by combinatorics. Here the “loss factors”

Il. GENERALIZATION OF THE GUTZWILLER METHOD and using the notatioa =1,a| =2, bT=3,b| =4 the 16
occupancies are(i) empty (My); (i) four single
For one band, the Gutzwiller variational wave function (\, k=1,... 4); (i) six double M, kI=1,... 4k

reads as #1); (iv) four triple (Myp); and (v) quadruple ¥;234. In

L general, theJ, occupancies are labeled by subscripts
5 - which are assigned to the multiple orbital-spin subscripts b
[W)=g°1vo)=Il [1-1-gDJI¥e). @ X P P P
{Il;IZ! P a|2n+1;|2n+21 P ;I(n+1)2, ey e ;I‘]n}

where|¥,) is an uncorrelated wave function on a lattice of —{(0);(1) (2n):(12) (123) ) }
L sites and the operato® =N s, measure the double noo R o
occupancy of sites. The variational parametgrwill reduce (1,...2n)}. @)
the total numbeD =M, of doubly occupied sites and may The net and gross occupancies are measured by appropriate
vary betweerg=1 (M,=M;M,/L) andg=0 (M,,=0). operators, e.g.,
HereM(M,) are the gross numbers of spin (gpwn) sites.

The norm of Eq(1) is approximated N A@a@a - 9 '
a(d) PP by |V|123=ES ”(s?)”(s?”(s?)(l_n(sﬁ))):M123_M1234- 8
(W|W)=P,P,>, g?°Np(L,M;,M,), (20  There are nowK,=J,—(2n+1) multiple occupancies so
D that the generalized Gutzwiller operator reads as
. e . J
with the probabilities?, =M !(L—M)!/L! and the combi- 5 . v
natorial weight factors g _>J.:12_n[+2 (glj) li ©
LI Note that in contrast to Ref. 8, we found it essential to in-
Np= —————. (3) cludeall multiple occupancies and to use net multiple occu-
Mo!M{IM5IM )l pancy operators. The norm is given by
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" on R ! Ay A
(wy=I1 P Ng 1 (a)™ @0 - 2" 3PhgAL, (16
k=1 D j=2n+2 ! a,B,0
with the P, factors of Eq.(2), and survive, i.e., all spin fluctuations are ignored.

, By assumingJ®?<U*f<U*“ it is possible to achieve
T— the filling of incompleted shells in the atomic limit accord-
]1:[1 Mlj! 11 ing to Hund’s rules. Thus, the Hamiltonian of E4.5) rep-
resents realistic models for the valence electron structure of
The sum of Eq(10) includes all sets of multiple occupancy both 3d transition metal elements and of magnetit &ides
configurationsDz{M,j} with j=(2n+2),... J,. Replac- and halides, provided that a sufficient number of orbitals and

-1

Np=L!

ing the sum by its largest term leads to #g relations sites are included. ThH-particle wave function$¥),|¥o)
o can be chosen to represent paramagnetic, ferromagnetic, or
In oM, antiferromagnetic states, and in principle, even more compli-
g?=11 (M) with Xij = (120  cated cases, such as orbital ordering. Also, ligand orbitals or
b= ' IM

1= 1 s,p type orbitals on theal sites may be incorporated. How-
ever, any additional complexity of the wave functidnis,)

Keeping the gross numbens, fixed, we get the sequence of leads to further variational parameters|ifiy) representing

equations effective orbital energy shifts or effective hoppings, £Tthe
gﬁzﬁoﬁd/(ﬁkﬂ), probler_n of orbital density depletion cauged by the reduction
of multiple occupancies can be treated in analogy to Ref. 6.
D —
Jicip = MoMyp/ (Mymymy),
[l. TWO-BAND MODEL WITH ORBITAL DEGENERACY
e In the following, we investigate the=2 Hamiltonian,
— (y— 1) —  — i.e., we assume one atomic site on a simple cubic lattice with
O%..q= (M) VM _g/(Mc...my), (13 P

c two, degeneratel(eg) orbitals, and we study only paramag-
where y is the number of subscripts m...,. For each of netic solutions. The single particle bands are constructed us-
the generalized “loss factors¢,, the evaluation of -1  ing realistc 1NN and 2NN hopping matrix elements
terms is required. Nevertheless, the resulting equations foFgq,(1NN)=1 eV, Ty4(2NN)=0.25 eV, and

the g, factors look remarkably simple: Tads © Tdade - Tdde=0.1:—0.3:1. There are three interac-
tion parameterd)“*=U, U*$=U’, andJ**=J, which, in

1 S ) —_—— y —_—— the limit of vanishing configuration interaction, are related
Vmamo+ 2 Jmgmi+ > VMypMip by'3 g g
| I,p

W (= my)

2

1
+ Em mklpqmlpq+"' (14@ JZE(U—U ) (17)

l.p.q

For the paramagnetic case we havg=m, my,=t,
- the paramagnetic case we _Miap=t
Qi = ki - (14b  mpa~=f, mp=mg=dy, Mypu=my=d,, and myz=myy,

. . . =d,. All are equal,
Here the summation primes excludte=1, etc. Obviously ! Aui d

Eqgs.(14) are a straightforward generalization of Ef) and 1 _

of results obtained in Ref. 4. Simpler forms of thg, equa- q= m[( Vdg+ Vot Vdo) (Vm+ )

tions are obtained, when certain multiple occupancies are set

to zero, as was assumed in Ref. 11. Recently, Bigg.have +mem+ Vtf 2. (18)

also been found by Okaldé. . B
Using the generalized Gutzwiller wave function, we can'Ne energy function foe/a=4m (number of electrons per
now investigate extensions of the Hubbard model for arbiatom is

trary numbers of orbitals, 8: E=2q;(m)+2Udd+2U’do+2(U'—J)dt

H= E T?f&;fo’tﬁ Z’ U“Bﬁé‘,,ﬁf(,/ +(2U+4U'—-2J)(2t+f). (19

!
a,B,s,0,0

Here 2¢(m) is the kinetic energy of the uncorrelated case.
, aBrt Bt oA 7 E has been minimized numerically with respect to the five
+ 2 , I s, By Aso' Bso s (19 variational parametersly, d,, d;, t, f and has been
wh80.0 studied at severah values and for various sets of interaction
which include, apart from general hopping terms, the on-sitgparameterd) andu’=U'/U, keeping =U—-U" accord-
interactionU, both orbital-diagonal **) and off-diagonal ing to Eq.(17).
(U%P,a+ B), and the on-site or Hund’s rule exchandf. There are twam regions of interest. The first is around
The primes exclude nonphysical orbital-spin combinations irm=0.25 (or m=0.75), the other arounth=0.5. For these
the respectivéJ andJ summations. For the expectation val- integer fillings €/a=1,2,3) we observe metal-insulatdvl)
ues of the on-site exchange only the terms transitions in the J,u’) plane. However, there are big dif-
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occupancies

0 ;
osl ()

FIG. 2. Double ¢,,dy,d,), triple (t), and quadruplef() occu-
o4 r pancies form=0.5 (e/a=2) as a function ofU, with u’'=0.8
(solid lineg. Also shown ared,(U) curves form=0.49, 0.48, and

0.21 . R -
0.47, respectively, indicating the “good-to-bad” metal transition
0-%_0 2 o4 o6 08 10 away fromm=0.5.

u

up tod;~0.25. Then, al¢, d; jumps up to 0.5, representing
~ FIG. 1. (a) Phase diagrams in theJ(u’) plane of metallic and  a low-to-high-spin transition. For certain band filling values
insulating phases fom=0.25 (dashed line, LH scal&);) and for  close tom=0.5, the first order step is still present in the
m=0.5 (solid line, RH scaldU,). The lines separate the metallic g(U,u’) andd,(U,u’") curves. Further away frorm=0.5,
phagess(;ma}" UI) t.fromhthe 'InSUIta'tITgt pthiq?:eéséag?e]‘ U). F‘l” the curves smoothen, yet still vary rapidly in the range of
m=0.5 the insulating phase is a triplet stath£0.5) foru'<1,  criscal parametersc,us.) as shown in Fig. 2. A typical
and e.l.singlet. stated(;=0.5) foru’>1. (b) Loss factom at the Ml phase giagram in :SICeu E),) plane of this ,ngod_to_)g;d,,
transition points U, Uc). metal or low-to-high-spin transition is shown in Fig. 3.

ferences between the two cases, mainly concerning the Note that for our evaluation a homogeneous phase was
shapes of the phase diagrams in the ') plane and the assumed. However, in the vicinity of the low-to-high-spin
order of the MI transitions. transition, the homogeneous phase is unstable against phase
For m=0.25, the Ml phase diagram is shown in Figa)l separation.. As a consequence thgre g)fists a surface
Foru’=1, we findU~13.8 in agreement with Ref. 11. For Mps(U,u’) in the space of Y,u’,m) which divides the ho-
u’>1/3 (U’>J) the system will avoid all multiple occupan- Mogeneous from the separated regieee Fig. 3 At any
cies in the limitU—c, so that there is always a Ml transi- Point (U,u’,m) with m,s<m<0.5 (or myc>m>0.5), the
tion. This transition is of second order @) very similar to ~ System breaks up into one part with density=0.5 and
that of the one-band mod®l.Near any critical values another one withm,=mgg(mgJ). It is an open question,
(Uc,ub), q behaves likeq~go(1—U/Ug), when we ap- however, whether the phase separation is an artefact of
proachU¢ from the metallic side, i.e., the effective mass Hubbard-type models, because of, e.g., the neglect of long
m*=m./q diverges with (+U/Uc) 1% For u'<1/3  range Coulomb interaction. N _
(U’'<J) the system is always metallic. The first order behaylpr of the Ml transition fmr=0.5'|s.
In contrast, the MI transition fom=0.5 is very different ~caused by the competition of two different energy minima,
[see Fig. 1a)]. The transition is generally of first order in NOw possible due to the much larger space of variational
g. This means that thg values change discontinuously at Parameters. We expect that the first order nature will survive

critical values Uc,uc) from a metal(typically g~0.6) to

an insulator =0) [see Fig. 1b)]. Only at the point 124
u'=1(i.e.,, Uc=U¢) the MI transition is second order in ]
g. Note that apart from the point’=1 the ground-state 114
energyE varies at the transition in such a way that its first U
derivatives with respect to all relevant system parameters

change discontinuously. In particular we observe a finite dis- 101
continuity of the chemical potentigk(m)=JE(m)/om at

m=0.5 for allu’<1 if U exceeddJ. by any infinitesimal 91

amount.

In the insulating region we have=f=0, and because of
particle hole symmetryn,=m=0. Foru’<1 only the spin
triplet occupancyd, prevails:d;=0.5, d4=d,=0. The case FIG. 3. Phase diagrams in thel (m) plane, withu’ =0.8: Lines
u’=1is special, as there is no preference for one of the thregividing the “good metal” from the “bad metal” phases are indi-
double occupancies. We believe, because of this kind of fruscated bymyy,, lines dividing the homogeneous from the phase sepa-
tration the metallic phase extends so far out n€as1. rated regions are denoted Iny,s. For the part ofmy, given by

In the metallic regime all multiple occupancies are non-dashed lines, the discontinuity ig(U,u’) has disappeared; here
zero(see Fig. 2 Foru’<1, d, increases withJ, typically inflection points are used to determine the phase boundary.
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when we include antiferromagnetic states in the minimiza- IV. CONCLUDING REMARKS

tion. First order, low-to-high spin transitions are also ob-

served for two-band, itinerant ferromagnetic stdfds fact, In conclusion, we have extended the Gutzwiller method to
we suspect that first order changes in the electronic structurgrbitrary numbersn=2 of correlated orbitals per site and
of incomplete & shells may drive many phase transitions of have reported studies on the simplest2 model. We find a
magnetic 3l compounds. It should be interesting to reexam-wealth of new features, not present in tive 1 models, such

ine the Ml phase transitions observed, e.g., for NiSeNW 35 first order metal-insulator transitions or low-to-high spin
RENIO; (Refs. 15-17 with respect to their first order be- (ransitions. Numerical studies appear to be feasible even for

havior. _ _ n=5 realistic models of 8 transition metals and com-
Very recently, a dynamical mean field study about the M'pounds

transition in a degeneraten€2) Hubbard model has been
presented® The authors only consider the caskes0 and/or
m=0.25 (in our notation. In aggreement with our results,
they find a qualitative feature, which is very similar to the
n=1 case. Nevertheless, their more general remark that the _

nature of the Mott transition is not qualitatively changed by This work has been partly supported by the European
orbital degeneracy is not supported by our results, concerrJnion Human Capital and Mobility program, Project No.
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