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Memory-function approach to the Hall constant in strongly correlated electron systems
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The anomalous properties of the Hall constant in the normal state ofThigliperconductors are investi-
gated within the single-band Hubbard model. We argue that the Mori theory is the appropriate formalism to
address the Hall constant, since it aims directly at resistivities rather than conductivities. More specifically, the
frequency-dependent Hall constant decomposes into its infinite frequency limit and a memory-function con-
tribution. The latter naturally introduces a second time scale that is identified with the spinon relaxation time
of Anderson within thet-J model. This provides us with a phenomenological understanding of the interplay
between the frequency and temperature dependence of the Hall constant for frequencies below the Mott-
Hubbard gap. As a first step, both termdRpf are calculated perturbatively h and on an infinite dimensional
lattice, whereU is the correlation strength. If we alloW to be of the order of twice the bare bandwidth, the
memory-function contribution causes the Hall constant to change sign as a function of doping and to decrease
as a function of temperature. In the strong correlation regiief (t is the hopping amplitudethe memory
function is calculated via its moments and shown to project out the high-energylscaitds causes the Hall
constant to decrease by a factorf{ 8)/2 (5 indicates doping when the frequency is lowered from infinity to
values within the Mott-Hubbard gap. Finally, it is outlined how the Hall constant may be calculated in the
low-frequency regime[S0163-18287)03706-5

[. INTRODUCTION electrons on a two-dimensional square lattice, the Hall con-
stant changes sign at half filling as the Fermi surface changes
Since the discovery of higli; superconductors ten years its shape from electronlike to holelike. In contrast, the Hub-
ago, the anomalous properties of their normal state haveard model in the largé& limit exhibits an additional sign
been the subject of intensive theoretical work. It is widelychange below half filling which is purely due to
believed that a model of strongly correlated electrons alreadgorrelations:* In addition, in the limits—0, i.e., near half
captures the basic ingredients of the relevant physics. Ifilling, the Hall constant diverges according to a 1aw.>*
these models, the correlations are represented by a stroridnese properties are supposed to account for the doping de-
local interactionU. However, a coherent description al  pendence observed in, e.g., 13S5Cu0,.>® As for the
anomalous properties on the basis of such a model is stitnomalous temperature dependence of the Hall constant, the
lacking. The main problem is that exact calculations are genmost striking features are: firstly, a strong decrease which is,
erally feasible only in a small parameter regime and thain some cases, as fast ag £/secondly, the lack of satura-
most approximation schemes fail in capturiaj aspects tion above a fraction of the Debye temperature, typically
which are supposed to be important. ~0.2—-0.4T,"8in contrast to what is expected in a Fermi-
The Hall constant is especially hard to describe. One realiquid description with weak electron-phonon couplihgnd
son for this is that the Hall conductivity contains a three-thirdly, a quadratic dependence of the inverse Hall angle on
point correlation function after it has been expanded to firstemperature for not too large doping levéf€:*In a Fermi
order in the magnetic field. Then, the calculation of vertexliquid, the temperature dependence arises from an aniso-
corrections is a tough problem which, to our knowledge, hasropic relaxation time:® If we assume scattering off phonons
been attempted only in the case of a Fermi liquid and tdo be the main inelastic process, a temperature dependence is
leading order in the quasiparticle dampiiyloreover, since conceivable only below a certain temperature scale: Then, a
the frequency-dependent Hall constant is given as a quotiesufficiently anisotropic Fermi surface causes the scattering to
of conductivities, the limitw— 0 may be precarious due to be confined to those regions of the Fermi surface, where
resonances like the Drude peak. A more technical peculiaritgmall momentum transfers are possible. For high enough
of the Hall effect is due to the fact that the magnetic field istemperatures, this kinematic restriction is lifted and the scat-
introduced via a vector potential which, formally, breaks thetering becomes isotropic, thus leading to a cancellation of the
symmetry with respect to lattice translations. But even in theelaxation time. The crossover temperature is given by
simplest case of a Bloch-Boltzmann description, the tem-—0.2—0.4T. The universally observed decrease of the Hall
perature dependence of the Hall constant may be difficult t@onstant as a function of temperature in almost all high-
reproduce, because the relaxation time cancels once it is asempounds up to temperatures clearly beyond this tempera-
sumed to be independent of momentum. ture scale must therefore be due to electronic correlations as
The measurements of the Hall constant in high- well.
materialé reveal two major anomalous dependences: on tem- In the following, we investigate the Hall effect on the
perature and on doping. Both cannot be understood withitbasis of the simplest model of strongly correlated electrons,
conventional band theory. For noninteracting tight-bindingnamely the single-band Hubbard model on a hypercubic lat-
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tice in d dimensions with nearest-neighbor hopping. This A=T+V )
model, along with Mori’s formalism used to represent the '
Hall constant, is introduced in Sec. Il. In this theory, the Hall

constant is given as the sum of its infinite frequency limit T=—t 2 Pijcif,cjg, 2

(Ry) and a memory-function contribution. The former term UM

was considered by Shastry, Shraiman, and Sth@hr em-

phasis is on the memory-function term which represents the v=uU> ﬁiTﬁiL , (3)
I

deviation of the Hall constant from;; for finite frequencies

and thus cannot be neglected when considering the case ofh . . . .

zero frequency. One advantage of our representation of th¥nere the sum in the hopping termis restricted to nearest

Hall constant is that we may dodge the issue of coping wittheighbors and/ is the Hubbard repulsion. The Peierls phase

a quotient of conductivities as opposed to the usual apfactor P~=exp(ief} ,’f\(t,F)dF) guarantees the gauge
C

proaches. This is why the Hall constant at low frequencieSnyarian 33 and the sign of the charge is chosen to be
becomes less sensitive to the detailed resonance structure @fgative. Since only nearest-neighbor hops are taken into

the conductivities. In Sec. Ill, this advantage is exploited foraccount, we may approximate

the range of weak to intermediate correlation strengths by

calculating the memory function to second order in the Hub- P. =~ @l€AR)(R~R) ()
bard interaction and to first order in the magnetic field. Ex- Y ’

pansion with respect to the magnetic field leads to a decomyhereR; denotes the lattice vector to siteThe vector po-

position of the memory function into two terms, namely atential decomposes into two terms describing the electric and
two-point and a three-point correlation function. Both contri- magnetic field, respectively:

butions are evaluated exactly in infinite spatial dimensions.

Our results indicate that the memory-function term is impor- At,r )=A%(t)+Amagr ) | (5)
tant. Only then, a precursor effect of the sign change of the

Hall constant as a function of doping appears even in pertur- R 9.

bation theory. Moreover, when extrapolating our results to E(t)=— =A°%(1) , (6)

U values of the order of twice the bare bandwitith we get Jt

most of the qualitative features observed in, e.g., . .

La,_,Sr,CuQ,: the sign change with respect to doping and H=rot A™qr ) . 7

the decrease of the Hall constant up to unusually high temp, jinear-response theory with respect to the electric field, the
peratures, characteristic of most high-compounds. How- |,yer annears only in the definition of the current operator.

g}/iglghfﬁlﬁbsgvfgt?ga\;voth:heedHﬁlIrgoaisrtezngréltehs?::i”ctligﬁyin More precisely, the current operator is defined as the follow-
9 P y q P ing functional derivative:

the strong-correlation reginfewhich will be the subject of
Sec. IV. There, we first study the moments of the memory 1 A1)

function in the limitU —<. Thereby, the memory function is Ji=—=—5= . (8)
found to eliminate the high-energy scale set by the Hubbard ' e SAT(D |y,

repulsionU. This provides us with an explanation of the . o
frequency dependence of the Hall constant in the crossover€ homogeneous magnetic field is chosen to point in the
regime fromw> U to W< w<U. Furthermore, a simple ana- Z dlrectlo_n gnd it is adyantageous to fix the gauge from the
lytical treatment of the Hall effect within the Hubbard | ap- Very beginning according to the Landau choice

proximation is presented, the results of which turn out to be . - -

in full accord with that obtained by high-temperature expan- AT{R)=RHy, ©)
Slons. TheF" we reformulate .the frequency-dependent Hagince then, translational symmetry is broken only in one di-
constant within thet-J model in order to address the low- .

frequency regime as well. The comparison to a representamens'on' namely the direction.y is a primitive. lattice vec-
tion of Ry,(w) in terms of two relaxation rates and effective tor. We .negd the current operator only up to first order in the
masses introduced by Anderdéprovides us with an inter- magnetic field:

pretation of the additional relaxation ratg in the language A A0, A

of the Mori theory and a phenomenological understanding of J,=3,7+48J,, (10

the anomalous frequency and temperature dependence of the

Hall constant in highF. superconductors. Finally, we ex- 3(0) _; =T 3

plain how the emerging picture may be put onto the basis of I —|t§ 2‘505” Cq (R+9)Cy(R), (1)
a microscopic calculation. In this context, we reduce the o

problem of calculating the memory function in thd model - . R L. R

to the much easier one of finding the first few moments of 8J,=—et 2, &8, SA™{R)c, (R+d)c,(R). (12
the ordinary current-current correlation functions. Finally, in RR+6,0

Sec. V, we summarize our main results. Here, & is a nearest-neighbor vector and the summation is

over pairs of nearest neighbors. Note, however, that due to
the gauge fixatior{9), we cannot choose periodic boundary
A. Single-band Hubbard model conditions in thex direction. Thus, ifé points in thex di-
The single-band Hubbard model ordadimensional hy-  rection, we have to carry out the sums in such a way that the
percubic lattice in a magnetic field reads componentsR, and R,+ &, are simultaneously elements of

Il. THEORETICAL FRAMEWORK
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the set consisting of the coordinates of all lattice sites, i.e., erator is theLiouville operator L, which maps a given op-

(R RMN+1, ... R Here, it is assumed that the lattice erator onto its commutator with the Hamiltonian:
has N, sites in the x direction which implies o
RYP<=R!""+N,—1. Of course, observable quantities are not LA=[H,A] . (16)

allowed to depend on the lattice locati®]"". The hopping

term is expanded analogously. yielding Another important class of superoperators su@erprojec-

tors. However, their definition implies a scalar product in
L. In the context of response functions, the most convenient

A 20y,
T=T+4T, (13 scalar product turns out to be the so-calMdri product
0 e s U LA
TO=—t > cl(R+d)c,(R), (14) (A|B):=—| dr( e™A".B ) , (17)
R.R+ 8,0 Blo
A o o R where( . ..) denotes the thermal average afds the in-
oT=—iet E SA™YR)c} (R+d)c,(R) . (15  verse temperature. On the basis of this scalar product, we
RR+6,0 may now speak of adjoint superoperatrandS*, and thus

The term without magnetic field, E¢L4), becomes diagonal 'Cgc?(?rltgr){hzl?d r'j)?ég;:'i%g”&i'g;g: :ilé%fsen:r?ﬁezhi pro-
in crystal momentum space with a band dispersioﬂ proJ P P y

€= 2tE?=1COSk] _ linearly independent eIemen|téi), reads

B. Mori theory P:% |é‘i)gij(é‘j|v (18

In this subsection, the basics of Mori's memory-function o
formalism are reviewed briefly. For further details, see, e.g.where the metrig; is the inverse of the matrixC(i|Gj), ie.,

Ref. 14. The best known application of Mori theory is the 5, gik((‘;k|éj)=5ij_ In fact, this implies the idempotence

description of many-particle systems in the hydrodynamicyroperty P2=Pp. Finally, the definition of the Mori product

hydrodynamic variables. They are characterized by the fact

that their transport is restricted by conservation laws or_by B(AIL|B)=([A*,B]) , (19)
broken symmetries. Thus, they are bound to vary on a time

scale that is very slow in comparison to that of all the othemwhich will play an important role.

degrees of freedom. Now, the Mori theory enables one to

separate these two time scales: The equations of motion of 2. Memory-function approach to the Hall constant

the hqudynamic vari_ables take on the form Of. coupled in- From Eq.(19) follows a representation for the current-
tegrodifferential equations. The corresponding integral ker- : . A )

nels of these so-called Mori equations are memory function§UTent correlation  function((J,; J,)),, defined as the
in which the influence of all the other degrees of freedom id-aplace transform of-i([e'*'J,, J,1):

accumulated, hence the name “memory function.” In this

context of hydrodynamics, the memory functions are rapidly ((j 3 1), = —ﬂ(j
varying functions, whose effect may be simulated by damp- v TRz ©
ing constants. Then, the Mori equations take on a form ) ) )
analogous to that of the Langevin equation for a particléi€re,z is a comp_le>+< frequency, which ultimately has to be
undergoing Brownian motion. However, the validity of the SPecialized tow+i0". For formal manipulations, however,
Mori equations is not restricted to the special set of hydrodt iS more convenient to deal with the complex frequeacy
dynamic variables. In the simplest case, one sets up the Moffther than witho. The last expression has to be inserted into
theory for those observables that constitute the correlatiof€ Kubo formula for the conductivity tensor,

functions one is interested in. This leads to representations of o2

the unknown correlation functions in terms of memory func- _ = 3.3

tions in which all analytic properties are fulfilled by con- vul2) NZ{<TV“>+<<JV' Izt s @1
struction. On the other hand, it may be difficult to find an

z+L

ﬁy) =—x,,(2). (20

approximate expression for a given memory function. whereN is the total number of lattice sites aqd,,) arises
from the equilibrium part of the current and is defined as the
1. Basic notions second functional derivative of the Hamiltonian with respect

L . ) . to the external electric field:
The Liouville spacel is defined as the linear vector space

over the field of complex numbers whose elements are the

-
linear operators in the familiar Hilbert space of quantum me- T = iz _eMI_ _ (22)
chanics, and where the usual operations like scalar multipli- # et AT ALY | a_,

cation, etc., hold. In this Liouville space exist linear opera- . ) o

tors that are calleguperoperatorgo distinguish them from 1N the Hubbard modetl), its expectation value is given as
the usual ones(Henceforth, normal operators are denoted(r,,)=6,,2t=¢,Ccosk(ng,), i.e., as the average kinetic en-
with a hat, superoperators nothe most important superop- ergy per dimension. Using the fact ljmyzo,,(z) =0 which
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holds for a metal in the normal state, we show m;l) also Since the memory-function term will be shown to vanish in
equa's the Stauc Suscept|b|||tyX , defined through the high-frequency limit as 2?, the first term represents the

X (2=0)=5,, x* high-frequency limit of the Hall constant considered by
. . Shastryet al.;®
o ia - 1.
XO:B(JX|‘]X):<TXX>:_H<T> . (23 - N QO
RH_ﬂ“m— . (34)
ie“x"y_o H

Thus, the conductivity tensor may be written as

e [ A 2 Moreover, (), is the generalization of the cyclotron fre-

O'VM(Z):—B(JM —_— JV>E_CMV(Z) . (24 quency to the lattice case. Therefore, within a Boltzmann
N z+L N equation approach, only the ter(B4) is considered. The

In order to represent the relaxation functia®s,(z) in terms ~ goal of the subsequent sections is to investigate the memory-

of memory functions, we introduce the superproje®ahat  function termM(z) =M,(z) for finite frequencies.

projects onto the subspace Sfspanned by the current op-  Before proceeding, we consider unperturbed Bloch elec-
3 3. trons, described by the Hamiltoniaid3). The fluctuating
eratorsJ, andJ, :

forces(31) contain the commutator of the current operator
B with the Hamiltonian. This commutator is of first order in the
P==> 13,4,/ (25  magnetic field, since the current of Bloch electrons is con-
XSy served in the absence of a magnetic field. Hence the memory
and the complementary superprojedi+ 1— P. By making function M (z) is of second order in the magnetic field and,
use of the operator identity H@-b)=1/a  therefore, does not contribute to the Hall constant. This dem-
—(1/a)b[1/(a+b)] with a=z+LQ andb=LP, we find onstrates that the Hall constant of Bloch electrons is fre-
quency independent and given by HG4). Note also that
conductivities are finite in the limitt—0 only if there are

i
— 0
Cu(2)= 72X v~ ERW(Z)CW(Z) ' (26)  inelastic processes that can degrade the total crystal momen-
tum. Although this condition is not satisfied in the case of
B - . unperturbed Bloch electrons, their Hall constant can be cal-
Ru(2)= X—cj(J# ml- JV) (270 culated forall frequencies.
EQ +iM W(Z) _ (29) 3. Analytic properties

The analytic properties oM (z) in Eqg. (33) may all be
rived on the basis of E¢30). An alternative procedure is
to solve Eq.(32) for M(z) and go back to the analytic prop-
1 erties of the current susceptibilitieg,,(z), cf. Eq. (20).

Q== j y]) (29 M(z) reads in terms of the susceptibilitigs,,(2):
X

The terms in the last equation are the frequency and thae
memory matrix, respectively,

ZXOXxy(Z) <[jxa jy])
0 v 0 - (39
[X"— xxx(2)] X
From time-reversal invariance, homogeneity of time and the

fact that the current operators are Hermitian, we may deduce
the following symmetry propertie's:

iM(z)=

[ A
gl

The memory functions have the structure of relaxation func;
tions for the so-called residual forces

MW(Z)E%(QL:JM

f,=1QLd,., 39 Xl 2= Xl 2) | (36
whose dynamics is governed by the projected Liouville op-
eratorQLQ rather tharl_.'* Thus, these forces may vary on Xa(2) = xxx(Z¥) (37
a time scale that is different from that of the current opera-
tors jV. In Sec. IVB 1, we shall identify these two time Xy —2)= = Xxy(2) (38
scales with the relaxation rates of the holon and spinon de-
grees of freedom in Anderson’s tomographic Luttinger liquid X:y(z) =—xxy(Z*) . (39

theory? Solving Eq.(26) for the matrixC(z) leads to
Together with Eq(35), this implies

C(2)=ix[z1+ Q+iM(z)] L. (32
M(—z)=M(z2) , 40
Together with Eq.(24), this demonstrates that the Mori (-2 (@) 40
theory is heading directly for the resistivity tensor. There- * (o *
fore, the desired representation for the dynamical Hall con- M*(2)=M(z") . (41)
stant can be read off from the last equation: M (z) can be represented as a spectral integral
N Qyy+tiMyy(2) do M"(w)
Ru(z lim . 33 = =
H(z)= e oM 0 (33 M(2) — (42)
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where the spectral functioM”(w) is given by the disconti- encounter a spurious singularity in the limit that is of most

nuity across the real axis: interest, namely the limitv—0.
In this subsection, we identify the precondition which is
M(w*i0")=M'(w)*iM"(w) . (43 necessary to obtain regular expressions in this limit and that

i i ) was fulfilled trivially in the applications of Ref. 16 but is not

From the analytic propertiest0) and (41), it follows that  jn our case. Since this condition does not affect the correct
M’(w) andM"(w) are real functions satisfying description of the local interactiod, we may take it as an
approximation. By using Mori’'s formalism, we shall see that
once this condition is assumed to be satisfied no further ap-
proximations have to be made. This last point cannot be seen
M"(—w)=-M"(o) . (45 in the more intuitive introduction of the memory-function
concept as given in Ref. 16 and shows that the extrapolation
to low frequencies therein is exact.

Perturbation theory is based on the following decomposi-
tion of the Liouville operator:

M'(—w)=M'(w) , (44

Thus, two further conclusions can be drawn: Firstly, only
even powers in ¥/ contribute to the high-frequency expan-
sion of M(z). And secondly, the quotieM”(w)/» must be
integrable around =0,

oc L=Lo+Lq, 47
f do M"(w)/w<oo, (46)

- whereL, andL, are assigned to the hopping and interaction
erm of the Hubbard Hamiltoniaril), respectively. The
Lerturbation-theoretical regime is given by the condition
<W, whereW is the width of the bare band and thus
presents the characteristic energy scale introduceld,by
The precondition to obtain a regular expression for the

memory functiorM (z) for all frequencies to leading order in
U is that the relevant operatodg andf]y span a subspace of

Despite many interesting works on the normal-state HallC that is invariant with respect to actions b.** If this
effect of highT, superconductors, a calculation that incorpo_condltlon were satisfied in our case, it would take on the
rates all the complicated many-body correlations within aform
microscopic model is still lacking. The following treatment
of the Hall constant closes this gap at least in the Lod,=[T.3,1=3,00,. (48)
perturbation-theoretical regime. On the other hand, the rel-
evant parameter regime is believed to be the strongwherev,u=x,y and summation over repeated indices is im-
correlation limit rather than the weak one. However, it turnsplied. This can be checked by inserting these equations into
out that the final expression may well describe the observedj | ), and comparing the result with the definiti¢29).
dependences on temperature and on doping at least qualita- " | "), is the Mori product with respect th,. Since
tively, if we allow U to be extrapolated to values of the order gy terms of the first order in the magnetic fieddare to be
of the bare bandwidttW. Thus, a precursor effect of the yent[cf. Eq.(33)], we may take the current operator on the
anomalous dependences clearly shows up even in the regimight-hand siderhs) of Eq. (48) atH=0. Henceforth, brack-

which can be seen from the fact that the dc-Hall constan
contains this integral. Note, that we need not understand thi
expression as a Principal value integral due to the fact th
the integrand is even.

lll. PERTURBATION THEORY

of weak correlations. eted superscripts or subscripts refer to the magnetic field and
unbracketed ones to the decompositidi@). Unfortunately,
A. Approximation the conditions(48) are not satisfied in the Hubbard model.

nstead, we derive with the help of Eq40)—(12) and(13)—

The perturbation-theoretical treatment of the Hall constan!lS) (see Appendix A

is by no means straightforward. As is well known, the evalu-
ation of response functions likg,,(z) of Eq. (20) by ex-

pansion in a small interaction parameter fails because, as an S co, sirk, A;
. . . . “ X y ko
artifact of such an expansion, these functions become singu- o Ko o
lar for small frequencieg. This difficulty was resolved by [T.dd] = ([Iy I » (49
Gotze and Wifle'® some time ago by means of a memory- E cok, cok, ”(k‘)a
function approach. They calculated the memory function ke

perturbatively, which, at first, is valid only at high enough

frequencies. It turns out, however, that their expression fokvhich should be equal to
the memory function depends only smoothly on frequency

below a certain frequency scale and tends to a constant in the

limit w— 0. Furthermore, in their approximation scheme the % sirky Ni,
correct resonance structure of the studied response functions <[jy 'jx]>0:j(y0>93x ) (50)
is inherently built in. Thus, their results could be used in the Z cok. n°
) . . X 2 y Neo
whole frequency regime including the hydrodynamic one. Ko

However, we cannot carry over their analysis straightfor-
wardly to the present problem, because otherwise, we wouldhis is obviously not the case. Similarly, we find
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> sink, cosk, N,
A A ko A A
[T.Jy] = ; <[JX,Jy]>0 ,  (B)
EE cosky cosky N
instead of
> sink, Ny
ko A s 2(0)y0
<[‘JX1‘Jy]>0:‘Jx Qxy . (52

0
> cok, ng
ko

However, the condition&48) become exact in the continuum
limit or in the limit of small band fillings. This is seen if we
take explicitly into account the lattice spaciagn the argu-
ments of the trigonometric functions which we tacitly have
set equal to 1. Then we may expand lg@=1 and
sink,a=k, a which proves the statement immediately. Thus,
the violation of the condition$48) on the lattice reflects its

reduced symmetry in comparison with free space. Since the

conditions (48) are properties of thdéree model, we may
assume their approximate validity without taking the risk of
not describing the local interactioii8) correctly.

Before proceeding, we show how the conditida8) ap-
pear within the formalism outlined in Ref. 16. We expand
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Due to the approximatiof48), the free part of the Liou-

ville operator does not contribute to the opera@;l'_|3y).
Hence, to leading order in the interaction strentth we
obtain

B L )
?(Q0L13x|e'Q°L°Q°t|Q0L1Jy)o .

M(t) (56)

SinceQ, commutes with_, and because of the idempotence
of Qo,}* we may free ourselves of all superproject@sg
with the exception of one, say, that within the “ket”

|QOL13y). However, even this last appearancefmay be
omitted, since its parfP, leads to a term proportional to the
following first-order expression of the frequency matix:

0}, =9%(3,/L413,),. Here summation over equal indices is

implied. However, the frequency matrix is easily traced back
+ . . . .

to ng,=(Cg Ck,),» Whose first-order contribution vanishes.

Thus, Qiﬂ vanishes as stated and we arrive at

M(2) = (B/x%) (K4|i/(z+L)|K,)o, where we have defined

K,=[V,J,]. (57)

With the identityz/(z+Ly)=1—Ly/(z+Lgy) and the sym-
metry property (K, ;Ky))° ,= = ((Ky;K,))?, which may be
traced back to Eq:38) by means of two equations of motion,

Eq. (35 in the frequency regime, where the expressione eventually arrive at

Ixxx(2)/x°| is very small, i.e., for high enough frequencies

and use a couple of times equations of motion for correlation

functions((A;B)),. Thus we may show tha¥l(z) can be
represented as followsf. Eq. (57)]:

{RaR S
z

ix°M(2)= +R(2) . (53

The first term will be investigated in the next subsection an

turns out to be regular for all frequencid®(z) can be writ-
ten as

R(2)=((3;[T. 3,10, ([ T.3,1:3y)) .+ 209 xy(2)

_ 2<[jx vjy]>0 ¢xx(z) - ¢xx(0)
- XO 72 )

(54

where ¢, (2)=((Ky;K))?. Calculating the function
dxx(2) by following the lines outlined in the next subsection,
we may prove thaR(z) is indeed divergent in the limit
z—0, which, however, is an artifact of perturbation theory.
The first representation d®(z) in the last set of equations
shows that the conditiof¥8) implies R(z) to vanish identi-
cally, if we take into account the symmetry properties

ng: - ng and x,x(2) = ny(z) .

B. Reduction to ordinary correlation functions

We are interested in the memory function appearing in

Eq. (33), whose Laplace transform is given according to Eq
(30) as

M(t)= )%(QijleiQLQ‘IQLjy) . (55)

URGRD?

ix°M(2)= .

(58)
Now, we must evaluate this correlation function for the free
tight-binding model(13) to leading first order in the mag-
netic field. In order to derive explicit expressions for the
operators(57), we introduce the following combination of

pBloch operators:

N _+ N + .
Alzl,IZZIIZIﬁZCflackzgcﬁ—dl—ock‘*” . (59)
This is the basic building block of the operatdts. To see
this, we insert Eqs(3) and(10)—(12) into the definition(57)
and write the result in terms of Bloch operators. We find

R, =R+ 5K, (60)
N U > > e
RP=—5 [B,(Ki.Kat+q)
N ikdo
_BV(El_a’IZZ)]AEl,IZZHZ\d ) (61)
SK,=0 , (62)
N U .
SKy=Het= > [C(ky,ko+q)
NE ikdeo
_C(Izl_a'EZ)]A(kjl,EZIIZIﬁ y (63)

where the matrice8,(K;,K,) and C(k;,k,) are defined in
Appendix A, cf. Egs.(A2) and (A3). Since 5K, vanishes,
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the expansion of the correlation function appearing in Edwith the representation afT in terms of Bloch operators,
(58) to first order in the magnetic field reads

((RX;Ry>)g=C"(Z)+C"'(Z) , (64) 5"AI'=—ietH)z D(Izl,lzz)cglgclzzg , (72
k1k20'
—((k(0). s \\0(0) e e )
C'(2)=((K} FoKy)Z (65 where the matribD (k; ,k») is also defined and further evalu-
R ated in Appendix Acf. Eq. (A4)], we find more explicitly
! (2)=((R{ RPN (66)
. . - . . €k, €k,) _
Obvpu_sly, it is sufficient to cqlc_ulate th_e corr_ela.uon function f— _ietH 2 D(IZl,IZZ)eB( e 1C|2+ Ci
consisting of operator§s9) within the tight-binding model KKy €r — €x 1772
(13), however, to first order in the magnetic field. But first, o (73)

we note that the function®5) and (66) are two- and three- _ _ _ _
point correlation functions, respectively. This is explicitly Inserting the expansiof70) into Eq. (69), we obtain the
seen within the Matsubara representation where the expaiffllowing zeroth and first-order terms of the correlation func-
sion of ((Ry;K,))? up to first order in the “perturbation” 1o to be determined:

Eq. (15) yields /

_ 1 (8 (B ) R . , “‘Iau-”f’___, (0)—
C”(Iwm):_ﬁfo jo drdr' (TAKL(7) 8Ky(7)})g” (A ket A g )2 2+ €G- et g €k,
| , (74
x @ em(7=7) , (67)
X Q--AU/ (1)
AR Rk A g 7))
1(8(B (B8 N N
C”'(iwm)=—f f f dr dr'd7 (TARO(HKO(7) . o
T y g . AY _1\(0)
Blo Jo Jo (0 TAG &k i ieq )
X ST(r)p e e, (68) Z+ € G et €, — €,
C. Expansion to first order in the magnetic field ([8T.A7 & PHEE AE: E’||Z'|¢Y>>(zo)
172 ’
As already mentioned, our next goal is to calculate the - = . (79

correlation function generated by the operatt58) up to Zt+ €k-q €kt €k, T €k
first order in the magnetic field. This is accomplished by
means of its equation of motion with respect to the tight-

binding Hamiltonian(13):

2

The second term on the rhs of E§5) still contains a cor-
relation function. Fortunately, this function is related to the
Hamiltonian(14) without magnetic field thus being directly
reducible to expectation values by means of its equation of
(2+ € et et — e )((A‘f o AU, ) motion:
€k—q~ €k €k, €k, kpkolKla® k! k5K |07, ,
TA? . 1A L L WO
_<[Aq’ o Aa_r <<[5T’Ak1'k2|k|q]’Aki,ké\k’\q’»z
kg kalklar Tk kgl | )
<[[5T1AE |2“2|{|1Alfr WA _7]>(ZO)
A ~g aa! 0 1-KalKla1"" k] kol g
—(LTAL G A k) - (69) = . (79
172 1:%2 q . -4 oer — err+ ek
Z Ek/,qr (% Ek:;_ Eké

Here and in the following, the superscript 0 is omitted. The

expansion of the expectation value on the rhs with respect ti) Summary, the problem of calculating the memory function
the magnetic field is standdfdand yields (58) to leading order in the magnetic field has been reduced

to the calculation of expectation values within the unper-
([AY - - AT D =(AZ o AY )@ turbed tight-binding model without magnetic field: The rel-
ky kalkla™ Tk kS| |o” ky kalkla™ ks koK [o” evant information is contained in Eq&1), (63)—(66), and
(74)—(76). The rather cumbersome calculations are roughly

(V[AY IEI&,AE, |Z'||Z'|*/]>(O) , sketched out in Appendix B. We write the memory-function
e 1rrelld contribution to the Hall constaritf. Eq. (33)] as follows:
(70
U 2
wherey arises from the expansion of tiSematrix related to oRu(2)= E( 2ta°) [(m'(2)+m"(2)] , 77
n

the “perturbation” (15) and is therefore given by
wherea, is the amplitude of a nearest-neighbor hop and is
o= fﬁdr e(TO=uN) s (T -uN) 71) related to the static susceptibility E(3) via y°=4tNa,,.
0 This, in turn, implies
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1
an=m% cok, ng, . (78

m''(z) andm'"! (z) arise from the two- and three-point correlation functions, respectively, and are represented with regard to

the further strategy as energy integrals:

t2
m”(Z)Z—aj delj dezj deif dey 1(zZ|€1,65]€1,e5) L (€1,€5]€1,€5) (79
t3
m”'(z):ﬁ[Q(Z)"‘Q(_Z)] ' (80)
| ' /, AT , r, '
Q<z>=fd€f délfdezfdfifdfé el 621_5(:'61 AU (e erleluep) (81)

The integrands feature the following abbreviations:

fle)f(e)[1-f(e)[1—f(e)]-[1—F(e)][1—F(er)]f(e1)f(er)

I ! ! =
(Z]er, ezl€1,2) (e1+ex—€1—€5)(Z+ e+ er— €1~ €5) ' 82
L"(e1,e2]€1,€3) , , ) . -,
S E— o(e1— e ) o€~ 6,22) o(e1— E'Zi) o(es— e,;é) COK 1+ COKyy, — [Sink 1y —Sinky, ]
Kyx+Kox— kix_ ké ' ’
X Pcot( 5 - {coskyy + cokyy — coky, — coskyy
X 27 8(Kyy+ Koy — Ky — kéy)> , (83

kykok!K)

LIII U !
(€|€11€2|61r62)_ o R R . . ! ’
ol = &(e— 5k£+ké—k2)5(61_5k1)5(52_6k2)5(61_Eki)é(fz_fké) €0Kq, + COKoy + COKy, + COKyy

klx"’ k2x_ kix_ kéx) ]

— [sinky,+ sinko, — sink, — sink, | Pcor( >

X{sinkyy+ sinkpy — sink;, — sink,, }sinky 27 8(Kyy + Koy — ki — kéy)> , (89

and f(e)=1lexp(B(e—u))+1] is the Fermi function. will be discussed in the next subsection.
() denotes the average over the first Brillouin zone, i.e.,
fd9/(27)9(---). Note, that the last two equatio(83) and
(84) reflect the gauge fixatio(®): In they direction, crystal
momentum is conserved which is ensured by dtfenctions We may question the relevance of this limit, since the
while the x components of the Bloch vectors are coupledimportant physics of the highi; superconductors is known
more complicatedly. In principle, we could do the momen-to take place in Cu-O planes. Many authors have addressed
tum integrations numerically for a two-dimensional lattice this issue and much evidence has been revealed in favor of
and for given sets of external parameters temperdtudop- the relevance of this limiting procedure even for two-
ing 8, and frequencys. However, we prefer to carry on our dimensional systems; see, e.g., Ref. 19. Instead of immersing
analysis a little bit by invoking a limit pioneered by Metzner ourselves in this debate, we take the following point of view:
and Vollhardt in the context of strongly correlated The main reasons behind the anomalous properties of the
electronst® namely the limit of infinite spatial dimensions. In high-T. materials seem to be, firstly, the strong electronic
this limit, the momentum integrals decouple and we are lefcorrelations and, secondly, the two-dimensionality of the rel-
with energy integrals over smooth functions. This procedureevant Cu-O planes. Taking the limdt—o helps us to sepa-

D. The limit of infinite lattice dimensions
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rate the impact of the correlations and to suppress effects of
low-dimensionality like, e.g., van Hove singularities. In this 0.04 é_o__(')_
sense, the limid—oo is interesting in itself. TOom—o-
For our problem, the most important aspect of the limit
d—oo is the following: For the Hubbard model to retain its
nontrivial dynamics, the parameteihas to be scaled prop-

e O 2

“":8::8::8\

0.00

erly with d according to 0.04
t*
2t= Ja (85 -0.08
(in this subsection, we sét =1). Only then does the Hub- [I]-—-D’ d
bard model capture simultaneously the itinerant and local -0.12 -
aspects introduced by the hopping and interaction terms, re- 6o 02 04 06 08 10
spectively. On the other hand, we are tempted to conclude 8

from the scaling[85) that any transport stops to be possible
in d=«. In fact, a more thorough investigation shows that
the longitudinal and the Hall conductivity are of orded 1/
and 182, respectively. But this, in turn, implies that the Hall
constant remains finite iWl—. In the following, all we
need to know is how to calculate averages over Brillouin M
zones of the type Eq$83) and(84). The corresponding pro- Rho

cedure is explained in Appendix C and enables us also tR”(z) andK'"'(2) arise from the function§79) and (80)

calculate simpler quantities as the density of st&@és) of respectively, e.g.,K''(z)=(2d/lag)m"(2). K* is the

the band mode{14), the nearest-neighbor hopping amplitudg erturbation-theoretical contribution of the infinite frequency

(78), and the amplitude of a hop diagonally across the uni all constant(34). The latter may be written in terms of the

FIG. 1. The corrections of Eq92) at T=0. The curves A, B, C,
and D represent the function&™(8), K''(8), K'"'(6), and their
sum, respectively.

=1+UK*+K"(2)+K""(2)] . (92

cell, i.e., amplitudes(78) and (86):
1
1 2a
ag==<>, cok,cok,Ng, . (86) w_= _“9d
2N Ko X Y RH e (zan)Z . (93)
In the case of the amplitudé¢g8) and (86), the functions This holds on account of the following relations, which may

be proven by straightforward analysis:

A(e)=(cok, (e~ 612)>|2:_%D(6) ) (87 ([jx,jy]>=8iNet2Had, (94)

x°=4tNa,. (95)

1 1
_ e e | 2 2
B(€)=(cokxcosky (e~ €)= ( € 2) D(e) (89) Therefore, it is sufficient to calculate the density, to sec-

ond order inU. The derivation is standard and will therefore

come into play. Essentially, they are Gaussians multiplied,ot he given here. Similarly, the =0 Hall constant is given
with the first and second Hermitian polynomial, respectively,,

since they are derivatives of the Gaussian density of states:

Rug s 220 (96)
1 HO= % 754 2
D(E): \/—_ e ¢ . (89) e (zanO)

™ (the subscripts 0 indicatd =0 as above Due to symme-
The functions(83) and (84) are found to be combinations of tries of the expressio(®1), the function(81) may be simpli-
the functions(87) and (88) and may be written as fied by means of various redefinitions of the integration vari-

ables:
L"(e1,€;]€],€5)=D(€1)D(€,)D(€;)D(e){ €2+ €16,
Q(2)= | de: [ dey [ det [ detD(eDED(DD()

+eei— e’ —ere— e}, (90)
L" (el €y, €2]€1,€5)=D(€)D(€1)D(€2)D(€1)D(€y) X1(z]ey,€ol€1, ) { €2+ €1+ €3}
X{—etete,tete} . (9 deED(€1+E);D(€1_€) . 97

In order to handle the singularity of the Hall constant in the

empty band limit correctly, we shall discuss the perturbation-The terms of Eq(92) may now be evaluated numerically in
theoretical result for the Hall constant normalized to itsthe limit w— 0 on the basis of Eq$79), (80), and(97) along
U—0 limit: with the definition (82) and the result(90). But first, we
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check whether the Hall consta(@?) reduces to the familiar 5 ' ' '
expression He, provided the electron density ' 0—OT=0051
n=(1/N)=¢,ni, is very low. We concentrate on zero tem- o Toaot
perature, where we find the Fermi energy to be given by 0 A—AT=0401"
n=1+ erf(eg). This implies ee— —o in the empty band 5
limit. Then, the corrections on the rhs of E§2) vanish and o
the Hall constant is given by Eq.(96). With § -5 A; o resok ]
2a,0=D(ep)/\/d and 2a40=— D (€r)/d, we find in fact "?g 5;’ 5 f\‘\\\——- T=300K ]
for n—0: = DTN
T 10 | SofiSisas
R, =— _F i (98) : o1 oz 03
H™ e D(e) en’ 8
-15 . ‘
0.0 0.1 0.2
E. Numerical results )

First of all, we discuss the relative importance of the -\~ 5 i constant as a function of doping for=2.3W.
terms appearing on the rhs of E(@Z)._Flgure 1 shows the_lr Inset: Data for polycrystalline samples of 1aSrsCuQ, taken
doping dependence at=0 (dashed lingsand that of their s, Ref. 5.
sum (solid line), where the doping parameter is defined as
6=1—n. All functions vanish in the empty band limit

(6—1) and exhibit monotonic behavior with decreasingcu .

. . . prate, we have to multiply the Hall constant of E2R) by
doping. This reflects the fact, that the suppression of do”blh/v whereQ is the volume of a unit cell and the number
occupied sites introduced by the Hubbard repulgi®nbe- of &:u ions therein. In the case of ha,Sr,CuQ
comes more effective with increasing electron density. AS) _ 1gs A andp—2. oo

for the signs of the three contributions, only that of the two-
point correlation function is negative. This, however, is suf-

pare our theoretical results with measurements on a certain

After these preliminary remarks, we proceed with the in-
e PR vestigation of the intermediate correlation regime, where a
Ecizlenlt) t(?”r]?n?er;thiﬁ S\ljrrllié)f ?lmlirtmirmts rzeg?t(;sm:hd. “_Ir_‘ﬁ ": rmsign change is possible. Figure 2 shows the doping depen-

9. . This rémains valid a € temperatures. The rmqgq . jall constant for several temperatures and the choice

K is positive for all temperatures and doping levels conS|d-U —2.3W (solid lineg as well as two experimental curves for

ered, but is always overcompensated by the memory- .
function contributign K”(iOJr)EK”,(iOJr). yThus our yponcrystaIIme samples of La ;SrsCuQ, taken from Ref. 5

perturbation-theoretical results clearly indicate the tendenc‘({inseﬁ' We see that the sign change occurs closet0.3
of the Hall constant to change its sidgrelow half filling. or temperatures below 300 K, in agreement with experi-

However. for this to happen. the memorv-function Contribu_ment. For lower doping levels, our Hall constant exhibits a
. ' ' happen, y maximum and ultimately vanishes at half filling, irrespective
tion must be taken into account.

To study the doping and temperature dependen fthoftemperature. This reflects the fact that, in our perturbation-
0 study the doping and temperature dependences of tigq o ficq) resul{92), the Hall constant of the bare band is
precursor effect in greater detail, we shall extrapolate Eq

(92) to correlation strengthtl big enough for the Hall con- merely renormalized by a finite factor. Such a factor may

e ] ; change an overall sign but never can turn a vanishing quan-
tsr:‘fint to exr;:blta&gn changet.hUIUmatelyi we ﬂX.SUCh tgat tity into a nonzero one. Thus perturbation theory fails to
IS Sign changé occurs In the parameter regime ODSEIVEL ., i for the observed dlaw of the Hall constant near

experimentally in the case of the compound - - o -
La,_ ,Sr,Cu0,. We shall measur& in terms of the bare half filling. And that is why our perturbation-theoretical

bandwidth W, which may be chosen, due to E@9), as

W=2t* (from now on, the hopping parametgt is explic- 1
itly taken into account Then, it follows from Eq.(92) and

Fig. 1, that theT=0 thresholdU, above which the Hall
constant becomes positive, 9=2.18V at half filling
(6=0) and increases monotonically with increasing doping
and ultimately diverges in the empty band lingit> 1.

Before proceeding, we touch upon the issue of how to
relate our theoretical results to experimental measurements.
Firstly, thed=c hopping parametet* has been estimated
crudely as 0.2 ~500 K2° Secondly, we shall express the
Hall constant in units that allow the direct comparison with
experimental results. This requires that charge carrier densi- 8
ties are taken with respect to the volume of a unit cell. On 0.0 0.1 0.2 0.3 0.4
the other hand, the electron densityappearing in Eq(98), T/t
denotes the average number of electrons per lattice site.

From a theoretical point of view, this definition is convenient  F|G. 3. Hall constant as a function of temperature for
since it is independent of the lattice dimenstband remains U=2.3W. Inset: Data for polycrystaline samples of
meaningful in the limitd—. Therefore, in order to com- La,_;Sr;CuQ, taken from Ref. 11.
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curves cross the zero lin@otted line in Fig. 2 with slopes 1. The moments of the memory function in the limit 4
that are two orders of magnitude _smallt_ar_ than those of the \ye start by rewriting the Hall constaf83) in terms of
experimental curves. Apart from this deficiency of perturba-spectra| functions:
tion theory, the other dependences are in qualitative agree-
ment with experiment. In Fig. 3, the temperature dependence % ®
of the Hall constant is shown for various doping levels RH(Z):WI do ) Sy(w)+K(w) —— .
within the range 0.£ 6<0.4 (solid lineg and compared to o

: . X (99
experimental results from Ref. 11, again for polycrystalline
samples of La_;Sr;CuQ, (dashed lines in the ingetDe-  The first spectral function in the integrand is defined as
spite the already mentioned difference in the order of mag- R R
nitude of the Hall constant, our curves display the same fea- Su(w)=—i{[Ix,8(w+L)Jy]) , (100
tures as the experimental ones: A maximum at low, ., corresponds to the Hall matrix element of the current-
temperatures followed by a regime in which the Hall con-

. i current correlation function. The second function is related to
stant decreases monotonically up to unusually high temper%e spectral functiolM”(w), introduced in Eq.(43), by
tures. We have not been able to determine the exact Iocatiqg ~OM” ()] hi ,h Dl ) ’
of the maximum due to numerical difficulties at nonzero (w)=x (@)/(mw), which implies
temperatures below 0.05. Experimentally, it occurs above ~ip
T.. The fact that it appears within the Hubbard model sug- K(w)=

gests that it is not related to the onset of superconducting

correlations. This is further supported by comparing the datarhis function describes the correlation between the residual
of 90-K and 60-K YBaCu;O..,:" In this compound, the ¢, oot andf, . In the following, we shall uncover a simple

location of the maximum irRy(T) does not depend on the ;nhaction between the moments of the two functions
doping levels corresponding to the range 6&K.<90 K. - (©) andK(w) in the limit U—c.

As for the decrease of the Hall constant as a function o

temperature, it is experimentally found to be most pro-gyen ang red® Furthermore, we expect both functions to

nounced at optimal doping, €.g6=0.15 in the case of | ,nish heyond a certain frequency abavesinceU is the

La, - 5SrsCu0,. Our results exaggerate the doping rangenighest energy scale in the problem. This assumption will be

where this decrease is markedly visible. At least, Fig. 3.0 oborated below up to corrections of the ordéu.

shows that the decrease is least pronounced for the CUN&ance for finite but largeJ, all moments exist and it is

corresponding to the lowest doping levél=0.1. Further- sufficiént, to consider only the even ones-

more, at high doping levels, where the memory-function

contribution becomes unimportant, the Hall constant be- o

comes almost temperature independent. SZJ do Sy(w)w?, (102
What about the observed quadratic dependence of the o

Hall angle on temperature for small doping lev&f&*1 This .

law cannot be verified on the basis of E§2) alone, al- Klzf do K(w)w?, (103

though, it cannot be falsified either. To make a check on this —o

law, the longitudinal conductivity is needed as well. In prin- . L .

ciple, the calculation of this quantity can be done along thewherel?O. Since we are mainly interested in the dc-Hall

. - . constant, we would like to calculate,. Unfortunately, this
same lines leading to E92) and is left for future work. is not feasible on the basis of E.01), since the inverse of

the projected Liouville operata@LQ does not exist. How-
ever, all the other moment403) can be calculated: Due to
Numerical studies of multiband Hubbard models for theEd. (101), they are given as
Cu-O planes of high¥, materials indicate that all low-
energy excitations are reproducible within a single-band K = iﬂ(,jx| LQL ... LQL [fy) (I>1).
Hubbard model withJ ~W.?! Unfortunately, this parameter —
regime is not accessible to reliable analytical calculations.
By contrast to the analysis of Sec. I, we shall now exag- (104
gerate the impact o) by considering the rangg>W in-  Now, if we insertQ=1— P, this expression decomposes into
stefad. Henceforth, we shall assume a two-dimensional squazg terms. Consider a special one consisting afuperprojec-
lattice. tors P. By using the definition ofP, this term is seen to
decompose further intof=p+1 factors of the form
A. Hall constant in the crossover regime fromeo>U t0 w<U B(j||_mj|j)’ the orders of which ared™ ! due to the Kubo

The main problem in dealing with the memory function of identity (19). HerE,ZJ-f=1mj =2l+1. Thus, each factor low-
Eq. (33) is related to the fact that its dynamics is governed byers the relative order iV by one. Hence, the more super-
the projected Liouville operatd® L Q rather tharL.. We re-  projectorsP a given term is composed of, the lower its rela-
solve this difficulty by inquiring into the properties of the tive order inU is. Therefore, all superprojectoy may be
memory function via its moments. Then, we may get rid ofremoved from the rhs of E104) to leading order irt/U.
the superprojector® simply by resorting to their definition And this, in turn, establishes the following relation between
through Eq.(25) and thereafter. thel=1 moments of Eqs(102) and (103):

(QLIJ8(w+QLQ)|QLY) . (101

(O]

First, we note that both functions may be shown to be

IV. STRONG-CORRELATION REGIME

2! projectors @)
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the decompositioi106) specialized to the case of the opera-
U)' (109 tors Iﬁi‘}zc-+ Cj,,» Making up the components of the current

lo

operator, becomes

This equation doesot imply that the functiong100 and Y A f e ag

(101) differ only by a sign in the limitu—o. This conclu- Dij=Dij;-utDij;0tDij,u- (107

sion would require positive or negative definite functions and]
.. . . n

finite moments even in the limi) —o. None of both con- - — - -
itions is satisfi i O=(1-n;;)ct, X?=ci,Nni5, andX?=n;;c;t, where

ditions is satisfied. To proceed anyway, we remind ourselve&i, ic)Cigs A ialigs i = NigCig, W

that in the context of the Hubbard model in the strong cor-0=— o, the terms of Eq(107) may be written conveniently

relation limit, any spectral function is believed to separatedS

into individual “peaks” centered around integer multiples of

terms of Hubbard operatorsxi"zcia(l—ﬁ@,

U (Refs. 22—24(in this context, any connected structure of D .= X7OXP7+ XPIX /2, (108
a given spectral function, irrespective of its detailed shape, is R _

referred to as a “peak;” for instance, it may vanish at dis- Dﬁ;,U=Xi"°Xj"2, (109
crete points This reflects the fact that one-particle excita- -

tions may be grouped into two Hubbard bands separated by bﬁ;uzxi&fx?”, (110

the so-called charge-transfer gap, which is of the okder ] . ) .
Since the current operators produce particle-hole excitationd,n€ Lehmann representation of the functid®0) is derived
we expect the function€l00) and (101) to have peak struc- Straightforwardly:

tures centered around=0 and = U related to excitations 1

within the two Hubbard bands and across the charge-transfer g (,)== > M, (e e Am5(w—[e,—€m])
gap, respectively. Therefore, these peaks are expected to Z im

have widths of the order of those of the Hubbard bands. In 11y
the following, we shall prove this picture at least for the 1
function (100) and derive formulas required to extract more 3 £ e e
informati(on f)rom the relation$105). | Mnmzﬁ{<n|\]x|m)(mlJy|n)—<n|Jy|m><m|JX|n>} '

(112
2. Structure of the functions §(w) and K(w) where states and energies are defined through the eigenvalue

The appropriate technique to investigate spectral properequation fl —wN)|n)= €,|n). Inserting the decomposition
ties of the Hubbard model in the strong-correlation limit wasof the current operators corresponding to Elp7), we find
pioneered by Harris and Lange in the special case of singlehat the peak centered aroumd=pU has a weight given by
particle excitation® and generalized by several other au-
thors, see for instance Refs. 23 and 24. At the heart of this 1 . n - R
procedure stands the decomposition of a given operator into WpUZE“[Jx:pU +Jy;—pul) +{[Ix;—pu dy:pul))
terms, which increase the number of doubly occupied sites (113

by integer value®:
y g ® and that only the peaks=0 andp= *1 survive in leading

" order int/U.
A A We assume that the functidd0l) has qualitatively the
0= 2 0. (106) ) :
p=o same triple-peak structure. Although not proven, this as-
sumption is shown to lead to reasonable conclusions.

Together with the Lehmann representation of a given spec-
tral function, one may then address the properties of its in-
dividual peaks. The decompositigh06) is accomplished by

an iterative procedure based on a canonical transformation of Given the peak structure of the functiofi$0 and(101),
the Hubbard Hamiltoniant —exp{iS}Hexp{—iS}l. The ex-  only the contributions of the satellite peaks around +U

. fth P h {i limi can be resolyed in the=1 momgnts(lOZ} and (103 in
pansion of the operatd up to the ordef in t/U eliminates lowest order int/U. Thus, the relatior§105) implies that the

those processes frofd which change the total number of “spectral weights” of the peaks df (o) andS.(w) around
doubly occupied sites up to the ordéfU'~1. The corre- wEU differ o%ly by a sign? Togeth((er \)/vith E?q%(g),)we may
sponding transformed Hamiltoniat! * 1 in turn helps to fix  then draw the following conclusions: Far>U, all peaks of
the next order o6 in t/U and so on. Thus, subsequent itera- S, () contribute to the Hall constant and nonekofw). In
tions generate increasing orderstity. Once the generator the frequency rang®V<w<U, the high-frequency peaks
é has been found to a given order, one may decompose ar%ﬁﬂCE' each other out while the contribution of the zero-
operator to the same order by first decomposing its rotateffequency peak oK(w) is negligible. Within this charge-
counterpart? transfer gap region, the frequency-dependent Hall constant is
In our caset/U expansions may be terminated after thethen lowered by a factop in comparison to its infinite fre-
zeroth-order term since the relati¢h05) indicates that it is  quency limit,
not sensible to go beyond. Then, we do not have to distin- . .
guish between original and transformed Fermi operators and Ri=Ru(W<w<U)=p Ry, (114

3. Frequency dependence of the Hall constant
in the range w>W
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if we definep to be the relative spectral weight of the low- expand expectation values of Hubbard operators like the
energy structure 08, (w): nominator of Eq(115) in powers of 1T is explained, e.g., in
o Ref. 25. Using additionally Eq94) and
Wo _ <[Jx;01‘]y;0]>

= = . _ 00,00
PEW W Wy (13,5, (115 lim ag= (XX o) | (120

U—o

Equation(114) is valid except for corrections of the order
t/U. Therefore, it is sufficient to evaluate it in the limit
U— oo, 1+6

But first, we seek an interpretation Bf;. Inserting Egs. p=——- (129
(115 and(34) in Eq. (114 yields

we obtain to leading order

Although the high-temperature calculation has introduced
N ) <[flx;0,f]y;0]> another high-energy scale into our system, we expect this
iez(Xo)zki'mO H ' (116 result to hold qualitatively for low temperatures as well. For
- instance it is expected that the difference between the plateau
which is to be evaluated in the limi — . Therefore, ex- values ofRy(w) on both sides ob) increases monotonically
pectation values are taken with respect to states withouas half filling is approached. Further down, we shall derive

double occupancies. Then, the projected current operatotBe same expression fgr within a simple approximation

RY=

take on the following form: valid atT=0.
Finally, we calculatdR}; to leading order in 1. The lead-
J =it AYP.. X0x00 11 ing order of the amplitude Eq$118 and (120 is found to
Ji0=] <%a RN (117 be a,=(Bt/2)8(1—5) and ay=—(B%t%4)6(1-8)(1
—36), respectively, which, when inserted into E§3), re-

since the ternX??XfTZ of Eqg. (108 may be omitted. Here,
A;j=R,—R; andP;; is the phase factor defined in the text

sults in

following Eq. (3). Since x° is given by Eq.(95), we also R‘”—i 1-36 1+ 1 (122
need Hoel\ 2 Jls 1-6/"
lim an=(Xg0X%:A> , (119 Together with Eqs(114) and(121), we recover the result for
U—oe * R}, of Ref. 3 that was derived within thteJ model in leading

herex i imitive lati tor in the directi . order in 1. In this work, it was further shown that, although
wherex is a primitive lattice vector in the direction. From ; ; ; ; ;
P R}, is renormalized as a function df andJ when including

Egs.(116), (95), and(118), we conclude thaRy, represents higher orders in 17, the doping dependence of the Hall con-
the infinite frequency Hall constant of thé=c—Hubbard  gtant retains its most important features: its sign change at

model, which is defined as follows: 8~1/3 and its singular behavior in the vicinity of half filling.
What seems to be striking at first sight is the fact that the
A=—t> Py X{OX27 . (119  same properties are encountered Rjf, i.e., the Hall con-
(ih)o stant at frequencies well beyond. At such high frequen-

In fact, the analysis of Sec. Il is straightforwardly carried cies, thedynamicsof the electrons is insensitive to the inter-
over to this model, the current operator of which is thenaction U. However, for nondynamical quantities as maitrix
found to be given by Eq117). Note thatp# 1 expresses the €lements, the correlations introduced by the Hubbard inter-
fact that the limitsw— andU—o do not commute: If we action remain important. Before we discuss possibilities to
start with the limitw—o, the integral overS,(w) in Eq.  extend the moments technique to lower frequencies, we shall
(99) extends over all three peaks while when taking the lim-rederive the results of this subsection within a simple ap-
its in the reversed sequence, the high-energy peaks are ungtoximation, valid aff =0.
tainable from the outset. o

Next, we derive an exact analytical expression fioby 4. Hubbard | approximation
taking the additional limifT—o. We may wonder whether An expression for the frequency-dependent Hall conduc-
this is reasonable. However, since the litit- was al-  tivity with vertex corrections having been neglected was de-
ready carried out, at least, the conditidreU is satisfied, rived in Ref. 26:
i.e., the thermal energy cannot excite an electron across the

charge-transfer gap. Furthermore, we expect neither of the e3H dei)20Per y(z,K)
high-frequency objectR}; andR}; to depend appreciably on oxy(2)= TE K. okZ T z (123
temperature, since they correspond to and generalize the ko ) y

semiclassical expression for the Hall constant. In the context 1

of high-temperature expansions, one has to cope with elec- Hy(iwy,K)==> Giliw)Gilio,+iwm)

trons or holes hopping around closed loops, which are de- B*n

fined by a sequence of adjacent lattice sites. Therefore, it is —Giliw,—ioy)] (124)
convenient not to expand the phase factors. Then, an electron K %n m

hopping along a polygoijk . . .li accumulates a phase pro- Here, the Green’s function is given in terms of its spectral

portional to the flux¢;;, . ;i enclosed. The procedure to function as
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= do Ago) Here, the expectation value is given by E(&4) and (86).
5= : (129  The sum rule obeyed byS,(w) for U#% implies
p=(1+6)/2, as in Eq(121). This provides further evidence
ande, in our notation, is negative. Furthermore, it is assumedhat the result(121) may be trusted for all temperatures.
that the momentum dependence arises solely from the didVote, that in a real system, the functi®y(w) must vanish
persione; of the bare band. From Eq24), the definiton atw=0. Only then do we obtain a finite Hall conductivity at

(20) of the functionsXV’u(z), and the symmetry property w=0. The result{133) is an_artifact of the vanishing \_Ni_dth
Xy(2) = = Xxy(2) .15 we derive the following representation ©of the lower Hubbard band in E¢L3)). If we consider finite

G;Z(iwn)=f

—2T iy —

for the Hall conductivity: but large values olU, we may simulate the high-energy
peaks of the functioi100) by & functions as well:
ie? (. .
O'Xy(Z)Z—B(JX T \]y> . (126) A 1+8 1—-6
A SH(w;uﬁoo>=—|<[Jx,Jy]>(7 Blw)+ =

Therefore, the functioil00) may be connected to the Hall

Conductivitya'xy(wii0+)50'ﬂ|(w)iioﬁ(w) via K[ S(w—U)+8(w+U)] (134
wop(w)
Su(w)=N—m=—". (129 This may be proven by calculating the mome(it82) in the

limit U—oo.
Since o},(w) arising from Egs.(123 and (124 may be Finally, we calculateR}; given by Eq.(93), analytically
shown to be real and odd, the functiGt00) has indeed the within the approximatior(131) and atU =«. Although this
correct analytic properties. Inserting Eq424) and (125  has been done numerically some time &jour simple ana-
into Eq. (123 and using Eq(127), we obtain, after a stan- lytical treatment allows a direct comparison with the exact

dard calculatiort! high-temperature resu({tt22 and demonstrates that the re-
e 22 s#lting doping (:ependerr]]ce Idoes not rely otr)1I the (;ocatiorrll of
. €x|"0"€k the Fermi surface. This last point is blurred in the
Sulw)= |e|HE|Z Ky Wg Xd@) (128 Boltzmann-equation-based approach of Ref. 4.
The amplitudes on the rhs of E(Q3) are given by Egs.
= dw; (* dos (78) and(86). Thereby, the density is calculated to be
XR(w)Ef xﬁf o Ai(w1)Ag(wy)

(135

nlz(r:

146 (1+6
2 2 Sk

y Filwy;0) —Filw,;0)
w1~ Wy

+w——w); ,
since in Hubbard | approximation &=, only the first
(129 term on the rhs of Eq(13)) is to be kept. Momentum de-
pendences arise solely from the dispersignof the bare
Aile—w) band, which is why we are looking for expressions for the
Filew)=——F_——[f(e—fle-w)]. (130  fynctions A(e) and B(e), defined in Eqs(87) and (89).
These equations also exhibit the results in the limit of infinite
By means of a partial integration, the corresponding sum rulglimensions, which we may take as smooth and convenient
is Straightforwardly shown to be Sat|Sf|¢df Egs. (100), approxima’[ions_ Except for the prefactors\/a/ and 14,

(94), and(86)]. _ which ultimately cancel each other out, these expressions
Next, we evaluate Eq$128—(130) in the so-called Hub-  may be compared to those calculated numerically on a two-
bard | approximatiorf’ dimensional lattice. This reveals that here, the main effect of
the limit d— oo is to smooth out the logarithmic singularities
A(w) :1L5 6(w_i5€ at zero energy encountered in the case of the functions
2 2 2 kK D(e) andB(e) in d=2. Therefore, this limiting procedure

1—s 1-8 does certainly not affect the validity of our present analysis
+-° 5( w—U~— ;eg) . (131 inany serious manner. At=0, Eqs.(78), (86), (135, (87),
2 2 and (88) imply

At U=, only the first term contributes. Then, the quantity

(129 becomes :1+5 2e
2a, PN D| 155/ - (136)
1+ 6\ 20t {[(1+ 6)/2] e;
Xi(w)=2 1L« )/2] g} ). (132
2 &EIZ Za :_EF D 26|: (137)
@ d 1+6

and by partial integration, we obtain

A relation between the Fermi energy and the doping param-
eter is established straightforwardly, which, in terms of the

1+ . . .
SH(w;U=°°)=T(_'<[Jx"]y]>)5(“’)' (133 function
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2€p(5) tions, the doping dependence Ry, is not necessarily corre-
H(O=—15 (138 |ated to the Fermi-surface location. Also note, that it does not
matter whether the functioh(e) arises from coherent or
may be written as incoherent excitations.
—368 . .
_ B. Hall constant in the low-frequency regime
175 erf(H(5)) . (139

In this section, we discuss the frequency dependence of
In summary, the functiorf93) at U= and T=0 may be the Hall constant for frequencidselow the Mott-Hubbard

written as follows: gap. Therefore, the appropriate model to start with is the
t-J model. It is straightforward to show that Eq89)—(101)
. 2 H(6) are still valid, however, with all quantities being redefined
el Ri=155DH(0) (140 within the t-J model*® Apart from the redefinition of the

Liouville operator, this amounts to replacing the canonical
The most important features are first, & 1/3, R;; van-  Fermi operators through projected ones in all quantities that
ishes. Second, at—1, we recover the exact result appear, i.e.¢i,— X", andc;,—X?°. In particular, the cur-
Ri=—1/(€e|(1—-5)). And third, at §—0, we find rent operator is then given by E(L17). If we renormalize
Ry;=1/(|e|25). The last two statements are proven with thethe functions(100) and(102) according to
asymptotic relatioD°(€)/e=+1— erf(e), valid in the limit

e— . All these points are in exact agreement with Eq. Su(wit=3)=—i([Ic0.dy:0])S(w) , (149
(122). We take this as an indication that, on the one hand, the o
high-temperature resul{122) remains qualitatively valid K(w;t=3)=—i{[Jx.0.dy.0)k(®) , (142

even at low temperatures, and, on the other, that the Hubbard
| approximation is remarkably good in the case of the quanthe analog of Eq(99) reads
tity (93). In Ref. 4, the doping dependence of the Hall con-
stant in the Hubbard | approximation was discussed in terms —R*
. A . . Ru(2)=Rj

of the Fermi surface. This is misleading for two reasons.

For one thing, the Hubbard | approximation misplaces the . Lo
Fermi surface: The Luttinger theorem, which relates the vol1€ré; Ry is the infinite frequency Hall constant of theJ
ume enclosed by the Fermi surface to the electron de??sity,mOdd_ that was a!ready |nve'st|gated in Ref. 3, and which has
is violated in this approximation. In contrast to this, angle-Peen introduced in Eq114) in the special casé=0. Fur-
resolved photoemission experiments on cuprates |ikéherm.ore, we .have takgn into account that the function
Nd,_,Ce,CuQ, (Refs. 30,31 appear to be consistent with S(«) is normalized to unity, whilek(w) represents the un-
local-density approximation band-structure calculationé_mown memory-function contrlbut!on. From the discussion
which, in turn, imply the validity of this theorem. Despite N Sec. IV A 2, we expect the functidq(w) to have only one
this flaw, the approximatiori131) yields a doping depen- Peak centered around zero frequency, because, irt-the
dence for the Hall constant which is in good agreement witHmodel, doubly occupied sites can occur only virtually. Be-
experiments on La_,Sr,CuO,. fore we set about discussing possibilities to calculate this

For another, it was pointed out in Refs. 3 and 32, that thdunction via its moments, we try to gain some phenomeno-
high-frequency objecR? is not directly related to the loca- 0gical insight.
tion and topology of the Fermi surface. Instead, in a strongly
correlated system, the entire Brillouin zone tends to get
populated. In consequence, the weighted density average Very recently, the normal-state ac-Hall constant was mea-
(86) receives contributions from the entire Brillouin zone sured in YBgCu;O; thin films for frequencies up to 200
rather than just from the vicinity of the Fermi surface. cm~1.2*In this work, the experimental data have been fitted

We can demonstrate this more explicitly by slightly successfully in terms of parameters introduced by
changing the form of the lower Hubbard band in EtB1):  Andersort? to account for the observekf dependence of the
We broaden theS function a little bit and shift some rela- inverse Hall angle in higf-. materials. Anderson’s theory is
tively small amoung of spectral weight to a new function  based on spin-charge separation with two different relaxation
contribution Zé(w—L(€g)), with the functionL(eg) being times and effective masses associated with the spinon and
undetermined yet. This amounts to replacing EIB5 by  holon degrees of freedom, is the decay time of the holons
Ng,=h(eg) with the function h(eg) differing from  with effective massm,, scattering off thermally excited
[(1+6)/2]f{[(1+ 6)/2] €} only in the following respects: spinons. On the other hand, a transverse relaxation rate
The step ateg=2ep/(1+0) and of height (¥ 6)/2 is 1/ry is determined by the scattering between the spinons.
smoothed out while a new, much smaller one of height Apart from this, o, and oy, have the ordinary Drude form,
occurs ateg=L " Y(eg). This last condition fixes the new i.e., oy, 7 /m, and Oyy=OxwcTy . Here, the cyclotron
Fermi surface. By choosing the functitute) appropriately, motion is characterized by a mass,, w.*x1/my. In Ref.
we may place the Fermi surface wherever we want. As lon@4, Anderson’s theory was extended to finite frequencies via
as Z<(1+ 6)/2, the crucial averagay=/~.de B(€)h(e) the replacementsry,— 1 /(1—iw7,) and 7y—7y/(1
does not differ very much from the result in E437). This —iw7y). This led to the following representation of the
reasoning illustrates that, in the presence of strong correldrequency-dependent Hall constant:

1+f:dw K(w) %) . 143

1. Phenomenological discussion
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m, 1 Th— Ty order to relate its width and its integrated weight to the pa-
Ru(o)= =\ M ———— 15, (144 rameters, J, temperaturdl, and dopings. From the above
H “ H discussion, we expect that the relevant information about its
This result is equivalent to the exact expressida3), pro-  overall form may be put into only few parameters. As al-
vided the following identifications are made: ready mentioned, even two parameters as in(E45 have
been sufficient to obtain an excellent fit of experimental
K(w)= TH™ Ty Ly () (145 data® In this subsec'Fion, we suggest the fol_lowing proce-
Ty H ' dure to construck(w): Parametrize this function by pa-
rameters which are subsequently fixed by its firgshoments.
. M 1 Up to now, this seems to be the only reliable way to take into
H m, ne (146  account the superprojecto@. Of course, all moments
Here,Lr(w) denotes the Lorentzian of width normalized k= jm do k(w)w? (148
to unity. Therefore, the unusual relaxation timgis a mea- —w

sure for the width of the functiofil42) and thus determines
the decay rate of the correlation between the residual forc
f.o and T, of the t-J model [cf. Egs. (31 and (10D)].
Furthermore, the integrated weight of the functiGivb
measures the deviation of the relaxation time from the
ordinary transport timer,. This deviation is directly related
to that of the Hall constant at zero frequency from its value a
high frequencies:

g&Xist, which is why we have to replace the Lorentz{ad5

by a “short-range” function, e.g., a Gaussian multiplied by a

polynomial. We proceed by relating the momentk(d) to

that of the functions(w) and the optical conductivity. Fi-

nally, we discuss a possibility to calculate these moments.
The ordinary conductivity is given, according to Eg4),

by the following expression:

in2

) ie X N

TH—Ttr:RH(w=S)—Rﬁ ' (147 Uxx(w+|0+):WB(JX;O wrLrior Jx;O) ,
Tir Ry (149

In the phenomenological expressi¢4), the temperature the real part of which may be shown to be an even function
dependence is entirely contained in the two relaxation ratesf o,** and, due to a sum rule, can be written in terms of a
They are expected to vary ag<1/T and 7= 1/T2.*2 For  functionc(w), that is normalized to unity:
dimensional reasons, we takgxJ/T?, sinceJ is the only
energy scale characteristic of our model. From these argu- R{ow(w+i0")}=me’xc(w)IN . (150
e ernc s o o e o i ol ADBENG D we ot ht e momend may be
: traced back recursively to that of the functiofistl) and

guency dependence of the Hall constant in highsupercon- 150);
ductors. Also, the observed anomalous temperature depeg- '
dence is mainly due to this memory-function contribution. w
For another, we expeet, to be relatively smaller than, at s|=f do s(w)e? (153
low temperatures, sincey/7,J/T. Thus, Eq.(147) sug- T
gests that the Hall constaimicreasesvhen zero frequency is
approached_. This enhancement was actually %El)served in the c = fw do c(@)w? | (152
above-mentioned measurements on Y8egO,.>" In any —w
case, Eq(147) indicates that the sign of the Hall constant is
solely described by the high-frequency objeRf;, as
claimed in Ref. 3.

Does the discussion so far point towards spin-charg
separation as advocated by Anderson? Obviously, the current |

operators], are related to the charge degrees of freedom k=—s+ > ajs_; for 1=1, (153
only. Consequently, the spin physics must be accounted for =1

by the residual forces$, . This is also reflected by the pro- \ynere the coefficients: are polynomials in the moments
portionality 7, J/T2. However, up to now, we do not have (152 and are listed in )Appendix D up to=6. If we had a
a cpmpulsory_ argumgnt why these residual forces should d%;‘ood method for calculating the momerfts51) and (152),
scribe exclusively spin degrees of freedom. we could construct the unknown functidfe) via its first

In summary, Anderson’s notion of two distinct relaxation  moments as already explained. This approximation is reli-
rates is .naturally backed up within the Mori theory. Theyable, if the zeroth momerkt,, calculated from Eq(148),
may be interpreted as the time scales set by the current Oanverges fast enough with increasing Since in thet-J

erators and their associated residual forces. model,k(w) has only one peak around=0, the first few
moments are expected to be sufficient for this to happen. An
advantage of this approach is that momentsgdobal prop-

Of course, it would be interesting to calculate the functionerties of a spectral function and as such are less sensitive to
k(w) of Eg. (143 quantitatively within thet-J model in its detailed resonance structure and to approximations in-

provided |=1. Thereby, only the definition of the super-
projectorsQ has to be used in Eq104). The result may be
é(vritten as follows:

2. Moments approach to the memory function
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volved. Also, some approximation schemes are better suitechange of the Hall constant as a function of doping and its
for the calculation of moments than the underlying spectratiecrease as a function of temperature up to unusually high
function. temperatures. However, we had to chod$e 2.3W (W:

For instance, within a high-temperature expansion, mobare bandwidth which is, strictly speaking, outside the per-
ments are accessible, at least in principle, while the corregrpative regime. Since the cuprates are believed to undergo
sponding spectral function is not. However, in the case of th transition from a Fermi liquid to a strong-correlation re-
moments(151), only very few moments, and to only low gime when the doping approaches its optimal value from the
orders in 1T, are within reach. This is all the worse, since gyerdoped sid8,t is not astonishing that the dlaw in the
now, we are interested in the Hall constant at low frequenyicinity of the mother compound cannot be described within
cies, i.e., no other high-energy scale is present as it was igerturbation theory.
the context ofR}; . Therefore, we also considered the Hall effect in the oppo-

Another example is the exact diagonalization technijue. site limit of strong correlations. In the single-band Hubbard
In this method, spectral functions are calculated numericallynodel, a finite amount of spectral weight for particle-hole
via the exact eigenstates and eigenenergies on the basis éfcitations, caused by the Hall current, is always pinned at
their Lehmann representation. While being exact, the intrinthe energyJ. This is valid no matter how large the correla-
sic problem of this method is the constraint of working ontion strengthU is. We have shown that the memory function
relatively small clusters. Therefore, ti#functions have to  removes these high-energy excitations in the litditsoc,
be broadened in order to obtain smooth functions. In contrashus accounting for the frequency dependence of the Hall
to this, no additional approximation is required when calcu-constant down to frequencies within the charge-transfer gap.
lating moments. Of course, the smallness of the clusters refhe corresponding decrease of the Hall constant by a factor
mains the major restriction of this method. Nevertheless(1+ §)/2 was calculated exactly to leading order i Hnd
when combined with the moments approach as suggestasbrroborated within an approximate treatment, valid at
above, it is a means of extracting reliable information aboutr=0. However, our analysis did not provide us with infor-
the frequency-dependent Hall constant within themodel  mation about the frequency dependence of the Hall constant

and should therefore be the subject of a future work. at lower frequencies. The reason is that it was based on mo-
ments, which are dominated by the high-frequency contribu-
V. DISCUSSION AND CONCLUSIONS tions. We have also calculated the infinite frequency Hall

constant analytically within the so-called Hubbard | approxi-

In summary, we have devised a memory-function apmation. In essence, we recovered the exact result/fore
proach to the Hall constant in strongly correlated electronandT— o and explained, why this result does not rely on the
systems, which enables us to cope directly with the Hallgcation of the Fermi surface.
resistivity. We have focused our attention mainly on the Finally, the Hall constant at low frequencies was investi-
memory-function term, which is neglected in Boltzmann- gated within thet-J model, an effective model acting in the
type approaches. The important physics to be expected fromgduced Hilbert space without doubly occupied sites. We ob-
this contribution comprises the unusual frequeacyltem-  served that our memory-function formalism distinguishes in-
perature dependences of the Hall constant, observed in thferently between two time scales: Firstly, the dynamics of
normal state of high. superconductors. the current operators is characterized by the ordinary trans-

As a first step, the usefulness of our approach was denport relaxation timer,,. And secondly, the impact of all the
onstrated in a perturbation-theoretical treatment within thQ)ther degrees of freedom on this Charge transport is taken
single-band Hubbard model. To obtain a regular expressiofhto account by fluctuating forces that introduce an unusual
for the memory-function contribution for all frequencies, we time scaler,,. On the other hand, it was pointed out by
assumed that the subspace of the operator space spannedAptierson, that temperature dependences of transport and
the current operatord, andJ, is invariant with respect to Hall effect measurements can best be understood in terms of
actions of the unperturbed Liouville operator. This approxi-two relaxation times, following a T/ and 172 law.}? We
mation was shown to become exact in the continuum limithave shown that the time scales encountered within the Mori
Furthermore, it affects only the properties of the unperturbedheory are identical to those introduced by Anderson. Fur-
system, i.e., the tight-binding electrons. Therefore, we do nothermore, we have shown that the deviation of the unusual
expect the omitted terms to change the physics in an essedecay timery from the ordinary transport time,, is inti-
tial way. On the basis of this approximation, the memorymately connected to the frequency dependence of the Hall
function was calculated to leading order in the correlationconstant at low frequencies. Thus, the temperature and fre-
strengthU and shown to decompose into a two- and three-quency dependence of the Hall constant result from each
point correlation function, when expanded to first order inother and are both due to the memory-function contribution.
the magnetic field. The complicated expressions obtained fdt would be very interesting to investigate this interplay fur-
these two functions were simplified considerably by invok-ther, both theoretically and experimentally. As for the theo-
ing the limit of infinite spatial dimensions. While this ap- retical side, we have proposed an approach based on mo-
proximation still catches the impact of the correlations, itments. It allows the exact treatment of the superprojector that
smoothes out effects of low dimensionality. Except for thereflects the distinction between the two time scales, leaving
doping dependence of the Hall constant in the vicinity of halfus with the problem of finding the first few moments of the
filling, we have been able to reproduce the unusual experierdinary current-current correlation functions. Except for a
mental findings in connection with high: superconductors well studied prefactor, the memory-function term is mainly
as La,_ sSrsCuQy. In particular, we could explain the sign determined by two parameters. Therefore, we expect its first
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few moments to provide us with enough information to fix . . . It gmin
these parameters. Bx(K1,K2) = &k kv x(K1) + 5k2y|k1yN—el( 2x~kpdRy
X
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APPENDIX A: LATTICE SUMS

OVER NEAREST NEIGHBORS > >
Cki kp)= ZCOSklyﬁklykZY( 5k1x‘k2xR>c<+ (1= 3, k)

Since our gauge choic€) permits periodic boundary
conditions in they direction only, we must carry out all sums ei(kZX—klx)R;ni”)

over nearest neighbors according to the following formula: Xm (A8)
2 HRR+8)=2 X X HRR+4, )
Ii,é-*—g Rx Ry 5y
+ H(R,R+ 6, X) .
Rx%x;v ( < D(Ky,kp) = — 2isinky, 6 Sk 1k RE+ (1= 8. .
Ry 1,K2 1y Ok lkpy | Fkyylko X kyylKoy
(A1) gi(ka—kp,)RT™

In the first term on the rhs, we may carry out the sum over X R Ko 1 (A9)

R, and 5, independently. As for the second term on the rhs,

we must make sure th&, andR,+ &, are neighboring ele-

ments of the set {RY"RM"+1,... R} with

RI®=R™+N,—1 as explained in the text following Eq. In the following section, we shall see that once these expres-

(12). sions are inserted into observable quantities, the final results
First of all, the matrices appearing in E¢61), (63, and become independent of the lattice location.
(72) are defined as follows: The commutator$49) and (51) are also calculated using
Eq. (Al).
BV(ELIZZ): E»Z ) 51/ e*ikl(R+5)+ik2R, (AZ)
RR+4 APPENDIX B: EVALUATION OF THE TWO-
1 S AND THREE-POINT CORRELATION FUNCTION
) — 2 —iky(R+8)+iksR
Clky kp)= Nﬁz‘ié (8))°Ry e MaRHOHIER, - (A3) We begin by inserting Eq$61) and (63) into Egs.(65)
’ and(66) and by using Eq9.74)—(76) along with Eqs(A6)—
. 1 . (A9). Then, the correlation functior(§5) and(66) are given
D(kq,kz)= N-Z &Ry e R AHIGR 1 (AMd) 35 sums over terms that contain expectation values with re-
RR+$ spect to the momentum conserving Hamiltonjad). Taking

In all these cases, the integrand is proportional to a compdnto account the correspondingjfunctions, we see that the

nent of a nearest-neighbor vector, which entails that one ofiagonal elements of the matrice&6), (A8), and(A9) lead

the two terms of Eq(A1) vanishes. The summation over the to vanishing contributions due to symmetry arguments.

y componentsR, and d, is straightforward. In the case of Moreover, the combination of all exponentials whose argu-

Egs.(A3) and(A4), the following sum is to be calculated: ~ments are proportional 7" may be replaced by one due to
the § functions, expressing momentum conservation in the
model (14). With the help of the function

1 .
Ny ; Ry ellfex fudfi= Byl Rt (1= B )
X
R 1
i (Ko~ kp)RE™ S(k)=Nyd jo(1— b jo) P
X ei(kzx— klx) — 1 ! (AS) 1 k
. X
== >Nyd o 1+|Pcot(§ } (B1)

whereRS= (RM"+R")/2 is thex component of the lattice’s

center of gravity. In summary, we obtain the following re-
sults: and after some straightforward manipulations, we arrive at
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c'(2) 1 I | | |
7 T L iK1y a—i(koyt+0y) _ ai(kix—0y) —ik
—2iHet?™NUZ ~ |\|4ﬂz,) > Ok kg, —a,S(Ka Q" —ky) (81— @12 — gl hd 4 g7 ax)
Kikokor (7 i 7iTq7 o

g A (0)
<[A 1kolKlg? Ak k! |k’|q 1o

X[cok’,—cogk;,—0L, , B2
[ 1y S( 1y qy)J Z+6R,d—€§+€§1—6|22 ( )

—3—ZC”|(Z) =Py(2)+P B3
diHetNU? — PHBFPA2) (B3)
1 - = : R : ’ ' —i
Pl(z)=m92a 2 S(p,—p1) 6kz+(7,@5smply[smkly—sm(kly—qy)](l—e 1)
kikokQo |7 77 g7 o7 P1P2”

L * A . . V0
ik ik ePlep, ) —1 <Cp Cpa7 [ Ky kolKlg? A 1k |k,‘qr]>0
X(e' x4+ ™! 2x) - - — N N N ) (84)
€, €p Z+ €eg_q— €t €k, €K,

N~

1 2

Pa(2)= Z > E S(pz— pl)5k'+q' k|0

klkquff _7117’2?57 1 p1poT

sinpyy [ sink}, —sin(ky, — ) ](1—e~'%) (et e kax)
X

~ ~a'
{5 [6- E <[Aq K| K )'A»’ ]>
(z+ €5~ €kt egl—egz)(z— € -+ € — €+ €iy) ot Opalka it oy glkla g kgl 7

(0)
p1|k2<[ k1p|k|q 2|k'|q ]> ]+57\ a[5p2|k q<[ kl k2|k|k plA 'K
5= oTAS - - - . AT . _7\0
5P1|k<[Ak1’kz‘p2|p2_k+q,Aki'ké‘k'\(f])O (B5)
From the definition(59), we find
n A
[Alzlvlzzllzla,AE’ E‘E’M_)] 5 /|0.C k1|0'Ck ‘U'Ck ‘o’ck |0’{6k‘k’*q'ck ql O_Ckl‘ o 5k’|k qu,_ql o’Ck‘ 0-}
- et cn —8ens et e oL - t. -
+50’\0{5k2\kicklo-ckétr 5ké\klckigckza}ckr_qr|_ng'|—oCk_q|_UCk\—a
- oot - Toee et oL oer
+ 50"\—0'{ 5k\kick7q|7gcké\—O'Ckl‘g-ck2|o-ck/ ,quo.ck’\a'
— Sik.Cor ) ChtoCorl Cirl—oCa = Ciil— g}
k'lk;“k" —q’| o Kol o=k! | = oKy — 0 Vk—q| - oK~ @

+ 81— oA Sk lir—a1Cr CiroCrr— CR'l—oCr = Cil—o— Ok [k—aCrri_ Ckl—oCr 1 CkloCrr_ 1 Cirlo}
o'| =01 Pk,lk' —q ko K'|o ki\*o’ k2|70 k—q|-o Kl-o kzlqu ki\*o’ k-0 kqlo kolo k'—q’|o kK laf -

(B6)

The further evaluation of Eq$B2), (B4), and(B5) requires Blep,—e5)—1 flez)—f(es)
the calculation of expectation values. Fortunately, not all el—zf(f- Y(1—f(e; ))=_M
terms that arise from the corresponding factorizations, con- €p,~ €p, P1 P2 €p, ™ €p,
tribute: Terms proportional tégg or 6476 may be omitted in (B7)
any case. And terms proportional aqé“;i,,; and 551“;2 do
not contribute in the case of EqB2) and Eq.(B4) along . ) i
with Eq. (B5), respectively, due to the fact th&0)=0. The fqrther calculation is not S|mple and takes some time,
Thus, we see for example that a factide; )[1— f(eﬁz)] especially in the case of the functio(®4) and(B5). In the

1

. . " . thermodynamic limit, where we may replace, e.g.,
may be split off from the expectation value within the inte- N 2 5(K IN)S. 4K/ (207 et
grand of Eq.(B4). This factor combines with the quotient ' ¥k/0™" <™ (ky), ( _ ) k__>f1- szd°k/(2m)°, etc., our
that stems from the operat¢r3) according to final result may be written in the form of Eq&7)—(84).
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APPENDIX C: BRILLOUIN-ZONE AVERAGES K\ o1 .
IN INFINITE DIMENSIONS Pcot( 5) = i—E sgnR)e*R . (C4)

RZ0
The calculation of Brillouin-zone averages to leading or-

der in 14 follows the procedure outlined in Ref. 36. In the Here, the sum is over all integeR, except for the zero.

following, Schldli's integral representation of the Bessel Since we are Working in the thermodynamic ||n*m,may be

functions will play an important role: considered to be a component of a lattice vector. To prove
ki . this representation, we start out with a known formula for the
ink+ircoky —i|n| = = ’ A ?
(e =Ty (N=Gn(r) . (CY) coefficients b, appearing in the ansatz

Here, n is an integer and we have used the notationPcot(/2)=ZX/_,b,sin(k):

(- w=[T_.... dk/(27). By means of the Fourier repre-

sentation of thed function, we may write, e.g., the function b fﬁ dk [(k
2

defined in Eq(88) as follows: = — co
2 27T

sin(nk). (CH

© ds .
— T 2 d—2ise i
Be)= f_OOZw (192017 (€2 ity the substitutiorz=e'X, we may perform the principal

_ _ ) value integration by invoking the theorem of residues: The
where here and in the following,=s/\/d. Expanding the ntegration contour goes around the unit circle with the point

Bessel functions in powers ofand taking the limitd—,  7—1 peing excluded. Thus, we have to add the residue at

we find z=0 to the half residue ax=1. We obtainb,=2 for all
1 22 positive integers1, which proves the stateme(t€4). In the
B(e)= ad FD(e) ] (c3)  following, we show how the rhs of Eq84) is evaluated to
€

leading order in 1yd. Writing the & functions, that contain
Thereby, we used(e)=f* (dgzw)e—52/4+ise which is  €nergies, in terms of Fourier integrals and introducing an

derived analogously. This proves E@8). The correspond- additional  momentum average ((2m)%s(k+k,— k',
ing evaluation of Eqs(83) and(84) requires a Fourier series —k’,) ...)g =1, the problem reduces to the calculation
expansion of the cotangent: of the following expression:

d
<ei[SEWSlf&ﬁSzfﬁz*SifE;*Séf@]2w5(kx+ Kax— Kix— Kby) 27 8(ky—kay) [T 27 8(k;+kgj — ki, —k3))
=3
’ ’ : . sy Ly le__kX
X1 COK 1yt COKoy+ COKY, + COKS, — [ SinK gy + Sinky, — Sink, — Sinks, | Pco —

X {sinkyy + sinkay — sinky, — sink,, }sinky 2 7 8(Kay + Koy — kg, — kéy)> (C6)

Since every dimensioh contributes a term- (1/y/d) cok to  evaluated with the Fourier series expansiod) and that of

the band dispersior(K), the expressioriC6) decomposes the & function:
into d factors. For example, one factor arises from »ll

components: 2m8(k)= >, kR | (CY)
R=—

< /7 e0%ct 110312008 120050, 120052 2 77 5 Ky + Koy For example, the term sinky, Pcof (ki—kJ/2] gives rise to

the contribution

ke kéx)[ COKy+ COKoy+ COK], + COK, — [ Sinky 1
2 2 sgrn) G- (1) 5[Gna(ry)
+ Sinkay — Sinky, — Sink, ] n#0 m
Ky, — K, —Gp-1(r)1Gm(ra)Gu(ry)Gm(rz) , (C9Y
xPcot( 5 )]>
kxklkaX

o €D where Eq.(C1) has been used. The leading order in/d/
D reads:

This expression decomposes further into eight terms corre- , ,
sponding to the ones in the curled brackets. Each has to be —G1(r)Go(r1)Go(r2)Go(ry)Go(rz) . (C10



55

This contribution to the expressid6) is of order 14/d, as
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are all the others. The subsequent Fourier integrals over the

variabless; yield combinations of the function&7), (88),
and(89) thus leading ultimately to Eq91). Equation(90) is
proven analogously.

APPENDIX D: REDUCTION OF THE MOMENTS
OF THE MEMORY FUNCTION

First of all, we recall the definition of the momen(ts)2)
and (103, however with all operators and superoperators

Ki=X3 .1, (D7)
S=-x7, (DY)
C=Ya1 (D9)

However, only even numbers of iterations occur. Therefore,
we may combine two successive iteration steps into one.
This leads to the following effective recursion relations:

now being redefined within theJ model. They are related 0 i1 Cnretg S
to the moments (148 and (151) via the equations Hi=HZ{ Co Hiat C_ON"l' (D10
K|: _i<[JX;0,Jy;0]>k| and S|: _i<[JX;0,Jy;0]>S| . In addi-
tion, we require the moment$152), renormalized as c
C,=x",. Next, we define the quantities N'= NP1 C_;Nll—l! (D11)
X7 =1L "zl LQ ... QL |Jyo), where we have defined
) tors L
operators
01 H':=X3"., forn=0,1=0, (D12
. . NM:=Y3 L forn=1,1=0, (D13
}/ln = ﬂ(Lan;gl LQ PN QL IJz;O) 5 )
S — and where the contact to the momeitgs, S, andC, is
[ operators L established by means of the equations
(D2)

for I=1. By using the definition for each of the first super-
projector on the right-hand sides, we obtain the following
recursion relations:

Ki=H?, (D14)
S=—Hy, (D15)
Ci=Nj. (D16)

This recursive procedure results in Efj53) with the first six

Yn

X=Xt t— X—éXP,l fornodd , (D3)
Xn

X=Xt - ;éYP,l for n even , (D4)
Yn

Yr=ynio X—év?_l for n odd , (D5)

YP=Y"*! forneven. (D6)

To prove these relations, we only have to use the following
facts: X} and Y! vanishes for all odd and even integers
respectively. This is due to the fact that the functi¢h80)

and (150 are even, hence their odd moments vanish. More-
over, the quantitie§D1) are of first order in the magnetic
field. To relate the unknown momenk§ to the moments

S and C,, we have to supplement the recursion formulas
(D3)—(D6) by the following equations:

coefficients being given as follows:

a;=2cy, (D17)
a,=2c,—3c?, (D18
az=2C3—6C,Cy+4C3, (D19)
a,=2c,—6c,c3—3c5+12c%c,—5¢],  (D20)

ag=2C5— 6C,C4— BC,C5+ 12c5C5+ 12¢,¢5— 20c3C,+ 6C3,

(D21)

a6: 2C6_ 601C5_ 60204"’ 12C%C4_ 3C§+ 24C1C2C3

—20c3c;+4c3-30c2c3+30cic,— 7¢S. (D22
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