
PHYSICAL REVIEW B 1 FEBRUARY 1997-IIVOLUME 55, NUMBER 6
Memory-function approach to the Hall constant in strongly correlated electron systems
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~Received 13 June 1996; revised manuscript received 18 September 1996!

The anomalous properties of the Hall constant in the normal state of high-Tc superconductors are investi-
gated within the single-band Hubbard model. We argue that the Mori theory is the appropriate formalism to
address the Hall constant, since it aims directly at resistivities rather than conductivities. More specifically, the
frequency-dependent Hall constant decomposes into its infinite frequency limit and a memory-function con-
tribution. The latter naturally introduces a second time scale that is identified with the spinon relaxation time
of Anderson within thet-J model. This provides us with a phenomenological understanding of the interplay
between the frequency and temperature dependence of the Hall constant for frequencies below the Mott-
Hubbard gap. As a first step, both terms ofRH are calculated perturbatively inU and on an infinite dimensional
lattice, whereU is the correlation strength. If we allowU to be of the order of twice the bare bandwidth, the
memory-function contribution causes the Hall constant to change sign as a function of doping and to decrease
as a function of temperature. In the strong correlation regime,U@t (t is the hopping amplitude!, the memory
function is calculated via its moments and shown to project out the high-energy scaleU. This causes the Hall
constant to decrease by a factor (11d)/2 (d indicates doping!, when the frequency is lowered from infinity to
values within the Mott-Hubbard gap. Finally, it is outlined how the Hall constant may be calculated in the
low-frequency regime.@S0163-1829~97!03706-5#
rs
a
ly
ad
.
ro

st
e
ha

e
e
rs
te
ha
t

tie
o
ri
is
he
th
m
lt

em
th
ng

on-
ges
b-

o

de-

, the
is,
-
lly
i-

on

iso-
s
ce is
n, a
g to
ere
ugh
at-
the
by
all
-
era-
s as

e
ns,
lat-
I. INTRODUCTION

Since the discovery of high-Tc superconductors ten yea
ago, the anomalous properties of their normal state h
been the subject of intensive theoretical work. It is wide
believed that a model of strongly correlated electrons alre
captures the basic ingredients of the relevant physics
these models, the correlations are represented by a st
local interactionU. However, a coherent description ofall
anomalous properties on the basis of such a model is
lacking. The main problem is that exact calculations are g
erally feasible only in a small parameter regime and t
most approximation schemes fail in capturingall aspects
which are supposed to be important.

The Hall constant is especially hard to describe. One r
son for this is that the Hall conductivity contains a thre
point correlation function after it has been expanded to fi
order in the magnetic field. Then, the calculation of ver
corrections is a tough problem which, to our knowledge,
been attempted only in the case of a Fermi liquid and
leading order in the quasiparticle damping.1 Moreover, since
the frequency-dependent Hall constant is given as a quo
of conductivities, the limitv→0 may be precarious due t
resonances like the Drude peak. A more technical peculia
of the Hall effect is due to the fact that the magnetic field
introduced via a vector potential which, formally, breaks t
symmetry with respect to lattice translations. But even in
simplest case of a Bloch-Boltzmann description, the te
perature dependence of the Hall constant may be difficu
reproduce, because the relaxation time cancels once it is
sumed to be independent of momentum.

The measurements of the Hall constant in high-Tc
materials2 reveal two major anomalous dependences: on t
perature and on doping. Both cannot be understood wi
conventional band theory. For noninteracting tight-bindi
550163-1829/97/55~6!/3907~22!/$10.00
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electrons on a two-dimensional square lattice, the Hall c
stant changes sign at half filling as the Fermi surface chan
its shape from electronlike to holelike. In contrast, the Hu
bard model in the large-U limit exhibits an additional sign
change below half filling which is purely due t
correlations.3,4 In addition, in the limitd→0, i.e., near half
filling, the Hall constant diverges according to a 1/d law.3,4

These properties are supposed to account for the doping
pendence observed in, e.g., La22xSrxCuO4.

5,6 As for the
anomalous temperature dependence of the Hall constant
most striking features are: firstly, a strong decrease which
in some cases, as fast as 1/T;2 secondly, the lack of satura
tion above a fraction of the Debye temperature, typica
;0.220.4TD ,

7,8 in contrast to what is expected in a Ferm
liquid description with weak electron-phonon coupling;9 and
thirdly, a quadratic dependence of the inverse Hall angle
temperature for not too large doping levels.8,10,11In a Fermi
liquid, the temperature dependence arises from an an
tropic relaxation time.7,9 If we assume scattering off phonon
to be the main inelastic process, a temperature dependen
conceivable only below a certain temperature scale: The
sufficiently anisotropic Fermi surface causes the scatterin
be confined to those regions of the Fermi surface, wh
small momentum transfers are possible. For high eno
temperatures, this kinematic restriction is lifted and the sc
tering becomes isotropic, thus leading to a cancellation of
relaxation time. The crossover temperature is given
;0.220.4TD . The universally observed decrease of the H
constant as a function of temperature in almost all highTc
compounds up to temperatures clearly beyond this temp
ture scale must therefore be due to electronic correlation
well.

In the following, we investigate the Hall effect on th
basis of the simplest model of strongly correlated electro
namely the single-band Hubbard model on a hypercubic
3907 © 1997 The American Physical Society
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3908 55EKKEHARD LANGE
tice in d dimensions with nearest-neighbor hopping. Th
model, along with Mori’s formalism used to represent t
Hall constant, is introduced in Sec. II. In this theory, the H
constant is given as the sum of its infinite frequency lim
(RH

`) and a memory-function contribution. The former ter
was considered by Shastry, Shraiman, and Singh.3 Our em-
phasis is on the memory-function term which represents
deviation of the Hall constant fromRH

` for finite frequencies
and thus cannot be neglected when considering the cas
zero frequency. One advantage of our representation of
Hall constant is that we may dodge the issue of coping w
a quotient of conductivities as opposed to the usual
proaches. This is why the Hall constant at low frequenc
becomes less sensitive to the detailed resonance structu
the conductivities. In Sec. III, this advantage is exploited
the range of weak to intermediate correlation strengths
calculating the memory function to second order in the H
bard interaction and to first order in the magnetic field. E
pansion with respect to the magnetic field leads to a dec
position of the memory function into two terms, namely
two-point and a three-point correlation function. Both cont
butions are evaluated exactly in infinite spatial dimensio
Our results indicate that the memory-function term is imp
tant. Only then, a precursor effect of the sign change of
Hall constant as a function of doping appears even in per
bation theory. Moreover, when extrapolating our results
U values of the order of twice the bare bandwidthW, we get
most of the qualitative features observed in, e
La22xSrxCuO4: the sign change with respect to doping a
the decrease of the Hall constant up to unusually high t
peratures, characteristic of most high-Tc compounds. How-
ever, the observed 1/d law of the Hall constant in the vicinity
of half filling is not reproduced. It requires a description
the strong-correlation regime,2 which will be the subject of
Sec. IV. There, we first study the moments of the mem
function in the limitU→`. Thereby, the memory function i
found to eliminate the high-energy scale set by the Hubb
repulsionU. This provides us with an explanation of th
frequency dependence of the Hall constant in the cross
regime fromv@U toW!v!U. Furthermore, a simple ana
lytical treatment of the Hall effect within the Hubbard I a
proximation is presented, the results of which turn out to
in full accord with that obtained by high-temperature expa
sions. Then, we reformulate the frequency-dependent
constant within thet-J model in order to address the low
frequency regime as well. The comparison to a represe
tion of RH(v) in terms of two relaxation rates and effectiv
masses introduced by Anderson12 provides us with an inter-
pretation of the additional relaxation ratetH in the language
of the Mori theory and a phenomenological understanding
the anomalous frequency and temperature dependence o
Hall constant in high-Tc superconductors. Finally, we ex
plain how the emerging picture may be put onto the basis
a microscopic calculation. In this context, we reduce
problem of calculating the memory function in thet-J model
to the much easier one of finding the first few moments
the ordinary current-current correlation functions. Finally,
Sec. V, we summarize our main results.

II. THEORETICAL FRAMEWORK

A. Single-band Hubbard model

The single-band Hubbard model on ad-dimensional hy-
percubic lattice in a magnetic field reads
l
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Ĥ5T̂1V̂ , ~1!

T̂52t (
^ i j &s

Pi j cis
1 cjs , ~2!

V̂5U(
i
n̂i↑n̂i↓ , ~3!

where the sum in the hopping termT̂ is restricted to neares
neighbors andV̂ is the Hubbard repulsion. The Peierls pha
factor Pi j5exp„ie* j

i AW (t,rW)drW… guarantees the gaug
invariance13 and the sign of the chargee is chosen to be
negative. Since only nearest-neighbor hops are taken
account, we may approximate

Pi j.eieA
W ~RW j !~R

W
i2RW j ! , ~4!

whereRW i denotes the lattice vector to sitei . The vector po-
tential decomposes into two terms describing the electric
magnetic field, respectively:

AW ~ t,rW !5AW el~ t !1AW mag~rW ! , ~5!

EW ~ t !52
]

]t
AW el~ t ! , ~6!

HW 5rot AW mag~rW ! . ~7!

In linear-response theory with respect to the electric field,
latter appears only in the definition of the current operat
More precisely, the current operator is defined as the follo
ing functional derivative:

Ĵn :52
1

e

dĤ~ t !

dAn
el~ t !

U
Ael50

. ~8!

The homogeneous magnetic field is chosen to point in
z direction and it is advantageous to fix the gauge from
very beginning according to the Landau choice

AW mag~RW !5RxHŷ , ~9!

since then, translational symmetry is broken only in one
mension, namely thex direction.ŷ is a primitive lattice vec-
tor. We need the current operator only up to first order in
magnetic field:

Ĵn5 Ĵn
~0!1d Ĵn , ~10!

Ĵn
~0!5 i t (

RW ,RW 1dW ,s
dn cs

1~RW 1dW !cs~RW !, ~11!

d Ĵn52et (
RW ,RW 1dW ,s

dn dWAW mag~RW !cs
1~RW 1dW !cs~RW !. ~12!

Here, dW is a nearest-neighbor vector and the summation
over pairs of nearest neighbors. Note, however, that du
the gauge fixation~9!, we cannot choose periodic bounda
conditions in thex direction. Thus, ifdW points in thex di-
rection, we have to carry out the sums in such a way that
componentsRx andRx1dx are simultaneously elements o
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55 3909MEMORY-FUNCTION APPROACH TO THE HALL . . .
the set consisting of thex coordinates of all lattice sites, i.e
$Rx

min ,Rx
min11, . . . ,Rx

max%. Here, it is assumed that the lattic
has Nx sites in the x direction which implies
Rx
max[Rx

min1Nx21. Of course, observable quantities are n
allowed to depend on the lattice locationRx

min . The hopping
term is expanded analogously, yielding

T̂5T̂~0!1dT̂ , ~13!

T̂~0!52t (
RW ,RW 1dW ,s

cs
1~RW 1dW !cs~RW !, ~14!

dT̂52 iet (
RW ,RW 1dW ,s

dWAW mag~RW !cs
1~RW 1dW !cs~RW ! . ~15!

The term without magnetic field, Eq.~14!, becomes diagona
in crystal momentum space with a band dispers
ekW522t( j51

d coskj .

B. Mori theory

In this subsection, the basics of Mori’s memory-functi
formalism are reviewed briefly. For further details, see, e
Ref. 14. The best known application of Mori theory is t
description of many-particle systems in the hydrodynam
regime.15 There, one is only interested in the dynamics of t
hydrodynamic variables. They are characterized by the
that their transport is restricted by conservation laws or
broken symmetries. Thus, they are bound to vary on a t
scale that is very slow in comparison to that of all the oth
degrees of freedom. Now, the Mori theory enables one
separate these two time scales: The equations of motio
the hydrodynamic variables take on the form of coupled
tegrodifferential equations. The corresponding integral k
nels of these so-called Mori equations are memory functi
in which the influence of all the other degrees of freedom
accumulated, hence the name ‘‘memory function.’’ In th
context of hydrodynamics, the memory functions are rapi
varying functions, whose effect may be simulated by dam
ing constants. Then, the Mori equations take on a fo
analogous to that of the Langevin equation for a parti
undergoing Brownian motion. However, the validity of th
Mori equations is not restricted to the special set of hyd
dynamic variables. In the simplest case, one sets up the M
theory for those observables that constitute the correla
functions one is interested in. This leads to representation
the unknown correlation functions in terms of memory fun
tions in which all analytic properties are fulfilled by con
struction. On the other hand, it may be difficult to find
approximate expression for a given memory function.

1. Basic notions

TheLiouville spaceL is defined as the linear vector spa
over the field of complex numbers whose elements are
linear operators in the familiar Hilbert space of quantum m
chanics, and where the usual operations like scalar mult
cation, etc., hold. In this Liouville space exist linear ope
tors that are calledsuperoperatorsto distinguish them from
the usual ones.~Henceforth, normal operators are denot
with a hat, superoperators not.! The most important superop
t
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erator is theLiouville operator L, which maps a given op-
erator onto its commutator with the Hamiltonian:

LÂ5@Ĥ,Â# . ~16!

Another important class of superoperators aresuperprojec-
tors. However, their definition implies a scalar product
L. In the context of response functions, the most conven
scalar product turns out to be the so-calledMori product

~ÂuB̂!:5
1

bE0
b

dt ^ etLÂ1
•B̂ & , ~17!

where ^ . . . & denotes the thermal average andb is the in-
verse temperature. On the basis of this scalar product,
may now speak of adjoint superoperatorsS andS1, and thus
of unitary and Hermitian ones in the usual sense. The p
jector P that projects onto the subspace ofL spanned by
linearly independent elementsuĜi), reads

P5(
i j

uĜi)gi j ~Ĝj u, ~18!

where the metricgi j is the inverse of the matrix (Ĝi uĜj ), i.e.,
(k gik(ĜkuĜj )5d i j . In fact, this implies the idempotenc
propertyP25P. Finally, the definition of the Mori produc
implies the validity of the so-called Kubo identity

b~ÂuLuB̂!5^@Â1,B̂#& , ~19!

which will play an important role.

2. Memory-function approach to the Hall constant

From Eq. ~19! follows a representation for the curren
current correlation function̂ ^Ĵn ; Ĵm&&z , defined as the
Laplace transform of2 i ^@eiLt Ĵn , Ĵm#&:

^^Ĵn ; Ĵm&&z52bS ĴmU L

z1L UĴnD[2xmn~z! . ~20!

Here,z is a complex frequency, which ultimately has to b
specialized tov1 i01. For formal manipulations, however
it is more convenient to deal with the complex frequencyz
rather than withv. The last expression has to be inserted in
the Kubo formula for the conductivity tensor,

snm~z!5
ie2

Nz
$^t̂nm&1^^Ĵn ; Ĵm&&z% , ~21!

whereN is the total number of lattice sites and^t̂nm& arises
from the equilibrium part of the current and is defined as
second functional derivative of the Hamiltonian with respe
to the external electric field:

t̂nm :5
1

e2
d2Ĥ~ t !

dAn
el~ t !dAm

el~ t !
U
Ael50

. ~22!

In the Hubbard model~1!, its expectation value is given a

^t̂nm&5dnm2t(kWscoskx^n̂kWs&, i.e., as the average kinetic en
ergy per dimension. Using the fact limz→0zsnm(z)50 which
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3910 55EKKEHARD LANGE
holds for a metal in the normal state, we show that^t̂nm& also
equals the static susceptibilityx0, defined through
xmn(z50)[dmn x0:

x05b~ ĴxuĴx!5^t̂xx&52
1

d
^T̂& . ~23!

Thus, the conductivity tensor may be written as

snm~z!5
e2

N
bS ĴmU i

z1L UĴnD[
e2

N
Cmn~z! . ~24!

In order to represent the relaxation functionsCmn(z) in terms
of memory functions, we introduce the superprojectorP that
projects onto the subspace ofL spanned by the current op
eratorsĴx and Ĵy :

P5
b

x0 (
n5x,y

uĴn)~ Ĵnu , ~25!

and the complementary superprojectorQ512P. By making
use of the operator identity 1/(a1b)51/a
2(1/a)b@1/(a1b)# with a[z1LQ andb[LP, we find

Cmn~z!5
i

z
x0dmn2

1

z
Rma~z!Can~z! , ~26!

Rmn~z![
b

x0 S ĴmU z

z1LQ
LUĴnD ~27!

[Vmn1 iM mn~z! . ~28!

The terms in the last equation are the frequency and
memory matrix, respectively,

Vmn[
1

x0 ^@ Ĵm , Ĵn#& , ~29!

Mmn~z![
b

x0 SQLĴmU i

z1QLQUQLĴnD . ~30!

The memory functions have the structure of relaxation fu
tions for the so-called residual forces

f̂ n5 iQLĴn , ~31!

whose dynamics is governed by the projected Liouville o
eratorQLQ rather thanL.14 Thus, these forces may vary o
a time scale that is different from that of the current ope
tors Ĵn . In Sec. IV B 1, we shall identify these two tim
scales with the relaxation rates of the holon and spinon
grees of freedom in Anderson’s tomographic Luttinger liqu
theory.12 Solving Eq.~26! for the matrixC(z) leads to

C~z!5 ix0@z11V1 iM ~z!#21 . ~32!

Together with Eq.~24!, this demonstrates that the Mo
theory is heading directly for the resistivity tensor. The
fore, the desired representation for the dynamical Hall c
stant can be read off from the last equation:

RH~z!5
N

ie2x0 lim
H→0

Vxy1 iM xy~z!

H
. ~33!
e

-

-

-

e-

-
-

Since the memory-function term will be shown to vanish
the high-frequency limit as 1/z2, the first term represents th
high-frequency limit of the Hall constant considered
Shastryet al.:3

RH
`5

N

ie2x0 lim
H→0

Vxy

H
. ~34!

Moreover,Vxy is the generalization of the cyclotron fre
quency to the lattice case. Therefore, within a Boltzma
equation approach, only the term~34! is considered. The
goal of the subsequent sections is to investigate the mem
function termM (z)[Mxy(z) for finite frequencies.

Before proceeding, we consider unperturbed Bloch el
trons, described by the Hamiltonian~13!. The fluctuating
forces ~31! contain the commutator of the current opera
with the Hamiltonian. This commutator is of first order in th
magnetic field, since the current of Bloch electrons is co
served in the absence of a magnetic field. Hence the mem
functionM (z) is of second order in the magnetic field an
therefore, does not contribute to the Hall constant. This de
onstrates that the Hall constant of Bloch electrons is f
quency independent and given by Eq.~34!. Note also that
conductivities are finite in the limita→0 only if there are
inelastic processes that can degrade the total crystal mom
tum. Although this condition is not satisfied in the case
unperturbed Bloch electrons, their Hall constant can be
culated forall frequencies.

3. Analytic properties

The analytic properties ofM (z) in Eq. ~33! may all be
derived on the basis of Eq.~30!. An alternative procedure is
to solve Eq.~32! for M (z) and go back to the analytic prop
erties of the current susceptibilitiesxmn(z), cf. Eq. ~20!.
M (z) reads in terms of the susceptibilitiesxmn(z):

iM ~z!5
zx0xxy~z!

@x02xxx~z!#2
2

^@ Ĵx , Ĵy#&
x0 . ~35!

From time-reversal invariance, homogeneity of time and
fact that the current operators are Hermitian, we may ded
the following symmetry properties:15

xxx~2z!5xxx~z! , ~36!

xxx* ~z!5xxx~z* ! , ~37!

xxy~2z!52xxy~z! , ~38!

xxy* ~z!52xxy~z* ! . ~39!

Together with Eq.~35!, this implies

M ~2z!5M ~z! , ~40!

M* ~z!5M ~z* ! . ~41!

M (z) can be represented as a spectral integral

M ~z!5E dv

p

M 9~v!

v2z
, ~42!
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55 3911MEMORY-FUNCTION APPROACH TO THE HALL . . .
where the spectral functionM 9(v) is given by the disconti-
nuity across the real axis:

M ~v6 i01!5M 8~v!6 iM 9~v! . ~43!

From the analytic properties~40! and ~41!, it follows that
M 8(v) andM 9(v) are real functions satisfying

M 8~2v!5M 8~v! , ~44!

M 9~2v!52M 9~v! . ~45!

Thus, two further conclusions can be drawn: Firstly, on
even powers in 1/z contribute to the high-frequency expa
sion ofM (z). And secondly, the quotientM 9(v)/v must be
integrable aroundv50,

E
2`

`

dv M 9~v!/v,`, ~46!

which can be seen from the fact that the dc-Hall const
contains this integral. Note, that we need not understand
expression as a Principal value integral due to the fact
the integrand is even.

III. PERTURBATION THEORY

Despite many interesting works on the normal-state H
effect of high-Tc superconductors, a calculation that incorp
rates all the complicated many-body correlations within
microscopic model is still lacking. The following treatme
of the Hall constant closes this gap at least in
perturbation-theoretical regime. On the other hand, the
evant parameter regime is believed to be the stro
correlation limit rather than the weak one. However, it tur
out that the final expression may well describe the obser
dependences on temperature and on doping at least qu
tively, if we allowU to be extrapolated to values of the ord
of the bare bandwidthW. Thus, a precursor effect of th
anomalous dependences clearly shows up even in the re
of weak correlations.

A. Approximation

The perturbation-theoretical treatment of the Hall const
is by no means straightforward. As is well known, the eva
ation of response functions likexmn(z) of Eq. ~20! by ex-
pansion in a small interaction parameter fails because, a
artifact of such an expansion, these functions become sin
lar for small frequenciesz. This difficulty was resolved by
Götze and Wo¨lfle16 some time ago by means of a memor
function approach. They calculated the memory funct
perturbatively, which, at first, is valid only at high enoug
frequencies. It turns out, however, that their expression
the memory function depends only smoothly on frequen
below a certain frequency scale and tends to a constant in
limit v→0. Furthermore, in their approximation scheme t
correct resonance structure of the studied response func
is inherently built in. Thus, their results could be used in
whole frequency regime including the hydrodynamic on
However, we cannot carry over their analysis straightf
wardly to the present problem, because otherwise, we wo
t
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encounter a spurious singularity in the limit that is of mo
interest, namely the limitv→0.

In this subsection, we identify the precondition which
necessary to obtain regular expressions in this limit and
was fulfilled trivially in the applications of Ref. 16 but is no
in our case. Since this condition does not affect the corr
description of the local interactionU, we may take it as an
approximation. By using Mori’s formalism, we shall see th
once this condition is assumed to be satisfied no further
proximations have to be made. This last point cannot be s
in the more intuitive introduction of the memory-functio
concept as given in Ref. 16 and shows that the extrapola
to low frequencies therein is exact.

Perturbation theory is based on the following decompo
tion of the Liouville operator:

L5L01L1 , ~47!

whereL0 andL1 are assigned to the hopping and interacti
term of the Hubbard Hamiltonian~1!, respectively. The
perturbation-theoretical regime is given by the conditi
U!W, whereW is the width of the bare band and thu
represents the characteristic energy scale introduced byL0.
The precondition to obtain a regular expression for
memory functionM (z) for all frequencies to leading order i
U is that the relevant operatorsĴx andĴy span a subspace o
L that is invariant with respect to actions ofL0.

14 If this
condition were satisfied in our case, it would take on t
form

L0Ĵn5@ T̂,Ĵn#5 ĴmVmn
0 , ~48!

wheren,m5x,y and summation over repeated indices is i
plied. This can be checked by inserting these equations
( Ĵlu . . . )0 and comparing the result with the definition~29!.
( . . . u . . . )0 is the Mori product with respect toL0. Since
only terms of the first order in the magnetic fieldH are to be
kept @cf. Eq. ~33!#, we may take the current operator on th
right-hand side~rhs! of Eq. ~48! atH50. Henceforth, brack-
eted superscripts or subscripts refer to the magnetic field
unbracketed ones to the decomposition~47!. Unfortunately,
the conditions~48! are not satisfied in the Hubbard mode
Instead, we derive with the help of Eqs.~10!–~12! and~13!–
~15! ~see Appendix A!:

@ T̂,Ĵx# 5

(
kWs

coskx sinky n̂kWs

(
kWs

coskx cosky nkWs
0

^@ Ĵy ,Ĵx#&0 , ~49!

which should be equal to

(
kWs

sinky n̂kWs

(
kWs

cosky nkWs
0

^@ Ĵy ,Ĵx#&05 Ĵy
~0!Vyx

0 . ~50!

This is obviously not the case. Similarly, we find
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@ T̂,Ĵy# 5

(
kWs

sinkx cosky n̂kWs

(
kWs

coskx cosky nkWs
0

^@ Ĵx ,Ĵy#&0 , ~51!

instead of

(
kWs

sinkx n̂kWs

(
kWs

coskx nkWs
0

^@ Ĵx ,Ĵy#&05 Ĵx
~0!Vxy

0 . ~52!

However, the conditions~48! become exact in the continuum
limit or in the limit of small band fillings. This is seen if we
take explicitly into account the lattice spacinga in the argu-
ments of the trigonometric functions which we tacitly ha
set equal to 1. Then we may expand coskna.1 and
sinkna.kna which proves the statement immediately. Thu
the violation of the conditions~48! on the lattice reflects its
reduced symmetry in comparison with free space. Since
conditions ~48! are properties of thefree model, we may
assume their approximate validity without taking the risk
not describing the local interactions~3! correctly.

Before proceeding, we show how the conditions~48! ap-
pear within the formalism outlined in Ref. 16. We expa
Eq. ~35! in the frequency regime, where the express
uxxx(z)/x

0u is very small, i.e., for high enough frequenci
and use a couple of times equations of motion for correla
functions ^^Â;B̂&&z . Thus we may show thatM (z) can be
represented as follows@cf. Eq. ~57!#:

ix0M ~z!.2
^^K̂x ;K̂y&&z

0

z
1R~z! . ~53!

The first term will be investigated in the next subsection a
turns out to be regular for all frequencies;R(z) can be writ-
ten as

R~z!5^^Ĵx ;@ T̂,Ĵy#&&z2^^@ T̂,Ĵx#; Ĵy&&z12Vxy
0 xxx~z!

5
2^@ Ĵx ,Ĵy#&0

x0

fxx~z!2fxx~0!

z2
, ~54!

where fxx(z)[^^K̂x ;K̂x&&z
0 . Calculating the function

fxx(z) by following the lines outlined in the next subsectio
we may prove thatR(z) is indeed divergent in the limi
z→0, which, however, is an artifact of perturbation theo
The first representation ofR(z) in the last set of equation
shows that the condition~48! impliesR(z) to vanish identi-
cally, if we take into account the symmetry properti
Vxy

0 52Vyx
0 andxxx(z)5xyy(z).

B. Reduction to ordinary correlation functions

We are interested in the memory function appearing
Eq. ~33!, whose Laplace transform is given according to E
~30! as

M ~ t !5
b

x0 ~QLĴxueiQLQtuQLĴy! . ~55!
,

e

f

n

n

d

.

n
.

Due to the approximation~48!, the free partL0 of the Liou-
ville operator does not contribute to the operatorQLuĴn).
Hence, to leading order in the interaction strengthU, we
obtain

M ~ t !5
b

x0 ~Q0L1ĴxueiQ0L0Q0tuQ0L1Ĵy!0 . ~56!

SinceQ0 commutes withL0 and because of the idempoten
of Q0,

14 we may free ourselves of all superprojectorsQ0
with the exception of one, say, that within the ‘‘ket
uQ0L1Ĵy). However, even this last appearance ofQ0 may be
omitted, since its partP0 leads to a term proportional to th
following first-order expression of the frequency matrix:14

Vnm
1 5gnl

0 ( ĴluL1uĴm)0. Here summation over equal indices
implied. However, the frequency matrix is easily traced ba
to nkWs5^ckWs

1
ckWs&, whose first-order contribution vanishe

Thus, Vnm
1 vanishes as stated and we arrive

M (z)5(b/x0)(K̂xu i /(z1L0)uK̂y)0, where we have defined

K̂n[@V̂,Ĵn# . ~57!

With the identityz/(z1L0)512L0 /(z1L0) and the sym-
metry propertŷ ^K̂x ;K̂y&&2z

0 52^^K̂x ;K̂y&&z
0 , which may be

traced back to Eq.~38! by means of two equations of motion
we eventually arrive at

ix0M ~z!5 2
^^K̂x ;K̂y&&z

0

z
. ~58!

Now, we must evaluate this correlation function for the fr
tight-binding model~13! to leading first order in the mag
netic field. In order to derive explicit expressions for th
operators~57!, we introduce the following combination o
Bloch operators:

ÂkW1 ,k
W
2ukW uqW

s
[ckW1s

1
ckW2sckW2qW u2s

1
ckW u2s . ~59!

This is the basic building block of the operatorsK̂n . To see
this, we insert Eqs.~3! and~10!–~12! into the definition~57!
and write the result in terms of Bloch operators. We find

K̂n5K̂n
~0!1dK̂n , ~60!

K̂n
~0!52

U

N (
kW1k

W
2k

WqW s

@Bn~kW1 ,kW21qW !

2Bn~kW12qW ,kW2!#ÂkW1 ,k
W
2ukW uqW

s , ~61!

dK̂x50 , ~62!

dK̂y5Het
U

N (
kW1k

W
2k

WqW s

@C~kW1 ,kW21qW !

2C~kW12qW ,kW2!#ÂkW1 ,k
W
2ukW uqW

s , ~63!

where the matricesBn(kW1 ,kW2) andC(kW1 ,kW2) are defined in
Appendix A, cf. Eqs.~A2! and ~A3!. SincedK̂x vanishes,
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the expansion of the correlation function appearing in E
~58! to first order in the magnetic field reads

^^K̂x ;K̂y&&z
05CII ~z!1CIII ~z! , ~64!

CII ~z!5^^K̂x
~0! ;dK̂y&&z

0~0!, ~65!

CIII ~z!5^^K̂x
~0! ;K̂y

~0!&&z
0~1!. ~66!

Obviously, it is sufficient to calculate the correlation functio
consisting of operators~59! within the tight-binding model
~13!, however, to first order in the magnetic field. But firs
we note that the functions~65! and ~66! are two- and three-
point correlation functions, respectively. This is explicit
seen within the Matsubara representation where the ex
sion of ^^K̂x ;K̂y&&z

0 up to first order in the ‘‘perturbation’’
Eq. ~15! yields

CII ~ ivm!52
1

bE0
bE

0

b

dt dt8 ^Tt$K̂x
~0!~t ! dK̂y~t8!%&0

~0!

3eivm~t2t8! , ~67!

CIII ~ ivm!5
1

bE0
bE

0

bE
0

b

dt dt8dt9 ^Tt$K̂x
~0!~t !K̂y

~0!~t8!

3dT̂~t9!%&0
~0!eivm~t2t8!. ~68!

C. Expansion to first order in the magnetic field

As already mentioned, our next goal is to calculate
correlation function generated by the operators~59! up to
first order in the magnetic field. This is accomplished
means of its equation of motion with respect to the tig
binding Hamiltonian~13!:

~z1ekW2qW2ekW1ekW12ekW2!^^ÂkW1 ,k
W
2ukW uqW

s ; Â
kW
18 ,k

W
28ukW8uq8W z

s8
&&

5^@ÂkW1 ,k
W
2ukW uqW

s , Â
kW
18 ,k

W
28ukW8uq8W

s8
#&

2^^@dT̂,ÂkW1 ,k
W
2ukW uqW

s
#;Â

kW
18 ,k

W
28ukW8uq8W

s8
z
&&~0! . ~69!

Here and in the following, the superscript 0 is omitted. T
expansion of the expectation value on the rhs with respec
the magnetic field is standard17 and yields

^@ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&5^@ÂkW1 ,k

W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&~0!

2^v̂@ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&~0! ,

~70!

wherev̂ arises from the expansion of theS-matrix related to
the ‘‘perturbation’’ ~15! and is therefore given by

v̂5E
0

b

dt et~ T̂~0!2mN̂!dT̂e2t~ T̂~0!2mN̂! . ~71!
.

n-

e

-

to

With the representation ofdT̂ in terms of Bloch operators,

dT̂52 ietH (
kW1k

W
2s

D~kW1 ,kW2!ckW1s
1

ckW2s , ~72!

where the matrixD(kW1 ,kW2) is also defined and further evalu
ated in Appendix A@cf. Eq. ~A4!#, we find more explicitly

v̂52 ietH (
kW1k

W
2s

D~kW1 ,kW2!
eb~ekW1

2ekW2
!21

ekW12ekW2
ckW1s

1
ckW2s .

~73!

Inserting the expansion~70! into Eq. ~69!, we obtain the
following zeroth and first-order terms of the correlation fun
tion to be determined:

^^ÂkW1 ,k
W
2ukW uqW

s ;Â
kW
18 ,k

W
28ukW8uq8W

s8
&&z

~0!5

^@ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&~0!

z1ekW2qW2ekW1ekW12ekW2
,

~74!

^^ÂkW1 ,k
W
2ukW uqW

s ;Â
kW
18 ,k

W
28ukW8uq8W

s8
&&z

~1!

52

^v̂ @ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&~0!

z1ekW2qW2ekW1ekW12ekW2

2

^^@dT̂,ÂkW1 ,k
W
2ukW uqW

s
# ; Â

kW
18 ,k

W
28ukW8uq8W

s8
&&z

~0!

z1ekW2qW2ekW1ekW12ekW2
. ~75!

The second term on the rhs of Eq.~75! still contains a cor-
relation function. Fortunately, this function is related to t
Hamiltonian~14! without magnetic field thus being directl
reducible to expectation values by means of its equation
motion:

^^@dT̂,ÂkW1 ,k
W
2ukW uqW

s
#;Â

kW
18 ,k

W
28ukW8uq8W

s8
&&z

~0!

5

^@@dT̂,ÂkW1 ,k
W
2ukW uqW

s
#,Â

kW
18 ,k

W
28ukW8uq8W

s8
] &z

~0!

z2ekW82qW 81ekW82ekW
18
1ekW

28
. ~76!

In summary, the problem of calculating the memory functi
~58! to leading order in the magnetic field has been redu
to the calculation of expectation values within the unp
turbed tight-binding model without magnetic field: The re
evant information is contained in Eqs.~61!, ~63!–~66!, and
~74!–~76!. The rather cumbersome calculations are roug
sketched out in Appendix B. We write the memory-functio
contribution to the Hall constant@cf. Eq. ~33!# as follows:

dRH~z!5
1

e S U

2tan
0D 2@mII ~z!1mIII ~z!# , ~77!

wherean is the amplitude of a nearest-neighbor hop and
related to the static susceptibility Eq.~23! via x054tNan .
This, in turn, implies
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an5
1

2N(
kWs

coskx nkWs . ~78!

mII (z) andmIII (z) arise from the two- and three-point correlation functions, respectively, and are represented with re
the further strategy as energy integrals:

mII ~z!52
t2

dE de1E de2E de18E de28 I ~zue1 ,e2ue18 ,e28!LII ~e1 ,e2ue18 ,e28! , ~79!

mIII ~z!5
t3

Ad
@Q~z!1Q~2z!# , ~80!

Q~z!5E deE de1E de2E de18E de28
I ~zue,e2ue18 ,e28!2I ~zue1 ,e2ue18 ,e28!

e2e1
LIII ~eue1 ,e2ue18 ,e28! . ~81!

The integrands feature the following abbreviations:

I ~zue1 ,e2ue18 ,e28![
f ~e1! f ~e2!@12 f ~e18!#@12 f ~e28!#2@12 f ~e1!#@12 f ~e2!# f ~e18! f ~e28!

~e11e22e182e28!~z1e11e22e182e28!
, ~82!

LII ~e1 ,e2ue18 ,e28!

d
[K d~e12ekW1!d~e22ekW2!d~e182ekW

18
!d~e282ekW

28
!H cosk1x1cosk1x8 2@sink1x2sink1x8 #

3PcotS k1x1k2x2k1x8 2k2x8

2 D J $cosk1y1cosk2y2cosk1y8 2cosk2y8 %

32pd~k1y1k2y2k1y8 2k2y8 !L
kW1k

W
2k

W
18k

W
28
, ~83!

LIII ~eue1 ,e2ue18 ,e28!

22Ad
[K d~e2ekW

181kW
282kW2

!d~e12ekW1!d~e22ekW2!d~e182ekW
18
!d~e282ekW

28
!H cosk1x1cosk2x1cosk1x8 1cosk2x8

2@sink1x1sink2x2sink1x8 2sink2x8 # PcotS k1x1k2x2k1x8 2k2x8

2 D J
3$sink1y1sink2y2sink1y8 2sink2y8 %sink1y2pd~k1y1k2y2k1y8 2k2y8 !L

kW1k
W
2k

W
18k

W
28
, ~84!
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and f (e)[1/@exp„b(e2m)…11# is the Fermi function.
^•••&kW denotes the average over the first Brillouin zone, i
*ddk/(2p)d(•••). Note, that the last two equations~83! and
~84! reflect the gauge fixation~9!: In the y direction, crystal
momentum is conserved which is ensured by thed functions
while the x components of the Bloch vectors are coupl
more complicatedly. In principle, we could do the mome
tum integrations numerically for a two-dimensional latti
and for given sets of external parameters temperatureT, dop-
ing d, and frequencyv. However, we prefer to carry on ou
analysis a little bit by invoking a limit pioneered by Metzn
and Vollhardt in the context of strongly correlate
electrons,18 namely the limit of infinite spatial dimensions. I
this limit, the momentum integrals decouple and we are
with energy integrals over smooth functions. This proced
.,

-

ft
e

will be discussed in the next subsection.

D. The limit of infinite lattice dimensions

We may question the relevance of this limit, since t
important physics of the high-Tc superconductors is known
to take place in Cu-O planes. Many authors have addres
this issue and much evidence has been revealed in favo
the relevance of this limiting procedure even for tw
dimensional systems; see, e.g., Ref. 19. Instead of immer
ourselves in this debate, we take the following point of vie
The main reasons behind the anomalous properties of
high-Tc materials seem to be, firstly, the strong electro
correlations and, secondly, the two-dimensionality of the r
evant Cu-O planes. Taking the limitd→` helps us to sepa
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55 3915MEMORY-FUNCTION APPROACH TO THE HALL . . .
rate the impact of the correlations and to suppress effect
low-dimensionality like, e.g., van Hove singularities. In th
sense, the limitd→` is interesting in itself.

For our problem, the most important aspect of the lim
d→` is the following: For the Hubbard model to retain i
nontrivial dynamics, the parametert has to be scaled prop
erly with d according to

2t5
t*

Ad
~85!

~in this subsection, we sett*[1). Only then does the Hub
bard model capture simultaneously the itinerant and lo
aspects introduced by the hopping and interaction terms
spectively. On the other hand, we are tempted to concl
from the scaling~85! that any transport stops to be possib
in d5`. In fact, a more thorough investigation shows th
the longitudinal and the Hall conductivity are of order 1d
and 1/d2, respectively. But this, in turn, implies that the Ha
constant remains finite ind→`. In the following, all we
need to know is how to calculate averages over Brillo
zones of the type Eqs.~83! and~84!. The corresponding pro
cedure is explained in Appendix C and enables us also
calculate simpler quantities as the density of statesD(e) of
the band model~14!, the nearest-neighbor hopping amplitu
~78!, and the amplitude of a hop diagonally across the u
cell, i.e.,

ad5
1

2N(
kWs

coskxcoskynkWs . ~86!

In the case of the amplitudes~78! and ~86!, the functions

A~e![^coskx d~e2ekW !&kW52
e

Ad
D~e! , ~87!

B~e![^coskxcosky d~e2ekW !&kW5
1

d S e22
1

2DD~e! ~88!

come into play. Essentially, they are Gaussians multip
with the first and second Hermitian polynomial, respective
since they are derivatives of the Gaussian density of sta

D~e!5
1

Ap
e2e2 . ~89!

The functions~83! and~84! are found to be combinations o
the functions~87! and ~88! and may be written as

LII ~e1 ,e2ue18 ,e28!5D~e1!D~e2!D~e18!D~e28!$e1
21e1e2

1e2e182e18
22e18e282e28e1% , ~90!

LIII ~eue1 ,e2ue18 ,e28!5D~e!D~e1!D~e2!D~e18!D~e28!

3$2e1e11e21e181e28% . ~91!

In order to handle the singularity of the Hall constant in t
empty band limit correctly, we shall discuss the perturbati
theoretical result for the Hall constant normalized to
U→0 limit:
of

t

al
e-
e

t

to

it

d
,
s:

-

RH~z,U !

RH0
511U2@K`1KII ~z!1KIII ~z!# . ~92!

KII (z) and KIII (z) arise from the functions~79! and ~80!,
respectively, e.g.,KII (z)5(2d/ad0)m

II (z). K` is the
perturbation-theoretical contribution of the infinite frequen
Hall constant~34!. The latter may be written in terms of th
amplitudes~78! and ~86!:

RH
`5

1

e

2ad
~2an!

2 . ~93!

This holds on account of the following relations, which m
be proven by straightforward analysis:

^@ Ĵx ,Ĵy#&58iNet2Had , ~94!

x054tNan . ~95!

Therefore, it is sufficient to calculate the densitynkWs to sec-
ond order inU. The derivation is standard and will therefo
not be given here. Similarly, theU50 Hall constant is given
by

RH05
1

e

2ad0
~2an0!

2 ~96!

~the subscripts 0 indicateU50 as above!. Due to symme-
tries of the expression~91!, the function~81! may be simpli-
fied by means of various redefinitions of the integration va
ables:

Q~z!5E de1E de2E de18E de28D~e1!D~e2!D~e18!D~e28!

3I ~zue1 ,e2ue18 ,e28!$e21e181e28%

3E de
D~e11e!2D~e12e!

e
. ~97!

The terms of Eq.~92! may now be evaluated numerically i
the limit v→0 on the basis of Eqs.~79!, ~80!, and~97! along
with the definition ~82! and the result~90!. But first, we

FIG. 1. The corrections of Eq.~92! atT50. The curves A, B, C,
and D represent the functionsK`(d), KII (d), KIII (d), and their
sum, respectively.



y
-
b

he

a
t
ng
b

A
o
uf

rm
id
r

nc

u

th
Eq

rv
nd

in

t
n
d
e
ith
n
O

si
n

-

rtain

in-
e a
en-
oice
r

ri-
a

ve
on-
is
ay
an-
to
r
l

or
f

3916 55EKKEHARD LANGE
check whether the Hall constant~92! reduces to the familiar
expression 1/ne, provided the electron densit
n5(1/N)(kWsnkWs is very low. We concentrate on zero tem
perature, where we find the Fermi energy to be given
n511 erf(eF). This implies eF→2` in the empty band
limit. Then, the corrections on the rhs of Eq.~92! vanish and
the Hall constant is given by Eq. ~96!. With
2an05D(eF)/Ad and 2ad052eFD(eF)/d, we find in fact
for n→0:

RH52
eF

e D~eF!
.

1

en
. ~98!

E. Numerical results

First of all, we discuss the relative importance of t
terms appearing on the rhs of Eq.~92!. Figure 1 shows their
doping dependence atT50 ~dashed lines! and that of their
sum ~solid line!, where the doping parameter is defined
d512n. All functions vanish in the empty band limi
(d→1) and exhibit monotonic behavior with decreasi
doping. This reflects the fact, that the suppression of dou
occupied sites introduced by the Hubbard repulsion~3! be-
comes more effective with increasing electron density.
for the signs of the three contributions, only that of the tw
point correlation function is negative. This, however, is s
ficient to render the sum of all terms negative~solid line in
Fig. 1!. This remains valid at finite temperatures: The te
K` is positive for all temperatures and doping levels cons
ered, but is always overcompensated by the memo
function contribution KII ( i01)1KIII ( i01). Thus, our
perturbation-theoretical results clearly indicate the tende
of the Hall constant to change its signbelow half filling.
However, for this to happen, the memory-function contrib
tion must be taken into account.

To study the doping and temperature dependences of
precursor effect in greater detail, we shall extrapolate
~92! to correlation strengthsU big enough for the Hall con-
stant to exhibit a sign change. Ultimately, we fixU such that
this sign change occurs in the parameter regime obse
experimentally in the case of the compou
La22dSrdCuO4. We shall measureU in terms of the bare
bandwidthW, which may be chosen, due to Eq.~89!, as
W52t* ~from now on, the hopping parametert* is explic-
itly taken into account!. Then, it follows from Eq.~92! and
Fig. 1, that theT50 thresholdU, above which the Hall
constant becomes positive, isU52.18W at half filling
(d50) and increases monotonically with increasing dop
and ultimately diverges in the empty band limitd→1.

Before proceeding, we touch upon the issue of how
relate our theoretical results to experimental measureme
Firstly, thed5` hopping parametert* has been estimate
crudely as 0.2t*;500 K.20 Secondly, we shall express th
Hall constant in units that allow the direct comparison w
experimental results. This requires that charge carrier de
ties are taken with respect to the volume of a unit cell.
the other hand, the electron densityn, appearing in Eq.~98!,
denotes the average number of electrons per lattice
From a theoretical point of view, this definition is convenie
since it is independent of the lattice dimensiond and remains
meaningful in the limitd→`. Therefore, in order to com
y
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pare our theoretical results with measurements on a ce
cuprate, we have to multiply the Hall constant of Eq.~92! by
V/n, whereV is the volume of a unit cell andn the number
of Cu ions therein. In the case of La22dSrdCuO4,
V5186 Å3 andn52.

After these preliminary remarks, we proceed with the
vestigation of the intermediate correlation regime, wher
sign change is possible. Figure 2 shows the doping dep
dent Hall constant for several temperatures and the ch
U52.3W ~solid lines! as well as two experimental curves fo
polycrystalline samples of La22dSrdCuO4 taken from Ref. 5
~inset!. We see that the sign change occurs close tod'0.3
for temperatures below 300 K, in agreement with expe
ment. For lower doping levels, our Hall constant exhibits
maximum and ultimately vanishes at half filling, irrespecti
of temperature. This reflects the fact that, in our perturbati
theoretical result~92!, the Hall constant of the bare band
merely renormalized by a finite factor. Such a factor m
change an overall sign but never can turn a vanishing qu
tity into a nonzero one. Thus perturbation theory fails
account for the observed 1/d law of the Hall constant nea
half filling. And that is why our perturbation-theoretica

FIG. 2. Hall constant as a function of doping forU52.3W.
Inset: Data for polycrystalline samples of La22dSrdCuO4 taken
from Ref. 5.

FIG. 3. Hall constant as a function of temperature f
U52.3W. Inset: Data for polycrystalline samples o
La22dSrdCuO4 taken from Ref. 11.
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55 3917MEMORY-FUNCTION APPROACH TO THE HALL . . .
curves cross the zero line~dotted line in Fig. 2! with slopes
that are two orders of magnitude smaller than those of
experimental curves. Apart from this deficiency of perturb
tion theory, the other dependences are in qualitative ag
ment with experiment. In Fig. 3, the temperature depende
of the Hall constant is shown for various doping leve
within the range 0.1<d<0.4 ~solid lines! and compared to
experimental results from Ref. 11, again for polycrystalli
samples of La22dSrdCuO4 ~dashed lines in the inset!. De-
spite the already mentioned difference in the order of m
nitude of the Hall constant, our curves display the same
tures as the experimental ones: A maximum at l
temperatures followed by a regime in which the Hall co
stant decreases monotonically up to unusually high temp
tures. We have not been able to determine the exact loca
of the maximum due to numerical difficulties at nonze
temperatures below 0.05t* . Experimentally, it occurs abov
Tc . The fact that it appears within the Hubbard model su
gests that it is not related to the onset of superconduc
correlations. This is further supported by comparing the d
of 90-K and 60-K YBa2Cu3O61x :

8 In this compound, the
location of the maximum inRH(T) does not depend on th
doping levels corresponding to the range 60 K,Tc,90 K.
As for the decrease of the Hall constant as a function
temperature, it is experimentally found to be most p
nounced at optimal doping, e.g.,d50.15 in the case of
La22dSrdCuO4. Our results exaggerate the doping ran
where this decrease is markedly visible. At least, Fig
shows that the decrease is least pronounced for the c
corresponding to the lowest doping level,d50.1. Further-
more, at high doping levels, where the memory-funct
contribution becomes unimportant, the Hall constant
comes almost temperature independent.

What about the observed quadratic dependence of
Hall angle on temperature for small doping levels?8,10,11This
law cannot be verified on the basis of Eq.~92! alone, al-
though, it cannot be falsified either. To make a check on
law, the longitudinal conductivity is needed as well. In pri
ciple, the calculation of this quantity can be done along
same lines leading to Eq.~92! and is left for future work.

IV. STRONG-CORRELATION REGIME

Numerical studies of multiband Hubbard models for t
Cu-O planes of high-Tc materials indicate that all low
energy excitations are reproducible within a single-ba
Hubbard model withU;W.21 Unfortunately, this paramete
regime is not accessible to reliable analytical calculatio
By contrast to the analysis of Sec. III, we shall now exa
gerate the impact ofU by considering the rangeU@W in-
stead. Henceforth, we shall assume a two-dimensional sq
lattice.

A. Hall constant in the crossover regime fromv@U to v!U

The main problem in dealing with the memory function
Eq. ~33! is related to the fact that its dynamics is governed
the projected Liouville operatorQLQ rather thanL. We re-
solve this difficulty by inquiring into the properties of th
memory function via its moments. Then, we may get rid
the superprojectorsQ simply by resorting to their definition
through Eq.~25! and thereafter.
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1. The moments of the memory function in the limit Ũ `

We start by rewriting the Hall constant~33! in terms of
spectral functions:

RH~z!5
N

e2~x0!2H E
2`

`

dv HSH~v!1K~v!
v

v2z J .
~99!

The first spectral function in the integrand is defined as

SH~v!52 i ^@ Ĵx ,d~v1L !Ĵy#& , ~100!

and corresponds to the Hall matrix element of the curre
current correlation function. The second function is related
the spectral functionM 9(v), introduced in Eq.~43!, by
K(v)5x0M 9(v)/(pv), which implies

K~v!5
2 ib

v
„QLĴxud~v1QLQ!uQLĴy… . ~101!

This function describes the correlation between the resid
forces f̂ x and f̂ y . In the following, we shall uncover a simpl
connection between the moments of the two functio
SH(v) andK(v) in the limit U→`.

First, we note that both functions may be shown to
even and real.14 Furthermore, we expect both functions
vanish beyond a certain frequency aboveU, sinceU is the
highest energy scale in the problem. This assumption will
corroborated below up to corrections of the ordert/U.
Hence, for finite but largeU, all moments exist and it is
sufficient, to consider only the even ones:

Sl5E
2`

`

dv SH~v!v2l , ~102!

Kl5E
2`

`

dv K~v!v2l , ~103!

where l>0. Since we are mainly interested in the dc-H
constant, we would like to calculateK0. Unfortunately, this
is not feasible on the basis of Eq.~101!, since the inverse of
the projected Liouville operatorQLQ does not exist. How-
ever, all the other moments~103! can be calculated: Due to
Eq. ~101!, they are given as

~104!

Now, if we insertQ512P, this expression decomposes in
4l terms. Consider a special one consisting ofp superprojec-
tors P. By using the definition ofP, this term is seen to
decompose further intof5p11 factors of the form
b( ĴuLmj uĴ), the orders of which areUmj21 due to the Kubo
identity ~19!. Here,( j51

f mj52l11. Thus, each factor low-
ers the relative order inU by one. Hence, the more supe
projectorsP a given term is composed of, the lower its rel
tive order inU is. Therefore, all superprojectorsQ may be
removed from the rhs of Eq.~104! to leading order int/U.
And this, in turn, establishes the following relation betwe
the l>1 moments of Eqs.~102! and ~103!:
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Kl

U2l 52
Sl
U2l 1oS tU D . ~105!

This equation doesnot imply that the functions~100! and
~101! differ only by a sign in the limitU→`. This conclu-
sion would require positive or negative definite functions a
finite moments even in the limitU→`. None of both con-
ditions is satisfied. To proceed anyway, we remind ourse
that in the context of the Hubbard model in the strong c
relation limit, any spectral function is believed to separ
into individual ‘‘peaks’’ centered around integer multiples
U ~Refs. 22–24! ~in this context, any connected structure
a given spectral function, irrespective of its detailed shape
referred to as a ‘‘peak;’’ for instance, it may vanish at d
crete points!. This reflects the fact that one-particle excit
tions may be grouped into two Hubbard bands separate
the so-called charge-transfer gap, which is of the orderU.
Since the current operators produce particle-hole excitati
we expect the functions~100! and ~101! to have peak struc
tures centered aroundv50 and6U related to excitations
within the two Hubbard bands and across the charge-tran
gap, respectively. Therefore, these peaks are expecte
have widths of the order of those of the Hubbard bands
the following, we shall prove this picture at least for th
function ~100! and derive formulas required to extract mo
information from the relations~105!.

2. Structure of the functions SH„v… and K„v…

The appropriate technique to investigate spectral pro
ties of the Hubbard model in the strong-correlation limit w
pioneered by Harris and Lange in the special case of sin
particle excitations22 and generalized by several other a
thors, see for instance Refs. 23 and 24. At the heart of
procedure stands the decomposition of a given operator
terms, which increase the number of doubly occupied s
by integer valuesp:

Ô5 (
p52`

`

ÔpU . ~106!

Together with the Lehmann representation of a given sp
tral function, one may then address the properties of its
dividual peaks. The decomposition~106! is accomplished by
an iterative procedure based on a canonical transformatio
the Hubbard Hamiltonian:Ĥ→exp$iŜ%Ĥexp$2iŜ%. The ex-
pansion of the operatorŜ up to the orderl in t/U eliminates
those processes fromĤ which change the total number o
doubly occupied sites up to the ordert l /Ul21. The corre-
sponding transformed HamiltonianĤ ( l11) in turn helps to fix
the next order ofŜ in t/U and so on. Thus, subsequent iter
tions generate increasing orders int/U. Once the generato
Ŝ has been found to a given order, one may decompose
operator to the same order by first decomposing its rota
counterpart.24

In our case,t/U expansions may be terminated after t
zeroth-order term since the relation~105! indicates that it is
not sensible to go beyond. Then, we do not have to dis
guish between original and transformed Fermi operators
d
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the decomposition~106! specialized to the case of the oper
tors D̂ i j

s [cis
1 cjs , making up the components of the curre

operator, becomes

D̂ i j
s 5D̂ i j ;2U

s 1D̂ i j ;0
s 1D̂ i j ;U

s . ~107!

In terms of Hubbard operatorsXi
0s[cis(12n̂i s̄),

Xi
s0[(12n̂i s̄)cis

1 , Xi
s̄2[cisn̂i s̄ , andXi

2s̄[n̂i s̄cis
1 , where

s̄[2s, the terms of Eq.~107! may be written conveniently
as

D̂ i j ;0
s 5Xi

s0Xj
0s1Xi

2s̄Xj
s̄2 , ~108!

D̂ i j ;2U
s 5Xi

s0Xj
s̄2 , ~109!

D̂ i j ;U
s 5Xi

2s̄Xj
0s . ~110!

The Lehmann representation of the function~100! is derived
straightforwardly:

SH~v!5
1

Z (
n,m

Mnm~e2ben2e2bem!d~v2@en2em# ! ,

~111!

Mnm5
1

2i
$^nuĴxum&^muĴyun&2^nuĴyum&^muĴxun&% ,

~112!

where states and energies are defined through the eigen
equation (Ĥ2mN̂)un&5enun&. Inserting the decomposition
of the current operators corresponding to Eq.~107!, we find
that the peak centered aroundv5pU has a weight given by

WpU5
1

2i
~^@ Ĵx;pU ,Ĵy;2pU#&1^@ Ĵx;2pU ,Ĵy;pU#&!

~113!

and that only the peaksp50 andp561 survive in leading
order in t/U.

We assume that the function~101! has qualitatively the
same triple-peak structure. Although not proven, this
sumption is shown to lead to reasonable conclusions.

3. Frequency dependence of the Hall constant
in the rangev@W

Given the peak structure of the functions~100! and~101!,
only the contributions of the satellite peaks aroundv56U
can be resolved in thel>1 moments~102! and ~103! in
lowest order int/U. Thus, the relation~105! implies that the
‘‘spectral weights’’ of the peaks ofK(v) andSH(v) around
v5U differ only by a sign. Together with Eq.~99!, we may
then draw the following conclusions: Forv@U, all peaks of
SH(v) contribute to the Hall constant and none ofK(v). In
the frequency rangeW!v!U, the high-frequency peak
cancel each other out while the contribution of the ze
frequency peak ofK(v) is negligible. Within this charge-
transfer gap region, the frequency-dependent Hall consta
then lowered by a factorp in comparison to its infinite fre-
quency limit,

RH*[RH~W!v!U !5p RH
` , ~114!
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55 3919MEMORY-FUNCTION APPROACH TO THE HALL . . .
if we definep to be the relative spectral weight of the low
energy structure ofSH(v):

p5
W0

W2U1W01WU
5

^@ Ĵx;0 ,Ĵy;0#&

^@ Ĵx ,Ĵy#&
. ~115!

Equation~114! is valid except for corrections of the orde
t/U. Therefore, it is sufficient to evaluate it in the lim
U→`.

But first, we seek an interpretation ofRH* . Inserting Eqs.
~115! and ~34! in Eq. ~114! yields

RH*5
N

ie2~x0!2
lim
H→0

^@ Ĵx;0 ,Ĵy;0#&
H

, ~116!

which is to be evaluated in the limitU→`. Therefore, ex-
pectation values are taken with respect to states with
double occupancies. Then, the projected current opera
take on the following form:

Ĵn;05 i t (
^ i j &s

D i j
n Pi jXi

s0Xj
0s , ~117!

since the termXi
2s̄Xj

s̄2 of Eq. ~108! may be omitted. Here

DW i j[RW i2RW j andPi j is the phase factor defined in the te
following Eq. ~3!. Sincex0 is given by Eq.~95!, we also
need

lim
U→`

an5^XRW
s0
XRW 1 x̂
0s

& , ~118!

wherex̂ is a primitive lattice vector in thex direction. From
Eqs.~116!, ~95!, and~118!, we conclude thatRH* represents
the infinite frequency Hall constant of theU5`2Hubbard
model, which is defined as follows:

Ĥ52t (
^ i j &s

Pi jXi
s0Xj

0s . ~119!

In fact, the analysis of Sec. II is straightforwardly carri
over to this model, the current operator of which is th
found to be given by Eq.~117!. Note thatpÞ1 expresses the
fact that the limitsv→` andU→` do not commute: If we
start with the limitv→`, the integral overSH(v) in Eq.
~99! extends over all three peaks while when taking the li
its in the reversed sequence, the high-energy peaks are
tainable from the outset.

Next, we derive an exact analytical expression forp by
taking the additional limitT→`. We may wonder whethe
this is reasonable. However, since the limitU→` was al-
ready carried out, at least, the conditionT!U is satisfied,
i.e., the thermal energy cannot excite an electron across
charge-transfer gap. Furthermore, we expect neither of
high-frequency objectsRH

` andRH* to depend appreciably o
temperature, since they correspond to and generalize
semiclassical expression for the Hall constant. In the con
of high-temperature expansions, one has to cope with e
trons or holes hopping around closed loops, which are
fined by a sequence of adjacent lattice sites. Therefore,
convenient not to expand the phase factors. Then, an elec
hopping along a polygoni jk . . . l i accumulates a phase pro
portional to the fluxf i jk . . . l i enclosed. The procedure t
ut
rs
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he
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expand expectation values of Hubbard operators like
nominator of Eq.~115! in powers of 1/T is explained, e.g., in
Ref. 25. Using additionally Eq.~94! and

lim
U→`

ad5^XRW
s0
XRW 1 x̂1 ŷ
0s

& , ~120!

we obtain to leading order

p5
11d

2
. ~121!

Although the high-temperature calculation has introduc
another high-energy scale into our system, we expect
result to hold qualitatively for low temperatures as well. F
instance it is expected that the difference between the pla
values ofRH(v) on both sides ofU increases monotonically
as half filling is approached. Further down, we shall der
the same expression forp within a simple approximation
valid atT50.

Finally, we calculateRH
` to leading order in 1/T. The lead-

ing order of the amplitude Eqs.~118! and ~120! is found to
be an5(bt/2)d(12d) and ad52(b2t2/4)d(12d)(1
23d), respectively, which, when inserted into Eq.~93!, re-
sults in

RH
`5

1

ueu S 123d

2 D S 1d 1
1

12d D . ~122!

Together with Eqs.~114! and~121!, we recover the result for
RH* of Ref. 3 that was derived within thet-J model in leading
order in 1/T. In this work, it was further shown that, althoug
RH* is renormalized as a function ofT andJ when including
higher orders in 1/T, the doping dependence of the Hall co
stant retains its most important features: its sign chang
d'1/3 and its singular behavior in the vicinity of half filling
What seems to be striking at first sight is the fact that
same properties are encountered forRH

` , i.e., the Hall con-
stant at frequencies well beyondU. At such high frequen-
cies, thedynamicsof the electrons is insensitive to the inte
actionU. However, for nondynamical quantities as matr
elements, the correlations introduced by the Hubbard in
action remain important. Before we discuss possibilities
extend the moments technique to lower frequencies, we s
rederive the results of this subsection within a simple
proximation, valid atT50.

4. Hubbard I approximation

An expression for the frequency-dependent Hall cond
tivity with vertex corrections having been neglected was
rived in Ref. 26:

sxy~z!5
e3H

2 (
kWs

F]ekW

]kx
G2]2ekW

]ky
2

PH~z,kW !

z
, ~123!

PH~ ivm ,kW ![
1

b(
n

GkW~ ivn!
2@GkW~ ivn1 ivm!

2GkW~ ivn2 ivm!#. ~124!

Here, the Green’s function is given in terms of its spect
function as
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GkW~ ivn!5E
2`

` dv

2p

AkW~v!

ivn2v
, ~125!

ande, in our notation, is negative. Furthermore, it is assum
that the momentum dependence arises solely from the
persionekW of the bare band. From Eq.~24!, the definition
~20! of the functionsxnm(z), and the symmetry propert
xyx(z)52xxy(z),

15 we derive the following representatio
for the Hall conductivity:

sxy~z!5
ie2

Nz
bS ĴxU L

z1L UĴyD . ~126!

Therefore, the function~100! may be connected to the Ha
conductivitysxy(v6 i01)[sH8 (v)6 isH9 (v) via

SH~v!5N
vsH9 ~v!

pe2
. ~127!

Since sH9 (v) arising from Eqs.~123! and ~124! may be
shown to be real and odd, the function~100! has indeed the
correct analytic properties. Inserting Eqs.~124! and ~125!
into Eq. ~123! and using Eq.~127!, we obtain, after a stan
dard calculation:17

SH~v!5ueuH(
kW

F]ekW

]kx
G2]2ekW

]ky
2 XkW~v! , ~128!

XkW~v![E
2`

` dv1

2p E
2`

` dv2

2p
AkW~v1!AkW~v2!

3H FkW~v1 ;v!2FkW~v2 ;v!

v12v2
1~v→2v!J ,

~129!

FkW~e;v![
AkW~e2v!

2p
@ f ~e!2 f ~e2v!# . ~130!

By means of a partial integration, the corresponding sum
is straightforwardly shown to be satisfied@cf. Eqs. ~100!,
~94!, and~86!#.

Next, we evaluate Eqs.~128!–~130! in the so-called Hub-
bard I approximation:27

AkW~v!

2p
5
11d

2
dS v2

11d

2
ekW D

1
12d

2
dS v2U2

12d

2
ekW D . ~131!

At U5`, only the first term contributes. Then, the quant
~129! becomes

XkW~v!52S 11d

2 D 2] f $@~11d!/2#ekW%

]ekW
d~v! , ~132!

and by partial integration, we obtain

SH~v;U5`!5
11d

2
~2 i ^@ Ĵx ,Ĵy#&!d~v! . ~133!
d
is-

le

Here, the expectation value is given by Eqs.~94! and ~86!.
The sum rule obeyed bySH(v) for UÞ` implies
p5(11d)/2, as in Eq.~121!. This provides further evidence
that the result~121! may be trusted for all temperature
Note, that in a real system, the functionSH(v) must vanish
atv50. Only then do we obtain a finite Hall conductivity a
v50. The result~133! is an artifact of the vanishing width
of the lower Hubbard band in Eq.~131!. If we consider finite
but large values ofU, we may simulate the high-energ
peaks of the function~100! by d functions as well:

SH~v;U→`!52 i ^@ Ĵx ,Ĵy#&S 11d

2
d~v!1

12d

4

3@d~v2U !1d~v1U !# D . ~134!

This may be proven by calculating the moments~102! in the
limit U→`.

Finally, we calculateRH
` given by Eq.~93!, analytically

within the approximation~131! and atU5`. Although this
has been done numerically some time ago,28 our simple ana-
lytical treatment allows a direct comparison with the exa
high-temperature result~122! and demonstrates that the r
sulting doping dependence does not rely on the location
the Fermi surface. This last point is blurred in th
Boltzmann-equation-based approach of Ref. 4.

The amplitudes on the rhs of Eq.~93! are given by Eqs.
~78! and ~86!. Thereby, the density is calculated to be

nkWs5
11d

2
f S 11d

2
ekW D , ~135!

since in Hubbard I approximation atU5`, only the first
term on the rhs of Eq.~131! is to be kept. Momentum de
pendences arise solely from the dispersionekW of the bare
band, which is why we are looking for expressions for t
functions A(e) and B(e), defined in Eqs.~87! and ~88!.
These equations also exhibit the results in the limit of infin
dimensions, which we may take as smooth and conven
approximations. Except for the prefactors 1/Ad and 1/d,
which ultimately cancel each other out, these expressi
may be compared to those calculated numerically on a t
dimensional lattice. This reveals that here, the main effec
the limit d→` is to smooth out the logarithmic singularitie
at zero energy encountered in the case of the functi
D(e) andB(e) in d52. Therefore, this limiting procedure
does certainly not affect the validity of our present analy
in any serious manner. AtT50, Eqs.~78!, ~86!, ~135!, ~87!,
and ~88! imply

2an5
11d

2Ad
DS 2eF

11d D , ~136!

2ad5
2eF
d

DS 2eF
11d D . ~137!

A relation between the Fermi energy and the doping para
eter is established straightforwardly, which, in terms of t
function
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H~d![
2eF~d!

11d
, ~138!

may be written as

123d

11d
5 erf„H~d!… . ~139!

In summary, the function~93! at U5` and T50 may be
written as follows:

ueuRH
`5

2

11d

H~d!

D„H~d!…
. ~140!

The most important features are first, atd51/3, RH
` van-

ishes. Second, atd→1, we recover the exact resu
RH

`.21/„ueu(12d)…. And third, at d→0, we find
RH

`.1/(ueu2d). The last two statements are proven with t
asymptotic relationD0(e)/e.612 erf(e), valid in the limit
e→6`. All these points are in exact agreement with E
~122!. We take this as an indication that, on the one hand,
high-temperature result~122! remains qualitatively valid
even at low temperatures, and, on the other, that the Hub
I approximation is remarkably good in the case of the qu
tity ~93!. In Ref. 4, the doping dependence of the Hall co
stant in the Hubbard I approximation was discussed in te
of the Fermi surface. This is misleading for two reasons.

For one thing, the Hubbard I approximation misplaces
Fermi surface: The Luttinger theorem, which relates the v
ume enclosed by the Fermi surface to the electron densi29

is violated in this approximation. In contrast to this, ang
resolved photoemission experiments on cuprates
Nd22xCexCuO4 ~Refs. 30,31! appear to be consistent wit
local-density approximation band-structure calculatio
which, in turn, imply the validity of this theorem. Despit
this flaw, the approximation~131! yields a doping depen
dence for the Hall constant which is in good agreement w
experiments on La22xSrxCuO4.

For another, it was pointed out in Refs. 3 and 32, that
high-frequency objectRH

` is not directly related to the loca
tion and topology of the Fermi surface. Instead, in a stron
correlated system, the entire Brillouin zone tends to
populated. In consequence, the weighted density ave
~86! receives contributions from the entire Brillouin zon
rather than just from the vicinity of the Fermi surface.

We can demonstrate this more explicitly by slight
changing the form of the lower Hubbard band in Eq.~131!:
We broaden thed function a little bit and shift some rela
tively small amountZ of spectral weight to a newd function
contributionZd„v2L(ekW)…, with the functionL(ekW) being
undetermined yet. This amounts to replacing Eq.~135! by
nkWs5h(ekW) with the function h(ekW) differing from
@(11d)/2# f $@(11d)/2#ekW% only in the following respects
The step atekW52eF /(11d) and of height (11d)/2 is
smoothed out while a new, much smaller one of heighZ
occurs atekW5L21(eF). This last condition fixes the new
Fermi surface. By choosing the functionL(e) appropriately,
we may place the Fermi surface wherever we want. As lo
as Z!(11d)/2, the crucial averagead5*2`

` de B(e)h(e)
does not differ very much from the result in Eq.~137!. This
reasoning illustrates that, in the presence of strong corr
.
e

rd
-
-
s

e
l-
,
-
e

s

h

e

y
t
ge

g

a-

tions, the doping dependence ofRH
` is not necessarily corre

lated to the Fermi-surface location. Also note, that it does
matter whether the functionh(e) arises from coherent o
incoherent excitations.

B. Hall constant in the low-frequency regime

In this section, we discuss the frequency dependenc
the Hall constant for frequenciesbelow the Mott-Hubbard
gap. Therefore, the appropriate model to start with is
t-J model. It is straightforward to show that Eqs.~99!–~101!
are still valid, however, with all quantities being redefin
within the t-J model.33 Apart from the redefinition of the
Liouville operator, this amounts to replacing the canoni
Fermi operators through projected ones in all quantities
appear, i.e.,cis→Xi

0s , andcis
1→Xi

s0 . In particular, the cur-
rent operator is then given by Eq.~117!. If we renormalize
the functions~100! and ~101! according to

SH~v;t2J!52 i ^@ Ĵx;0 ,Ĵy;0#&s~v! , ~141!

K~v;t2J!52 i ^@ Ĵx;0 ,Ĵy;0#&k~v! , ~142!

the analog of Eq.~99! reads

RH~z!5RH* S 11E
2`

`

dv k~v!
v

v2zD . ~143!

Here,RH* is the infinite frequency Hall constant of thet-J
model that was already investigated in Ref. 3, and which
been introduced in Eq.~114! in the special caseJ50. Fur-
thermore, we have taken into account that the funct
s(v) is normalized to unity, whilek(v) represents the un
known memory-function contribution. From the discussi
in Sec. IV A 2, we expect the functionk(v) to have only one
peak centered around zero frequency, because, in thet-J
model, doubly occupied sites can occur only virtually. B
fore we set about discussing possibilities to calculate
function via its moments, we try to gain some phenome
logical insight.

1. Phenomenological discussion

Very recently, the normal-state ac-Hall constant was m
sured in YBa2Cu3O7 thin films for frequencies up to 200
cm21.34 In this work, the experimental data have been fitt
successfully in terms of parameters introduced
Anderson12 to account for the observedT2 dependence of the
inverse Hall angle in high-Tc materials. Anderson’s theory i
based on spin-charge separation with two different relaxa
times and effective masses associated with the spinon
holon degrees of freedom:t tr is the decay time of the holon
with effective massmtr , scattering off thermally excited
spinons. On the other hand, a transverse relaxation
1/tH is determined by the scattering between the spino
Apart from this,sxx andsxy have the ordinary Drude form
i.e., sxx}t tr /mtr and sxy5sxxvctH . Here, the cyclotron
motion is characterized by a massmH , vc}1/mH . In Ref.
34, Anderson’s theory was extended to finite frequencies
the replacementst tr→t tr /(12 ivt tr) and tH→tH /(1
2 ivtH). This led to the following representation of th
frequency-dependent Hall constant:
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RH~v!5
mtr

mH

1

neS 11
tH2t tr

t tr

1

12 ivtH
D . ~144!

This result is equivalent to the exact expression~143!, pro-
vided the following identifications are made:

k~v!5
tH2t tr

t tr
L1/tH~v! , ~145!

RH*5
mtr

mH

1

ne
. ~146!

Here,LG(v) denotes the Lorentzian of widthG normalized
to unity. Therefore, the unusual relaxation timetH is a mea-
sure for the width of the function~142! and thus determine
the decay rate of the correlation between the residual fo
f̂ x;0 and f̂ y;0 of the t-J model @cf. Eqs. ~31! and ~101!#.
Furthermore, the integrated weight of the function~145!
measures the deviation of the relaxation timetH from the
ordinary transport timet tr . This deviation is directly related
to that of the Hall constant at zero frequency from its value
high frequencies:

tH2t tr
t tr

5
RH~v50!2RH*

RH*
. ~147!

In the phenomenological expression~144!, the temperature
dependence is entirely contained in the two relaxation ra
They are expected to vary ast tr}1/T and tH}1/T2.12 For
dimensional reasons, we taketH}J/T2, sinceJ is the only
energy scale characteristic of our model. From these a
ments, we may infer the following: For one thing, th
memory-function does not only describe the unusual
quency dependence of the Hall constant in high-Tc supercon-
ductors. Also, the observed anomalous temperature de
dence is mainly due to this memory-function contributio
For another, we expectt tr to be relatively smaller thantH at
low temperatures, sincetH /t tr}J/T. Thus, Eq.~147! sug-
gests that the Hall constantincreaseswhen zero frequency is
approached. This enhancement was actually observed in
above-mentioned measurements on YBa2Cu3O7 .

34 In any
case, Eq.~147! indicates that the sign of the Hall constant
solely described by the high-frequency objectRH* , as
claimed in Ref. 3.

Does the discussion so far point towards spin-cha
separation as advocated by Anderson? Obviously, the cu
operatorsĴn are related to the charge degrees of freed
only. Consequently, the spin physics must be accounted
by the residual forcesf̂ n . This is also reflected by the pro
portionality tH}J/T2. However, up to now, we do not hav
a compulsory argument why these residual forces should
scribe exclusively spin degrees of freedom.

In summary, Anderson’s notion of two distinct relaxatio
rates is naturally backed up within the Mori theory. Th
may be interpreted as the time scales set by the current
erators and their associated residual forces.

2. Moments approach to the memory function

Of course, it would be interesting to calculate the functi
k(v) of Eq. ~143! quantitatively within thet-J model in
es

t

s.

u-

-

n-
.

the

e
nt

or

e-

p-

order to relate its width and its integrated weight to the p
rameterst, J, temperatureT, and dopingd. From the above
discussion, we expect that the relevant information abou
overall form may be put into only few parameters. As a
ready mentioned, even two parameters as in Eq.~145! have
been sufficient to obtain an excellent fit of experimen
data.34 In this subsection, we suggest the following proc
dure to constructk(v): Parametrize this function byn pa-
rameters which are subsequently fixed by its firstn moments.
Up to now, this seems to be the only reliable way to take i
account the superprojectorsQ. Of course, all moments

kl5E
2`

`

dv k~v!v2l ~148!

exist, which is why we have to replace the Lorentzian~145!
by a ‘‘short-range’’ function, e.g., a Gaussian multiplied by
polynomial. We proceed by relating the moments ofk(v) to
that of the functions(v) and the optical conductivity. Fi-
nally, we discuss a possibility to calculate these moment

The ordinary conductivity is given, according to Eq.~24!,
by the following expression:

sxx~v1 i01!5
ie2

N
bS Ĵx;0U 1

v1L1 i01 UĴx;0D ,

~149!

the real part of which may be shown to be an even funct
of v,14 and, due to a sum rule, can be written in terms o
function c(v), that is normalized to unity:

R$sxx~v1 i01!%5pe2x0c~v!/N . ~150!

In Appendix D, we show that all the moments~148! may be
traced back recursively to that of the functions~141! and
~150!:

sl5E
2`

`

dv s~v!v2l , ~151!

cl5E
2`

`

dv c~v!v2l , ~152!

provided l>1. Thereby, only the definition of the supe
projectorsQ has to be used in Eq.~104!. The result may be
written as follows:

kl52sl1(
j51

l

ajsl2 j for l>1 , ~153!

where the coefficientsaj are polynomials in the moment
~152! and are listed in Appendix D up toj56. If we had a
good method for calculating the moments~151! and ~152!,
we could construct the unknown functionk(v) via its first
n moments as already explained. This approximation is r
able, if the zeroth momentk0, calculated from Eq.~148!,
converges fast enough with increasingn. Since in thet-J
model,k(v) has only one peak aroundv50, the first few
moments are expected to be sufficient for this to happen.
advantage of this approach is that moments areglobal prop-
erties of a spectral function and as such are less sensitiv
its detailed resonance structure and to approximations
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volved. Also, some approximation schemes are better su
for the calculation of moments than the underlying spec
function.

For instance, within a high-temperature expansion, m
ments are accessible, at least in principle, while the co
sponding spectral function is not. However, in the case of
moments~151!, only very few moments, and to only low
orders in 1/T, are within reach. This is all the worse, sinc
now, we are interested in the Hall constant at low frequ
cies, i.e., no other high-energy scale is present as it wa
the context ofRH* .

Another example is the exact diagonalization techniqu35

In this method, spectral functions are calculated numeric
via the exact eigenstates and eigenenergies on the bas
their Lehmann representation. While being exact, the int
sic problem of this method is the constraint of working
relatively small clusters. Therefore, thed functions have to
be broadened in order to obtain smooth functions. In cont
to this, no additional approximation is required when calc
lating moments. Of course, the smallness of the clusters
mains the major restriction of this method. Neverthele
when combined with the moments approach as sugge
above, it is a means of extracting reliable information ab
the frequency-dependent Hall constant within thet-J model
and should therefore be the subject of a future work.

V. DISCUSSION AND CONCLUSIONS

In summary, we have devised a memory-function a
proach to the Hall constant in strongly correlated elect
systems, which enables us to cope directly with the H
resistivity. We have focused our attention mainly on t
memory-function term, which is neglected in Boltzman
type approaches. The important physics to be expected f
this contribution comprises the unusual frequencyand tem-
perature dependences of the Hall constant, observed in
normal state of high-Tc superconductors.

As a first step, the usefulness of our approach was d
onstrated in a perturbation-theoretical treatment within
single-band Hubbard model. To obtain a regular express
for the memory-function contribution for all frequencies, w
assumed that the subspace of the operator space spann
the current operatorsĴx and Ĵy is invariant with respect to
actions of the unperturbed Liouville operator. This appro
mation was shown to become exact in the continuum lim
Furthermore, it affects only the properties of the unperturb
system, i.e., the tight-binding electrons. Therefore, we do
expect the omitted terms to change the physics in an es
tial way. On the basis of this approximation, the memo
function was calculated to leading order in the correlat
strengthU and shown to decompose into a two- and thr
point correlation function, when expanded to first order
the magnetic field. The complicated expressions obtained
these two functions were simplified considerably by invo
ing the limit of infinite spatial dimensions. While this ap
proximation still catches the impact of the correlations,
smoothes out effects of low dimensionality. Except for t
doping dependence of the Hall constant in the vicinity of h
filling, we have been able to reproduce the unusual exp
mental findings in connection with high-Tc superconductors
as La22dSrdCuO4. In particular, we could explain the sig
ed
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change of the Hall constant as a function of doping and
decrease as a function of temperature up to unusually h
temperatures. However, we had to chooseU52.3W (W:
bare bandwidth!, which is, strictly speaking, outside the pe
turbative regime. Since the cuprates are believed to unde
a transition from a Fermi liquid to a strong-correlation r
gime when the doping approaches its optimal value from
overdoped side,2 it is not astonishing that the 1/d law in the
vicinity of the mother compound cannot be described with
perturbation theory.

Therefore, we also considered the Hall effect in the op
site limit of strong correlations. In the single-band Hubba
model, a finite amount of spectral weight for particle-ho
excitations, caused by the Hall current, is always pinned
the energyU. This is valid no matter how large the correla
tion strengthU is. We have shown that the memory functio
removes these high-energy excitations in the limitU→`,
thus accounting for the frequency dependence of the H
constant down to frequencies within the charge-transfer g
The corresponding decrease of the Hall constant by a fa
(11d)/2 was calculated exactly to leading order in 1/T and
corroborated within an approximate treatment, valid
T50. However, our analysis did not provide us with info
mation about the frequency dependence of the Hall cons
at lower frequencies. The reason is that it was based on
ments, which are dominated by the high-frequency contri
tions. We have also calculated the infinite frequency H
constant analytically within the so-called Hubbard I appro
mation. In essence, we recovered the exact result forU5`
andT→` and explained, why this result does not rely on t
location of the Fermi surface.

Finally, the Hall constant at low frequencies was inves
gated within thet-J model, an effective model acting in th
reduced Hilbert space without doubly occupied sites. We
served that our memory-function formalism distinguishes
herently between two time scales: Firstly, the dynamics
the current operators is characterized by the ordinary tra
port relaxation timet tr . And secondly, the impact of all the
other degrees of freedom on this charge transport is ta
into account by fluctuating forces that introduce an unus
time scaletH . On the other hand, it was pointed out b
Anderson, that temperature dependences of transport
Hall effect measurements can best be understood in term
two relaxation times, following a 1/T and 1/T2 law.12 We
have shown that the time scales encountered within the M
theory are identical to those introduced by Anderson. F
thermore, we have shown that the deviation of the unus
decay timetH from the ordinary transport timet tr is inti-
mately connected to the frequency dependence of the
constant at low frequencies. Thus, the temperature and
quency dependence of the Hall constant result from e
other and are both due to the memory-function contributi
It would be very interesting to investigate this interplay fu
ther, both theoretically and experimentally. As for the the
retical side, we have proposed an approach based on
ments. It allows the exact treatment of the superprojector
reflects the distinction between the two time scales, leav
us with the problem of finding the first few moments of th
ordinary current-current correlation functions. Except for
well studied prefactor, the memory-function term is main
determined by two parameters. Therefore, we expect its
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few moments to provide us with enough information to
these parameters.
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APPENDIX A: LATTICE SUMS
OVER NEAREST NEIGHBORS

Since our gauge choice~9! permits periodic boundary
conditions in they direction only, we must carry out all sum
over nearest neighbors according to the following formul

(
RW ,RW 1dW

H~RW ,RW 1dW !5(
Rx

(
Ry

(
dy

H~RW ,RW 1dy ŷ!

1 (
Rx1dx
Rx

(
Ry

H~RW ,RW 1dx x̂! .

~A1!

In the first term on the rhs, we may carry out the sum o
Ry anddy independently. As for the second term on the r
we must make sure thatRx andRx1dx are neighboring ele-
ments of the set $Rx

min ,Rx
min11, . . . ,Rx

max% with
Rx
max[Rx

min1Nx21 as explained in the text following Eq
~12!.

First of all, the matrices appearing in Eqs.~61!, ~63!, and
~72! are defined as follows:

Bn~kW1 ,kW2!5
i t

N (
RW ,RW 1dW

dn e
2 ikW1~RW 1dW !1 ikW2R

W
, ~A2!

C~kW1 ,kW2!5
1

N (
RW ,RW 1dW

~dy!
2Rx e

2 ikW1~RW 1dW !1 ikW2R
W
, ~A3!

D~kW1 ,kW2!5
1

N (
RW ,RW 1dW

dyRx e
2 ikW1~RW 1dW !1 ikW2R

W
. ~A4!

In all these cases, the integrand is proportional to a com
nent of a nearest-neighbor vector, which entails that one
the two terms of Eq.~A1! vanishes. The summation over th
y componentsRy and dy is straightforward. In the case o
Eqs.~A3! and ~A4!, the following sum is to be calculated:

1

Nx
(
Rx

Rx e
i ~k2x2k1x!Rx5dk1xuk2xRx

c1~12dk1xuk2x!

3
ei ~k2x2k1x!Rx

min

ei ~k2x2k1x!21
, ~A5!

whereRx
c[(Rx

min1Rx
max)/2 is thex component of the lattice’s

center of gravity. In summary, we obtain the following r
sults:
or-
s-

r
,

o-
of

Bx~kW1 ,kW2!5dkW1ukW2vx~k
W
1!1dk2yuk1y

it

Nx
ei ~k2x2k1x!Rx

min

3~eik1x2e2 ik2x!, ~A6!

By~kW1 ,kW2!5dkW1ukW2vy~k
W
1!, ~A7!

C~kW1 ,kW2!52cosk1ydk1yuk2yS dk1xuk2xRx
c1~12dk1xuk2x!

3
ei ~k2x2k1x!Rx

min

ei ~k2x2k1x!21
D , ~A8!

D~kW1 ,kW2!522isink1ydk1yuk2yS dk1xuk2xRx
c1~12dk1xuk2x!

3
ei ~k2x2k1x!Rx

min

ei ~k2x2k1x!21
D . ~A9!

In the following section, we shall see that once these exp
sions are inserted into observable quantities, the final res
become independent of the lattice location.

The commutators~49! and ~51! are also calculated usin
Eq. ~A1!.

APPENDIX B: EVALUATION OF THE TWO-
AND THREE-POINT CORRELATION FUNCTION

We begin by inserting Eqs.~61! and ~63! into Eqs.~65!
and~66! and by using Eqs.~74!–~76! along with Eqs.~A6!–
~A9!. Then, the correlation functions~65! and~66! are given
as sums over terms that contain expectation values with
spect to the momentum conserving Hamiltonian~14!. Taking
into account the correspondingd functions, we see that the
diagonal elements of the matrices~A6!, ~A8!, and~A9! lead
to vanishing contributions due to symmetry argumen
Moreover, the combination of all exponentials whose arg
ments are proportional toRx

min may be replaced by one due t
the d functions, expressing momentum conservation in
model ~14!. With the help of the function

S~kW !5Nydkyu0~12dkxu0!
1

eikx21

52
1

2
Nydkyu0 F11 iPcotS kx2 D G ~B1!

and after some straightforward manipulations, we arrive
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CII ~z!

22iHet2NU2 5
1

N4 (
k1
W k2
W kWqW s

(
k 18
W k 28
W k8W q8W s8

dk2yuk1y2qy
S~k28W1q8W2k18W !~eik1x2e2 i ~k2x1qx!2ei ~k1x2qx!1e2 ik2x!

3@cosk1y8 2cos~k1y8 2qy8!#

^@ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
] &0

~0!

z1ekW2qW2ekW1ekW12ekW2
, ~B2!

CIII ~z!

4iHet3NU2 5P1~z!1P2~z! , ~B3!

P1~z!5
1

N4 (
k1
W k2
W kWqW s

(
k 18
W k 28
W k8W q8W s8

(
p1
W p2
W t

S~p2W2p1W ! dk
28
W1q8W2k

18
W u0Wsinp1y@sink1y8 2sin~k1y8 2qy8!#~12e2 iqx!

3~eik1x1e2 ik2x!
eb~epW 1

2epW 2
!21

epW 12epW 2

^cpW 1t
1
cpW 2t @ÂkW1 ,k

W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&0

~0!

z1ekW2qW2ekW1ekW12ekW2
, ~B4!

P2~z!5
1

N4 (
k1
W k2
W kWqW s

(
k 18
W k 28
W k8W q8W s8

(
p1
W p2
W t

S~p2W2p1W !dk
28
W1q8W2k

18
W u0W

3
sinp1y@sink1y8 2sin~k1y8 2qy8!#~12e2 iqx!~eik1x1e2 ik2x!

~z1ekW2qW2ekW1ekW12ekW2!~z2ek8W2q8W1ek8W2ekW
18
1ekW

28
!

$dtus@dpW 2ukW1^@ÂpW 1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&0

~0!

2dpW 1ukW2^@ÂkW1 ,p
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&0

~0!#1dtu2s@dpW 2ukW2qW^@ÂkW1 ,k
W
2ukW ukW2pW 1

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&0

~0!

2dpW 1ukW^@ÂkW1 ,k
W
2upW 2upW 22kW1qW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#&0

~0!#% . ~B5!

From the definition~59!, we find

@ÂkW1 ,k
W
2ukW uqW

s ,Â
kW
18 ,k

W
28ukW8uq8W

s8
#5ds8usc

1
kW1usckW2usckW

18us
1

ckW
28us$dkW ukW82qW 8ckW2qW u2s

1
ckW8u2s2dkW8ukW2qWckW82qW 8u2s

1
ckW u2s%

1ds8us$dkW2ukW
18
ckW1s

1
ckW

28s2dkW
28ukW1

ckW
18s

1
ckW2s%ckW82qW 8u2s

1
ckW8u2sckW2qW u2s

1
ckW u2s

1ds8u2s$dkW ukW
18
ckW2qW u2s

1
ckW

28u2sckW1us
1

ckW2usckW82qW 8us
1

ckW8us

2dkW8ukW1
ckW82qW 8us

1
ckW2usckW

18u2s
1

ckW
28u2sckW2qW u2s

1
ckW u2s%

1ds8u2s$dkW2ukW82qW 8ckW1s
1

ckW8usckW
18u2s

1
ckW

28u2sckW2qW u2s
1

ckW u2s2dkW
28ukW2qWckW

18u2s
1

ckW u2sckW1us
1

ckW2usckW82qW 8us
1

ckW8us% .

~B6!
a
o

e-
t

e,

g.,
The further evaluation of Eqs.~B2!, ~B4!, and~B5! requires
the calculation of expectation values. Fortunately, not
terms that arise from the corresponding factorizations, c
tribute: Terms proportional todqW u0W or dq8W u0W may be omitted in
any case. And terms proportional todkW

28ukW
182q8W anddpW 1upW 2

do

not contribute in the case of Eq.~B2! and Eq.~B4! along
with Eq. ~B5!, respectively, due to the fact thatS(0)50.
Thus, we see for example that a factorf (epW 1)@12 f (epW 2)#
may be split off from the expectation value within the int
grand of Eq.~B4!. This factor combines with the quotien
that stems from the operator~73! according to
ll
n-

eb~epW 1
2epW 2

!21

epW 12epW 2
f ~epW 1!„12 f ~epW 2!…52

f ~epW 1!2 f ~epW 2!

epW 12epW 2
.

~B7!

The further calculation is not simple and takes some tim
especially in the case of the functions~B4! and ~B5!. In the
thermodynamic limit, where we may replace, e.
Nydkyu0→2pd(ky), (1/N)(kW→*1. BZd

dk/(2p)d, etc., our

final result may be written in the form of Eqs.~77!–~84!.
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APPENDIX C: BRILLOUIN-ZONE AVERAGES
IN INFINITE DIMENSIONS

The calculation of Brillouin-zone averages to leading
der in 1/d follows the procedure outlined in Ref. 36. In th
following, Schläfli’s integral representation of the Bess
functions will play an important role:

^eink1 ir cosk&k5 i unuJunu~r ![Gn~r ! . ~C1!

Here, n is an integer and we have used the notat
^•••&k[*2p

p . . . dk/(2p). By means of the Fourier repre
sentation of thed function, we may write, e.g., the functio
defined in Eq.~88! as follows:

B~e!5E
2`

` ds

2p
@ iJ1~r !#2@J0~r !#d22eise , ~C2!

where here and in the following,r[s/Ad. Expanding the
Bessel functions in powers ofr and taking the limitd→`,
we find

B~e!5
1

4d

]2

]e2
D~e! . ~C3!

Thereby, we usedD(e)5*2`
` (ds/2p)e2s2/41 ise, which is

derived analogously. This proves Eq.~88!. The correspond-
ing evaluation of Eqs.~83! and~84! requires a Fourier serie
expansion of the cotangent:
rr
o

-

n

PcotS k2D5
1

i (RÞ0
sgn~R!eikR . ~C4!

Here, the sum is over all integersR, except for the zero.
Since we are working in the thermodynamic limit,R may be
considered to be a component of a lattice vector. To pr
this representation, we start out with a known formula for t
coefficients bn appearing in the ansat
Pcot(k/2)5(n51

` bnsin(nk):

bn
2

5PE
2p

p dk

2p
cotS k2D sin~nk!. ~C5!

With the substitutionz[eik, we may perform the principa
value integration by invoking the theorem of residues: T
integration contour goes around the unit circle with the po
z51 being excluded. Thus, we have to add the residue
z50 to the half residue atz51. We obtainbn52 for all
positive integersn, which proves the statement~C4!. In the
following, we show how the rhs of Eq.~84! is evaluated to
leading order in 1/Ad. Writing the d functions, that contain
energies, in terms of Fourier integrals and introducing
additional momentum average ^(2p)dd(kW1kW22k8W 1

2k8W 2) . . . &kW [1, the problem reduces to the calculatio
of the following expression:
K e2 i [sekW1s1ekW1
1s2ekW2

1s18ekW18
1s28ekW28

]2pd~kx1k2x2k1x8 2k2x8 ! 2pd~ky2k1y!)
j53

d

2pd~kj1k2 j2k1 j8 2k2 j8 !

3H cosk1x1cosk2x1cosk1x8 1cosk2x8 2@sink1x1sink2x2sink1x8 2sink2x8 # PcotS k1x2kx
2 D J

3$sink1y1sink2y2sink1y8 2sink2y8 %sink1y2pd~k1y1k2y2k1y8 2k2y8 !L
kWkW1k

W
2k

W
18k

W
28 .

~C6!
Since every dimensionj contributes a term2(1/Ad)coskj to
the band dispersione(kW ), the expression~C6! decomposes
into d factors. For example, one factor arises from allx
components:

K ei [ rcoskx1r1cosk1x1r2cosk2x1r18cosk1x8 1r28cosk2x8 ]2pd~kx1k2x

2k1x8 2k2x8 !H cosk1x1cosk2x1cosk1x8 1cosk2x8 2@sink1x

1sink2x2sink1x8 2sink2x8 #

3PcotS k1x2kx
2 D J L

kxk1xk2xk1x8 k
2x8 .

~C7!

This expression decomposes further into eight terms co
sponding to the ones in the curled brackets. Each has t
e-
be

evaluated with the Fourier series expansion~C4! and that of
the d function:

2pd~k!5 (
R52`

`

eikR . ~C8!

For example, the term2sink1x Pcot@(k1x2kx)/2# gives rise to
the contribution

(
nÞ0

(
m

sgn~n!Gm2n~r !
1

2
@Gn11~r 1!

2Gn21~r 1!#Gm~r 2!Gm~r 18!Gm~r 28! , ~C9!

where Eq.~C1! has been used. The leading order in 1/Ad
reads:

2G1~r !G0~r 1!G0~r 2!G0~r 18!G0~r 28! . ~C10!
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This contribution to the expression~C6! is of order 1/Ad, as
are all the others. The subsequent Fourier integrals over
variablessi yield combinations of the functions~87!, ~88!,
and~89! thus leading ultimately to Eq.~91!. Equation~90! is
proven analogously.

APPENDIX D: REDUCTION OF THE MOMENTS
OF THE MEMORY FUNCTION

First of all, we recall the definition of the moments~102!
and ~103!, however with all operators and superoperat
now being redefined within thet-J model. They are related
to the moments ~148! and ~151! via the equations
Kl52 i ^@ Ĵx;0 ,Ĵy;0#&kl and Sl52 i ^@ Ĵx;0 ,Ĵy;0#&sl . In addi-
tion, we require the moments~152!, renormalized as
Cl5x0cl . Next, we define the quantities

~D1!

~D2!
for l>1. By using the definition for each of the first supe
projector on the right-hand sides, we obtain the followi
recursion relations:

Xl
n5Xl21

n112
Y1
n

x0Xl21
0 for n odd , ~D3!

Xl
n5Xl21

n112
X1
n

x0Yl21
0 for n even , ~D4!

Yl
n5Yl21

n112
Y1
n

x0Yl21
0 for n odd , ~D5!

Yl
n5Yl21

n11 for n even . ~D6!

To prove these relations, we only have to use the follow
facts:X1

n andY1
n vanishes for all odd and even integersn,

respectively. This is due to the fact that the functions~100!
and ~150! are even, hence their odd moments vanish. Mo
over, the quantities~D1! are of first order in the magneti
field. To relate the unknown momentsKl to the moments
Sl andCl , we have to supplement the recursion formu
~D3!–~D6! by the following equations:
e

he

s

g

-

s

Kl5X2l11
0 , ~D7!

Sl52X1
2l , ~D8!

Cl5Y1
2l21 . ~D9!

However, only even numbers of iterations occur. Therefo
we may combine two successive iteration steps into o
This leads to the following effective recursion relations:

Hl
n5Hl21

n112
Cn11

C0
Hl21
0 1

Sn
C0

Nl21
1 , ~D10!

Nl
n5Nl21

n112
Cn

C0
Nl21
1 , ~D11!

where we have defined

Hl
n :5X2l11

2n for n>0, l>0 , ~D12!

Nl
n :5Y2l11

2n21 for n>1, l>0 , ~D13!

and where the contact to the momentsKl , Sl , andCl is
established by means of the equations

Kl5Hl
0 , ~D14!

Sl52H0
l , ~D15!

Cl5N0
l . ~D16!

This recursive procedure results in Eq.~153! with the first six
coefficients being given as follows:

a152c1 , ~D17!

a252c223c1
2 , ~D18!

a352c326c1c214c1
3 , ~D19!

a452c426c1c323c2
2112c1

2c225c1
4 , ~D20!

a552c526c1c426c2c3112c1
2c3112c1c2

2220c1
3c216c1

5 ,
~D21!

a652c626c1c526c2c4112c1
2c423c3

2124c1c2c3

220c1
3c314c2

3230c1
2c2

2130c1
4c227c1
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