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Phase string effect in thet-J model: General theory
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We reexamine the problem of a hole moving in an antiferromagnetic spin background and find that the
injected hole will always pick up a sequence of nontrivial phases from the spin degrees of freedom. Previously
unnoticed, such a stringlike phase originates from the hidden Marshall signs which are scrambled by the
hopping of the hole. We can rigorously show that this phase string is nonrepairable at low energy and give a
general proof that the spectral weighimust vanish at the ground-state energy due to the phase-string effect.
Thus, the quasiparticle description fails here and the quantum interference effect of the phase string dramati-
cally affects the long-distance behavior of the injected hole. We introduce a so-called phase-string formulation
of thet-J model for a general number of holes in which the phase-string effect can be explicitly tracked. As an
example, by applying this new mathematical formulation in one dimension, we reproduce the well-known
Luttinger-liquid behaviors of the asymptotic single-electron Green'’s function and the spin-spin correlation
function. We can also use the present phase-string theory to justify previously developed spin-charge separa-
tion theory in two dimensions, which offers a systematic explanation for the transport and magnetic anomalies
in the highT . cuprates[S0163-182¢27)09805-6

[. INTRODUCTION ated by the hopping being repairable by spin flips, the doped
hole is generally believed to be a mobile object.

A general interest in thé-J model is motivated by the However, the crucial issiés whether such a mobile hole
following experimental facts in the highz cuprates: an an- can be described as quasiparticle characterized by a nonzero
tiferromagnetic(AF) long-range order of Cu spins in the spectral weighZ. Physically, a finiteZ implies that the hole
CuO, layers exists in the insulating phase and a metalliconly carries a local spin distortiofi‘spin polaron”) as it
phase emerges after the doped holes destroys the magnetimves. This is a picture familiar in a conventional metal,
ordering, where superconducting condensation as well ashere a spin polaron is usually replaced by, say, a phonon
anomalous normal-state properties are found. ffhenodel  polaron. Here a spin-polaron picture can indeed be obtained
is composed of two terms, ;=H;+H,, whereH; de- by a self-consistent Born approximatidn,which is also
scribes the AF superexchange coupling between the nearestipported by the finite-size exact diagonalization
neighboring spingas defined in Eq(2.1)] which fully ex-  calculations:® However, different from the phonon-polaron
plains the magnetic insulating phase in the cuprates,tgnd picture, SUW2) spins are involved here and 1) phase may
describes the hopping of holes on such a spin backgrfasd play an important role in shaping the long-distance part of
defined in Eq.(2.6)]. The highly nontrivial competition be- the spin polaron withlittle energy cosf:® The question
tween the superexchange and hopping processes ittthe whether the spectral weigl#t vanishes at the ground-state
model generates strong correlations among electrons, and énergy is particularly sensitive to such long-wavelength,
believed by many people to be the key to explain the strangdew-energy effects. Self-consistent perturbative approaches
metal behaviors in the cuprates. Even though such a modeihd numerical calculations themselves cannot provide a defi-
has been intensively studied for many years, very few propnite answer for it. In fact, Andersérhas given a general
erties have beereliably understood in the two-dimensional argument thaZ has to vanish due to the existence of the
(2D) doped case, which is presumably relevant to the metalupper-Hubbard band. A vanishirg means that each hole
lic phase of the higfF; cuprates. added to the system will cause a global change in the ground

To see the difficulty involved in this problem, let us take state, and thus the resulting state cannot be simply described
as an example one of the simplest cases: only one hole &s a quasiparticle-type excitation and treated perturbatively.
present in the AF spin background. The motion of the hole Thus a more accurate description of the long-distance ef-
usually creates a spin mismatch along its palamely, the  fect is needed in the present system in order to resolve this
hopping changes the spin configuration, which otherwisdssue. As the spin mismatch left on the spin background has
would have perfect antiferromagnetic correlations. For thdo be restored to avoid a linear potential energy, one would
Neel order, such a “string”-like spin mismatch is easy to expect the quasiparticle picture to be generally cornawt,
see? but it is not uniquely restricted to the case with a long-less the hole picks up a nontrivial phase at each hopping
range order. It has been realized that such a spin mismatdtep The quantum interference effect of such a phase se-
left on the spin background by the mobile hole could cost amquence, if the latter exists, can then dramatically change the
energy linearly proportional to its length and thus has to bdong-wavelength behavior of the hole, leading to
“repaired” in order to allow the hole to move around freely. nonquasiparticle-like properties. In fact, in the one-
In fact, it has been well knowrthat a spin flip process can dimensional(1D) case such a (1) phase string has already
“repair” the spin mismatch. With the spin mismatch gener- been demonstratedyhere it plays a crucial role in shaping a
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non-Fermi-liquid (i.e., Luttinger liquid behavior. In the bling the experimental features found in the hiGh-cu-
present paper, we will rigorously demonstrate that for genprates.

eral dimensionality the injected hole always has to pick up a The remainder of the paper is organized as follows. In the
sequence of (1) phases from the spin background when itnext section, we discuss the phase-string effect in the one-
moves around, and the resulting phase is not repairable &ple case, and show that it can lead to vanishing spectral
low energy in contrast to the aforementioned repairable spinweight at the ground-state energy. In Sec. Ill, we consider a
mismatch string. This phase-string depends on the instafifany-hole case and introduce a new mathematical represen-
spin configuration encountered by the hole and can be detefdtion to explicitly track the phase-string effect. As an ex-
mined by a simple counting. We will then be able to pfve ample o_f application of this phase-_stnr_wg formulation, in Sef:.
that such a phase string effect leads to a vanishing spectrdl: We first calculate the asymptotic single-electron Green’s

WeighZ . th graund-ite cnrgy i ow dmensions. - L1CIGT S e spvson oreatn bncton (o e 10
This nontrivial effect of the (1) phase string at large ' ype p

distances is generally present even when there are ma case in which the phase-string effect plays a central role in

n . . . ;
doped holes, regardless of whether the ground state po%';sl?g g::ggﬁgé i}ngen;ag/netlc properties. Finally, a sum-

sesses an AF long-range order or not. Therefore, the phase-
string effect is expected to be the most crucial factor in de-
termining the low-energy, long-wavelength physics both for
the one-hole problem and the finite doping case. A perturba- A. Marshall sign rule

tive method, which may well describe the spin-polaron effect | ot ;5 start with the undoped case. It is described by the
surroundlng the.dqped hole, usually fails to. account fpr th'ssuperexchange Hamiltonian

string effect. This is because the phase-string effect is basi-

cally a nonlocal effect, but conventional approximations usu-

ally average out the effect locally and thus result in a serious Hy=J32
problem at a long distance. The natural way to avoid this i
difficulty is to find a method for accurately tracking the Which is equivalent to the Heisenberg model as the electron
phase-string effect at large scales. We will show that such ccupation numbens;=n;= 1. According to Marshalt! the
nonlocal effect can be explicitly “counted” by introducing ground-state wave function of the Heisenberg Hamiltonian
“mutual statistics” between spins and holes. In fact, one carfora bipa_rtite Iattice_is real and sat_isfies a sign rule. This sign
exactly map the phase string effect to a statistics transmutd¥€ requires that flips of two antiparallel spins at nearest-

tion problem. The latter can be further transformed into a€i9hPOr sites are always accompanied by a sign change in
the wave function: i.e.,J]|—(—1)|T. The Marshall sign

nonlocal interacting problem if one recalls that statistics- ;
transmutation can be realized by a composite-particl ule may be easily undgrstood as b?IOW' Sup_pqse that one
as a complete set of spin bagég)} with the built-in Mar-

representation’*?with the underlying particle with conven- , : : ; :
tional statistics bound to a flux tube. This is an exact refor—ShaII sign. Itis straightforward to verify that matrix elements

mulation of thet-J model, which is of course mathematically of H, become negat_we definitep |H9|¢>$0' Then, for_
equivalent to the conventional slave-particle representationét‘e ground statgyig) == x| ¢) one flnds_ _that the coeffi-

It has an advantage over the other formalisms, however, d ent X ¢ should a'W_ayS be real and positivexcept for a

to the fact that the nonlocal phase-string effect hidden in th rivial global phasgin order. to Fea.Ch the lowest energy. I.t
original Hamiltonian is now made explicitly, so that its long- means that the Marshall sign is indeed the only nontrivial

distance effects can be tracked even after making a Iocﬁign present in the ground state..The Marshall sigr_1 rule may
approximation in the Hamiltonian even be approximately correct in some other spin models

. . . 5
The one-dimensional case can serve as a direct test of tmé'th various frustrations:

: A There are many ways to incorporate Marshall sign into
hase-string effect. As an example, the asymptotic single- . . o . . :
P 9 P ymp 9 the S*spin representation. We may divide a bipatrtite lattice

electron Green'’s function and the spin-spin correlation func- © odd d blatt d _ t
tion are calculated based on the phase-string formulation gdlto o (A) and even B) sublattices and assign an extra

veloped in this paper, and the well-known Luttinger-liquid S'9" —1 to every dovyn spin ah site. In'thls way, fl!ps of
behavior in this system is reproduced. This shows that th&vo near_est-nelghborlng ar_1t|parallel spins al_ways involve a
phase string is indeed essential in shaping the Ionggo_Wn spin changing s_ublatt|ces, and thus a sign change. This
wavelength, long-time correlations. In the 2D case, as arjPN Pasis may be written as

example of the phase-string effect, a spin-charge separation Nl

theory previously developed based on the slave-boson |gy=(=D)NA[T---T---1), (2.2)

formalisnt will be reproduced in the present formalism. A WhereNlA denotes the total number of down spins at fhe

key feature invplved in this theory is nonlocal interactionssublattice_ A matrix element off, under the basig|d)}
between the spin and charge degrees of freedom as medlatggtisﬁeS

by the Chern-Simons-type gauge fields. We show that they

arise as a consequence of the nonlocal phase-string effect in (¢'|Hs|$)=<0, (2.3

2D, and the present phase-string formalism provides both

physical and mathematical justification for these topologicafor any spin configuration§¢} and{¢’'}. The above defini-
gauge fields, which have been shdWto be responsible for tion can be even generalized to the doped case. With the
anomalous transport and magnetic properties closely resemesence of one hole, one may simply define the spin basis as

Il. PHASE-STRING EFFECT: ONE-HOLE CASE

nin;

S-S 2.1
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|¢>:(n)>=(—1)N’l*|T' o 1To--- 1), 2.4  Go(i,i;E) can be rewritten as
with n denoting the hole site. It is easy to check that

(¢":(n)|Hyl¢;(n))=<0. (2.9

This means that the Marshall sign rule is still satisfied when
the hole is fixed at a given site
Now we consider the hopping of the hole. The hopping

Go(j,E)=(0) 72 XorXo
¢ P

xgo (¢":(NIGH(E)(HGH(E))"| (D).

process is governed biyl; term in thet-J model which is (2.13
defined by Then we insert the following complete set of the basis states
(2.4) into the above expansion:
He=—t> cl.cj,+H.c, (2.6)
{in Em‘, {% |;(M)){ p;(m)|=1. (2.14

where the Hilbert space is restricted by the no-double-

occupancy constrainEUciTgcia$1. Suppose that the hole By using the matrix element(2.7) for the nearest-
initially at site n hops onto a nearest-neighbor site The  neighboring hopping, we further express the single-hole
corresponding matrix element in the bagk4) is easily Green’s function as follows:

found to be K.

path, J

(¢ (M)[H{|¢;(n))=—top, 2.7 Go(j,i;E)=(a)) ™" (a.%mg (augam)((b’)((b-rij

where o, is the sitem spin index in the statég;(n)), and s+1. s.
|;(m)) is different from|¢;(n)) by an exchange of the X(H*75(Mg)|Go(B)[ 4% (my)), 219
spin o, with the hole at sita. Sinceo,,= + 1, the hopping where intermediate statdg®;(my)) and |¢5"1;(mg)) de-
matrix element is not sign definite. In other words, the hop-scribe two different spin configurations$®} and {¢™1}
ping process will lead to the violation of the Marshall sign with the hole sitting at siteng on a given path connecting

rule in the ground state. In the following, we explore in detail sitesi andj: mg=i,m,, ... My, =]j. (HereKj; is the total
this phase “frustration” effect introduced by the hopping of number of links for the Jgiven path, andp’= ¢,
an injected hole. pKitt=¢') TP™is a product of matrices dfi, which con-

nects{| ¢5*1; (mg))} with {|#%*;(mg, 1))} for such a path:
B. Single-hole Green’s function

Starting with the ground stathf) == 4x,4|#) at half- -|-_p_ath:HJ (o (2.16
filling, one can create a “bare” hole by removing away an s s’

electron in terms of the electron operatyy : Wherecrms denotes the instant spin state at sitgright be-

i ] fore the hole hops to it.
Ciol o) = ()2 x4l i (D). (2.8 We can further write3,(j,i;E) in a more compact form,
¢
_ namely,
Here x,=0 and the sign ¢)' is from the Marshall sign

K..
originally assigned to the spir at the sitei as follows: if o . ~ 1
o=+1, (o) =1 and ifo-—1, (o) —(~1)~—1 at the ~ CollHE)==()"" > >, Wpaﬂ{{‘f’}](n T, |

; f . . (all paths {E,} s=1
A-sublattice site and-1 at theB-sublattice site. (2.17
One can track the evolution of such a bare hole by study- ) ~ )
ing the propagator where the summation ovgep} means summing over all the
possible spin configurations in the initial and final, as well as

G,(j,i ;E)z(z/fo|c;rgG(E)ci(,| o), (2.9  the intermediate states. HeWé,.\[{ ¢} ] is defined by

with Wil { $}1
GE)=c———- (2.10 1 <
E—Hy,+i0"" ' ETX¢'X¢SHO(_t)<¢s+l§(ms)|GJ(E)|¢S§(ms)>-

By using the following expansion in terms bf;, (2.18
G(E)=G;(E)+G4(E)HG4(E)+ G;(E)H;G;(E)H,G4(E) In the following, we prove thalvpaﬂ{{g}] is always posi-

tive definite near the ground-state energy. To determine the

e 21D sign of(¢>"1:(my)|G,(E)| 4% (my)), one may expanG, as
with follows
1 G,(E)= Ly HY 2.19
GJ(E)_ E_HJ+|0+ ’ (212 J - EnzO En ’ ’
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Note that Here
(6 (Mo H| 4% (m0) . .
(— 1) par= Om.s 2.2
:(_1)n|<¢s+1;(ms)|HJn|¢S;(ms)>| s=1 s
[one may easily show it by writingd,"=H,-H,---- and  wjth Nl denoting the total number of spins “ex-

insedr.ti.ng ”2‘9 coq_lﬁlete setfpdeQZA) in between and using  changed” with the hole as it moves froimo j. Notice that
condition(2.5)]. Then one finds (— 1)Nparr* Npatr=(— 1)i~1 which is independent of the path

(¢ 1:(mg)|G,(E)| ¢5;(mg)) gnd.thus the.systgm is symmetric abdutand | spins.
G,(j,i;E) defined in Eq.(2.295 may be regarded as the

B 12 [(¢°"H(mg)|H," " F(my))] 0. (220 single-hole propagator under a new Hamiltonidp; ob-

EX (—B)" ' ' tained by replacing the hopping terhi, in the t-J model

with H;, whose matrix element is negative definite without

if E<0. Of course one still needs to determine the CONVer3pa extra sign problem shown in E€2.7), namely,

gence range of the expansion. By inserting a complete set of

eigenstates oH; [denoted aq|M;(ms))}] as intermediate . Tl g __
states( ¢°*1;(mg)|G,(E)| 4% (mg)) can be also written in (¢ (m)H$i(n)=~t. (2.28
the form One can see from the propagat@r24 that a sequence of
) ) L
(¢%T1;(mg)|G,(E)| ¢%5(my)) signs HSK'=JlO'm5=(i1)><(i1)X~~X(i1)E(—l)Npath is
1 picked up by the hole from the spin background. A sign
_s (¢°" (M9 |M; (M) (M; (M) | $°;(ms) ) definite Wpa, OF ppars Me@ns that such a phase string cannot
R E—Ef\’,,+i0+ ' be “repaired,” since there does not exist another source of
(2.22) “phases” at low energy to compensate it. In particular, if

one chooses=j, then all the paths become closed loops on

the lattice, and the gauge-invariant phasé].Oer)ath (which is
independent of the ways in which one accounts for the Mar-
shall sign can be regarded as a Berry phasee Sec. Il A.
This Berry phase is incompatible with a quasiparticle picture,
in which the whole system should simply get back to the
original state without picking up a Berry phase each time the
. ‘quasiparticle returns to its original position. Due to the su-
ergy Eg of Hy,, where the hole is allowed to move around o ition of such phases from different paths and spin con-
to gain its kinetic energy. Therefore, near the ground-stat gurations as shown in Eq2.24), it is expected that the
energyEg, one always ha®Vpal { #}1=0. long-distance behavior of the hole will be dramatically modi-
SinceW,i{ { ¢} is sign definite, one may introduce the fied by the quantum interference effect of the phase-strings.
following weight functional for each path and an arbitrary In the following we give a general proof that the spectral
spin configuratior{ ¢}: weight which measures the quasiparticle weight of the in-
jected hole must vanish at the ground-state energy as a direct

which is an analytic function dE except for a branch cut on
the real axis covered by the eigenval§&s,} of H; (with a
hole fixed at sitem). This analytic property will guarantee
the convergence of the expansih20 in the whole region
of EXE2<0 on the real axis, whetg2 is the lowest-energy
eigenvalue ofH; with the hole fixed on a lattice site. We
note thatEOG is always higher than the true ground-state en

~ Woail{ #}] consequence of such a phase-string effect.
Ppatl{#}]= S S G Woudl {61 (222 Before going to the next section, we remark that the ori-
. o @l .paths t .p.at gin of this phase string can be traced back to a highly non-
which satisfies the normalized condition trivial competition between the exchange and hopping pro-
cesses represented by HB.5 and (2.7). Recall that each
2 2 ppaﬂ[{g}]zl_ (2.23 hopping of the hole displaces a spin, leading to a spin mis-
(all"paths gy match. Since there are three components for eadl2)3pin

which do not commute with each other, the induced spin-

Then the propagatds,, in Eq. (2.17) can be reexpressed as mismatch string has three components in spin space which

follows: ) ;
must be repaired simultaneously after the hole moves away
Ly 1N as pointed out in the Introduction. The phase-string effect
Coli,11B) =Gy, 15 B)N(= 1) pen), .29 revealed in Eq(2.24), however, implies that the spin mis-
where match induced by hopping cannot relax baoknpletely and

there is always a residual (1) phase-string left behind,
G i iE)=—(g)i"] W ~ (22 which is not repairable by low-lying spin fluctuations. This
o.1:E) (o) (aIIEpaths %} parl{#H], (2:29 subtle phase string effect has been overlooked before, espe-

and cially in the 2D case.

C. Phase-string effect: Vanishing spectral weighZ (E¢)

<(_1)Néath>5 2 Z ppatl{{g}]((_l)N’l)a‘h)-

(all"paths |, First, in momentum space the imaginary part of
(2.26 G,(k,E) can be shown to be
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behave qualitatively similar in the case of a symmetric sys-
ImG,,(k,E)=—7T% Z(Em)S(E—En), (229 e, G, in Eq. (2.24 and G, in Eq. (2.25 can be then
rewritten as

where the spectral weiglat, is defined as
G,(j,i;E)=G%(j,i;E)—G2(j,i;E) (2.37

Zi(Em) =1 thmlCol o), 230 4
with |¢y) and Ey, denoting the eigenstate and energy of
H,.; in the one-hole case. Go(j,i;E)=GE(j,i;E)+Go(j,i;E). (2.39
The corresponding real-space form of E2.29 is Thus Gf}(E) and G?,l(E) determine bothG,(E) and

_ G,(E), and the phase-string effect is simply represented by a
Gu(j.i;E)=—m>, e ™z (E)p(E), (2.3)  minus sign in front ofG (E) in Eqg. (2.37.

. __ Here a crucial observation is that the ground-state energy
where p(E)=2y 6(E—Ey) is the density of states, and Eg of H,; is always lower than the ground-state energy
Z(E) is understood here as being averaged dveat the  Eg of H; since, according to the definition in E(R.28),
same energ¥y =E. If low-lying excitations can be classi- there is no sign problem ikl,_;. Suppose that the expan-
fied as quasiparticle-like, one must have a finite spectradions (2.35 and (2.36 for G®(E) and G°(E) converge
We|ght at the ground state and its V|C|n|ty Correspondlngly be'ow some energ}Eo By |ncreas|ngE the expans|ons
G,, should generally be finite whe—Eg from E>Eg side  (2.35 and(2.36) will eventually diverge aE, with the same
in two dimensions® On the other hand3;=0 atE<Eg.  sign becausd\,,=0. CorrespondinghG,(E) also has to

The real part ofG,(k,E) in the real space can be ex- diverge at the same enerds, according to Eq(2.38. It
pressed in terms o6, by the following Kramers-Kronig means thaEy=Eg asG,(E) is analytic atE<EG In con-

relation: trast, G,(E) should be still well defined aEg (note that
dE’' G"(j,i:E") EG>EG) Thus the divergent parts rGel(EG) and
G,(j,.i,E)=—P P (232  G%(Eg) have to cancel out exactly in E€R.37. This can-

cellation is easily understandable, since there is no qualita-
whereP denotes taking the principal value of the integral. Ittive difference betwee®® (E) and G2'(E). Note that the
is straightforward to check th&/(j,i;E) diverges logarith- divergence in Eqs(2.395 and(2.36 is contributed to by all
mically atE—Eg if G"(j,i;E) remains finite aE=E{ : of those paths connecting the fixédand j whose lengths
approach infinity. In this limit, the effects of the even or odd
o 1 o total number of| spins on the hole’'s path become indistin-
GZ,.(],I;E)’V—;GZ.(],I;Eg)|n|E_EG|. (2.33 guishable.
But we are mainly interested in the behavior ®f.(E)
On the other hand, by using the spectral expression near E~Eg. According to the previous discussion, for a
o finite spectral weighZ,(Eg) the real part oiG,(E) has to
CELiat j dE" G"(j,i;E") diverge atE=Eg. On the other hand, the analytic continu-
0.(],|,E+|O )_ Nt (234} . = . . . .
m E—E'+i0 ation of G,(E) to Eg+i0" should remain well defined in

one finds the analytic continuation &,(j,i;E) from the terms of the spectral expression similar to Ea 34. In

upper-half complex plane to the real axisEt-Eg to be ot(t\ler words, ifZ,(Eg) #0, one should find tha®, (E) and
generally well-defined except &=E. G, (E) (after an analytic continuation across the upper half

Now we discuss the phase-string effect. For this purposeF"ane to the real axis &>Eg) have to diverge again at

we introduce the following quantities E=Eg in the following way:
N . ~ G5(Eg)—GH(Eg)—, (2.39
G iE)==(a) " X 2 Woarl{#}1(Sn!  ever,
(@l"paths 13, path whereas
(2.35

¢ (Eg)+ G2 (Eg) = finite. :
With Syl ever=l if Nlg= even and syl oe=0 if G (Ee)* Gy (Ee)= finite 240
NL = Ly path However, this would mean th&®'(Eg) andG°'(Eg) have
patn= 0dd. Similarly, . ; L oS g :
to diverge withoppositesigns, which is contrary to the in-
o tuitive observationgrecall that both of them have the same
GoL(j,i;E)=—(0)! ”E > Wpan{{ﬁb}](f?m , odd)- sign atE<Eg as defined in Eqs(2.35 and (2.36 and di-
(@ S {4} (2.3  Verge with the same sign Bf; as discussed earlier prBuch
' behavior also means a violation of spin symmetries of the
One may also defin€&'(j,i;E) andG®/(j,i;E) in a similar  system. Let us conside®®' and G°' characterizing the
way. Physically,G%°" and ij"l measure the weights for contributions from{ spins, whose definitions are similar
even or odd number df and| spins encountered by the hole to Egs. (2.35 and (2.36. Suppose thai and j belong
during its propagation from siteto j. It is important to note  to different sublattice sites. A simple counting then shows

that, according to their definition5°" and G should  that Nl,+Ni=odd integer, and one finds that
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Ge(E)=G°/(E) and G°'(E)=G?'(E). In terms of Egs. but such a sign problem should not invalidate the phase-
(2.39 and (2.40, then, they should diverge witbpposite  string effect at least at small doping concentrations.

signs too, namely,G®(E)—» and G®/(E)——= at

E—Eg, However, according to their definitions, this indi- lIl. PHASE-STRING EFFECT AT FINITE DOPING

cates a violation of spin symmetriesit-Eg, with contri- The nonrepairable phase-string effect exhibited in the

butions from7 and | spins behaving drast|~cally different in single-hole propagatd®.24 reveals a remarkable competi-

contrast to their symmetric definition &<Eg. Therefore, tion between the superexchange and hopping processes in

one has to conclude th&t/ (j,i;E) cannot diverge & due  thet-J model. This effect leads to the breakdown of conven-

to the phase string effect, which indicates that the spectraional perturbative methods as discussed in the one-hole

weight Z(Eg) has to vanish at low dimensions where thecase. We have also pointed out that such a phase-string effect

density of statep(E)#0 atE=Eg. is generally present even at finite doping. In this section, we
The way that the phase-string effect leads to the vanishin@/i_“ introdupe a useful mathema_tigal formalism to describe

of Z(Eg) can be also intuitively understood in another this effect in the presence of a finite amount of holes.

way® Notice that the phase-string factor defined in Eq.

(2.27) is quite singular as it changes sign each time when the A. Phase-string effect and the Berry phase

total numberNy,, increases or decreases by one, no matter The phase string is defined as a product of a sequence of

how long the path is. But it would become meaningless tasigns

distinguish even and odd number pfspins encountered by

the hole when the path is infinitely long. Consequently, the (ZDX(EDX-- (D), (3.1

average((—l)”éath> has to vanish afli—j|—®, (since where (-1)=0,,is decided by thénstantspin o, at a site
(_1)Néath:+1 for evenN.,, and (_1)Néath:_1 for odd M at the moment when the hole hops to that site. So the
phase string depends on both the hole path as well as the
instant spin configurations. As shown in the propagator
(2.24), such a phase string is always picked up by the hop-
ping of the hole from the quantum spin background. In par-
&icular, if the hole moves through a closed-p&hon the

N Will have equal probability at this limit Due to such
phase-string frustration, the propagat@.37 will always
decayfasterthan a regular quasiparticle-like ofiee., G) at
large distance, and in particular, it has to keep decaying ev
gt the ground-state enerd; which thgn requires a vanish- lattice back to its original position, it will get a phase
ing Z(E) atE=E¢ as can be shown in terms of EQ.31. N L o

Z(Eg)=0 means that there is no direct overlap betweerf ~1)"¢. whereNc is the total number of spins “encoun-
the “bare” hole states; .| ) and the true ground state. Thus tered Lby the h?le on the closed pa. [It is noted that
the behavior of a hole injected into the undoped ground staté—1)Nc=(—1)Nc as a closed patiC always involves an
is indeed dramatically modified by the phase-string effect, agven number of lattice sites. So there is no symmetry viola-
compared to its quasiparticle-like bare-hole state. It impliegion even though we will focus on—(l)Nlc below] If one
the failure of a conventional perturbative approach to thigets the hole move slowly enough on the p&tisuch that the
problem which generally requires a zeroth-order overlap ofpjn displacement created by its motion is able to relax back,

the bare state with the true ground state. We would like tqhen after the hole returns to its original position, the whole
note that even though exact diagonalization calculations 0Bystem will restore back to the original one except for an

small lattice$® have indicated a quasiparticle peak at the_ ... N _
energy bottom of the spectral function, when the lattice size"’ldd'tlomjII phase{1)™c. Thus, the closed-path phase string

goes to infinity, it is hard to tell from the small-size numerics (—1)"'¢ may be regarded as a Berry phas@f course, here
whether such a quasiparticle peak would still stay at thg— 1)Nlc is not simply a geometric phase which is only path-
lower end of the spectra or there could be some wefgltt, dependent, but also depends on the spin configurations along
a tail) emerging below the peak which vanishes at theits path.

ground-state energysuch thatZ(Eg)=0]. The present To keep track of such a Berry phase in the ground-state
analysis suggests that the large-scale effect is really impowave function, we may introduce the following quantity

tant in this system due to the phase-string effect. Therefore,

finite-size numerical calculations as well as various analyti- ei‘”):exp( i im iz —z0Y)
cal approaches should be under scrutiny with regard to the T ! ! '
long-wavelength, low-energy properties. o )

Conditions (2.5) and (2.7) are crucially responsible for Wherez=x+iy with superscriptstf) and (o) refer to hole
producing the nonrepairable phase-string effect in the abov@nd | spin, respectively, and the subscriptand | denote
discussion. These are the intrinsic properties of th their lattice sites. Here the definition is not restricted to the
Hamiltonian itself. On the other hand, the condition thatone-hole case, and(™#z"") is guaranteed by the no-
| o) is the ground state of the undoped antiferromagaet ~ double-occupancy constraint. Let us consider the evolution
tually does not play a crucial role in the demonstration ofof €© under a closed-loop motion for a given hole on the
Z(Eg)=0. In other words, the whole argument aboutlattice. Recall that at each step of hole hopping, the spin
Z(Eg)=0 should still remain robust even whé,) is re-  originally located at the new hole site has to be transferred
placed by a general ground state at finite doping. Of coursdack to the original hole site. If it is & spin, then
at finite doping some additional phase effect due to the ferIm In(z" —z{"") in Eq. (3.2 will give rise to a phase shift
mionic statistics among holes will appear in the ma(éx7), * 7 due to such an “exchange” and thus a {) factor in

(3.2
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e'®. After the hole returns to its original position through the The electron operator is written in this formalism as
closed-patiC and all the displacement of spins on the path isci(,:fini,,. Now if we redefine the spinon operator as
restored(which can be realized through spin flips as dis-b,,—(—o)'b;, such that
cussed befope one finds _

CiO':finiO'(_a-)la (31@

then the Marshall sign in Eq3.8) can be absorbed into the
(Each | spin inside the closed-pati contributes a phase spinon creation operators:
e*'?7=1) Thus, the phase fact@® reproduces the afore-

e, (—1)Nexel®, (3.3

mentioned Berry phase due to the phase-string effect. |)=(=DNA{bf ;---bf M bl )
~ Therefore, it is natural to incorporate the phase factor ¢
e'® explicitly in the wave function to track the Berry phase, ><{f|Tl- . er }0), (3.11
h

or define the following new spin-hole basis:
- . with (—1)NA being a trivial phase factor left for a later con-
|6)=€| ), (34  venience(hereN, denotes the total spin number on the
sublattice sitg In terms of Eq.(3.10, the superexchange

i0 i0 )
wheree'™ is the operator form 0™ in Eq. (3.2): term (2.1 in thet-J model can be rewritten in the following

. form after using the no-double-occupancy constraint:
e"”)Eexr{—iE L) Inf |, (3.5
; ) > bbbl b b (3.12
H = — = 1 . '_0.7 ‘U./. .
in which n andny) are defined as the hole aespin occu- Y2,y e

pation number operators, respectively, wiilil) defined by Itis easy to check that the matrix elemégt’ |H,| 4)=<0 for

6,(1)= Imin(z,—z). (3.6)  the basis defined in Eq3.11). Namely, the Marshall sign

) ) rule is explicitly built-in here. The hopping tertd, in Eq.
By using the no-double-occupancy constraint, one may aIng_G) becomes

rewrite nf| as n,=31-n'-=,onf,] and thus express

e'® in a symmetric form with regard to and | spins:
i® 1 h h b o - . .
e =exg —|I §2| ne(D| 1-nf— > on, | |- (3.7 where the spin index describing the sign source generating
; 7 the phase string in Ed3.1) is explicitly shown. Besides the
According to previous discussions, this new basis should bsign source due ter, the fermionic statistics of; in Eq.
more appropriate for expanding the true ground St as  (3.13 at many-hole cases will also contribute a sign for each
well as the low-lying states because the hidden Berry phasexchange of two fermions.
due to the phase-string effect is explicitly tracked. In other Now we introduce the new spin-hole baéds4) and(3.7).
words, the wave functiorny, defined in|yg)==4x4/®#)  The phase-shift factoe'® in Eq. (3.7) can be regarded as a
should become more or less “conventional” as the singulagitary transformation and any operatér should be ex-
phase-string effect is now sorted out irfiw). Correspond- pressed in the new representation by a canonical transforma-
ingly the Hamiltonian in this new representation is expectedigy O ei®Oe~1® Then. the hopping terril, and the su-
to be perturbatively treatable as the phase-string effect ISerexchange teri; of the t-J model in the slave-fermion

“gauged away” by the singular gauge transformation in EQ.rgpresentation can be expressed under this transformation as
(3.4). In the following section, we reformulate the] model  ¢5jows:

in this new representation for an arbitrary number of holes.

H=—t> (o)ff;bl b, +H.c., (3.13
(ine

_ iaf |t Al Lt
B. “Phase-string” representation of the t-J model Hi= _t%:a (e”i)hih;(e"ibj,bi,+H.c. (3.14
We start by generalizing the spin-hole ba&?s4) to an and
arbitrary hole numbeiN,, in the Schwinger-boson, slave-
fermion representation:

J . -
H=—> 3 (eiA)b! b! (e'“AJhi)bj_U/bigr-

— (1 \Nkgpt t t t 2 e tomi—e
[$)=(-1) A{biﬂ' ’ 'biMT}{biMJrll. ' .biNel} W (3.19
><{f,Tl~ : -f|TN 10), (3.8 in which gauge phases|; andAf} are defined by
h

whereN, is the total electror{spin) number, and the fermi- ¢ 1 b
onic “holon” creation operatof; and the bosonic “spinon” Aij_i,;j L6i(h) = 6;(D] 2(:4 AT (3.16
annihilation operatob;, commute with each other, satisfy-
ing the no-double-occupancy constraint and

1+ > bl b;,=1. (3.9 Aihj:%lZ [6:(H—6;(DIn]'. (3.17)
o #1,]
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Hereh; is defined by

hi=f . (3.18

exp(—igi Hi(l)nP)

Equation (3.18 actually
transformatio®® which changes the fermionic statistics of
fiJr into the bosonic operat(tri*. So bothh; andb,, now are

represents a Jordan-Wigner

IN THE-J MODEL: ... 3901

“spinon”_annihilation operatorBi(, and “holon” creation
operatorh{ . One can easily check that/, andh satisfy
the following mutual statistics

bl,h/=(xio)h/b},, (3.24

etc., for |#j. Here signs* denote two different ways

bosonic operators in this new representation. Note that théeclockwise and counterclockwiséy which the spinon and

sign factoro appearing in the slave-fermion formalism of
H; in Eqg. (3.13 no longer shows up in Eq3.14), which

holon operators are exchanged. Because of the phase
spinons and holons defined here obey “semion”-like mutual

means that the phase string is indeed “gauged away.” Nevstatistics, and/ and | spinons show opposite signs in the

ertheless, one gets nonlocal gauge fie4d‘-sand Aﬂ in the
new representation. In the one-dimensional
Al =Al}=0 (see Sec. IV A but they are nontrivial in two

commutation relation(3.24. Thus the present ‘“phase-

caseString” representation may also be properly regarded as a

“mutual-statistics” decomposition. The physical origin of

dimensions. For example, for a counterclockwise-directiorfn® mutual statistics may be understood based on the phase-

closed-pathC on 2D lattice, one finds

; A{j:WIEC (E on —1)+ =k (3.19

and

; Af}zwlZC n'+ 3L, (3.20

where the notatiorhe C on the right-hand side means that
the summations are over the sites inside the @&thvhile

>f and =" denote the contributions from the sites right on

the pathC, the latter being different from those inside the
path C by a numerical factog or 3 depending on whether

they are at the corner or along the edge of the closed pa

C. Nonzero(3.19 and(3.20 show thatA|; and A}, which
cannot be gauged away in 2D, describe vorti@santized
flux tubeg centered on spinori$n fact, Aifj also includes an

string effect. As defined in Eq3.1), a phase-string factor
changes when and only when hopping, ia@,exchange of a
spin and a holetakes place. Thus, it can be described as a
countingproblem. One may keep track of such a phase string
exactly by letting the hole and spin satisfyrautual statistics
relation, such that an exchange of a hole with a spjn
should produce an extra phase dependingrgn as shown
in Eq. (3.1). The role of the phase-string effect may be then
regarded as to simply induce a mutual statistics between the
spin and charge degrees of freedom. In this way, the phase
string itself may be “gauged away” from the Hamiltonian,
but at the price of dealing with a mutual statistics problem.
Furthermore, Eqgs(3.22 and (3.23 can be understood as
composite—particleNexpresgdﬁsfor the mutual-statistics
pinon and holon If;, and h;), in terms of conventional
osons b, andh;) carrying flux tubes. In other words, we
still work in a conventional bosonic representation of spinon
and holon where the mutual statistics effect is transformed to
an interaction problem, which is similar to a fractional-

additional latticer flux per plaquette as represented by thestatistics SyS'[eI']lI]I'lZ This may be seen from the Correspond_
second term in the first summation on the right-hand side ofng Hamiltonians of Eqs(3.14) and(3.15) in the new repre-

Eq.(3.19] and holons, respectively. Physically, this suggestsentation, with the
the existence of nonlocal correlations between the charge angtual statistics effect.

spin degrees of freedom in 2D. For instance Hp (3.15

h

gauge fields;; and Aifj representing

Therefore, after explicitly sorting out the phase-string ef-

spins can a_IwayE fee_l the gffect of holes nonlocally throughect, thet-J Hamiltonian is reformulated in Eq$3.14 and
the gauge fieldy;; . It is a direct consequence of the phase-(3.15, where the original singular phase-string effect is
string effect, which depends on both the hole path as well asgauged away” in 1D, while its residual effect is repre-

the instant spin configurations on the path.

Furthermore, the slave-fermion decomposition of electron,,

operator in Eg. (3.10 is transformed in terms of
ci,—€e®;,e'® as follows®

Cia:FiTBiO'(_U)i’ (32])
in which
—~ [0z
bi,=bi, exp( —i5 oimnr) (3.22
217
and
Frzhi*'exp[i%; 9i(|)(2 anr’a—l) ] (3.23
1 a

sented by nonlocal gauge fieléﬁ andAifj in 2D. As far as
g-distance physics is concerned, quctuationsAﬁfand

Aifj are presumably small foiij() e the nearest neighbors, as
compared to the original singular phase-string effect. Physi-
cally, this is due to the fact that only a quantum superposi-
tion effect of all the phase strings from different paths con-
tributes to the energy, which behaves relatively “mildly” as
described byAl; andAf;. Then a generalized local mean-
field-type approximationexamples are to be given in the
next section may become applicable to this new formalism.
On the other hand, the singular part of the phase-string effect
is now kept in the electrorc operator expressiof3.21).
Thus, in drastic contrast to the conventional picture, the
“test” particles created by physical operatai@s combina-
tions of the electror operatorgon the ground state will not
simply “decay” into internal elementary charge and spin

This new decomposition form is quite nonconventional asexcitations(known as holons and spinons her&he nonlo-
it involves nonlocal Jordan-Wigner-type phase factors in thecal phase in the decompositid8.21) will change their na-
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ture in a fundamental way, as will be illustrated by the 1D[Note that in Eq(4.2) a phase factor{ ¢)'e* 71 +9)/2=i jg
example given below. The relation of “test” particles to omitted which can be easily shown to be equal to 1 for a
internal elementary excitations in Fermi-liquid systems ishipartite lattice]
completely changed here by the phase-string effect. Thus, In terms of Eq.(4.1), it is straightforward to show that
knowing internal holon and spinon excitations no IongerAifj:Ai*}:O, and thus Eq93.14 and(3.15 reduce to
means that various electron correlation functions can be au-
tomatically determined, to leading order, from a simple con-
volution of their propagators. H,=—t> h'hb! b, +H.c. (4.5

(i)

Ity

IV. EXAMPLES and

In the last section, a mathematical formalism was estab-

lished for a general doping concentration, in which the J -
phase-string effect was explicitly tracked. In the following Hi=—5 2 bigbj—obj—grbigr. (4.6
we apply this formalism to some examples in both 1D and (iDo,o

ZE Wr_“(t:h rev§al th'lghtlr)( r;ont_rlwal cor;seq_uencels ozhthe_'l'herefore, there is no sign problerfphase frustration
phase-string efiect in he low-energy, long-wavelength re present in the Hamiltonian since both holon and spinon are
gime. bosonic hereAll of the important phases are exactly tracked
by the phase 21707+ 07 i the decomposition (4.2) which is
the explicit expression for the nonlocal phase string in the
It is well known that the Luttinger-liquid behavior exhib- 1D many-hole caseWithout the presence of the nonlocal
ited in this 1D system is difficult to describe by conventionalphase effect, a conventional mean-field type of approxima-
many-body theories. The success of the bosonizatiotion may become applicable to the Hamiltonians in the new
approach’23 to this problem relies heavily on the Bethe representation. In the following we outline a simple mean-
ansatz solutioff of the model. An alternative path-integral field theory for Eqs(4.5 and(4.6).
approach without using the Bethe ansatz solutioan also One may rewrite Eq(4.6) in the following form:
provide a systematic understanding of the Luttinger-liquid
behavior atI<t. In this latter approach, some(1) nonlocal
phase is found to play the key role. This nonlocalllJ
phase, which originated from the coupling of doped holes oy T i .
with the SU2) spins, has been also shown to be ref&ed  after usingb;_ b, _,=bj,b;, at an occupied sit¢ where a
the Marshall sign hidden in the spin background, and is thu§ard-core condition ofk(/,)?=0 is employed. Then by in-
directly connected to the phase-string effect discussed in thgoducing  the mean  fields xo=33,(b/,b;,) and
present paper. H0=<hiThj> with i andj being the nearest-neighboring sites,
In this section, we use this 1D system as a nontriviala mean-field version of the-d HamiltonianHq¢=H+Hg
example and outline how the phase-string effect can straightan be obtained with
forwardly lead to the correct leading-order Luttinger-liquid
behavior of correlation functions, without involving a com-

A. 1D example: Asymptotic correlation functions

J

HJ: 2

> blbibl by, 4.7)

(i)oo'

plicated mathematical description usually associated with th—thz hiTh]-+H.c. (4.9
this 1D problem. (i)
Let us start with the decompositid8.21). In the 1D case, d
6.(1) defined in Eq(3.6) is reduced to an
+a if i<l +
()= : He=-Js>, bl b;,+H.c., (4.9
6i(1) 0 if i>1. 4.1 ® e 7!
According to Egs.(3.22 and (3.23, the decomposition with t,=2ty, and Js=Jxo+tHy. Such a mean-field solu-
(3.2 can be then written as tion has been derived beforgef. 12. A more accurate
mean-field version may be obtairfadith the same structure
CiU:hrbiUeti[uﬁ)ih-%—@ib]’ 4.2 as in Egs.(4.8) and (4.9), but the summatiorx in_Hs now
should be understood as over a “squeezed spin chain” de-
where fined by removing hole sites away at any given instant at

J<t limit. In this way the “hard-core” constraint between
W . the holon and spinon can be automatically satistied.
0; :EE (1-ny) (4.3 H,, and H, are the tight-binding Hamiltonians for hard-
core bosons which can be easily diagonalized. For example,
and one may introduce the Jordan-Wigner transformation

®ib:g|2 anlba' (44) hi:fieXF{Iiﬂz n|h>, (41@

1>
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where f; is a fermionic operator, and correspondindgdy, can be diagonalized in the momentum space. The solution

becomes for Hg is similarly known after using the Jordan-Wigner
transformationbingigexp(liw2,>in|bg). Thus, in prin-
Hy=—t, >, fi’rfj+ H.c., (4.1  ciple one can use the decompositi@n2) to determine vari-
(i) ous correlation functions.

which describes the tight-binding model of free fermions and  Let us consider the single-electron Green'’s function

(cl.(1)ci(0))=(h;(D)b], (e~ 1]V Wlg=ile] )70 (0)hf(0))

= (h;(1)e 1/ Ve*10TOR(0))(bT. (1)e7 1O Ve*1o1 ), (0)), (4.12

where a spin-charge separation condition in the ground statieef H,,+ H, is used. Since bothl;, andH¢ can be expressed
in terms of free-fermion solutions, one may use the bosoniz&ttordescribe the quantities involved on the right-hand side of
Eq. (4.12 in the long-distance and long-time limit. For example, to leading order, on€’finds

<h,-(t)e1i®?“<t>e*i‘">i“<°>hi(0)>=<fj(t)exp(:igIZ [1+n](1)] exp( iigZ [1+n{‘(0)])f?(0)>
>j >i

eiikfx
xW<exp( i g; :nf‘(t):)ex;{ *i g; :n,h(O):)>

eiikfX

oC
2,92 22, 16’
(XEvpt) "X —vit?)

(4.13

wherex=x;—X;, vy=2tpasin(mé), andk; is the electron Fermi momentum defined kyy=(7/2a)(1— 8). In obtaining the
last line, the following expression is used:

<exy{ Ii%E :n{‘(t):)exp( iigé:i :n'(0):

>

>°‘ (= 0 22) Ve (4.19

where the normal ordering': is defined asm"—(nM"). The spinon part can be similarly evaluated based on the bosonization
technique:

(bl (1)e™10/Ve=187 O, (0))= < f;}(t)exr{ =y %;J_)a nf’a(t))exp( i %;)a n.”a(O)> fi1(0)>

1 T cb ey —_— cob -
x—l<exp{_|§|>2m.nm(t).)exp{ﬂzg;a.n|a(0).)>

(X*tovgt)2

1

e s

where v,=2Ja/(1—5), and by using the constraint which can be easily shown to give a momentum distribution
Egnﬁf 1 on the “squeezed spin chain,” one has neark; as

n(k)~n(kp) —clk—ki|*sgrik—kp).  (4.18

T b 1y _— b - N L .
€x ilzz Nie(t): | ex +|§|2 N(0)1 ] ) ~1. The lack of a finite jump ak=Kk; implies the vanishing
“ha “he (a.16  Spectral weight, i.eZ(Eq)=0 at the Fermi points.
' One may also calculate the asymptotic spin-spin correla-

. ) tion function. For example,
Therefore, the single-electron Green'’s function has the fol- P

lowing leading behavior: <S|+(t)5;(0)> - <bi+1(t)bn(0)bii(t)bj+¢(o)>

=+ uh i ~h
atikix X (e*120i(VgTi20/(0)) (4.19

f . ~
{ej(t)eip (0)) [(Xx*=vet)(x+vnt)YAXP—v5t2) e The averages on the right-hand side are also easily deter-

(4.17 mined for the ground state f ;:°
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1 tonians(3.14) and(3.19, which are the Chern-Simons-type
(bﬁ(t)bjT(O)bu(t)bﬂ(o»f"(XTW (4.20  gauge fields satisfying condition8.19 and (3.20), respec-
Us tively. Therefore, even if there exists a spin-charge separa-
and tion in the 2D case, one still expects to see nonlocal interac-
tions between the spin and charge degrees of freedom, which
(etimr“)eiimr(o)w cog (7/2a)(1—6)x] a2y ™ lead to anomalous transport and magnetic phenomena.
(x2—vit?)t In order to see the consequences of the gauge figlds
andAﬂ , let us consider a mean-field type of approximation
to H; and H; in Egs. (3.14 and (3.15. This mean-field
theory is similar to the one outlined above for the 1D case.
cog 2k,x) But for the 2D c?se the mian—fielt;{@ andH, should be
o7 P — o 72 T (4.22 defined with Aj; and Aj incorporated as Xo=3
® " 3 (e'"Mibl b;,) andHo=(e'"%ih[h;). Correspondingly, the
Therefore, the well-known asymptotic behavior of the mean-field Hamiltoniarm .«=Hp+H; can be obtained simi-
single-electron Green’s function and the spin-spin correlalarly to the 1D casé4.8) and (4.9 as follows:
tion function atJ<t is easily and correctly reproduced here. "
The phase-string contribution plays an essential role in Egs. Hh=—th> (e'Aij)hiThj+H.c., (4.23
(4.12 and (4.19. A lesson which we can learn from this is (i
that even though the decompositioh?2) is mathematically and
equivalent to the conventional slave-fermion and slave- _ Al bt
boson formalisms, it has the advantage of explicitly tracking He= ‘JS<%U (€77, bj +H.C. 4.29

the phase-string effect, so that such a nonlocal singular phasgis mean-field solution has been previously obtained based
is not lost when one makes some mean-field-type approxion the slave-boson formalisti,and the additional gauge
mation to the Hamiltonian. Such a phase-string effect is refiyctuations beyond the mean-field state can be shdterbe

ally crucial, due to its nonrepairable nature, to the long-timesyppressecgapped at finite doping, so that it is a real spin-
and long-distance Luttinger-liquid behavior studied herecharge separation state, even though there exist Chern-
Thus if one were to start from eonventionalslave-particle ~ Simons(topologica) ﬁe|dSAifj andAi'} representing nonlocal
scheme, a nonperturbative method beyond the mean-fielgtattering between the spin and charge degrees of freedom.
theory must be employed in order to deal with the nonlocal | gt ys first take a look at the charge degree of freedom.
phase-string effect hidden in the Hamiltonian. In contrast, inp e to the spin-charge separati@ire., suppression of the
the present phase-string formulation, a mean-field-type treajayge fluctuations the charge response to external fields is
ment of the Hamiltonian gives reasonable results. entirely determined by the holon part describedHy. Ac-

Finally, we make a remark about the physical meaning ofording to Eq(4.23 as well as Eq(3.19, holons always see
the decompositioi4.2). For a usual slave-particle decompo- fictitious flux tubes bound to spinons and quantized-at,

sition, the quantum numbémomentum of the electron is a besides a latticer-flux per plaquette, as represented by

Simple su(;n of thehmoment? Qf “spilno_n” i'nd “homr?” ((:jon- Aifj . It is important to note that the fluctuating part/qu not
st|tuent§(_ ue to the convolution re ation ere ‘|‘n t (,9, e only provides a scattering source in the long wavelength, but
com_posmon(4.2) the phase-string factor will shlft_ the also profoundly shapes the coherent motion of hofdrEhe
relation of the_electron moment_ur_n to thoset.nfe.spmon latter effect is caused by strong short-range phase interfer-
and holon excitations in a nontrivial way, which is actually ence induced by thet 7 flux quanta. This effect can be

equi\_/alent to the information provided by the_ _Bethe ansaty,hqerstood as the guantum interference of phase strings from
solution. In fact, Rerl and Andgri%frhave identified a simi- different paths of holons. A semiclassical treatmentHgf
lar effect (called a phase shift” by thembased on the has been given in Ref. 13, where the topological gauge field
Bethe ansatz solution. h
Ajj was shown to lead to anomalous transport phenomena

including linear-temperature resistivity, a second scattering
rate ~ T2 in the Hall angle, a strong doping dependence of

In the last section, the phase-string effect has been showthermoelectric power, etc., which gives a systematic descrip-
on the 1D example to modify the long-distance and long-ion of experimental measurements in the higheuprates.
time electron correlations in a dramatic way. The 1D system The spin degree of freedom is also nontrivial here. As
is special in that the phase string only appears in correlatiodescribed byHg in Eq. (4.24), spinons see similar fictitious
functions through the decompositi@8.21), but it does not flux tubes bound to holons as represented\t}y It implies a
show any direct effect in the Hamiltonian. Namely, the strong frustration effect on the spin background induced by
phase-string effect can be “gauged away” in the Hamil- doping: each hole not only means a removal of a single spin,
tonian for an open-boundary 1D chain. This is consistenbut also affects the rest of the spins nonlocally. This is a
with the picture that spinon and holon as elementary excitadirect consequence of the nonlocal phase-string effect.
tions are decoupled, as indicated by either the exactithin this approximation, it has been fouridhat the spin
solutiort* or the analytic considerations in te-0 limit.°  dynamics is dramatically affected by the doping effect, in-
However, for a 2D system such phase-string effect can naluding the emergence of low-lying doping-dependent mag-
longer be simply gauged away in the Hamiltonian. It is de-netic energy scales, non-Korringa behavior of the spin-lattice
scribed by the lattice gauge fieleﬁqfj andAihj in the Hamil-  relaxation rate, etc., which qualitatively agrees with the

As similar asymptotic form can be found f¢8/(t) S{(0)) if
the “squeezed spin chain” effect is considered. Then,

(S(0-8(0) 5

B. 2D example: Nonlocal interactions



55 PHASE STRING EFFECT IN THE-J MODEL: ... 3905

anomalies found in the nuclear-magnetic-resonaiNidR) As discussed in the present paper, the nonrepairable phase
and neutron-scattering measurements of the Righeu-  string on a closed path is equivalent to a Berry phase. It can
prates. be actually “counted” in terms of how many (or 1) spins

The above mean-field-type theory has been previously deencountered by a given hole on its path. Thus such a Berry
veloped by using the slave-boson formaliSmHere the phase can be exactly tracked in the wave function. Then,
phase-string effect and its corresponding formalism in Sedhased on a spin-hole basis with the built-in phase-string ef-
[l provide both physical and mathematical justifications for fect, we obtain a new mathematical formulation for thé&
this approximate theory of the 2BJ model. Of course, a model, in which the originally hidden nonlocal phase-string
further improvement of the theory based on the exact formueffect is now explicitly represented in the Hamiltonian as
lation given in Sec. lll is desirable. For example, the spininteracting effectslescribed by gauge fields with vorticities
degree of freedom as described by the mean-field Hamilin the 2D case. On the other handsimgular part of the
tonianHy is still rather rough for short-range correlations. In phase-string effect is kept in the decomposition representa-
particular, at half-filing where the doping effect representedion for the electrorc operator(i.e., in the wave functions
by A{} vanishesH, in Eq. (4.24 reduces to a lattice model which is crucial when one tries to calculate electron correla-
of a hard-core boson gas whose Bose condensation gives rigen functions(as shown in the 1D example
to the long-range AF order. However, an accurate description Another way to understand this new formulation is in
of the antiferromagnetism in the ground state involves germs of so-called “mutual statistics.” It has been pointed
RVB-type pairing of bosonic spir€,with the better mean- out that the phase-string effect as a “counting problem” can
field solution at half-filing known as the Schwinger-boson be also related to the “mutual statistics” between the charge
mean-field stat€ in which a pairing order parameter of spins and spin degrees of freedom, since each step of hole hopping
is used to describe short-range spin-spin correlations. Baseday be regarded as an exchange of a hole and a spin. By
on the present formalism, it is not difficult to generalize theusing the composite representation of the “mutual statistics”
mean-field theory to incorporate such a short-range spin-spiholon and spinon in the conventional bosonic description,
correlation effect, which is important for quantitatively ex- one can get the same formulation of & model in which
plaining the experiments. A brief description of such a genthe “mutual statistics” is described by long-range
eralization has been reported in Ref. 29, and a more detailei@pological-type interactiongin 2D case represented by

version will be presented in followup papers. nonlocal gauge fields. In contrast to the fractional statistics
among the same species, though, no explicéind P viola-
V. SUMMARY tions are present in this “mutual statistics” or phase-string

In the present paper, we have reexamined the problem &fescription.
a hole moving in an antiferromagnetic spin background and AS an example, we have shown how the correct asymp-
found rigorously that the hole always acquires a nontrivialtCtic behaviors of the single-electron Green's function and
phase string at low energy. This phase-string effect, particuSPin-spin correlation function can be easily reproduced in the
larly in 2D, has been overlooked before, but its quanturrPr€Sent scheme in the 1D finite doping case. The present
interference effect can drastically change the hole’s longPhase-string formulation proves to be very powerful in deal-
distance behavior. We have shown generally that the spectr§]d With this 1D problem, in contrast to difficulties associ-
weightZ must vanish at the ground-state energy due to suchted with th'e conventional slave-particle formah;ms. We
a phase string effect, which means that the conventional peflave also discussed a 2D example by reproducing an ap-

turbative description based on a quasiparticle picture shoulfroximate theor} which gives a systematic description of
fail at a sufficiently large distance in this system. The originth€ @nomalous transport and magnetic properties in the high-

of this phase-string effect is related to the intrinsic competi-1c CuPrates. Such a theory was previously Qevgléi‘)bdsed
tion between the superexchange and hopping processed! the slave-boso_n s_cheme with an optimization procedure
Namely, the hopping of the hole displaces the spins in such &nown as flux binding at small doping, with the key
way that the spin displacemertnismatch cannot com- mechamsm being topological gauge-field interactions be-
pletely relax back via low-lying spin flips, and there is al- tween spinons and_ holons. The present.phase—strmg .theory
ways a residual phase string left behind. lays a solid foundation for such a mechanism, and provides a
The phase-string effect is not uniquely restricted to thepa&s for the further |mprovemenlt of the generglized mean-
one-hole problem. It is also crucial at nonzero doping condield theory and for a more quantitative comparison with the
centrations with or without a long-range order. The key issué*Periments. We will address these issues in followup pa-
is how one can mathematically describe fbag-distance P€'S:
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