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Phase string effect in thet-J model: General theory

Z. Y. Weng, D. N. Sheng, Y.-C. Chen,* and C. S. Ting
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204-5506

~Received 19 August 1996!

We reexamine the problem of a hole moving in an antiferromagnetic spin background and find that the
injected hole will always pick up a sequence of nontrivial phases from the spin degrees of freedom. Previously
unnoticed, such a stringlike phase originates from the hidden Marshall signs which are scrambled by the
hopping of the hole. We can rigorously show that this phase string is nonrepairable at low energy and give a
general proof that the spectral weightZ must vanish at the ground-state energy due to the phase-string effect.
Thus, the quasiparticle description fails here and the quantum interference effect of the phase string dramati-
cally affects the long-distance behavior of the injected hole. We introduce a so-called phase-string formulation
of the t-J model for a general number of holes in which the phase-string effect can be explicitly tracked. As an
example, by applying this new mathematical formulation in one dimension, we reproduce the well-known
Luttinger-liquid behaviors of the asymptotic single-electron Green’s function and the spin-spin correlation
function. We can also use the present phase-string theory to justify previously developed spin-charge separa-
tion theory in two dimensions, which offers a systematic explanation for the transport and magnetic anomalies
in the high-Tc cuprates.@S0163-1829~97!09805-6#
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I. INTRODUCTION

A general interest in thet-J model is motivated by the
following experimental facts in the high-Tc cuprates: an an
tiferromagnetic~AF! long-range order of Cu spins in th
CuO2 layers exists in the insulating phase and a meta
phase emerges after the doped holes destroys the mag
ordering, where superconducting condensation as wel
anomalous normal-state properties are found. Thet-J model
is composed of two terms:Ht-J5HJ1Ht , whereHJ de-
scribes the AF superexchange coupling between the nea
neighboring spins@as defined in Eq.~2.1!# which fully ex-
plains the magnetic insulating phase in the cuprates, andHt
describes the hopping of holes on such a spin background@as
defined in Eq.~2.6!#. The highly nontrivial competition be
tween the superexchange and hopping processes in tht-J
model generates strong correlations among electrons, a
believed by many people to be the key to explain the stran
metal behaviors in the cuprates. Even though such a m
has been intensively studied for many years, very few pr
erties have beenreliably understood in the two-dimensiona
~2D! doped case, which is presumably relevant to the me
lic phase of the high-Tc cuprates.

To see the difficulty involved in this problem, let us tak
as an example one of the simplest cases: only one ho
present in the AF spin background. The motion of the h
usually creates a spin mismatch along its path.1 Namely, the
hopping changes the spin configuration, which otherw
would have perfect antiferromagnetic correlations. For
Néel order, such a ‘‘string’’-like spin mismatch is easy
see,2 but it is not uniquely restricted to the case with a lon
range order. It has been realized that such a spin mism
left on the spin background by the mobile hole could cost
energy linearly proportional to its length and thus has to
‘‘repaired’’ in order to allow the hole to move around freel
In fact, it has been well known3 that a spin flip process ca
‘‘repair’’ the spin mismatch. With the spin mismatch gene
550163-1829/97/55~6!/3894~13!/$10.00
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ated by the hopping being repairable by spin flips, the do
hole is generally believed to be a mobile object.

However, the crucial issue4 is whether such a mobile hol
can be described as quasiparticle characterized by a non
spectral weightZ. Physically, a finiteZ implies that the hole
only carries a local spin distortion~‘‘spin polaron’’! as it
moves. This is a picture familiar in a conventional met
where a spin polaron is usually replaced by, say, a pho
polaron. Here a spin-polaron picture can indeed be obtai
by a self-consistent Born approximation,3,5 which is also
supported by the finite-size exact diagonalizati
calculations.1,6 However, different from the phonon-polaro
picture, SU~2! spins are involved here and a U~1! phase may
play an important role in shaping the long-distance part
the spin polaron withlittle energy cost.7,8 The question
whether the spectral weightZ vanishes at the ground-sta
energy is particularly sensitive to such long-waveleng
low-energy effects. Self-consistent perturbative approac
and numerical calculations themselves cannot provide a d
nite answer for it. In fact, Anderson4 has given a genera
argument thatZ has to vanish due to the existence of t
upper-Hubbard band. A vanishingZ means that each hol
added to the system will cause a global change in the gro
state, and thus the resulting state cannot be simply descr
as a quasiparticle-type excitation and treated perturbativ

Thus a more accurate description of the long-distance
fect is needed in the present system in order to resolve
issue. As the spin mismatch left on the spin background
to be restored to avoid a linear potential energy, one wo
expect the quasiparticle picture to be generally correct,un-
less the hole picks up a nontrivial phase at each hopp
step. The quantum interference effect of such a phase
quence, if the latter exists, can then dramatically change
long-wavelength behavior of the hole, leading
nonquasiparticle-like properties. In fact, in the on
dimensional~1D! case such a U~1! phase string has alread
been demonstrated,9 where it plays a crucial role in shaping
3894 © 1997 The American Physical Society
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55 3895PHASE STRING EFFECT IN THEt-J MODEL: . . .
non-Fermi-liquid ~i.e., Luttinger liquid! behavior. In the
present paper, we will rigorously demonstrate that for g
eral dimensionality the injected hole always has to pick u
sequence of U~1! phases from the spin background when
moves around, and the resulting phase is not repairab
low energy in contrast to the aforementioned repairable s
mismatch string. This phase-string depends on the ins
spin configuration encountered by the hole and can be de
mined by a simple counting. We will then be able to prov10

that such a phase string effect leads to a vanishing spe
weightZ at the ground-state energy in low dimensions.

This nontrivial effect of the U~1! phase string at large
distances is generally present even when there are m
doped holes, regardless of whether the ground state
sesses an AF long-range order or not. Therefore, the ph
string effect is expected to be the most crucial factor in
termining the low-energy, long-wavelength physics both
the one-hole problem and the finite doping case. A pertur
tive method, which may well describe the spin-polaron eff
surrounding the doped hole, usually fails to account for t
string effect. This is because the phase-string effect is b
cally a nonlocal effect, but conventional approximations u
ally average out the effect locally and thus result in a seri
problem at a long distance. The natural way to avoid t
difficulty is to find a method for accurately tracking th
phase-string effect at large scales. We will show that suc
nonlocal effect can be explicitly ‘‘counted’’ by introducin
‘‘mutual statistics’’ between spins and holes. In fact, one c
exactly map the phase string effect to a statistics transm
tion problem. The latter can be further transformed into
nonlocal interacting problem if one recalls that statisti
transmutation can be realized by a composite-part
representation,11,12with the underlying particle with conven
tional statistics bound to a flux tube. This is an exact ref
mulation of thet-J model, which is of course mathematical
equivalent to the conventional slave-particle representati
It has an advantage over the other formalisms, however,
to the fact that the nonlocal phase-string effect hidden in
original Hamiltonian is now made explicitly, so that its lon
distance effects can be tracked even after making a l
approximation in the Hamiltonian.

The one-dimensional case can serve as a direct test o
phase-string effect. As an example, the asymptotic sin
electron Green’s function and the spin-spin correlation fu
tion are calculated based on the phase-string formulation
veloped in this paper, and the well-known Luttinger-liqu
behavior in this system is reproduced. This shows that
phase string is indeed essential in shaping the lo
wavelength, long-time correlations. In the 2D case, as
example of the phase-string effect, a spin-charge separa
theory previously developed based on the slave-bo
formalism13 will be reproduced in the present formalism.
key feature involved in this theory is nonlocal interactio
between the spin and charge degrees of freedom as med
by the Chern-Simons-type gauge fields. We show that t
arise as a consequence of the nonlocal phase-string effe
2D, and the present phase-string formalism provides b
physical and mathematical justification for these topologi
gauge fields, which have been shown13 to be responsible for
anomalous transport and magnetic properties closely res
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bling the experimental features found in the high-Tc cu-
prates.

The remainder of the paper is organized as follows. In
next section, we discuss the phase-string effect in the o
hole case, and show that it can lead to vanishing spec
weight at the ground-state energy. In Sec. III, we conside
many-hole case and introduce a new mathematical repre
tation to explicitly track the phase-string effect. As an e
ample of application of this phase-string formulation, in S
III, we first calculate the asymptotic single-electron Gree
function and the spin-spin correlation function for the 1
case. Then we rederive a mean-field-type picture for the
case in which the phase-string effect plays a central role
shaping transport and magnetic properties. Finally, a s
mary is presented in Sec. V.

II. PHASE-STRING EFFECT: ONE-HOLE CASE

A. Marshall sign rule

Let us start with the undoped case. It is described by
superexchange Hamiltonian

HJ5J(̂
i j &

FSi•Sj2 ninj
4 G , ~2.1!

which is equivalent to the Heisenberg model as the elec
occupation numbersni5nj51. According to Marshall,14 the
ground-state wave function of the Heisenberg Hamilton
for a bipartite lattice is real and satisfies a sign rule. This s
rule requires that flips of two antiparallel spins at neare
neighbor sites are always accompanied by a sign chang
the wave function: i.e.,↑↓→(21)↓↑. The Marshall sign
rule may be easily understood as below. Suppose that
has a complete set of spin bases$uf&% with the built-in Mar-
shall sign. It is straightforward to verify that matrix elemen
of HJ become negative definite:^f8uHJuf&<0. Then, for
the ground stateuc0&5(fxfuf& one finds that the coeffi-
cient xf should always be real and positive~except for a
trivial global phase! in order to reach the lowest energy.
means that the Marshall sign is indeed the only nontriv
sign present in the ground state. The Marshall sign rule m
even be approximately correct in some other spin mod
with various frustrations.15

There are many ways to incorporate Marshall sign in
theSz-spin representation. We may divide a bipartite latti
into odd (A) and even (B) sublattices and assign an ext
sign21 to every down spin atA site. In this way, flips of
two nearest-neighboring antiparallel spins always involv
down spin changing sublattices, and thus a sign change.
spin basis may be written as

uf&5~21!NA
↓
u↑•••↓↑•••↓&, ~2.2!

whereNA
↓ denotes the total number of down spins at theA

sublattice. A matrix element ofHJ under the basis$uf&%
satisfies

^f8uHJuf&<0, ~2.3!

for any spin configurations$f% and$f8%. The above defini-
tion can be even generalized to the doped case. With
presence of one hole, one may simply define the spin bas
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uf;~n!&5~21!NA
↓
u↑•••↓↑o•••↓&, ~2.4!

with n denoting the hole site. It is easy to check that

^f8;~n!uHJuf;~n!&<0. ~2.5!

This means that the Marshall sign rule is still satisfied wh
the hole is fixed at a given siten.

Now we consider the hopping of the hole. The hoppi
process is governed byHt term in thet-J model which is
defined by

Ht52t(̂
i j &

cis
† cjs1H.c., ~2.6!

where the Hilbert space is restricted by the no-doub
occupancy constraint(scis

† cis<1. Suppose that the hol
initially at site n hops onto a nearest-neighbor sitem. The
corresponding matrix element in the basis~2.4! is easily
found to be

^f;~m!uHtuf;~n!&52tsm , ~2.7!

wheresm is the site-m spin index in the stateuf;(n)&, and
uf;(m)& is different from uf;(n)& by an exchange of the
spinsm with the hole at siten. Sincesm561, the hopping
matrix element is not sign definite. In other words, the ho
ping process will lead to the violation of the Marshall sig
rule in the ground state. In the following, we explore in det
this phase ‘‘frustration’’ effect introduced by the hopping
an injected hole.

B. Single-hole Green’s function

Starting with the ground stateuc0&5(fxfuf& at half-
filling, one can create a ‘‘bare’’ hole by removing away a
electron in terms of the electron operatorcis :

cisuc0&5~s! i(
f

xfuf;~ i !&. ~2.8!

Here xf>0 and the sign (s) i is from the Marshall sign
originally assigned to the spins at the sitei as follows: if
s511, (s) i51 and if s521, (s) i5(21)i521 at the
A-sublattice site and11 at theB-sublattice site.

One can track the evolution of such a bare hole by stu
ing the propagator

Gs~ j ,i ;E!5^c0ucjs
† G~E!cisuc0&, ~2.9!

with

G~E!5
1

E2Ht-J1 i01 . ~2.10!

By using the following expansion in terms ofHt ,

G~E!5GJ~E!1GJ~E!HtGJ~E!1GJ~E!HtGJ~E!HtGJ~E!

1•••, ~2.11!

with

GJ~E!5
1

E2HJ1 i01 , ~2.12!
n

-

-

l

-

Gs( j ,i ;E) can be rewritten as

Gs~ j ,i ;E!5~s! j2 i (
f8,f

xf8xf

3 (
n50

`

^f8;~ j !uGJ~E!~HtGJ~E!!nuf;~ i !&.

~2.13!

Then we insert the following complete set of the basis sta
~2.4! into the above expansion:

(
m

(
$f%

uf;~m!&^f;~m!u51. ~2.14!

By using the matrix element~2.7! for the nearest-
neighboring hopping, we further express the single-h
Green’s function as follows:

Gs~ j ,i ;E!5~s! j2 i (
~all paths!

(
~all states!

xf8xfTi j
path
•)
s50

Ki j

3^fs11;~ms!uGJ~E!ufs;~ms!&, ~2.15!

where intermediate statesufs;(ms)& and ufs11;(ms)& de-
scribe two different spin configurations$fs% and $fs11%
with the hole sitting at sitems on a given path connecting
sites i and j : m05 i ,m1 , . . . ,mKi j

5 j . ~HereKi j is the total

number of links for the given path, andf0[f,
fKi j11[f8.! Ti j

path is a product of matrices ofHt which con-
nects$ufs11;(ms)&% with $ufs11;(ms11)&% for such a path:

Ti j
path5)

s51

Ki j

~2t !sms
, ~2.16!

wheresms
denotes the instant spin state at sitems right be-

fore the hole hops to it.
We can further writeGs( j ,i ;E) in a more compact form,

namely,

Gs~ j ,i ;E!52~s! j2 i (
~all paths!

(
$f̃%

Wpath@$f̃%#S )
s51

Ki j

smsD ,
~2.17!

where the summation over$f̃% means summing over all th
possible spin configurations in the initial and final, as well
the intermediate states. HereWpath@$f̃%# is defined by

Wpath@$f̃%#

[
1

t
xf8xf)

s50

Ki j

~2t !^fs11;~ms!uGJ~E!ufs;~ms!&.

~2.18!

In the following, we prove thatWpath@$f̃%# is always posi-
tive definite near the ground-state energy. To determine
sign of^fs11;(ms)uGJ(E)ufs;(ms)&, one may expandGJ as
follows

GJ~E!5
1

E(
n50

`
HJ

n

En . ~2.19!



e
t

e

e
n
d
ta

e
ry

s

h

e

ut

f

gn
not
of
if
on

ar-

re,
he
the
u-
on-

di-
gs.
ral
in-
irect

ri-
on-
ro-

is-

in-
hich
way
ect
-

,
is
spe-

of

55 3897PHASE STRING EFFECT IN THEt-J MODEL: . . .
Note that

^fs11;~ms!uHJ
nufs;~ms!&

5~21!nu^fs11;~ms!uHJ
nufs;~ms!&u

@one may easily show it by writingHJ
n5HJ•HJ•••• and

inserting the complete set of Eq.~2.4! in between and using
condition ~2.5!#. Then one finds

^fs11;~ms!uGJ~E!ufs;~ms!&

5
1

E(
k

u^fs11~ms!uHJ
nufs11;~ms!&u

~2E!n
,0, ~2.20!

if E,0. Of course one still needs to determine the conv
gence range of the expansion. By inserting a complete se
eigenstates ofHJ @denoted as$uM ;(ms)&%# as intermediate
states,^fs11;(ms)uGJ(E)ufs;(ms)& can be also written in
the form

^fs11;~ms!uGJ~E!ufs;~ms!&

5(
M

^fs11;~ms!uM ;~ms!&^M ;~ms!ufs;~ms!&
E2EM

0 1 i01 ,

~2.21!

which is an analytic function ofE except for a branch cut on
the real axis covered by the eigenvalues$EM

0 % of HJ ~with a
hole fixed at sitems). This analytic property will guarante
the convergence of the expansion~2.20! in the whole region
of E,EG

0 ,0 on the real axis, whereEG
0 is the lowest-energy

eigenvalue ofHJ with the hole fixed on a lattice site. W
note thatEG

0 is always higher than the true ground-state e
ergyEG of Ht-J , where the hole is allowed to move aroun
to gain its kinetic energy. Therefore, near the ground-s
energyEG , one always hasWpath@$f̃%#>0.

SinceWpath@$f̃%# is sign definite, one may introduce th
following weight functional for each path and an arbitra
spin configuration$f̃%:

rpath@$f̃%#5
Wpath@$f̃%#

( ~all paths!($f̃%Wpath@$f̃%#
, ~2.22!

which satisfies the normalized condition

(
~all paths!

(
$f̃%

rpath@$f̃%#51. ~2.23!

Then the propagatorGs in Eq. ~2.17! can be reexpressed a
follows:

Gs~ j ,i ;E!5G̃s~ j ,i ;E!^~21!Npath
↓

&, ~2.24!

where

G̃s~ j ,i ;E![2~s! j2 i (
~all paths!

(
$f̃%

Wpath@$f̃%#, ~2.25!

and

^~21!Npath
↓

&[ (
~all paths!

(
$f̃%

rpath@$f̃%#~~21!Npath
↓

!.

~2.26!
r-
of

-

te

Here

~21!Npath
↓

[)
s51

Ki j

sms
, ~2.27!

with Npath
↓ denoting the total number of↓ spins ‘‘ex-

changed’’ with the hole as it moves fromi to j . Notice that

(21)Npath
↓

1Npath
↑

[(21) j2 i which is independent of the pat
and thus the system is symmetric about↑ and ↓ spins.
G̃s( j ,i ;E) defined in Eq.~2.25! may be regarded as th
single-hole propagator under a new HamiltonianH̃t-J ob-
tained by replacing the hopping termHt in the t-J model
with H̃t , whose matrix element is negative definite witho
the extra sign problem shown in Eq.~2.7!, namely,

^f;~m!uH̃tuf;~n!&52t. ~2.28!

One can see from the propagator~2.24! that a sequence o

signs )s51
Ki j sms

5(61)3(61)3•••3(61)[(21)Npath
↓

is
picked up by the hole from the spin background. A si
definiteWpath or rpathmeans that such a phase string can
be ‘‘repaired,’’ since there does not exist another source
‘‘phases’’ at low energy to compensate it. In particular,
one choosesi5 j , then all the paths become closed loops

the lattice, and the gauge-invariant phase (21)Npath
↓

~which is
independent of the ways in which one accounts for the M
shall sign! can be regarded as a Berry phase~see Sec. III A!.
This Berry phase is incompatible with a quasiparticle pictu
in which the whole system should simply get back to t
original state without picking up a Berry phase each time
quasiparticle returns to its original position. Due to the s
perposition of such phases from different paths and spin c
figurations as shown in Eq.~2.24!, it is expected that the
long-distance behavior of the hole will be dramatically mo
fied by the quantum interference effect of the phase-strin
In the following we give a general proof that the spect
weight which measures the quasiparticle weight of the
jected hole must vanish at the ground-state energy as a d
consequence of such a phase-string effect.

Before going to the next section, we remark that the o
gin of this phase string can be traced back to a highly n
trivial competition between the exchange and hopping p
cesses represented by Eq.~2.5! and ~2.7!. Recall that each
hopping of the hole displaces a spin, leading to a spin m
match. Since there are three components for each SU~2! spin
which do not commute with each other, the induced sp
mismatch string has three components in spin space w
must be repaired simultaneously after the hole moves a
as pointed out in the Introduction. The phase-string eff
revealed in Eq.~2.24!, however, implies that the spin mis
match induced by hopping cannot relax backcompletely, and
there is always a residual U~1! phase-string left behind
which is not repairable by low-lying spin fluctuations. Th
subtle phase string effect has been overlooked before, e
cially in the 2D case.

C. Phase-string effect: Vanishing spectral weightZ„EG…

First, in momentum space the imaginary part
Gs(k,E) can be shown to be
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ImGs~k,E!52p(
M

Zk~EM !d~E2EM !, ~2.29!

where the spectral weightZk is defined as

Zk~EM !5u^cMucksuc0&u2, ~2.30!

with ucM& and EM denoting the eigenstate and energy
Ht-J in the one-hole case.

The corresponding real-space form of Eq.~2.29! is

Gs9 ~ j ,i ;E!52p(
k
e2 ik•~xj2xi !Zk~E!r~E!, ~2.31!

where r(E)5(Md(E2EM) is the density of states, an
Zk(E) is understood here as being averaged overM at the
same energyEM5E. If low-lying excitations can be classi
fied as quasiparticle-like, one must have a finite spec
weight at the ground state and its vicinity. Corresponding
Gs9 should generally be finite whenE→EG from E.EG side
in two dimensions.16 On the other hand,Gs9[0 atE,EG .

The real part ofGs(k,E) in the real space can be ex
pressed in terms ofGs9 by the following Kramers-Kronig
relation:

Gs8 ~ j ,i ;E!52PE dE8

p

G9~ j ,i ;E8!

E2E8
, ~2.32!

whereP denotes taking the principal value of the integral.
is straightforward to check thatGs8 ( j ,i ;E) diverges logarith-
mically atE→EG if G9( j ,i ;E) remains finite atE5EG

1 :

Gs8 ~ j ,i ;E!;2
1

p
Gs9 ~ j ,i ;EG!lnuE2EGu. ~2.33!

On the other hand, by using the spectral expression

Gs~ j ,i ;E1 i01!52E dE8

p

G9~ j ,i ;E8!

E2E81 i01 , ~2.34!

one finds the analytic continuation ofGs( j ,i ;E) from the
upper-half complex plane to the real axis atE.EG to be
generally well-defined except atE5EG .

Now we discuss the phase-string effect. For this purpo
we introduce the following quantities

Gs
e↓~ j ,i ;E![2~s! j2 i (

~all paths!
(
$f̃%

Wpath@$f̃%#~dN
path
↓ , even!,

~2.35!

with dN
path
↓ , even51 if Npath

↓ 5 even and dN
path
↓ , even50 if

Npath
↓ 5 odd. Similarly,

Gs
o↓~ j ,i ;E![2~s! j2 i (

~all paths!
(
$f̃%

Wpath@$f̃%#~dN
path
↓ , odd!.

~2.36!

One may also defineGs
e↑( j ,i ;E) andGs

o↑( j ,i ;E) in a similar
way. Physically,Gs

e,o↑ andGs
e,o↓ measure the weights fo

even or odd number of↑ and↓ spins encountered by the ho
during its propagation from sitei to j . It is important to note
that, according to their definition,Gs

e,o↑ and Gs
e,o↓ should
f

al
,

t

e,

behave qualitatively similar in the case of a symmetric s
tem. Gs in Eq. ~2.24! and G̃s in Eq. ~2.25! can be then
rewritten as

Gs~ j ,i ;E!5Gs
e↓~ j ,i ;E!2Gs

o↓~ j ,i ;E! ~2.37!

and

G̃s~ j ,i ;E!5Gs
e↓~ j ,i ;E!1Gs

o↓~ j ,i ;E!. ~2.38!

Thus Gs
e↓(E) and Gs

o↓(E) determine bothGs(E) and
G̃s(E), and the phase-string effect is simply represented b
minus sign in front ofGs

o↓(E) in Eq. ~2.37!.
Here a crucial observation is that the ground-state ene

ẼG of H̃t-J is always lower than the ground-state ener
EG of Ht-J since, according to the definition in Eq.~2.28!,
there is no sign problem inH̃t-J . Suppose that the expan
sions ~2.35! and ~2.36! for Gs

e↓(E) and Gs
o↓(E) converge

below some energyE0. By increasingE the expansions
~2.35! and~2.36! will eventually diverge atE0 with thesame
sign becauseWpath>0. CorrespondinglyG̃s(E) also has to
diverge at the same energyE0 according to Eq.~2.38!. It
means thatE05ẼG asG̃s(E) is analytic atE,ẼG . In con-
trast,Gs(E) should be still well defined atẼG ~note that
EG.ẼG). Thus the divergent parts inGs

e↓(ẼG) and
Gs
o↓(ẼG) have to cancel out exactly in Eq.~2.37!. This can-

cellation is easily understandable, since there is no qua
tive difference betweenGs

e↓(E) andGs
o↓(E). Note that the

divergence in Eqs.~2.35! and ~2.36! is contributed to by all
of those paths connecting the fixedi and j whose lengths
approach infinity. In this limit, the effects of the even or od
total number of↓ spins on the hole’s path become indisti
guishable.

But we are mainly interested in the behavior ofGs(E)
near E;EG . According to the previous discussion, for
finite spectral weightZk(EG) the real part ofGs(E) has to
diverge atE5EG . On the other hand, the analytic contin
ation of G̃s(E) to EG1 i01 should remain well defined in
terms of the spectral expression similar to Eq.~2.34!. In
other words, ifZk(EG)Þ0, one should find thatGs

e↓(E) and
Gs
o↓(E) ~after an analytic continuation across the upper h

plane to the real axis atE.ẼG) have to diverge again a
E5EG in the following way:

Gs
e↓~EG!2Gs

o↓~EG!→`, ~2.39!

whereas

Gs
e↓~EG!1Gs

o↓~EG!5 finite. ~2.40!

However, this would mean thatGs
e↓(EG) andGs

o↓(EG) have
to diverge withoppositesigns, which is contrary to the in
tuitive observations@recall that both of them have the sam
sign atE,ẼG as defined in Eqs.~2.35! and ~2.36! and di-
verge with the same sign atẼG as discussed earlier on#. Such
behavior also means a violation of spin symmetries of
system. Let us considerGs

e↑ and Gs
o↑ characterizing the

contributions from↑ spins, whose definitions are simila
to Eqs. ~2.35! and ~2.36!. Suppose thati and j belong
to different sublattice sites. A simple counting then sho
that Npath

↑ 1Npath
↓ 5odd integer, and one finds tha
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Gs
e↑(E)5Gs

o↓(E) and Gs
o↑(E)5Gs

e↓(E). In terms of Eqs.
~2.39! and ~2.40!, then, they should diverge withopposite
signs too, namely,Gs

e↓(E)→` and Gs
e↑(E)→2` at

E→EG , However, according to their definitions, this ind
cates a violation of spin symmetries atE→EG , with contri-
butions from↑ and↓ spins behaving drastically different i
contrast to their symmetric definition atE<ẼG . Therefore,
one has to conclude thatGs8 ( j ,i ;E) cannot diverge atEG due
to the phase string effect, which indicates that the spec
weight Z(EG) has to vanish at low dimensions where t
density of statesr(E)Þ0 atE5EG .

The way that the phase-string effect leads to the vanish
of Z(EG) can be also intuitively understood in anoth
way.10 Notice that the phase-string factor defined in E
~2.27! is quite singular as it changes sign each time when
total numberNpath

↓ increases or decreases by one, no ma
how long the path is. But it would become meaningless
distinguish even and odd number of↓ spins encountered b
the hole when the path is infinitely long. Consequently,

average ^(21)Npath
↓

& has to vanish atu i2 j u→`, ~since

(21)Npath
↓

511 for evenNpath
↓ and (21)Npath

↓
521 for odd

Npath
↓ will have equal probability at this limit!. Due to such

phase-string frustration, the propagator~2.37! will always
decayfaster than a regular quasiparticle-like one~i.e., G̃) at
large distance, and in particular, it has to keep decaying e
at the ground-state energyEG which then requires a vanish
ing Z(E) at E5EG as can be shown in terms of Eq.~2.31!.

Z(EG)50 means that there is no direct overlap betwe
the ‘‘bare’’ hole statecisuc0& and the true ground state. Thu
the behavior of a hole injected into the undoped ground s
is indeed dramatically modified by the phase-string effect
compared to its quasiparticle-like bare-hole state. It imp
the failure of a conventional perturbative approach to t
problem which generally requires a zeroth-order overlap
the bare state with the true ground state. We would like
note that even though exact diagonalization calculations
small lattices1,6 have indicated a quasiparticle peak at t
energy bottom of the spectral function, when the lattice s
goes to infinity, it is hard to tell from the small-size numeri
whether such a quasiparticle peak would still stay at
lower end of the spectra or there could be some weight~e.g.,
a tail! emerging below the peak which vanishes at
ground-state energy@such that Z(EG)50#. The present
analysis suggests that the large-scale effect is really im
tant in this system due to the phase-string effect. Theref
finite-size numerical calculations as well as various anal
cal approaches should be under scrutiny with regard to
long-wavelength, low-energy properties.

Conditions ~2.5! and ~2.7! are crucially responsible fo
producing the nonrepairable phase-string effect in the ab
discussion. These are the intrinsic properties of thet-J
Hamiltonian itself. On the other hand, the condition th
uc0& is the ground state of the undoped antiferromagnetac-
tually does not play a crucial role in the demonstration
Z(EG)50. In other words, the whole argument abo
Z(EG)50 should still remain robust even whenuc0& is re-
placed by a general ground state at finite doping. Of cou
at finite doping some additional phase effect due to the
mionic statistics among holes will appear in the matrix~2.7!,
al
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but such a sign problem should not invalidate the pha
string effect at least at small doping concentrations.

III. PHASE-STRING EFFECT AT FINITE DOPING

The nonrepairable phase-string effect exhibited in
single-hole propagator~2.24! reveals a remarkable compet
tion between the superexchange and hopping processe
the t-J model. This effect leads to the breakdown of conve
tional perturbative methods as discussed in the one-h
case. We have also pointed out that such a phase-string e
is generally present even at finite doping. In this section,
will introduce a useful mathematical formalism to descri
this effect in the presence of a finite amount of holes.

A. Phase-string effect and the Berry phase

The phase string is defined as a product of a sequenc
signs

~61!3~61!3•••~61!, ~3.1!

where (61)[sm is decided by theinstantspinsm at a site
m at the moment when the hole hops to that site. So
phase string depends on both the hole path as well as
instant spin configurations. As shown in the propaga
~2.24!, such a phase string is always picked up by the h
ping of the hole from the quantum spin background. In p
ticular, if the hole moves through a closed-pathC on the
lattice back to its original position, it will get a phas

(21)NC
↓
, whereNC

↓ is the total number of↓ spins ‘‘encoun-
tered’’ by the hole on the closed pathC. @It is noted that

(21)NC
↓
5(21)NC

↑
as a closed pathC always involves an

even number of lattice sites. So there is no symmetry vio

tion even though we will focus on (21)NC
↓
below.# If one

lets the hole move slowly enough on the pathC such that the
spin displacement created by its motion is able to relax ba
then after the hole returns to its original position, the who
system will restore back to the original one except for

additional phase (21)NC
↓
. Thus, the closed-path phase strin

(21)NC
↓
may be regarded as a Berry phase.17 Of course, here

(21)NC
↓
is not simply a geometric phase which is only pat

dependent, but also depends on the spin configurations a
its path.

To keep track of such a Berry phase in the ground-s
wave function, we may introduce the following quantity

eiQ5expH 2 i(
i ,l

Im ln~zi
~h!2zl

~b↓ !!J , ~3.2!

wherez[x1 iy with superscripts (h) and (b↓) refer to hole
and ↓ spin, respectively, and the subscriptsi and l denote
their lattice sites. Here the definition is not restricted to t
one-hole case, andzi

(h)Þzl
(b↓) is guaranteed by the no

double-occupancy constraint. Let us consider the evolu
of eiQ under a closed-loop motion for a given hole on t
lattice. Recall that at each step of hole hopping, the s
originally located at the new hole site has to be transfer
back to the original hole site. If it is a↓ spin, then
Im ln(zi

(h)2zl
(b↓)) in Eq. ~3.2! will give rise to a phase shift

6p due to such an ‘‘exchange’’ and thus a (21) factor in
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eiQ. After the hole returns to its original position through th
closed-pathC and all the displacement of spins on the path
restored~which can be realized through spin flips as d
cussed before!, one finds

eiQ→~21!NC
↓
3eiQ. ~3.3!

~Each ↓ spin inside the closed-pathC contributes a phase
e6 i2p51.! Thus, the phase factoreiQ reproduces the afore
mentioned Berry phase due to the phase-string effect.

Therefore, it is natural to incorporate the phase fac
eiQ explicitly in the wave function to track the Berry phas
or define the following new spin-hole basis:

uf̄&5ei Q̂uf&, ~3.4!

whereei Q̂ is the operator form ofeiQ in Eq. ~3.2!:

ei Q̂[expF2 i(
i ,l

ni
h@u i~ l !#nl↓

b G , ~3.5!

in which ni
h andnl↓

b are defined as the hole and↓-spin occu-
pation number operators, respectively, withu i( l ) defined by

u i~ l !5 Im ln~zi2zl !. ~3.6!

By using the no-double-occupancy constraint, one may a
rewrite nl↓

b as nl↓
b 5 1

2@12nl
h2(ssnls

b # and thus express

ei Q̂ in a symmetric form with regard to↑ and↓ spins:

ei Q̂[expF2 i
1

2(i ,l ni
hu i~ l !S 12nl

h2(
s

snls
b D G . ~3.7!

According to previous discussions, this new basis should
more appropriate for expanding the true ground stateucG& as
well as the low-lying states because the hidden Berry ph
due to the phase-string effect is explicitly tracked. In oth
words, the wave functionx̄f defined in ucG&5(fx̄fuf̄&
should become more or less ‘‘conventional’’ as the singu
phase-string effect is now sorted out intouf̄&. Correspond-
ingly the Hamiltonian in this new representation is expec
to be perturbatively treatable as the phase-string effec
‘‘gauged away’’ by the singular gauge transformation in E
~3.4!. In the following section, we reformulate thet-J model
in this new representation for an arbitrary number of hole

B. ‘‘Phase-string’’ representation of the t-J model

We start by generalizing the spin-hole basis~2.4! to an
arbitrary hole numberNh in the Schwinger-boson, slave
fermion representation:

uf&5~21!NA
↓
$bi1↑

†
•••biM↑

† %$biM11↓
†

•••biNe↓
† %

3$ f l1
†
••• f lNh

† %u0&, ~3.8!

whereNe is the total electron~spin! number, and the fermi-
onic ‘‘holon’’ creation operatorf i

† and the bosonic ‘‘spinon’’
annihilation operatorbis commute with each other, satisfy
ing the no-double-occupancy constraint

f i
†f i1(

s
bis
† bis51. ~3.9!
s
-

r

o

e

se
r

r

d
is
.

.

The electron operator is written in this formalism
cis5 f i

†bis . Now if we redefine the spinon operator a
bis→(2s) ibis such that

cis5 f i
†bis~2s! i , ~3.10!

then the Marshall sign in Eq.~3.8! can be absorbed into th
spinon creation operators:

uf&5~21!NA$bi1↑
†
•••biM↑

† %$biM11↓
†

•••biNe↓
† %

3$ f l1
†
••• f lNh

† %u0&, ~3.11!

with (21)NA being a trivial phase factor left for a later con
venience~hereNA denotes the total spin number on theA
sublattice site!. In terms of Eq.~3.10!, the superexchange
term ~2.1! in the t-J model can be rewritten in the following
form after using the no-double-occupancy constraint:

HJ52
J

2 (
^ i j &s,s8

bis
† bj2s

† bj2s8bis8. ~3.12!

It is easy to check that the matrix element^f8uHJuf&<0 for
the basis defined in Eq.~3.11!. Namely, the Marshall sign
rule is explicitly built-in here. The hopping termHt in Eq.
~2.6! becomes

Ht52t (
^ i j &s

~s! f i
†f jbjs

† bis1H.c., ~3.13!

where the spin indexs describing the sign source generatin
the phase string in Eq.~3.1! is explicitly shown. Besides the
sign source due tos, the fermionic statistics off i in Eq.
~3.13! at many-hole cases will also contribute a sign for ea
exchange of two fermions.

Now we introduce the new spin-hole basis~3.4! and~3.7!.

The phase-shift factorei Q̂ in Eq. ~3.7! can be regarded as
unitary transformation and any operatorÔ should be ex-
pressed in the new representation by a canonical transfo

tion Ô→eiQÔe2 i Q̂. Then, the hopping termHt and the su-
perexchange termHJ of the t-J model in the slave-fermion
representation can be expressed under this transformatio
follows:

Ht52t (
^ i j &s

~eiAi j
f
!hi

†hj~e
isAji

h
!bjs

† bis1H.c. ~3.14!

and

HJ52
J

2 (
^ i j &ss8

~eisAi j
h
!bis

† bj2s
† ~eis8Aji

h
!bj2s8bis8.

~3.15!

in which gauge phasesAi j
f andAi j

h are defined by

Ai j
f 5

1

2(
lÞ i , j

@u i~ l !2u j~ l !#S (
s

snls
b 21D ~3.16!

and

Ai j
h5

1

2(
lÞ i , j

@u i~ l !2u j~ l !#nl
h . ~3.17!
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Herehi is defined by

hi
†5 f i

†FexpS 2 i(
lÞ i

u i~ l !nl
hD G . ~3.18!

Equation ~3.18! actually represents a Jordan-Wign
transformation18 which changes the fermionic statistics
f i
† into the bosonic operatorhi

† . So bothhi andbis now are
bosonic operators in this new representation. Note that
sign factors appearing in the slave-fermion formalism
Ht in Eq. ~3.13! no longer shows up in Eq.~3.14!, which
means that the phase string is indeed ‘‘gauged away.’’ N
ertheless, one gets nonlocal gauge fieldsAi j

f andAi j
h in the

new representation. In the one-dimensional ca
Ai j
f 5Ai j

h50 ~see Sec. IV A!, but they are nontrivial in two
dimensions. For example, for a counterclockwise-direct
closed-pathC on 2D lattice, one finds

(
C

Ai j
f 5p (

lPC
S (

s
snls

b 21D 1 (C
f ~3.19!

and

(
C

Ai j
h5p (

lPC
nl
h1 (C

h , ~3.20!

where the notationlPC on the right-hand side means th
the summations are over the sites inside the pathC, while
(C
f and(C

h denote the contributions from the sites right
the pathC, the latter being different from those inside th
pathC by a numerical factor12 or

1
4 depending on whethe

they are at the corner or along the edge of the closed
C. Nonzero~3.19! and ~3.20! show thatAi j

f andAi j
h , which

cannot be gauged away in 2D, describe vortices~quantized
flux tubes! centered on spinons@in fact,Ai j

f also includes an
additional latticep flux per plaquette as represented by t
second term in the first summation on the right-hand side
Eq. ~3.19!# and holons, respectively. Physically, this sugge
the existence of nonlocal correlations between the charge
spin degrees of freedom in 2D. For instance, inHJ ~3.15!
spins can always feel the effect of holes nonlocally throu
the gauge fieldAi j

h . It is a direct consequence of the phas
string effect, which depends on both the hole path as we
the instant spin configurations on the path.

Furthermore, the slave-fermion decomposition of elect
operator in Eq. ~3.10! is transformed in terms o

cis→ei Q̂cise
2 i Q̂ as follows:19

cis5h̃ i
†b̃is~2s! i , ~3.21!

in which

b̃is[bisFexpS 2 i
s

2(lÞ i
u i~ l !nl

hD G ~3.22!

and

h̃ i
†[hi

†H expF i 12(lÞ i
u i~ l !S (

a
anla

b 21D G J . ~3.23!

This new decomposition form is quite nonconventional
it involves nonlocal Jordan-Wigner-type phase factors in
e

v-

e,

n

th

f
s
nd

h
-
s

n

s
e

‘‘spinon’’ annihilation operatorb̃is and ‘‘holon’’ creation
operatorh̃ i

† . One can easily check thatb̃ ls
† and h̃ j

† satisfy
the following mutual statistics

b̃ ls
† h̃ j

†5~6 is!h̃ j
†b̃ ls

† , ~3.24!

etc., for lÞ j . Here signs6 denote two different ways
~clockwise and counterclockwise! by which the spinon and
holon operators are exchanged. Because of the phase6 i ,
spinons and holons defined here obey ‘‘semion’’-like mutu
statistics, and↑ and ↓ spinons show opposite signs in th
commutation relation~3.24!. Thus the present ‘‘phase
string’’ representation may also be properly regarded a
‘‘mutual-statistics’’ decomposition. The physical origin o
the mutual statistics may be understood based on the ph
string effect. As defined in Eq.~3.1!, a phase-string facto
changes when and only when hopping, i.e.,an exchange of a
spin and a hole, takes place. Thus, it can be described a
countingproblem. One may keep track of such a phase str
exactly by letting the hole and spin satisfy amutual statistics
relation, such that an exchange of a hole with a spinsm
should produce an extra phase depending onsm , as shown
in Eq. ~3.1!. The role of the phase-string effect may be th
regarded as to simply induce a mutual statistics between
spin and charge degrees of freedom. In this way, the ph
string itself may be ‘‘gauged away’’ from the Hamiltonian
but at the price of dealing with a mutual statistics proble
Furthermore, Eqs.~3.22! and ~3.23! can be understood a
composite-particle expressions11 for the mutual-statistics
spinon and holon (b̃is and h̃i), in terms of conventional
bosons (bs andhi) carrying flux tubes. In other words, w
still work in a conventional bosonic representation of spin
and holon where the mutual statistics effect is transforme
an interaction problem, which is similar to a fractiona
statistics system.11,12This may be seen from the correspon
ing Hamiltonians of Eqs.~3.14! and~3.15! in the new repre-
sentation, with the gauge fieldsAi j

h and Ai j
f representing

mutual statistics effect.
Therefore, after explicitly sorting out the phase-string

fect, thet-J Hamiltonian is reformulated in Eqs.~3.14! and
~3.15!, where the original singular phase-string effect
‘‘gauged away’’ in 1D, while its residual effect is repre
sented by nonlocal gauge fieldsAi j

h andAi j
f in 2D. As far as

long-distance physics is concerned, fluctuations ofAi j
h and

Ai j
f are presumably small for (i j )P the nearest neighbors, a

compared to the original singular phase-string effect. Ph
cally, this is due to the fact that only a quantum superpo
tion effect of all the phase strings from different paths co
tributes to the energy, which behaves relatively ‘‘mildly’’ a
described byAi j

h and Ai j
f . Then a generalized local mean

field-type approximation~examples are to be given in th
next section! may become applicable to this new formalism
On the other hand, the singular part of the phase-string ef
is now kept in the electronc operator expression~3.21!.
Thus, in drastic contrast to the conventional picture,
‘‘test’’ particles created by physical operators~as combina-
tions of the electronc operators! on the ground state will no
simply ‘‘decay’’ into internal elementary charge and spi
excitations~known as holons and spinons here!. The nonlo-
cal phase in the decomposition~3.21! will change their na-
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ture in a fundamental way, as will be illustrated by the 1
example given below. The relation of ‘‘test’’ particles t
internal elementary excitations in Fermi-liquid systems
completely changed here by the phase-string effect. T
knowing internal holon and spinon excitations no long
means that various electron correlation functions can be
tomatically determined, to leading order, from a simple co
volution of their propagators.

IV. EXAMPLES

In the last section, a mathematical formalism was est
lished for a general doping concentration, in which t
phase-string effect was explicitly tracked. In the followin
we apply this formalism to some examples in both 1D a
2D which reveal highly nontrivial consequences of t
phase-string effect in the low-energy, long-wavelength
gime.

A. 1D example: Asymptotic correlation functions

It is well known that the Luttinger-liquid behavior exhib
ited in this 1D system is difficult to describe by convention
many-body theories. The success of the bosoniza
approach20–23 to this problem relies heavily on the Beth
ansatz solution24 of the model. An alternative path-integra
approach9 without using the Bethe ansatz solutioncan also
provide a systematic understanding of the Luttinger-liq
behavior atJ!t. In this latter approach, some U~1! nonlocal
phase is found to play the key role. This nonlocal U~1!
phase, which originated from the coupling of doped ho
with the SU~2! spins, has been also shown to be related25 to
the Marshall sign hidden in the spin background, and is t
directly connected to the phase-string effect discussed in
present paper.

In this section, we use this 1D system as a nontriv
example and outline how the phase-string effect can strai
forwardly lead to the correct leading-order Luttinger-liqu
behavior of correlation functions, without involving a com
plicated mathematical description usually associated w
this 1D problem.

Let us start with the decomposition~3.21!. In the 1D case,
u i( l ) defined in Eq.~3.6! is reduced to

u i~ l !5H 6p if i, l ,

0 if i. l .
~4.1!

According to Eqs.~3.22! and ~3.23!, the decomposition
~3.21! can be then written as

cis5hi
†bise

6 i [sQ i
h
1Q i

b] , ~4.2!

where

Q i
h5

p

2(l. i
~12nl

h! ~4.3!

and

Q i
b5

p

2 (
l. i ,a

anla
b . ~4.4!
s
s,
r
u-
-

b-

d
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l
n

s

s
he

l
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h

@Note that in Eq.~4.2! a phase factor (2s) ie7 ip(11s)/2( l. i is
omitted which can be easily shown to be equal to 1 fo
bipartite lattice.#

In terms of Eq.~4.1!, it is straightforward to show tha
Ai j
f 5Ai j

h50, and thus Eqs.~3.14! and ~3.15! reduce to

Ht52t (
^ i j &s

hi
†hjbjs

† bis1H.c. ~4.5!

and

HJ52
J

2 (
^ i j &s,s8

bis
† bj2s

† bj2s8bis8. ~4.6!

Therefore, there is no sign problem~phase frustration!
present in the Hamiltonian since both holon and spinon
bosonic here.All of the important phases are exactly tracke

by the phase e6 i [sQ i
h
1Q i

b] in the decomposition (4.2) which i
the explicit expression for the nonlocal phase string in t
1D many-hole case.Without the presence of the nonloc
phase effect, a conventional mean-field type of approxim
tion may become applicable to the Hamiltonians in the n
representation. In the following we outline a simple mea
field theory for Eqs.~4.5! and ~4.6!.

One may rewrite Eq.~4.6! in the following form:

HJ52
J

2 (
^ i j &s,s8

bis
† bjsbjs8

† bis8, ~4.7!

after usingbj2s
† bj2s5bjsbjs

† at an occupied sitej where a
hard-core condition of (bjs

† )250 is employed. Then by in-
troducing the mean fields x05

1
2(s^bjs

† bis& and
H05^hi

†hj& with i and j being the nearest-neighboring site
a mean-field version of thet-J HamiltonianHeff5Hh1Hs
can be obtained with

Hh52th(̂
i j &

hi
†hj1H.c. ~4.8!

and

Hs52Js(
^ i j &s

bis
† bjs1H.c., ~4.9!

with th52tx0 and Js5Jx01tH0. Such a mean-field solu
tion has been derived before~Ref. 12!. A more accurate
mean-field version may be obtained9 with the same structure
as in Eqs.~4.8! and ~4.9!, but the summation( in Hs now
should be understood as over a ‘‘squeezed spin chain’’
fined by removing hole sites away at any given instant
J!t limit. In this way the ‘‘hard-core’’ constraint betwee
the holon and spinon can be automatically satisfied.9

Hh andHs are the tight-binding Hamiltonians for hard
core bosons which can be easily diagonalized. For exam
one may introduce the Jordan-Wigner transformation

hi5 f iexpS 7 ip(
l. i

nl
hD , ~4.10!
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where f i is a fermionic operator, and correspondinglyHh
becomes

Hh52th(̂
i j &

f i
†f j1H.c., ~4.11!

which describes the tight-binding model of free fermions a
t

fo
d

can be diagonalized in the momentum space. The solu
for Hs is similarly known after using the Jordan-Wigne
transformationbis5 f isexp(7 ip( l. inls

b ). Thus, in prin-
ciple one can use the decomposition~4.2! to determine vari-
ous correlation functions.

Let us consider the single-electron Green’s function
of

ation
^cj↑
† ~ t !ci↑~0!&5^hj~ t !bj↑

† ~ t !e7 i [Q j
h
~ t !1Q j

b
~ t !]e6 i [Q i

h
~0!1Q i

b
~0!]bi↑~0!hi

†~0!&

5^hj~ t !e
7 iQ j

h
~ t !e6 iQ i

h
~0!hi

†~0!&^bj↑
† ~ t !e7 iQ j

b
~ t !e6 iQ i

b
~0!bi↑~0!&, ~4.12!

where a spin-charge separation condition in the ground state ofHeff5Hh1Hs is used. Since bothHh andHs can be expressed
in terms of free-fermion solutions, one may use the bosonization26 to describe the quantities involved on the right-hand side
Eq. ~4.12! in the long-distance and long-time limit. For example, to leading order, one finds9

^hj~ t !e
7 iQ j

h
~ t !e6 iQ i

h
~0!hi

†~0!&5K f j~ t !expS 7 i
p

2(l. j
@11nl

h~ t !# D expS 6 i
p

2(l. i
@11nl

h~0!# D f i†~0!L
}

e6 ik fx

~x6vht !
1/2K expS 7 i

p

2(l. j
:nl

h~ t !: D expS 6 i
p

2(l. i
:nl

h~0!: D L
}

e6 ik fx

~x6vht !
1/2~x22vh

2t2!1/16
, ~4.13!

wherex[xj2xi , vh52thasin(pd), andkf is the electron Fermi momentum defined bykf5(p/2a)(12d). In obtaining the
last line, the following expression is used:

K expS 7 i
p

2(l. j
:nl

h~ t !: D expS 6 i
p

2(l. i
:nl

h~0!: D L }
1

~x22vh
2t2!1/16

, ~4.14!

where the normal ordering :nl
h : is defined asnl

h2^nl
h&. The spinon part can be similarly evaluated based on the bosoniz

technique:

^bj↑
† ~ t !e7 iQ j

b
~ t !e6 iQ i

b
~0!bi↑~0!&5K f j↑† ~ t !expS 6 i

p

2 (
l. j ,a

nla
b ~ t ! D expS 7 i

p

2 (
l. i ,a

nla
b ~0! D f i↑~0!L

}
1

~x6vst !
1
2
K expS 6 i

p

2 (
l. j ,a

:nla
b ~ t !: D expS 7 i

p

2 (
l. i ,a

:nla
b ~0!: D L

}
1

~x6vst !
1/2, ~4.15!
ion

la-

ter-
where vs52Jsa/(12d), and by using the constrain
(snls

b 51 on the ‘‘squeezed spin chain,’’ one has

K expS 6 i
p

2 (
l. j ,a

:nla
b ~ t !: D expS 7 i

p

2 (
l. i ,a

:nla
b ~0!: D L ;1.

~4.16!

Therefore, the single-electron Green’s function has the
lowing leading behavior:

^cj↑
† ~ t !ci↑~0!&.

e6 ik fx

@~x6vst !~x6vht !#
1/2~x22vh

2t2!1/16
,

~4.17!
l-

which can be easily shown to give a momentum distribut
nearkf as

n~k!;n~kf !2cuk2kf u1/8sgn~k2kf !. ~4.18!

The lack of a finite jump atk5kf implies the vanishing
spectral weight, i.e.,Z(Ef)50 at the Fermi points.

One may also calculate the asymptotic spin-spin corre
tion function. For example,

^Si
1~ t !Sj

2~0!&5^bi↑
1~ t !bj↑~0!bi↓~ t !bj↓

1 ~0!&

3^e6 i2Q i
h
~ t !e7 i2Q j

h
~0!&. ~4.19!

The averages on the right-hand side are also easily de
mined for the ground state ofHeff :

9
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^bi↑
1~ t !bj↑~0!bi↓~ t !bj↓

1 ~0!&}
1

~x22vs
2t2!1/2

~4.20!

and

^e6 i2Q i
h
~ t !e7 i2Q j

h
~0!&}

cos@~p/2a!~12d!x#

~x22vh
2t2!1/4

. ~4.21!

As similar asymptotic form can be found for^Si
z(t)Sj

z(0)& if
the ‘‘squeezed spin chain’’ effect is considered. Then,

^Si~ t !•Sj~0!&}
cos~2kfx!

~x22vs
2t2!1/2~x22vh

2t2!1/4
. ~4.22!

Therefore, the well-known asymptotic behavior of t
single-electron Green’s function and the spin-spin corre
tion function atJ!t is easily and correctly reproduced her
The phase-string contribution plays an essential role in E
~4.12! and ~4.19!. A lesson which we can learn from this
that even though the decomposition~4.2! is mathematically
equivalent to the conventional slave-fermion and sla
boson formalisms, it has the advantage of explicitly track
the phase-string effect, so that such a nonlocal singular p
is not lost when one makes some mean-field-type appr
mation to the Hamiltonian. Such a phase-string effect is
ally crucial, due to its nonrepairable nature, to the long-ti
and long-distance Luttinger-liquid behavior studied he
Thus if one were to start from aconventionalslave-particle
scheme, a nonperturbative method beyond the mean-
theory must be employed in order to deal with the nonlo
phase-string effect hidden in the Hamiltonian. In contrast
the present phase-string formulation, a mean-field-type tr
ment of the Hamiltonian gives reasonable results.

Finally, we make a remark about the physical meaning
the decomposition~4.2!. For a usual slave-particle decomp
sition, the quantum number~momentum! of the electron is a
simple sum of the momenta of ‘‘spinon’’ and ‘‘holon’’ con
stituents~due to the convolution relation!. Here in the de-
composition~4.2! the phase-string factor will ‘‘shift’’ the
relation of the electron momentum to those oftrue spinon
and holon excitations in a nontrivial way, which is actua
equivalent to the information provided by the Bethe ans
solution. In fact, Ren and Anderson22 have identified a simi-
lar effect ~called a ‘‘phase shift’’ by them! based on the
Bethe ansatz solution.

B. 2D example: Nonlocal interactions

In the last section, the phase-string effect has been sh
on the 1D example to modify the long-distance and lon
time electron correlations in a dramatic way. The 1D syst
is special in that the phase string only appears in correla
functions through the decomposition~3.21!, but it does not
show any direct effect in the Hamiltonian. Namely, t
phase-string effect can be ‘‘gauged away’’ in the Ham
tonian for an open-boundary 1D chain. This is consist
with the picture that spinon and holon as elementary exc
tions are decoupled, as indicated by either the ex
solution24 or the analytic considerations in theJ→0 limit.9

However, for a 2D system such phase-string effect can
longer be simply gauged away in the Hamiltonian. It is d
scribed by the lattice gauge fieldsAi j

f andAi j
h in the Hamil-
-
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tonians~3.14! and ~3.15!, which are the Chern-Simons-typ
gauge fields satisfying conditions~3.19! and ~3.20!, respec-
tively. Therefore, even if there exists a spin-charge sep
tion in the 2D case, one still expects to see nonlocal inter
tions between the spin and charge degrees of freedom, w
may lead to anomalous transport and magnetic phenome

In order to see the consequences of the gauge fieldsAi j
f

andAi j
h , let us consider a mean-field type of approximati

to Ht and HJ in Eqs. ~3.14! and ~3.15!. This mean-field
theory is similar to the one outlined above for the 1D ca
But for the 2D case the mean-fieldsx0 andH0 should be
defined with Ai j

f and Ai j
h incorporated as x05

1
2

(s^eisAi j
h
bis
† bjs& andH05^eiAi j

f
hi
†hj&. Correspondingly, the

mean-field HamiltonianHeff5Hh1Hs can be obtained simi-
larly to the 1D case~4.8! and ~4.9! as follows:

Hh52th(̂
i j &

~eiAi j
f
!hi

†hj1H.c., ~4.23!

and

Hs52Js(
^ i j &s

~eisAi j
h
!bis

† bjs1H.c. ~4.24!

This mean-field solution has been previously obtained ba
on the slave-boson formalism,13 and the additional gauge
fluctuations beyond the mean-field state can be shown13 to be
suppressed~gapped! at finite doping, so that it is a real spin
charge separation state, even though there exist Ch
Simons~topological! fieldsAi j

f andAi j
h representing nonloca

scattering between the spin and charge degrees of freed
Let us first take a look at the charge degree of freedo

Due to the spin-charge separation~i.e., suppression of the
gauge fluctuations!, the charge response to external fields
entirely determined by the holon part described byHh . Ac-
cording to Eq.~4.23! as well as Eq.~3.19!, holons always see
fictitious flux tubes bound to spinons and quantized at6p,
besides a latticep-flux per plaquette, as represented
Ai j
f . It is important to note that the fluctuating part ofAi j

f not
only provides a scattering source in the long wavelength,
also profoundly shapes the coherent motion of holons.13 The
latter effect is caused by strong short-range phase inte
ence induced by the6p flux quanta. This effect can be
understood as the quantum interference of phase strings
different paths of holons. A semiclassical treatment ofHh
has been given in Ref. 13, where the topological gauge fi
Ai j
h was shown to lead to anomalous transport phenom

including linear-temperature resistivity, a second scatter
rate;T2 in the Hall angle, a strong doping dependence
thermoelectric power, etc., which gives a systematic desc
tion of experimental measurements in the high-Tc cuprates.

The spin degree of freedom is also nontrivial here.
described byHs in Eq. ~4.24!, spinons see similar fictitious
flux tubes bound to holons as represented byAi j

h . It implies a
strong frustration effect on the spin background induced
doping: each hole not only means a removal of a single s
but also affects the rest of the spins nonlocally. This is
direct consequence of the nonlocal phase-string eff
Within this approximation, it has been found13 that the spin
dynamics is dramatically affected by the doping effect,
cluding the emergence of low-lying doping-dependent m
netic energy scales, non-Korringa behavior of the spin-lat
relaxation rate, etc., which qualitatively agrees with t
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anomalies found in the nuclear-magnetic-resonance~NMR!
and neutron-scattering measurements of the high-Tc cu-
prates.

The above mean-field-type theory has been previously
veloped by using the slave-boson formalism.13 Here the
phase-string effect and its corresponding formalism in S
III provide both physical and mathematical justifications f
this approximate theory of the 2Dt-J model. Of course, a
further improvement of the theory based on the exact form
lation given in Sec. III is desirable. For example, the sp
degree of freedom as described by the mean-field Ha
tonianHs is still rather rough for short-range correlations.
particular, at half-filling where the doping effect represen
by Ai j

h vanishes,Hs in Eq. ~4.24! reduces to a lattice mode
of a hard-core boson gas whose Bose condensation gives
to the long-range AF order. However, an accurate descrip
of the antiferromagnetism in the ground state involves
RVB-type pairing of bosonic spins,27 with the better mean-
field solution at half-filling known as the Schwinger-bos
mean-field state28 in which a pairing order parameter of spin
is used to describe short-range spin-spin correlations. Ba
on the present formalism, it is not difficult to generalize t
mean-field theory to incorporate such a short-range spin-
correlation effect, which is important for quantitatively e
plaining the experiments. A brief description of such a ge
eralization has been reported in Ref. 29, and a more deta
version will be presented in followup papers.

V. SUMMARY

In the present paper, we have reexamined the problem
a hole moving in an antiferromagnetic spin background a
found rigorously that the hole always acquires a nontriv
phase string at low energy. This phase-string effect, part
larly in 2D, has been overlooked before, but its quant
interference effect can drastically change the hole’s lo
distance behavior. We have shown generally that the spe
weightZ must vanish at the ground-state energy due to s
a phase string effect, which means that the conventional
turbative description based on a quasiparticle picture sho
fail at a sufficiently large distance in this system. The orig
of this phase-string effect is related to the intrinsic comp
tion between the superexchange and hopping proces
Namely, the hopping of the hole displaces the spins in su
way that the spin displacement~mismatch! cannot com-
pletely relax back via low-lying spin flips, and there is a
ways a residual phase string left behind.

The phase-string effect is not uniquely restricted to
one-hole problem. It is also crucial at nonzero doping c
centrations with or without a long-range order. The key iss
is how one can mathematically describe thelong-distance
quantum effect of those phase strings associated with
doped holes. Such an effect is hidden in the conventio
slave-boson formalism~as a kind of sign problem!. And even
though it shows up in a manifest way in the slave-ferm
formalism after the Marshall sign rule is included, its top
logical role as a Berry phase at large distances is still
explicitly tracked in such alocal model. Thus, any loca
approximation applied to those conventional formalisms
easily damage the presumably crucial long-distant pha
string effect and may result in a wrong physics in lo
energy, long-wavelength regime.
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As discussed in the present paper, the nonrepairable p
string on a closed path is equivalent to a Berry phase. It
be actually ‘‘counted’’ in terms of how many↓ ~or ↑) spins
encountered by a given hole on its path. Thus such a B
phase can be exactly tracked in the wave function. Th
based on a spin-hole basis with the built-in phase-string
fect, we obtain a new mathematical formulation for thet-J
model, in which the originally hidden nonlocal phase-stri
effect is now explicitly represented in the Hamiltonian
interacting effectsdescribed by gauge fields with vorticitie
in the 2D case. On the other hand, asingular part of the
phase-string effect is kept in the decomposition represe
tion for the electronc operator~i.e., in the wave functions!
which is crucial when one tries to calculate electron corre
tion functions~as shown in the 1D example!.

Another way to understand this new formulation is
terms of so-called ‘‘mutual statistics.’’ It has been point
out that the phase-string effect as a ‘‘counting problem’’ c
be also related to the ‘‘mutual statistics’’ between the cha
and spin degrees of freedom, since each step of hole hop
may be regarded as an exchange of a hole and a spin
using the composite representation of the ‘‘mutual statistic
holon and spinon in the conventional bosonic descripti
one can get the same formulation of thet-J model in which
the ‘‘mutual statistics’’ is described by long-rang
topological-type interactions~in 2D case! represented by
nonlocal gauge fields. In contrast to the fractional statis
among the same species, though, no explicitT andP viola-
tions are present in this ‘‘mutual statistics’’ or phase-stri
description.

As an example, we have shown how the correct asym
totic behaviors of the single-electron Green’s function a
spin-spin correlation function can be easily reproduced in
present scheme in the 1D finite doping case. The pre
phase-string formulation proves to be very powerful in de
ing with this 1D problem, in contrast to difficulties assoc
ated with the conventional slave-particle formalisms. W
have also discussed a 2D example by reproducing an
proximate theory13 which gives a systematic description o
the anomalous transport and magnetic properties in the h
Tc cuprates. Such a theory was previously developed

13 based
on the slave-boson scheme with an optimization proced
~known as flux binding! at small doping, with the key
mechanism being topological gauge-field interactions
tween spinons and holons. The present phase-string th
lays a solid foundation for such a mechanism, and provide
basis for the further improvement of the generalized me
field theory and for a more quantitative comparison with t
experiments. We will address these issues in followup
pers.
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