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The stability of the flux-line lattice has been investigated within anisotropic London theory. This is a
full-scale investigation of instabilities in the “chain” state, the equilibrium lattice that is similar to the Abri-
kosov lattice at large fields but crosses over smoothly to a pinstripe structure at low fields. By calculating the
normal modes of the elasticity matrix, it has been found the lattice is stable at large fields, but that instabilities
occur as the field is reduced. The field at which these instabilities first afi¢e, #), depends on the anisot-
ropy e and the angl@ at which the lattice is tilted away from theaxis. These instabilities initially occur at
wave vectork* (€,6). The dependence &* on e and ¢ is complicated, but the component ot along the
average direction of the flux lineg,, is always finite. For rigid straight flux lines, the cutoff necessary for
London theory has been “derived” from Landau-Ginzburg theory, where the shape of the vortex core is
known. However, for investigating instability at finikg it is necessary to know the dependence of the cutoff
onk,, and we have used a cutoff suggested by SuadttbBrandt. The instabilities only occur for values of the
anisotropye appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The
lower critical field Hcl(gb) is calculated as a function of the angleat which the applied field is tilted away
from the crystal axis. The presence of kinksH@l(qS) is seen to be related to instabilities in the equilibrium
flux-line structure[S0163-18207)07605-4

. INTRODUCTION field B and the anisotropy mass rafib,/M. A lattice simi-
lar to this distorted triangular lattice has been observed in
The existence of novel-flux line structures in high- YBCO at large fields using small angle neutron scatteting.
temperature superconductors has led to intensive investiga- The stability of this distorted lattice against elastic defor-
tion of the mixed state of these materials. Unusual structuregations has been studied extensively within London theory.

have been observed in Bitter pattern experiments on YBCQ,qyo and Brand® showed that at large anisotropy
(Refs. 1 and 2and BSCCORefs. 3 and when the applied /151 and small magnetic induction=B/H, <1 the
2

magnetic field was tilted away from tleeaxis. In YBCO, the . . .
“chain” state was observéd where the anisotropy of the SNergy associated with a pure shearing mode of the flux lat-

material causes the usual repulsive flux-line interaction tdic® can become negative. The existence of a tilt-wave insta-
become attractive within the tilt plane, the plane containing!lity. k=(0,0k;), was demonstrated by Sardella and
the magnetic field and the axis. The chain state had been Moore" and confirmed by Nguyen and Sutdifowho both
predicted within the framework of the London employed the same cutoff procedure. The distorted triangular
approximatiort:®. In some of the experimerftshe chains of lattice is the lattice one would expect using the ideas of an-
flux lines were seen embedded in an approximately trianguisotropic scaling® The lattice’s basis vectors are propor-
lar flux-line lattice, but it is believed the presence of thetional to 1A/b and depend in a simple manner én«, e.
lattice was due to pinning of the flux lines. In BSCCO, simi- Minimizing the free energy, Daemest al!” showed that out
lar structures of chains embedded in a lattice were alsof the set of centered rectangle lattice structures, one of
seerc® but the dependence of the flux-line spacings on thevhich is the distorted triangular lattice, the true equilibrium
tilt angle and magnetic field were different from those in lattice behaves quite differently. At large fields it is approxi-
YBCO, implying these structures may be created by a differmately the distorted trianguldAbrikosov) lattice, but there
ent mechanism. Possible explanations for the flux-line strucis a smooth crossover to the “chain” state at small fields.
ture seen in BSCCO have been propo$&tt.was suggested This state has one of the basis vectors independent of the
there existed interpenetrating flux-line lattices, one orientatedield, with the other being inversely proportional tto
approximately parallel to the axis while the other is orien-  In this paper we investigate the stability of this equilib-
tated approximately parallel to thab plane. Within the rium lattice at a general wave vectér= (k,,ky,k;). The
framework of the London approximation, it has been showrexistence of a zone center instability has been obsefed;
that provided the anisotropy is large enough there is moréhis is a full-scale investigation of elastic instabilities of this
than one possible angle at which the flux lines initially enterequilibrium lattice. The cutoff used is that proposed by
the samplé. Sudboand Brandt:?® which depends ork,. The lattice is
The mixed state for isotropic superconductors is a perifound to be stable at large fields. As the field is reduced, the
odic triangular array of straight flux linésin uniaxially an-  field at which the instability first occuts* (€, §) depends on
isotropic superconductors it was predicfetf the flux lines  the anisotropy, and the angle at which the lattice is tilted
would form a distorted triangular lattice, where the spacingdrom the c¢ axis. The magnitude of these fields
between the flux lines depend on the strength of the magnetizc= B/HC2~O(10‘4) is approximately that used in the ex-
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55 INSTABILITIES IN THE FLUX-LINE LATTICE OF ... 3857
periments where the unusual flux-line structures were seen. It
is generally believed these instabilities are somehow related ZA ¢
to the different flux-line structures seen in experiments, but
we have as yet no good theoretical interpretation of the con-
nection. 0
The attractive vortex interaction also forces the flux lines
to initially enter a superconductor not as single flux lines but
in chains. For very large anisotropy, there exists the possi-
bility that these chains may first enter the sample at more
than one direction. The precise details are complicated, see
Sec. VI. However, they indicate that for YBCO the chain
state is the stable low-field structure. This is not the case for Y
BSCCO, where it is possible the low-field structure will be
the coexistence of different chain state orientations.
The initial instabilities observed always hafiaite k.
For instabilities of nonzerd, the form of the cutoff used
within the London theory is crucial. In the calculation of
Nguyen and Sudh® who used a cutoff that did not depend
onk,, the coexistence of different flux-line orientations and X
the zero-field tilt-wave instability were two different effects,
i.e., they initially occurred at different anisotropies. In the FIG. 1. The “vortex” frame §,y,z) is obtained by rotating the
limit b— 0 it can be shown that the onset of both effects arecrystal frame K,Y,Z) by an angled about theY axis.
related to the line tensioR,(6)=¢,(6) + d%¢, /96> becom-
ing negative. If the cutoff that depends &pis used, it is A2=)\§—)\§b, (a,B)=(x,y,2), andc, is the @« component
found that the two effects do occur at the same anisotropyof the unit vectorc in the vortex frame.

s ¥

implying this cutoff may be more reliable. The free energy(l) can be written in a simpler form.
Minimizing Eq. (1) with respect to the vector potential,
Il. LONDON THEORY and then taking the curl of the equation, we obtain the Lon-

don equation
A convenient way to describe the low-field magnetic

properties of highF, superconductors is London theory. In

the isotropic form, this theory just depends on the penetra- H+VX{A'VXH}:®OZ f drids(r—r). (2

tion depth and onk=\/¢, where¢ is the coherence length.

To allow for the anisotropy of the HTSC compounds, thelt is possible to derive this equation from the Ginzburg-
square penetration depth? is replaced by the tensor Landau equations, assuming the order parameter has con-
N =Aj; . Here, we shall only investigate uniaxial anisotropy Stant magnitude. The right-hand side of the London equation
whereA yy= AYY:)\gbgﬁ Azz:)\g are the only nonzero ele- COMes fromVxV<p-=Eifdri63(r—ri), wherer; is the posi-
ments ofA; . The anisotropy of the material is governed by tion of theith fluxline. _

the parametee which in the effective mass model is given "€ London equation is linear, and has the solution

by €2=My /M and\ yp/\ =&/ Exp=€.

The London free energy can be written as Ha(r)=<1>02i f driV,g(r—r). (3)
1 D, [ Dy . . .
E= _f d*r{H2+| =—Vo—A|A Y —Vo—-Al{, Using this potential, the London free enerd@y may now be
8m 2m 2m written as
. . L cpg
Wh_ere A is _the vector potential of the magne_tlc field F=_2 E f f dri“drfvaﬁ(ri—rj). (4)
H=V XA, ¢ is the phase of the order paramet®y, is the 87 1]

flux quantum, and\ ! is the inverse of the square penetra-
tion depth tensoA. The magnetic inductioB is the average
magnetic fieldB=(H)=BZ. London theory is a good ap-
proximation at low inductionB<0.2H,** where the cores

do not overlap strongly.

In general, theB field is not aligned with the crystal axis,
and we chose our coordinate system such thaBtfield lies v 1 5 A20,0,
in the X-Z plane and is tilted away from the axis by an ap\K)= 2| Oap™ ) 2|
angled. It is then convenient to use the “vortex” coordinate 1+A4k7 1A A0
system ky2). This is obtained by rotating the crystal frame whereq=kXx ¢. From Eq.(5), we see that the potential de-
(XY 2 by an angled around theY axis, see Fig. 1. In the cays only as &? ask— o, implying thatH(r) is singular at
vortex coordinate system, the square penetration depth is=r;. The singularites itH(r) are due to the absence of the
given by A,z=A15,5+AC,Cz Where A1=)\§b, vortex cores from London theory. A convenient way to cir-

The convention of summation over repeated indices is as-
sumed. Written in this form, the free energy can be seen as
consisting of two parts, the self-energy terms-{) and the
interaction termsi(*j).

The Fourier transform of the potentisl(r —r;) is %°

®)
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cumvent the problems associated with the divergences is to

introduce a cutoff into the London potentid) via y
s(k) A 29495

Vs = 0802 %™ Toa e+ Ay ©
This is equivalent to replacing th& function in the London ]2 ]2
equation(2) with a short-ranged functio8(r —r;). By mak-
ing this short-ranged function a Gaussian, of widf®&,,
along a and b and width 2¢. along c, the cutoff v
become¥&>?!

1
1
S(k) =exp—2g(k),
FIG. 2. The unit cell of a “chain” state.

k)= &2, (kxc)2+ £3(k-c)? 7
900 = Eanllx 0"+ &lk- 0 “ where y*=cog 6+ €sirP. This structure is indeed the equi-
2 2 2012 42 librium structure in the limit of the lowest Landau level, and
£apd”+ & (k= q). ek
was seen to minimize the free energy of a set of rescaled
This provides an elliptical cutoff at largk, = (k,,ky), as structures? All the length scales depend on the strength of
required from the shape of the core in Ginzburg-Landauthe magnetic field in a similar manner, i.e., they are propor-
theory?? The factor 2 in the exponential &(k) is just con-  tional to 1A/b. We refer to this rescaled structure as the
vention, but it can be determined more accurately by comAbrikosov lattice.
parison with results from Ginzburg-Landau theory. The re- The presence of anisotropy dramatically changes the pro-
sults in this paper are not affected by the choice of thidfile of the magnetic field. If the anisotropy is large, the mag-
parameter. netic field associated with a single isolated flux-line contains
The exact form of the cutoff is of some debate. Forregions around the flux-line where the local magnetic field
straight rigid vortices the form of the cutoff can be derivedpoints in the opposite direction to the average field. This
from the shape of the core within Ginzburg-Landau thédry. allows the usually repulsive flux-line interaction to be attrac-
However, the cutoff in Eq(7) depends ork,, the compo- tive.
nent ofk in direction of theB field. Sardella and Moofé Daemenet al'’ showed if we investigate the set of flux-
and Nguyen and Sudbbinvestigated the tilt-wave instabili- line structures with a centered rectangular symmetry, one of
ties of the distorted triangular lattice using a cutoff thatwhich will be the same structure as the Abrikosov lattice,
depended only onk, =(kyk,), ie., g(k)=g(k,) different equilibrium structures can be seen. The unit cell
=£2,(k, Xc)%+ £2(k, -©)? in Eq. (7). We believe the cutoff ~consists of an isosceles triangle, see Fig. 2, with two sides of
in Eq. (7) is more physical, as it does not depend on beingengthl, the other length,, with an angles between sides
able to specifyk, . That can only be done by reference to theof lengthl, andl,. The lattice vectors are
average direction of the flux lines, i.B, but it is hard to A oA
believe that the cutoff should be sensitive to this overall Rmn=(mly+nlycosp)x+nl,singy, 9
average direction. Some authors do not use a cutoff functiowherem andn are integers. Repeated computer minimiza-
S(k), but instead introduce an upper limit on any integra-tions of the total free energy have confirmed that for uniaxial
tions overk. In most situations, if the symmetry of the upper anisotropy the assumption the unit cell is an isosceles tri-
limit introduced is the same as the cutoff functi®¢k), then  angle is validt’ The magnetic flux per unit cell must be one
similar results are obtainéd.However, in some situations flux quantum, which allows,, |, and ¢ to be written in
care may be required to ensure it is does not matter whethegrms of one parameter
certain points ink space are just inside or outside the inte-

gration rangé® L \/% p
UV B {1-[(1/2p3?

|l7

I1l. EQUILIBRIUM LATTICE

. . - : l2=11/p, (10)
In an isotropic superconductor, the equilibrium flux-line

lattice is a periodic array where the unit cell is defined by an 1

equilateral triangle. Defining the axis to coincide with one cosj= Pl

of the basis vectors, the basis vectors may be written as

R;=aX and R,=a(X+ 3y)/2 wherea?=2d,/\3B. The Following Daemeret al"" we minimize the free energy per
presence of anisotropy causes the lattice to distort from thighit cell e using the golden-section-search metfidsecause
equilateral structure. Using the ideas of anisotropicthe derivatives ok with respect top are hard to calculate.

|l7

rescaling'® the lattice is expected to be of the form The dependence ofl; and I, on the field,
b= B/HC2(0=0), is shown in Fig. 3. At large fields the two
Ri=ayx, lengths scale as approximatelyyb/ but there is a smooth

crossover to a regime at lower fields where one is approxi-
R,=a(yx+ \/59/7)/2, (8) mately constant while the other scales ab. IThe region
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value of p corresponding to the anisotropically rescaled
Abrikosov lattice is given by ap, -

The reciprocal lattice of this equilibrium lattice has basis
vectors

2 2
m-— —n-—Ccosy
P Iy

27
Qmn=n——Xx+

(1)
Iy

sin:,//y'
In the calculations that follow, wave vectors will be mea-

sured in units off 27/(31,)X,7/(lsiny)y], making the re-
scaled reciprocal lattice vecto®,,,=3nX+ (2m—n)y.

IV. ELASTIC THEORY OF FLUX-LINE LATTICE

The minimum free energy configuration of the flux lines
has been assumed to be a periodic array, whose unit cell is an
isosceles triangle with the base orientated alongxtlaxis.

il S S E VN R To check the assumption that this free energy is at least a
= —4 ~3 —2 ~1 . . . .
10 10 10 10 10 local minimum, the change in the free energy associated with
b small displacements,[R;(2)], «=(X,y), from the equilib-

rium lattice R;=nR;+mR, can be derived®?’ Keeping

FIG. 3. The field dependence of the separation of the flux line§erms only to second order in the displacemeni&R;) the
(measured in\,p) for e=1/60 andx=50. At large fieldsl, and change in the free energy is '

|, are proportional to 4/b but at lower fields there is a crossover to
the “chain” state. 1
AF = EJ d3ks,(—K)D ,5(K)ss(k), (12)
where this crossover occurs is characterizedeby, ande.

The low-field equilibrium state corresponds to the chainwhere the integration ovek, =(k,,k,) runs over the first
state, or “pinstripe structure” observed by Gamreekl? in Brillouin zone and ovelk, on the interval (-%,»). The
YBCO. This shows care must be taken in defining the fluxelasticity matrix is

line lattice in any calculation, as in this low-field regime the

Abrikosov state is not an equilibrium state, see Fig. 4. The B2
Papl) = 722 {fapk+Q—fop(Q} (19

arb. units where
6

Gl fop(P) = P2V ap(P) +PaPpV2AP) —P2P.V25(P)
- pzpBVZa( p) (14)

W
5.8 H
I The stability of a periodic lattice may be determined by
i investigating whether the normal modes of the elasticity ma-
56 | trix @ ,4(k) always remain stable, i.e., the eigenvalues of
® ,45(k) are positive, or whether in some regions of the Bril-
louin zone the normal modes become unstable.
The stability of the distorted triangular latti¢dbrikosov
5.4 r lattice) has been examined by various authdrs'® Sudbo
I and Brandt® observed that for a configuration of rigid flux
I lines, i.e.,k,=0, as the magnetic field was reduced below a
50 L specific level the normal modes became unstable. Sardella
Ootr and Mooré* observed a tilt-wave instability,=k,=0, k,
#0, and this instability was present in all fields. However,
T the cutoff used did not depend ¢n. It was suggested that
5....I.‘..I....I....l....l.... . . are
0 0.1 0.2 0.3 0.4 0.5 0.6 with the use of the cutoff of Eq(7) the instability would
0 disappeaf! Fork=(0,0k,) the elasticity matrix is diagonal,
and the instability calculated by Sardella and Moore was
FIG. 4. The dependence of the energy per flux line on the pa@SSociated withb,, becoming negative. Upon repeating the
rameter p, for e=1/60, 6=3m/8, k=50, b=10"%. The arrow calculation of Sardella and Moore with the CUt(Qm, we
marks the value op of the rescaled Abrikosov lattice. This figure found that the eigenvalué,, did indeed remain positive.
clearly shows that the Abrikosov lattice is not the solution of mini- However,®,, became more unstable, and as in Ref. 13, the
mum free energy. lattice becomes unstable as the field is reduced beyond a

v
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FIG. 5. The field at which the lattice initially becomes unstable  FIG. 6. The field at which the lattice initially becomes unstable
as a function of the anisotropy, for #=3#/8 andx=50. as a function of the angle), by which the lattice is tilted from the
¢ axis, for different values o€ and «=50.
critical level. Nguyen and SudB® have confirmed this by
calculating the normal modes of rigid flux lines in the limit axis, and we call it the “staircase wave” instability to dis-
b=0. tinguish it from other instabilities observed. In Fig. 7 the
The Abrikosov lattice is only a good approximation of the dependence of th& andy components ok* are shown;
equilibrium structure at fields>0(10"2—10"3). We have  ky andk, have been rescaled so that the dashed line shows
investigated the normal modes of the elasticity matrixthe edge of the first Brillouin zon&l decreases from small
@, 5(k) for k=(ky,ky,k,), with the equilibrium lattice be- kK to largek,. The explanation of the behavior of the actual
ing the isosceles triangle described in Sec. Ill, usingkhe wave vector where the instability first appeaks,, is not
dependent cutofi7). The presence of instabilities is ex- obvious to us.
pected as Sardeffahas confirmed the existence of a zone The parameters chosen in this paper=(L/60, x=50)
center instability for large tilt angle®, large anisotropy were chosen to give some insight into the behavior of
1/e and small fields. BSCCO. While the exact value of the anisotropy in BSCCO
The fields at which instabilities are observed depend on
x, on the tilt angled and on the anisotropy. The isotropic

»1r

system,e=1, is stable. As the anisotropy increasesge- X ¢
creases, no instabilities are observed until a critical anisot- 0.9 | 1/5
ropy is obtained. The minimum anisotropy required for in- F 680
stabilities to be seen depends &nFor k=20 instabilities 08rF
were seen for ¥>120.3, but this was increased to v 20
1/e*>>138 for k=50. For values of ¥ less than these criti- %7 Fo 13
cal values the lattice is stable alt orientations. 0.6 E

If the anisotropy is larger than this critical anisotropy, i
instabilities can be seen. The lattice is always stable at large 0.5 |-
fields. As the field is reduced there is a specific field :
b* («,€,60) at which the latticeinitially becomes unstable. 0.4 1
Figure 5 shows that for a given anghethere is a minimum
anisotropy 1¢ below which the lattice is stable in all fields. _
It also shows that the critical fielo* increases as the system 0.2 |
becomes more anisotropic. The lattice is always stable at :
#=0 and 8= /2, but once the anisotropy is large enough ©.1

0.3 F

there exists a range of angles at which instabilities are seen, ; N .

see Fig. 6. This range of angle increases as the anisotropy %9 . 3

increases. kx
The wave vectors at which these instabilities are first

seenk* (k,e,0) always havdinite k,. Both b* andk* are FIG. 7. The rescalell, andk, components ok*, for different

functions ofk, €, and§. These unstable modes correspond toe and k=50. The dashed line marks the edge of the first Brillouin
displacements of the lattice approximately parallel to xhe zone.
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FIG. 8. The geometry of sample and applied fiétd The ap- 0.02
plied field is tilted at an anglé from thec axis, while the magnetic r
induction B is tilted at an angle.

is unknown, the values used in this paper are similar to those
used in other papef$7®In comparison, YBCO is much less
anisotropic, withe~1/5 andx~50, and as can be seen from
Fig. 5 is well below that required for the instabilities to be G, 9. The relationship betweghand ¢ for different anisotro-
observed. To eXplore the instabilities in full detail as a fUnC-pies’ with x=50. This relationship becomes nonmonotonic over a
tion of «, €, #, andb is very time consuming, but Fig. 5 range of angles for large anisotropy.

shows the “chain” state is stable for parameters that could

describe YBCO, but unstable for BSCCO. to proceed. Also, as the integration is ogeperpendicular to
the flux line this calculation is insensitive to tlyg depen-
V. LOWER CRITICAL FIELD: ABRIKOSOV LATTICE dence of the cutof5(q). By neglecting the interaction be-
LIMIT tween the flux lines we are essentially just discussing the

The presence of elastic instabilities for very anisotropicbehav'or of a single flux line. This calculation can be viewed

materials may indicate why there are differences in the BitteP the extgnsmn O.f the Abrikosov Iatt!ce h@: O
patterns observed for BSCCO and YBCO. One interpretation As the fieldH is increased, the flux lines initially enter the

of the BSCCO patterns was the coexistence of two interpens-'ample whenG=0. Although it would be preferable to

etrating lattices:® This postulate has been investigated bychose¢, the orientation of the applied field, and then calcu-

calculating the angles at which single flux lines first enter 61ate 6 and’i itis only possible to assume and then calcu-
superconducting sampt&!® We modify the calculation of |at€ the corresponding values &fand ¢. Looking for solu-
Nguyen and Sudb8 to show this possible effect in order to ONS wheredG/d6=0 implies the orientatids) of the flux
emphasize the importance of the cutoff procedure used. €S within the sample are governed by the relation

We consider a cylindrical superconducting sample, with ,
the applied field4 perpendicular to the axis of the cylinder, tand = tang+F'/F _
and tilted at an angle> away from the crystat axis, see Fig. 1-F'tang/F
8. This geometry is chosen so that demagnetization effec

ermit solutions where the flux lines are straight for all ori- o I
P 9 sample, it is well known that the cutoff used is important. If

entations of the applied field. . : . - : )
Within this geometry, the Gibbs free energy for a systema circular cutoff is used then there is a unique orientation of

. . 15
of rigid straight flux lines, tilted ata differen} angle @ is the flux lines, given by

GoF BHcog ¢— 6) 15 tang = e’tand. (18)
4 ' However, this is not true if an elliptical cutoff is used, as for

Neglecting the interaction between the flux lines, the fred@de anisotropies there exists a nonmonotonic refation be-
energy within the London approximatia#) is twgenﬁ and ¢, see Flg. 9.. This |mpl|e§ the possibility of the
existence of two orientations of flux lines.

B2 [ d%q 1+13g? Within the nonmonotonic regime, there exist three pos-
=——| —=95(q) P N sible orientations of the flux lines,, 6,, and ., for any
8] Am (1+AeAD (1 A5t ACay) given ¢. 6, corresponds to an unstable orientation of the flux
(16) 2 . ; ; . .
lines, i.e., a maximum in the Gibbs free energy, and will not
where N2=\2,sirf6+\2co€6. As with most calculations be considered further.
within the London approximation, the integral is formally By calculating the Gibbs free energy, we can see whether
divergent without the cutoff term, but the use of the cutoffthe flux lines will orientate at eithe#, or 6., and the rela-
S(q) described in the previous section allows the calculatiortionship betwee and# determined. A “forbidden” region

(17)

R?Vhen investigating the first entry of flux lines into the

F
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lower critical fieIdHCl(qS) is therefore just the smallest value
of H(¢) for any givens. From Fig. 11 it can be see,,

has a kink where H(67)=H(65) and ¢(67)
= ¢(65) = dink- The presence of kinks in the lower critical
field for single flux lines have also been observed within the
Ginzburg-Landau modéf.

If we now allow the superposition of noninteracting flux
lines, which are assumed to be far apart in the limit0,
the “forbidden region” may be removed. Arﬂcl(¢>kmk) the

average fieldB may be orientated at all angles within the
“forbidden” region 67 <6< 65 by orientating some flux
lines at#y and the others aff; .

041 Various authors have discussed the competition between
r the coexistence of different flux-line species and the presence
0.2 of elastic instabilities in the supposed equilibrium structure.

For single isolated flux linegin the limit b—0) the elastic
instabilities depend most strongly dg and only tilt-wave

0 0.05 0.1 0.15 instabilities will be discussed further in this section.
gﬂ/ﬂ As k, is nonzero, the cutoff used is important. Nguyen
and SudbaisedS(k) =S(k, ). For any given value ok they
FIG. 10. The applied field(¢) for e=1/5 andx=50. found two important values of the anisotropy. At small

anisotropies the relationship betweg¢rand 6 is monotonic.

NS H H
occurs due to the presence of the nonmonotonic regime. THeOr 1e>T"; the relationship betweew and 6 becomes
flux-line lattice can only be orientated at angles ¢¥ and ~nonmonotonic and the Gibbs free energy may be doubly de-
6> 6% generate. However, if &>T5° the “perpendicular” tilt

This can be seen by noting the relationship between th&odulus Cﬁ4(k):q’xx(0,0,kz)_/_kf becomes negative over a
calculated values of{ and ¢. Figure 10 show$(¢) when  range of angles. The two critical anisotropies depend linearly
all flux-line orientations are allowed. The points in Fig. 10 0N Ink, butT'y® is much larger tham'}'s.
are equally spaced if. For large anisotrop§(¢) becomes There is a marked difference if the cutoff
nonmonotonic wherg(¢) becomes nonmonoatonic. In Fig. S(k)=exd—2g(k)], g(k) = £2,(kx c)?+ £(k-c)2. The de-

11 the three values of{(¢) in the nonmonotonic regime pendence of I'Y® and T'5° on « is similar, but
correspond to the three possible orientations of the flux Iinef’fs=l“'§'s=l“. For «=50 and S(k)=exd—2g(k)] it is
até,, 6y, andé.. While all three orientations correspond to found I'~9.65. The value of" does depend on the cutoff
G=0 and dG/96#=0, only one is a global minimum in procedure used. Using a cutoff of the same symmetry but a
G(6). This global minimum will be the equilibrium structure different strengthS(k) =exd —g(k)], it is found I'~10.03

and is the orientation with the smallest value?¥f®). The  for k=50.

These two “competing” effects are both related to the
line tensionP,(0) = &,(0) + d%¢,(0)/76%, wheree is the line
energy. In the limitb—0 where the London free energy
F=ng|, n is the areal density of flux lines, then it follows
from Eq. (17) that

d
P|(0)=s|(0>se8<¢—0)a—(g. (19

However,c,, may be defined as,,=d?F(6)/d#?. For the
isolated noninteracting flux-linesF=ng;, SO Cy4
«g,(6)+ 7% (0)]96°=P,(6),%® where the first term is due
to the compression of the flux-line lattice during tilting.
Therefore the presence of a kinkfify (¢) not only causes a
restriction of orientations of the flux-line lattice, and the pos-
sibility of the coexistence of different flux-line orientations,
s e o but is also related to the presence of a tilt-wave instability.
0 0.05 0.1 0.15 The tilt-wave instabilities only occur wher@p/90<0, see
go/TT also Grishinet al.® but this is only part of the region of
excluded flux line orientationg; < < 65 and the instabili-
FIG. 11. The applied field{(¢) for e=1/60 andx=50. ties are never observed.
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VI. LOWER CRITICAL FIELD: CHAIN STATE LIMIT

The previous calculation assumed the equilibrium low- { )
field flux-line structure was a configuration of well-separated S | N ChOIn ]
noninteracting flux lines, i.e., the extension of the Abrikosov 4 6l =single flux line
lattice tob=0. In Sec. Il it was seen the low-field equilib-
rium structures are very different from the Abrikosov lattice.

The anisotropy induced attractive interaction makes it easier
for chains of flux lines to enter a sample than for single flux
lines, which forcedd for an single infinite chain to be less ~ 0.04

than He, for a single flux line> We take the limitb—0 to

imply there is only one vortex chain in the sample, the sepa-
ration between the chains being effectively infinite.

The presence of instabilities in the “chain” state were .02
investigated in Sec. IV, which seemed to indicate a different
behavior for materials such as YBCO from those such as
BSCCO. These instabilities were seen as the field was re-
duced from a stable regime similar to the Abrikosov lattice.
In this section we investigate what happens as the flux lines 05—
initially enter the sample, i.eh=0. Chosing the same ge-
ometry as Sec. V we again look at the relationship between
¢ and ¢ and relate this to the elastic instabilities. FIG. 12. The relationship betweenand 6 for different lattices,

For a single flux line in section V, the 2D line energy it «=50 ande=1/10.
integral is easily calculated by rescaling the coordinates, see

Nguyen and Sudbt For the single infinite chain, this 2D 15, it can be seen that a stable rangfe<0<#6;, exists

integral is replaced by a sum over the reciprocal lattice veCpeyyeen these two forbidden regions. The lower critical field

tors of the 1D chain and a 1D integral perpendicular to thq_|C (#) now has two kinks. As the anisotropy is increased
1

chain. Assuming the chain to be a set of flux lines equally, . .
spaced along the axis, then further these excluded regions grow until a3 5(«) the

chain state is excluded over the whole rarffe< <65 .
The second kink irh-lcl(¢>) disappears, Fig. 16, and only one
(20 kink remains. Fork=50, I';=~15,I',~30, andl'3~60.
The elastic instabilities again only occur when
dpl36<0. These instabilities have slightly different proper-

whereq,=2mn/ly,, n=0=1*x2 ... 1. being the separa- o
. ! . A . S ties at smalld and larged. At large 6 the lattice is most
tion of the flux lines in the chair, is determined by finding unstable to a tilt-wave instabilitk=(0,0k,) while it is a

:ir:)?]rg;ng.num in the line energy, and is a nonmonotonic funC'staircase wave instability, witk, andk, both nonzero, that

The behavior of the chain state is subtly different from
that of the single flux line. The main effects are the same, .~
i.e., for large anisotropy there exist a range of angles over —.
which the chains cannot be orientated, but the details are %
more complicated.

The chain state is stable for small anisotropies, but for
large anisotropies the relationship betwegnand 6 once
again becomes nonmonotonic. For this to occur it requires a
larger anisotropy than for the single flux line. Figure 12
shows¢(6) just after the onset of nonmonotonicity for iso-
lated flux lines. The chain state has no restriction on the
orientation of the flux lines, unlike the single flux line, and
also the chain state always has a lo@requa) lower criti-
cal fieldH, ,° see Fig. 13.

Increasing the anisotropy, Fig. 14, the chain state eventu- ) )
ally shows signs of instabilities. Initiallg(6) becomes non- ok osingle flux line
monotonic at large tilt angle$)~9#/20, and the chains are
excluded over the range), <6<63. This occurs for
1/e>T'1(x) andH, (¢) contains a kink in a manner similar o o0z o00s o005
to the single flux line. gp/ﬂ

However, for 16>1",5(k), ¢(6) is also nonmonotonic at

smaller anglesg~ m/4. This implies the chains are also ex-  F|G. 13. The applied fieldH(¢) for different lattices, with
cluded over a different rang# < < 6’{, . FromH(¢), Fig. k=50 ande=1/10.

&g 1 f&
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FIG. 14. The relationship betwees and 6 for different FIG. 16. H(¢) for k=50 and 1£é=100, showing that at large
anisotropies, with«=50. anisotropy the second kink i, disappears.

. , appear are well within its limits of validity, i.e.,
causes the chain to become unstable at smalleAgain, k<O(1/¢).

these instabilities only occur in the forbidden regions, and b a tg the anisotropy induced attractive flux-line interac-

the chain state is stable at all allowed orientations. tion, the form of the equilibrium flux line lattice has to be
determined numerically at all fields. There is a smooth cross-

over from a large-field Abrikosov-like state to the low-field
VIl. CONCLUSION chainlike state. The nature of the instabilities observed in this

We have investigated the presence of instabilities in th&quilibrium lattice is complex. At large fields it is stable. As
flux-line lattice in anisotropic superconductors using Londonthe field is reduced, at a particular fielif some of the
theory. There are limitations on the applicability of the Lon- Normal modes of the elasticity matrix become unstable. This

don theory, but the wave vectors at which the instabilitiesfield depends on the anisotrogyand the angley at which
the flux lines are orientated to the crystabxis. The insta-

bility is characterized by always having finikg andk,, and
B we call this a staircase wave instability to distinguish it from
a tilt-wave instability which is defined as an instability which
depends only oR,. There is a minimum anisotropy required
before these instabilities are observed. This depends on
and fork = 20 the instabilities were seen foref120.3, but
this was increased to 47> 138 for k=50. This may indicate
why the Bitter patterns observed on YBCO are different
from those on BSCCO.

As the component df along the flux lines is nonzero, the
choice of cutoff is crucial. We have used the cutoff sug-
gested by Sudband Brandt, where&S(k) =exp—2g(k) and
g(k)= &2, (kxc)?+ £2(k-c)2. This cutoff appears more
physical than a cutoff that just dependslgnand allows the
elastic instabilities and the nonmonotonic behaviotgb)
to be related to a single quantity, the line tens@®i6), as
expected. However, it should be noted there are still prob-
lems associated with this cutoff in the linkj—<. Once in

. ! . . ! the region wheré, forcesS(k) <1, the elasticity matrix13)
0 0.005 0.01 0.015 0.02 will be dominated by—=of ,5(Q). While ®,, is zero, the
W/ A eigenvalues of the elasticity matrix are negative, showing
London theory is always unstable at all fields and angles.

FIG. 15. The relationship betweéit and ¢ showing the exist- However, these instabilities occur at valueskgf O(1/£)
ence of two kinks irH (¢), for k=50 ande=1/40. This allows  and are unphysical. The inclusion of core effects, e.g., core
the orientation of the chains state between two forbidden regions.bending energy, may remove remove this instability, but this

H/H(0).

0.9
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is outside the domain of validity of the London approxima- regions which grow to one large region foreI';. This

tion. unusual behavior can also be described—lgic(dﬁ develop-
Instabilities can also be observed by investigating thqng one kink at 1¢=T,, a second kink developing at

Iower_ critical fieldH, , i.e., b_=0. Theseb=0 InS’Fablhtle-? 1/e=T', butH, (¢) only having a single kink for &>Ts.

are different from the large field staircase wave instabilities. \whether the peculiar effect of having the allowed orien-

When the applied field is tilted away from the crystal axis, ations 9ir<9< 6’;, between two forbidden regions really

itth\?vgsﬂgiadeﬁnt?\:?o?psﬁrligﬁ Rg:gé az;rr? dnl(;tr p:r:::gbtlposiics. t\r/]erexists is unclear. Just as the existence of the forbidden region
9 b 3’{<0< 65 for the isolated flux lines in Sec. V may have

existed a nonmonotonic relationship between the atigi been an indicator of a state with a lower free energy and

which theB field is tilted away from the axis, and the angle aoolied fieldH.. . there mav exist & new composition of flux
¢ at which the applied field is tilted. The nonmonotonicity is .pp Y Y . . P
related to the elastic instabilities observed, but also impl;)'”es that will be stable at large anisotropies and have a lower

there is a restriction on the allowed orientations ofBhield ~ Te€ energy and applied field., than the chain state. This
and a kink inH (4). The properties of the chain state may be a completely new state or a superposition of chain
changes at three different values of the anisotropy. Foptates 'and other flux lines, but a full investigation of such
1/e<T',, all possible orientations of the chain state are posStates is left for future work.

sible, while in the interval’;<1/e<I, the chains cannot be
orientated over the ranges, <6<63. However, if
I',<1/e<I'; the flux lines are excluded over two separate This work was funded by EPSRC Grant No. GR/J60681.
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