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Instabilities in the flux-line lattice of anisotropic superconductors
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The stability of the flux-line lattice has been investigated within anisotropic London theory. This is a
full-scale investigation of instabilities in the ‘‘chain’’ state, the equilibrium lattice that is similar to the Abri-
kosov lattice at large fields but crosses over smoothly to a pinstripe structure at low fields. By calculating the
normal modes of the elasticity matrix, it has been found the lattice is stable at large fields, but that instabilities
occur as the field is reduced. The field at which these instabilities first arise,b* (e,u), depends on the anisot-
ropy e and the angleu at which the lattice is tilted away from thec axis. These instabilities initially occur at
wave vectork* (e,u). The dependence ofk* on e andu is complicated, but the component ofk* along the
average direction of the flux lines,kz , is always finite. For rigid straight flux lines, the cutoff necessary for
London theory has been ‘‘derived’’ from Landau-Ginzburg theory, where the shape of the vortex core is
known. However, for investigating instability at finitekz it is necessary to know the dependence of the cutoff
on kz , and we have used a cutoff suggested by Sudbo” and Brandt. The instabilities only occur for values of the
anisotropye appropriate to a material like BSCCO, and not for anisotropies more appropriate to YBCO. The
lower critical fieldHc1

(f) is calculated as a function of the anglef at which the applied field is tilted away
from the crystal axis. The presence of kinks inHc1

(f) is seen to be related to instabilities in the equilibrium
flux-line structure.@S0163-1829~97!07605-4#
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I. INTRODUCTION

The existence of novel-flux line structures in hig
temperature superconductors has led to intensive inves
tion of the mixed state of these materials. Unusual structu
have been observed in Bitter pattern experiments on YB
~Refs. 1 and 2! and BSCCO~Refs. 3 and 4! when the applied
magnetic field was tilted away from thec axis. In YBCO, the
‘‘chain’’ state was observed1,2 where the anisotropy of the
material causes the usual repulsive flux-line interaction
become attractive within the tilt plane, the plane contain
the magnetic field and thec axis. The chain state had bee
predicted within the framework of the Londo
approximation.5,6. In some of the experiments2 the chains of
flux lines were seen embedded in an approximately trian
lar flux-line lattice, but it is believed the presence of t
lattice was due to pinning of the flux lines. In BSCCO, sim
lar structures of chains embedded in a lattice were a
seen,3,4 but the dependence of the flux-line spacings on
tilt angle and magnetic field were different from those
YBCO, implying these structures may be created by a diff
ent mechanism. Possible explanations for the flux-line str
ture seen in BSCCO have been proposed.7,8 It was suggested
there existed interpenetrating flux-line lattices, one orienta
approximately parallel to thec axis while the other is orien
tated approximately parallel to theab plane. Within the
framework of the London approximation, it has been sho
that provided the anisotropy is large enough there is m
than one possible angle at which the flux lines initially en
the sample.8

The mixed state for isotropic superconductors is a p
odic triangular array of straight flux lines.9 In uniaxially an-
isotropic superconductors it was predicted10,11 the flux lines
would form a distorted triangular lattice, where the spacin
between the flux lines depend on the strength of the magn
550163-1829/97/55~6!/3856~10!/$10.00
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field B and the anisotropy mass ratioMz /M . A lattice simi-
lar to this distorted triangular lattice has been observed
YBCO at large fields using small angle neutron scattering12

The stability of this distorted lattice against elastic defo
mations has been studied extensively within London theo
Sudbo” and Brandt13 showed that at large anisotrop
Mz /M@1 and small magnetic inductionb5B/Hc2

!1 the

energy associated with a pure shearing mode of the flux
tice can become negative. The existence of a tilt-wave in
bility, k5(0,0,kz), was demonstrated by Sardella an
Moore14 and confirmed by Nguyen and Sudbo”,15 who both
employed the same cutoff procedure. The distorted triang
lattice is the lattice one would expect using the ideas of
isotropic scaling.16 The lattice’s basis vectors are propo
tional to 1/Ab and depend in a simple manner onu, k, e.
Minimizing the free energy, Daemenet al.17 showed that out
of the set of centered rectangle lattice structures, one
which is the distorted triangular lattice, the true equilibriu
lattice behaves quite differently. At large fields it is approx
mately the distorted triangular~Abrikosov! lattice, but there
is a smooth crossover to the ‘‘chain’’ state at small field
This state has one of the basis vectors independent of
field, with the other being inversely proportional tob.

In this paper we investigate the stability of this equili
rium lattice at a general wave vectork5(kx ,ky ,kz). The
existence of a zone center instability has been observe18

this is a full-scale investigation of elastic instabilities of th
equilibrium lattice. The cutoff used is that proposed
Sudbo” and Brandt,13 which depends onkz . The lattice is
found to be stable at large fields. As the field is reduced,
field at which the instability first occursb* (e,u) depends on
the anisotropye, and the angleu at which the lattice is tilted
from the c axis. The magnitude of these field
b5B/Hc2

;O(1024) is approximately that used in the ex
3856 © 1997 The American Physical Society



n
te
bu
o

e
bu
ss
or
s
in
f
e

of
d
nd
s,
he
ar

p

tic
In
tr
.
he
r
py
-
by
n

ld

a-

-

,

te
e

h

.

n-

g-
con-
tion

as-
as

-

e
ir-

55 3857INSTABILITIES IN THE FLUX-LINE LATTICE OF . . .
periments where the unusual flux-line structures were see
is generally believed these instabilities are somehow rela
to the different flux-line structures seen in experiments,
we have as yet no good theoretical interpretation of the c
nection.

The attractive vortex interaction also forces the flux lin
to initially enter a superconductor not as single flux lines
in chains. For very large anisotropy, there exists the po
bility that these chains may first enter the sample at m
than one direction. The precise details are complicated,
Sec. VI. However, they indicate that for YBCO the cha
state is the stable low-field structure. This is not the case
BSCCO, where it is possible the low-field structure will b
the coexistence of different chain state orientations.

The initial instabilities observed always havefinite kz .
For instabilities of nonzerokz the form of the cutoff used
within the London theory is crucial. In the calculation
Nguyen and Sudbo”,15 who used a cutoff that did not depen
on kz , the coexistence of different flux-line orientations a
the zero-field tilt-wave instability were two different effect
i.e., they initially occurred at different anisotropies. In t
limit b→0 it can be shown that the onset of both effects
related to the line tensionPl(u)5« l(u)1]2« l /]u2 becom-
ing negative. If the cutoff that depends onkz is used, it is
found that the two effects do occur at the same anisotro
implying this cutoff may be more reliable.

II. LONDON THEORY

A convenient way to describe the low-field magne
properties of high-Tc superconductors is London theory.
the isotropic form, this theory just depends on the pene
tion depthl and onk5l/j, wherej is the coherence length
To allow for the anisotropy of the HTSC compounds, t
square penetration depthl2 is replaced by the tenso
l i j
25L i j . Here, we shall only investigate uniaxial anisotro

whereLXX5LYY5lab
2 ÞLZZ5lc

2 are the only nonzero ele
ments ofL i j . The anisotropy of the material is governed
the parametere which in the effective mass model is give
by e25MX /MZ andlab /lc5jc /jab5e.

The London free energy can be written as

F5
1

8pE d3r HH21S F0

2p
¹w2ADL21S F0

2p
¹w2AD J ,

~1!

where A is the vector potential of the magnetic fie
H5¹3A, w is the phase of the order parameter,F0 is the
flux quantum, andL21 is the inverse of the square penetr
tion depth tensorL. The magnetic inductionB is the average
magnetic fieldB5^H&5Bẑ. London theory is a good ap
proximation at low induction,B,0.2Hc2

,19 where the cores
do not overlap strongly.

In general, theB field is not aligned with the crystal axis
and we chose our coordinate system such that theB field lies
in the X-Z plane and is tilted away from thec axis by an
angleu. It is then convenient to use the ‘‘vortex’’ coordina
system (xyz). This is obtained by rotating the crystal fram
(XYZ) by an angleu around theY axis, see Fig. 1. In the
vortex coordinate system, the square penetration dept
given by Lab5L1dab1L2cacb where L15lab

2 ,
. It
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L25lc
22lab

2 , (a,b)5(x,y,z), andca is thea component
of the unit vectorĉ in the vortex frame.

The free energy~1! can be written in a simpler form
Minimizing Eq. ~1! with respect to the vector potentialA,
and then taking the curl of the equation, we obtain the Lo
don equation

H1¹3$L•¹3H%5F0(
i
E dr id3~r2r i !. ~2!

It is possible to derive this equation from the Ginzbur
Landau equations, assuming the order parameter has
stant magnitude. The right-hand side of the London equa
comes from¹3¹w5( i*dr id3(r2r i), wherer i is the posi-
tion of the i th flux line.

The London equation is linear, and has the solution

Ha~r !5F0(
i
E dr iVab~r2r i !. ~3!

Using this potential, the London free energy~1! may now be
written as

F5
F0

2

8p (
i , j

E E dr i
adr j

bVab~r i2r j !. ~4!

The convention of summation over repeated indices is
sumed. Written in this form, the free energy can be seen
consisting of two parts, the self-energy terms (i5 j ) and the
interaction terms (iÞ j ).

The Fourier transform of the potentialV(r2r i) is
20

Vab~k!5
1

11L1k
2Fdab2

L2qaqb

11L1k
21L2q

2G , ~5!

whereq5k3 ĉ. From Eq.~5!, we see that the potential de
cays only as 1/k2 ask→`, implying thatH(r ) is singular at
r5r i . The singularites inH(r ) are due to the absence of th
vortex cores from London theory. A convenient way to c

FIG. 1. The ‘‘vortex’’ frame (x,y,z) is obtained by rotating the
crystal frame (X,Y,Z) by an angleu about theY axis.
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3858 55A. M. THOMPSON AND M. A. MOORE
cumvent the problems associated with the divergences
introduce a cutoff into the London potential~5! via

Vab~k!5
S~k!

11L1k
2 Fdab2

L2qaqb

11L1k
21L2q

2G . ~6!

This is equivalent to replacing thed function in the London
equation~2! with a short-ranged functionS(r2r i). By mak-
ing this short-ranged function a Gaussian, of widthA2jab
along a and b and width A2jc along c, the cutoff
becomes13,21

S~k!5exp22g~k!,

g~k!5jab
2 ~k3c!21jc

2~k•c!2 ~7!

5jab
2 q21jc

2~k22q2!.

This provides an elliptical cutoff at largek'5(kx ,ky), as
required from the shape of the core in Ginzburg-Land
theory.22 The factor 2 in the exponential ofS(k) is just con-
vention, but it can be determined more accurately by co
parison with results from Ginzburg-Landau theory. The
sults in this paper are not affected by the choice of t
parameter.

The exact form of the cutoff is of some debate. F
straight rigid vortices the form of the cutoff can be deriv
from the shape of the core within Ginzburg-Landau theory22

However, the cutoff in Eq.~7! depends onkz , the compo-
nent of k in direction of theB field. Sardella and Moore14

and Nguyen and Sudbo”

15 investigated the tilt-wave instabili
ties of the distorted triangular lattice using a cutoff th
depended only on k'5(kx ,ky), i.e., g(k)5g(k')
5jab

2 (k'3c)21jc
2(k'•c)

2 in Eq. ~7!. We believe the cutoff
in Eq. ~7! is more physical, as it does not depend on be
able to specifyk' . That can only be done by reference to t
average direction of the flux lines, i.e.,B, but it is hard to
believe that the cutoff should be sensitive to this ove
average direction. Some authors do not use a cutoff func
S(k), but instead introduce an upper limit on any integ
tions overk. In most situations, if the symmetry of the upp
limit introduced is the same as the cutoff functionS(k), then
similar results are obtained.15 However, in some situation
care may be required to ensure it is does not matter whe
certain points ink space are just inside or outside the in
gration range.23

III. EQUILIBRIUM LATTICE

In an isotropic superconductor, the equilibrium flux-lin
lattice is a periodic array where the unit cell is defined by
equilateral triangle. Defining thex axis to coincide with one
of the basis vectors, the basis vectors may be written
R15ax̂ and R25a( x̂1A3ŷ)/2 wherea252F0 /A3B. The
presence of anisotropy causes the lattice to distort from
equilateral structure. Using the ideas of anisotro
rescaling,16 the lattice is expected to be of the form

R15ag x̂,

R25a~g x̂1A3ŷ/g!/2, ~8!
to
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whereg45cos2u1e2sin2u. This structure is indeed the equ
librium structure in the limit of the lowest Landau level, an
was seen to minimize the free energy of a set of resca
structures.24 All the length scales depend on the strength
the magnetic field in a similar manner, i.e., they are prop
tional to 1/Ab. We refer to this rescaled structure as t
Abrikosov lattice.

The presence of anisotropy dramatically changes the
file of the magnetic field. If the anisotropy is large, the ma
netic field associated with a single isolated flux-line conta
regions around the flux-line where the local magnetic fi
points in the opposite direction to the average field. T
allows the usually repulsive flux-line interaction to be attra
tive.

Daemenet al.17 showed if we investigate the set of flux
line structures with a centered rectangular symmetry, one
which will be the same structure as the Abrikosov lattic
different equilibrium structures can be seen. The unit c
consists of an isosceles triangle, see Fig. 2, with two side
length l 2 the other lengthl 1, with an anglec between sides
of length l 1 and l 2. The lattice vectors are

Rmn5~ml11nl2cosc!x̂1nl2sinc ŷ, ~9!

wherem andn are integers. Repeated computer minimiz
tions of the total free energy have confirmed that for uniax
anisotropy the assumption the unit cell is an isosceles
angle is valid.17 The magnetic flux per unit cell must be on
flux quantum, which allowsl 1, l 2 and c to be written in
terms of one parameter

l 15AF0

B

r

$12@~1/2!r#2%1/2
,

l 25 l 1 /r, ~10!

cosc5
1

2
r.

Following Daemenet al.17 we minimize the free energy pe
unit cell « using the golden-section-search method25 because
the derivatives of« with respect tor are hard to calculate.

The dependence of l 1 and l 2 on the field,
b5B/Hc2

(u50), is shown in Fig. 3. At large fields the tw

lengths scale as approximately 1/Ab but there is a smooth
crossover to a regime at lower fields where one is appro
mately constant while the other scales as 1/b. The region

FIG. 2. The unit cell of a ‘‘chain’’ state.
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55 3859INSTABILITIES IN THE FLUX-LINE LATTICE OF . . .
where this crossover occurs is characterized byk, u, ande.
The low-field equilibrium state corresponds to the ch
state, or ‘‘pinstripe structure’’ observed by Gammelet al.1 in
YBCO. This shows care must be taken in defining the fl
line lattice in any calculation, as in this low-field regime th
Abrikosov state is not an equilibrium state, see Fig. 4. T

FIG. 3. The field dependence of the separation of the flux li
~measured inlab) for e51/60 andk550. At large fieldsl 1 and
l 2 are proportional to 1/Ab but at lower fields there is a crossover
the ‘‘chain’’ state.

FIG. 4. The dependence of the energy per flux line on the
rameter r, for e51/60, u53p/8, k550, b51024. The arrow
marks the value ofr of the rescaled Abrikosov lattice. This figur
clearly shows that the Abrikosov lattice is not the solution of mi
mum free energy.
x

e

value of r corresponding to the anisotropically rescal
Abrikosov lattice is given byrAbr .

The reciprocal lattice of this equilibrium lattice has bas
vectors

Qmn5n
2p

l 1
x̂1Fm2p

l 2
2n

2p

l 1
cosc G 1

sinc
ŷ. ~11!

In the calculations that follow, wave vectors will be me
sured in units of@2p/(3l 1) x̂,p/( l 2sinc)ŷ#, making the re-
scaled reciprocal lattice vectorsQ̃mn53nx̂1(2m2n) ŷ.

IV. ELASTIC THEORY OF FLUX-LINE LATTICE

The minimum free energy configuration of the flux line
has been assumed to be a periodic array, whose unit cell
isosceles triangle with the base orientated along thex axis.
To check the assumption that this free energy is at lea
local minimum, the change in the free energy associated w
small displacementssa@Ri(z)#, a5(x,y), from the equilib-
rium lattice Ri5nR11mR2 can be derived.26,27 Keeping
terms only to second order in the displacementssa(Ri) the
change in the free energy is

DF5
1

2E d3ksa~2k!Fab~k!sb~k!, ~12!

where the integration overk'5(kx ,ky) runs over the first
Brillouin zone and overkz on the interval (2`,`). The
elasticity matrix is

Fab~k!5
B2

4p(
Q

$ f ab~k1Q!2 f ab~Q!%, ~13!

where

f ab~p!5pz
2Vab~p!1papbVzz~p!2pzpaVzb~p!

2pzpbVza~p!. ~14!

The stability of a periodic lattice may be determined
investigating whether the normal modes of the elasticity m
trix Fab(k) always remain stable, i.e., the eigenvalues
Fab(k) are positive, or whether in some regions of the Br
louin zone the normal modes become unstable.

The stability of the distorted triangular lattice~Abrikosov
lattice! has been examined by various authors.13–15 Sudbo”
and Brandt13 observed that for a configuration of rigid flu
lines, i.e.,kz50, as the magnetic field was reduced below
specific level the normal modes became unstable. Sard
and Moore14 observed a tilt-wave instability,kx5ky50, kz
Þ0, and this instability was present in all fields. Howeve
the cutoff used did not depend onkz . It was suggested tha
with the use of the cutoff of Eq.~7! the instability would
disappear.21 For k5(0,0,kz) the elasticity matrix is diagonal
and the instability calculated by Sardella and Moore w
associated withFyy becoming negative. Upon repeating th
calculation of Sardella and Moore with the cutoff~7!, we
found that the eigenvalueFyy did indeed remain positive
However,Fxx became more unstable, and as in Ref. 13,
lattice becomes unstable as the field is reduced beyon

s
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3860 55A. M. THOMPSON AND M. A. MOORE
critical level. Nguyen and Sudbo” 15 have confirmed this by
calculating the normal modes of rigid flux lines in the lim
b50.

The Abrikosov lattice is only a good approximation of th
equilibrium structure at fieldsb.O(102221023). We have
investigated the normal modes of the elasticity mat
Fab(k) for k5(kx ,ky ,kz), with the equilibrium lattice be-
ing the isosceles triangle described in Sec. III, using thekz
dependent cutoff~7!. The presence of instabilities is ex
pected as Sardella18 has confirmed the existence of a zo
center instability for large tilt anglesu, large anisotropy
1/e and small fieldsb.

The fields at which instabilities are observed depend
k, on the tilt angleu and on the anisotropye. The isotropic
system,e51, is stable. As the anisotropy increases,e de-
creases, no instabilities are observed until a critical ani
ropy is obtained. The minimum anisotropy required for
stabilities to be seen depends onk. For k520 instabilities
were seen for 1/e2.120.3, but this was increased
1/e2.138 fork550. For values of 1/e less than these criti
cal values the lattice is stable atall orientations.

If the anisotropy is larger than this critical anisotrop
instabilities can be seen. The lattice is always stable at la
fields. As the field is reduced there is a specific fie
b* (k,e,u) at which the latticeinitially becomes unstable
Figure 5 shows that for a given angleu there is a minimum
anisotropy 1/e below which the lattice is stable in all fields
It also shows that the critical fieldb* increases as the syste
becomes more anisotropic. The lattice is always stable
u50 andu5p/2, but once the anisotropy is large enou
there exists a range of angles at which instabilities are s
see Fig. 6. This range of angle increases as the anisot
increases.

The wave vectors at which these instabilities are fi
seen,k* (k,e,u) always havefinite kz . Both b* andk* are
functions ofk, e, andu. These unstable modes correspond
displacements of the lattice approximately parallel to thex

FIG. 5. The field at which the lattice initially becomes unstab
as a function of the anisotropye, for u53p/8 andk550.
n

t-
-

ge

at

n,
py

t

o

axis, and we call it the ‘‘staircase wave’’ instability to dis
tinguish it from other instabilities observed. In Fig. 7 th
dependence of thex and y components ofk* are shown;
kx andky have been rescaled so that the dashed line sh
the edge of the first Brillouin zone.u decreases from sma
kx to largekx . The explanation of the behavior of the actu
wave vector where the instability first appears,k* , is not
obvious to us.

The parameters chosen in this paper (e51/60, k550)
were chosen to give some insight into the behavior
BSCCO. While the exact value of the anisotropy in BSCC

FIG. 6. The field at which the lattice initially becomes unstab
as a function of the angle,u, by which the lattice is tilted from the
c axis, for different values ofe andk550.

FIG. 7. The rescaledkx andky components ofk* , for different
e andk550. The dashed line marks the edge of the first Brillou
zone.
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55 3861INSTABILITIES IN THE FLUX-LINE LATTICE OF . . .
is unknown, the values used in this paper are similar to th
used in other papers.13–15In comparison, YBCO is much les
anisotropic, withe'1/5 andk'50, and as can be seen fro
Fig. 5 is well below that required for the instabilities to b
observed. To explore the instabilities in full detail as a fun
tion of k, e, u, and b is very time consuming, but Fig. 5
shows the ‘‘chain’’ state is stable for parameters that co
describe YBCO, but unstable for BSCCO.

V. LOWER CRITICAL FIELD: ABRIKOSOV LATTICE
LIMIT

The presence of elastic instabilities for very anisotro
materials may indicate why there are differences in the Bi
patterns observed for BSCCO and YBCO. One interpreta
of the BSCCO patterns was the coexistence of two interp
etrating lattices.7,8 This postulate has been investigated
calculating the angles at which single flux lines first ente
superconducting sample.13,15 We modify the calculation of
Nguyen and Sudbo”15 to show this possible effect in order t
emphasize the importance of the cutoff procedure used.

We consider a cylindrical superconducting sample, w
the applied fieldH perpendicular to the axis of the cylinde
and tilted at an anglef away from the crystalc axis, see Fig.
8. This geometry is chosen so that demagnetization eff
permit solutions where the flux lines are straight for all o
entations of the applied field.

Within this geometry, the Gibbs free energy for a syst
of rigid straight flux lines, tilted at~a different! angleu is

G5F2
BHcos~f2u!

4p
. ~15!

Neglecting the interaction between the flux lines, the f
energy within the London approximation~4! is

F5
B2

8pE d2q

4p2S~q!
11lu

2q2

~11lab
2 q2!~11lu

2qx
21lc

2qy
2!
,

~16!

where lu
25lab

2 sin2u1lc
2cos2u. As with most calculations

within the London approximation, the integral is formal
divergent without the cutoff term, but the use of the cut
S(q) described in the previous section allows the calculat

FIG. 8. The geometry of sample and applied fieldH. The ap-
plied field is tilted at an anglef from thec axis, while the magnetic
inductionB is tilted at an angleu.
se
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to proceed. Also, as the integration is overq perpendicular to
the flux line this calculation is insensitive to theqz depen-
dence of the cutoffS(q). By neglecting the interaction be
tween the flux lines we are essentially just discussing
behavior of a single flux line. This calculation can be view
as the extension of the Abrikosov lattice tob50.

As the fieldH is increased, the flux lines initially enter th
sample whenG50. Although it would be preferable to
chosef, the orientation of the applied field, and then calc
lateu andH it is only possible to assumeu and then calcu-
late the corresponding values ofH andf. Looking for solu-
tions where]G/]u50 implies the orientation~s! of the flux
lines within the sample are governed by the relation

tanf5
tanu1F8/F

12F8tanu/F
. ~17!

When investigating the first entry of flux lines into th
sample, it is well known that the cutoff used is important.
a circular cutoff is used then there is a unique orientation
the flux lines, given by8,15

tanf5e2tanu. ~18!

However, this is not true if an elliptical cutoff is used, as f
large anisotropies there exists a nonmonotonic relation
tweenu andf, see Fig. 9. This implies the possibility of th
existence of two orientations of flux lines.

Within the nonmonotonic regime, there exist three po
sible orientations of the flux lines,ua , ub , anduc , for any
givenf. ub corresponds to an unstable orientation of the fl
lines, i.e., a maximum in the Gibbs free energy, and will n
be considered further.

By calculating the Gibbs free energy, we can see whet
the flux lines will orientate at eitherua or uc , and the rela-
tionship betweenf andu determined. A ‘‘forbidden’’ region

FIG. 9. The relationship betweenu andf for different anisotro-
pies, withk550. This relationship becomes nonmonotonic ove
range of angles for large anisotropy.
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occurs due to the presence of the nonmonotonic regime.
flux-line lattice can only be orientated at anglesu,u1* and
u.u2* .

This can be seen by noting the relationship between
calculated values ofH andf. Figure 10 showsH(f) when
all flux-line orientations are allowed. The points in Fig. 1
are equally spaced inu. For large anisotropyH(f) becomes
nonmonotonic whenu(f) becomes nonmonotonic. In Fig
11 the three values ofH(f) in the nonmonotonic regime
correspond to the three possible orientations of the flux li
at ua , ub , anduc . While all three orientations correspond
G50 and ]G/]u50, only one is a global minimum in
G(u). This global minimum will be the equilibrium structur
and is the orientation with the smallest value ofH(f). The

FIG. 10. The applied fieldH(f) for e51/5 andk550.

FIG. 11. The applied fieldH(f) for e51/60 andk550.
he

e

s

lower critical fieldHc1
(f) is therefore just the smallest valu

of H(f) for any givenf. From Fig. 11 it can be seenHc1

has a kink where H(u1* )5H(u2* ) and f(u1* )
5f(u2* )5fkink . The presence of kinks in the lower critica
field for single flux lines have also been observed within
Ginzburg-Landau model.22

If we now allow the superposition of noninteracting flu
lines, which are assumed to be far apart in the limitb→0,
the ‘‘forbidden region’’ may be removed. AtHc1

(fkink) the

average fieldB may be orientated at all angles within th
‘‘forbidden’’ region u1*,u,u2* by orientating some flux
lines atu1* and the others atu2* .

Various authors have discussed the competition betw
the coexistence of different flux-line species and the prese
of elastic instabilities in the supposed equilibrium structu
For single isolated flux lines~in the limit b→0) the elastic
instabilities depend most strongly onkz and only tilt-wave
instabilities will be discussed further in this section.

As kz is nonzero, the cutoff used is important. Nguy
and Sudbo” usedS(k)5S(k'). For any given value ofk they
found two important values of the anisotropy. At sma
anisotropies the relationship betweenf andu is monotonic.
For 1/e.G1

NS the relationship betweenf and u becomes
nonmonotonic and the Gibbs free energy may be doubly
generate. However, if 1/e.G2

NS the ‘‘perpendicular’’ tilt
modulusc44

' (k)5Fxx(0,0,kz)/kz
2 becomes negative over

range of angles. The two critical anisotropies depend linea
on lnk, but G2

NS is much larger thanG1
NS.

There is a marked difference if the cuto
S(k)5exp@22g(k)#, g(k)5jab

2 (k3c)21jc
2(k•c)2. The de-

pendence of G1
NS and G2

NS on k is similar, but
G1
NS5G2

NS5G. For k550 and S(k)5exp@22g(k)# it is
found G'9.65. The value ofG does depend on the cuto
procedure used. Using a cutoff of the same symmetry b
different strength,S(k)5exp@2g(k)#, it is found G'10.03
for k550.

These two ‘‘competing’’ effects are both related to th
line tensionPl(u)5« l(u)1]2« l(u)/]u2, where« is the line
energy. In the limitb→0 where the London free energ
F5n« l , n is the areal density of flux lines, then it follow
from Eq. ~17! that

Pl~u!5« l~u!sec2~f2u!
]f

]u
. ~19!

However,c44 may be defined asc445d2F(u)/du2. For the
isolated noninteracting flux-lines F5n« l , so c44
}« l(u)1]2« l(u)/]u25Pl(u),

28 where the first term is due
to the compression of the flux-line lattice during tilting
Therefore the presence of a kink inHc1

(f) not only causes a
restriction of orientations of the flux-line lattice, and the po
sibility of the coexistence of different flux-line orientation
but is also related to the presence of a tilt-wave instabil
The tilt-wave instabilities only occur where]f/]u,0, see
also Grishinet al.,5 but this is only part of the region o
excluded flux line orientationsu1*,u,u2* and the instabili-
ties are never observed.
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VI. LOWER CRITICAL FIELD: CHAIN STATE LIMIT

The previous calculation assumed the equilibrium lo
field flux-line structure was a configuration of well-separa
noninteracting flux lines, i.e., the extension of the Abrikos
lattice tob50. In Sec. III it was seen the low-field equilib
rium structures are very different from the Abrikosov lattic
The anisotropy induced attractive interaction makes it ea
for chains of flux lines to enter a sample than for single fl
lines, which forcesHc1

for an single infinite chain to be les

thanHc1
for a single flux line.5 We take the limitb→0 to

imply there is only one vortex chain in the sample, the se
ration between the chains being effectively infinite.

The presence of instabilities in the ‘‘chain’’ state we
investigated in Sec. IV, which seemed to indicate a differ
behavior for materials such as YBCO from those such
BSCCO. These instabilities were seen as the field was
duced from a stable regime similar to the Abrikosov lattic
In this section we investigate what happens as the flux li
initially enter the sample, i.e.,b50. Chosing the same ge
ometry as Sec. V we again look at the relationship betw
f andu and relate this to the elastic instabilities.

For a single flux line in section V, the 2D line energ
integral is easily calculated by rescaling the coordinates,
Nguyen and Sudbo”.15 For the single infinite chain, this 2D
integral is replaced by a sum over the reciprocal lattice v
tors of the 1D chain and a 1D integral perpendicular to
chain. Assuming the chain to be a set of flux lines equa
spaced along thex axis, then

E d2q

~2p!2
→

1

l ch
(
n
E dqy

2p
, ~20!

whereqx52pn/ l ch, n506162 . . . , l ch being the separa
tion of the flux lines in the chain.l ch is determined by finding
the minimum in the line energy, and is a nonmonotonic fu
tion of u.

The behavior of the chain state is subtly different fro
that of the single flux line. The main effects are the sam
i.e., for large anisotropy there exist a range of angles o
which the chains cannot be orientated, but the details
more complicated.

The chain state is stable for small anisotropies, but
large anisotropies the relationship betweenf and u once
again becomes nonmonotonic. For this to occur it require
larger anisotropy than for the single flux line. Figure
showsf(u) just after the onset of nonmonotonicity for iso
lated flux lines. The chain state has no restriction on
orientation of the flux lines, unlike the single flux line, an
also the chain state always has a lower~or equal! lower criti-
cal fieldHc1

,5 see Fig. 13.
Increasing the anisotropy, Fig. 14, the chain state eve

ally shows signs of instabilities. Initiallyf(u) becomes non-
monotonic at large tilt angles,u'9p/20, and the chains ar
excluded over the rangeu28

* ,u,u2* . This occurs for
1/e.G1(k) andHc1

(f) contains a kink in a manner simila
to the single flux line.

However, for 1/e.G2(k), f(u) is also nonmonotonic a
smaller angles,u'p/4. This implies the chains are also e
cluded over a different rangeu1*,u,u18

* . FromH(f), Fig.
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15, it can be seen that a stable rangeu18
* ,u,u28

* exists
between these two forbidden regions. The lower critical fi
Hc1

(f) now has two kinks. As the anisotropy is increas

further these excluded regions grow until at 1/e.G3(k) the
chain state is excluded over the whole rangeu1*,u,u2* .
The second kink inHc1

(f) disappears, Fig. 16, and only on

kink remains. Fork550, G1'15, G2'30, andG3'60.
The elastic instabilities again only occur whe

]f/]u,0. These instabilities have slightly different prope
ties at smallu and largeu. At large u the lattice is most
unstable to a tilt-wave instabilityk5(0,0,kz) while it is a
staircase wave instability, withkx andkz both nonzero, that

FIG. 12. The relationship betweenf andu for different lattices,
with k550 ande51/10.

FIG. 13. The applied fieldH(f) for different lattices, with
k550 ande51/10.
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3864 55A. M. THOMPSON AND M. A. MOORE
causes the chain to become unstable at smalleru. Again,
these instabilities only occur in the forbidden regions, a
the chain state is stable at all allowed orientations.

VII. CONCLUSION

We have investigated the presence of instabilities in
flux-line lattice in anisotropic superconductors using Lond
theory. There are limitations on the applicability of the Lo
don theory, but the wave vectors at which the instabilit

FIG. 14. The relationship betweenf and u for different
anisotropies, withk550.

FIG. 15. The relationship betweenH andf showing the exist-
ence of two kinks inHc1

(f), for k550 ande51/40. This allows
the orientation of the chains state between two forbidden regio
d

e
n

s

appear are well within its limits of validity, i.e.
k!O(1/j).

Due to the anisotropy induced attractive flux-line intera
tion, the form of the equilibrium flux line lattice has to b
determined numerically at all fields. There is a smooth cro
over from a large-field Abrikosov-like state to the low-fie
chainlike state. The nature of the instabilities observed in
equilibrium lattice is complex. At large fields it is stable. A
the field is reduced, at a particular fieldb* some of the
normal modes of the elasticity matrix become unstable. T
field depends on the anisotropye and the angleu at which
the flux lines are orientated to the crystalc axis. The insta-
bility is characterized by always having finitekx andkz , and
we call this a staircase wave instability to distinguish it fro
a tilt-wave instability which is defined as an instability whic
depends only onkz . There is a minimum anisotropy require
before these instabilities are observed. This depends ok
and fork520 the instabilities were seen for 1/e2.120.3, but
this was increased to 1/e2.138 fork550. This may indicate
why the Bitter patterns observed on YBCO are differe
from those on BSCCO.

As the component ofk along the flux lines is nonzero, th
choice of cutoff is crucial. We have used the cutoff su
gested by Sudbo” and Brandt, whereS(k)5exp22g(k) and
g(k)5jab

2 (k3c)21jc
2(k•c)2. This cutoff appears more

physical than a cutoff that just depends onk' and allows the
elastic instabilities and the nonmonotonic behavior off(u)
to be related to a single quantity, the line tensionPl(u), as
expected. However, it should be noted there are still pr
lems associated with this cutoff in the limitkz→`. Once in
the region wherekz forcesS(k)!1, the elasticity matrix~13!
will be dominated by2(Qf ab(Q). While Fxy is zero, the
eigenvalues of the elasticity matrix are negative, show
London theory is always unstable at all fields and ang
However, these instabilities occur at values ofkz'O(1/j)
and are unphysical. The inclusion of core effects, e.g., c
bending energy, may remove remove this instability, but t.

FIG. 16.H(f) for k550 and 1/e5100, showing that at large
anisotropy the second kink inHc1

disappears.
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is outside the domain of validity of the London approxim
tion.

Instabilities can also be observed by investigating
lower critical fieldHc1

, i.e., b50. Theseb50 instabilities
are different from the large field staircase wave instabiliti
When the applied fieldH is tilted away from the crystal axis
theB field and the applied fieldH are not parallel. In Sec. V
it was seen that for small fields and large anisotropies th
existed a nonmonotonic relationship between the angleu at
which theB field is tilted away from thec axis, and the angle
f at which the applied field is tilted. The nonmonotonicity
related to the elastic instabilities observed, but also im
there is a restriction on the allowed orientations of theB field
and a kink inHc1

(f). The properties of the chain sta
changes at three different values of the anisotropy.
1/e,G1, all possible orientations of the chain state are p
sible, while in the intervalG1,1/e,G2 the chains cannot be
orientated over the rangeu28

* ,u,u2* . However, if
G2,1/e,G3 the flux lines are excluded over two separa
y

p,

u

.

,

e

.

re

y

r
-

regions which grow to one large region for 1/e.G3. This
unusual behavior can also be described asHc1

(f) develop-

ing one kink at 1/e5G1, a second kink developing a
1/e5G2 but Hc1

(f) only having a single kink for 1/e.G3.
Whether the peculiar effect of having the allowed orie

tations u18
* ,u,u28

* between two forbidden regions reall
exists is unclear. Just as the existence of the forbidden re
u1*,u,u2* for the isolated flux lines in Sec. V may hav
been an indicator of a state with a lower free energy a
applied fieldHc1

, there may exist a new composition of flu
lines that will be stable at large anisotropies and have a lo
free energy and applied fieldHc1

than the chain state. Thi
may be a completely new state or a superposition of ch
states and other flux lines, but a full investigation of su
states is left for future work.
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