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Higher-order-magnetization-cumulant universality of the two-dimensional Ising model
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We study the higher-order cumulant universality of the order-parameter distribution at criticality for the
two-dimensional nearest-neighbor ferromagnetic Ising model with Monte Carlo methods. These cumulants are
interesting because they are a quantitative measure of the shape of the critical order parameter distribution.
This shape has been predicted to be universal. Up to now, only the fourth-order cumulant has been studied in
any detail. The set of higher-order cumulants as a whole is more sensitive to the details of the distribution and
hence is a stronger test. It cannot be sampled efficiently with standard Monte Carlo sampling. To the best of
our knowledge, no definite numerical results have been reported in the literature. Using the umbrella-sampling
technique, we are able to obtain accurate estimates for the fourth-, sixth-, eighth-, and tenth-order cumulants
for both the square and triangular lattices of different lattice sizes. These results support universality.
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I. INTRODUCTION

At the critical point, the scaled order parameter distrib
tion function is predicted to be universal.1–7 Different mod-
els and physical systems in the same universality class
have the same normalized distribution function at criticali
A quantitative measure of this universality is that all t
cumulants of the distribution have the same universal va
at criticality. For dimensions below the upper critical dime
sion, the relevant length scale near the critical point is
correlation length. That serves as the scaling length in fin
size scaling.8,2,9 It becomes infinite at criticality. Thus, a
sufficiently large finite systems at bulk criticality are equiv
lent and will have the same values for the cumulant. For
reason, Monte Carlo simulations of finite systems have b
used widely to estimate these constants and probe unive
ity.

The fourth-, sixth-, eighth-, and tenth-order cumulants
the order parameter (m) distribution are defined in terms o
the moments as

g45~^m4&23^m2&2!/^m2&2, ~1!

g65~^m6&215̂ m4&^m2&130̂ m2&3!/^m2&3, ~2!

g85~^m8&228̂ m6&^m2&235̂ m4&21420̂m4&^m2&2

2630̂m2&4!/^m2&4, ~3!

g105~^m10&245̂ m8&^m2&2210̂m6&^m4&

11260̂m6&^m2&213150̂m4&2^m2&

218 900̂m4&^m2&3122 680̂m2&5!/^m2&5. ~4!

These are for the nearest-neighbor ferromagnetic Is
model, where all the odd-order moments and cumulants v
ish by symmetry.

Prior to the present study, only the fourth- and lowe
order cumulants of the magnetization distributions have b
studied in any detail.7,1,5,10The higher-order cumulants hav
not been probed extensively because they are very sens
550163-1829/97/55~1!/38~3!/$10.00
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to the tails of the distribution and cannot be sampled e
ciently with standard Monte Carlo sampling. A few ear
estimates7,1 for these higher-order cumulants exist, but
definite numerical results have been reported in the literat
There are also some simulation studies which consider
rectly the magnetization distribution function.5,6 Since the set
of higher-order cumulants as a whole is more sensitive to
details of the distribution, it is a stronger test for universali

Using the umbrella-sampling technique,11 we are able to
obtain accurate estimates for the fourth-, sixth-, eighth-, a
tenth-order cumulants. The possibility of universality f
these higher-order cumulants is studied by considering
Ising model with the square and the triangular lattices.
range of lattice sizes is used at bulk criticality and with the
results, we demonstrate universality for all the higher-or
cumulant considered.

In the next section, a brief description of the umbrel
sampling technique is given. In Sec. III, Monte Carlo resu
are presented and the paper concludes with some remar
Sec. IV.

II. UMBRELLA-SAMPLING TECHNIQUE

The umbrella-sampling technique11 was proposed many
years ago to overcome the difficulty of sampling configu
tions in regions of phase space which have a very sm
probability in the Boltzmann distribution. Exponentially lon
Markov chains are needed to sample these states in the
dard Metropolis method. This problem is especially impo
tant in the sampling of the higher-order moments of the d
tribution. Fornth moments, the configurations are weight
bymn. Since the tails of the distribution have a largerm, the
tail configurations are given larger weight in the samplin
However, the tails of the distribution have exponentia
small probability of being sampled. In the umbrella-sampli
technique, the total distribution is sampled in a number
separate samplings. The total range of the order paramet
divided into a nonoverlapping, but contiguous sequence
38 © 1997 The American Physical Society
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bins. ~See Ref. 11, for a clear introduction.! Each one
samples over only a single bin that spans a sufficiently sm
range of the order parameter to ensure good statistics
combine these separate samplings to form a single nor
ized distribution, one considers an additional set of ‘‘u
brella samplings’’ with a range of sampling that overla
adjacent bins. This overlap can be described as a so
‘‘umbrella’’ covering regions of phase space common to t
different bins. By imposing the condition that distribution
from different bins with the same order parameter have
same numerical value, one can combine the separate bin
tributions to form a single normalized distribution.

For our application of the Ising model, the order para
eter is the magnetization per spinm. m ranges from21 to
11 and is divided into a number of contiguous bins with b
width of dm for 20.8<m<0.8 and two tail bins of~0.8 to

FIG. 1. Finite-size dependence of the fourth-order cumulan
the magnetization distribution at bulk criticality forL3L lattices.
The estimated errors are less than or about the size of the sym
The solid line has the value21.834. Diamonds and squares are f
the triangular and square lattices, respectively. See text.

FIG. 2. Finite-size dependence of the sixth-order cumulan
the magnetization distribution at bulk criticality forL3L lattices.
The estimated errors are less than or about the size of the sym
The solid line has the value 13.96. Diamonds and squares ar
the triangular and square lattices, respectively. See text.
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1.0! and ~20.8 to 21.0!. Typical dm ranges from 0.02 to
0.08. We use a second set of bins with the same bin w
dm, but ranges from~2@0.81dm/2#! to ~1@0.81dm/2#!.
The two sets of bins represent a sequence of bins with m
mum overlaps between neighboring bins. Within each b
standard Monte Carlo sampling12 is used with the additiona
restriction that moves intom values outside of the bin ar
forbidden.

We considerL3L square and triangular lattices with a
Ising spin degree of freedom~61! on each site, coupled to
the nearest-neighbor site spin by ferromagnetic couplingJ.
The magnetic field at each site is zero. We employ latt
sizes ofL58–100 and sample each bin with up to about 15

Monte Carlo steps per spin after equilibrium. By varying t
bin widths, we have checked that within the estimated err
the results are not sensitive to the widths of the b
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FIG. 3. Finite-size dependence of the eighth-order cumulan
the magnetization distribution at bulk criticality forL3L lattices.
The estimated errors are less than or about the size of the sym
The solid line has the value2226.6. Diamonds and squares are f
the triangular and square lattices, respectively. See text.

FIG. 4. Finite-size dependence of the tenth-order cumulan
the magnetization distribution at bulk criticality forL3L lattices.
The estimated errors are less than or about the size of the sym
The solid line has the value 6314.0. Diamonds and squares ar
the triangular and square lattices, respectively. See text.
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for sufficiently small bin widths. Standard periodic bounda
conditions are implemented. The order-disorder transition
the bulk limit is known exactly for both lattices13,14 to be at
J/kBTc5

1
2ln~&11! and 0.274 653 1 . . . ,14 for the square

and triangular lattice, respectively.

III. MONTE CARLO RESULTS

In Fig. 1, we present the finite-size dependence of
fourth-order cumulant of the magnetization distribution
bulk criticality for L3L lattices. A wide range of lattice siz
for both the square and triangular lattices are used to tes
universality predictions. The statistical errors are estima
from different runs and standard block averaging.12 They are
less than or about the size of the symbols. The converge
to the large lattice limit is very rapid. This limit is denoted b
the solid line with the value21.83~4!. That is in very good
agreement with previous estimates1,5,10 of ;21.83. Dia-
monds and squares are for the triangular and square latt
respectively.

The finite-size dependence of the sixth-order cumulan
the magnetization distribution at bulk criticality is given
Fig. 2. Here the bulk limit is given by the solid line whic
has the value 13.9~6!, and the convergence in size is al
rapid. Figure 3 contains the finite-size dependence of
eighth-order cumulant of the magnetization distribution
bulk criticality. The solid line represents the estimated bu
limit value of 2226~6!. The size-dependence convergen
continues to be very rapid. Finally, Fig. 4 has the finite-s
dependence of the tenth-order cumulant of the magnetiza
distribution at bulk criticality. The solid line has the bulk
limit value of 631~4!. The universality of these critical cu
mulants is evident and is indeed consistent with theoret
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predictions that they are the same for all members of
same universality class.

IV. REMARKS

In this paper, we present the higher-order cumulants
the order parameter distribution at criticality for the tw
dimensional nearest-neighbor ferromagnetic Ising model u
versality class. The new results are obtained with umbr
sampling Monte Carlo simulations. These cumulants are
nificant because they represent a quantitative test of
shape universality of the critical-order parameter distrib
tion. This universality has been predicted and is the same
all members of the same universality class. Up to now, to
best of our knowledge, only the fourth-order cumulant of t
magnetization distributions has been studied in any de
The set of higher-order cumulants represents an even m
demanding test for universality, but has been difficult to o
tain accurately. This is because they are very sensitive to
tails of the distribution, which cannot be sampled efficien
with standard Monte Carlo sampling. Using the umbrel
sampling technique, we are able to obtain accurate estim
for the fourth-, sixth-, eighth-, and tenth-order cumulants
both the square and triangular lattices. A range of latt
sizes is simulated at bulk criticality and with these resu
we demonstrate universality for all the higher-order cum
lants considered.

From our experiences with the present study, even high
order cumulants can be estimated accurately with the s
pling technique used here. With a set of accurate estim
for the cumulants, an accurate analytic representation for
distribution function can be obtained using various mome
expansion methods.15
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