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Higher-order-magnetization-cumulant universality of the two-dimensional Ising model
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(Received 23 August 1996

We study the higher-order cumulant universality of the order-parameter distribution at criticality for the
two-dimensional nearest-neighbor ferromagnetic Ising model with Monte Carlo methods. These cumulants are
interesting because they are a quantitative measure of the shape of the critical order parameter distribution.
This shape has been predicted to be universal. Up to now, only the fourth-order cumulant has been studied in
any detail. The set of higher-order cumulants as a whole is more sensitive to the details of the distribution and
hence is a stronger test. It cannot be sampled efficiently with standard Monte Carlo sampling. To the best of
our knowledge, no definite numerical results have been reported in the literature. Using the umbrella-sampling
technique, we are able to obtain accurate estimates for the fourth-, sixth-, eighth-, and tenth-order cumulants
for both the square and triangular lattices of different lattice sizes. These results support universality.
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I. INTRODUCTION to the tails of the distribution and cannot be sampled effi-
ciently with standard Monte Carlo sampling. A few early
At the critical point, the scaled order parameter distribu-estimate$® for these higher-order cumulants exist, but no
tion function is predicted to be universal’ Different mod-  definite numerical results have been reported in the literature.
els and physical systems in the same universality class wilthere are also some simulation studies which consider di-
have the same normalized distribution function at criticality.recuy the magnetization distribution functiéfi.Since the set
A quantitative measure of this universality is that all the of higher-order cumulants as a whole is more sensitive to the
cumulants of the distribution have the same universal valuegetails of the distribution, it is a stronger test for universality.
at criticality. For dimensions below the upper critical dimen- Using the umbrella-sampling technigtfewe are able to
sion, the relevant length scale near the critical point is th)niain accurate estimates for the fourth-, sixth-, eighth-, and
correlation length. That serves as the scaling length in ﬁ”itefenth-order cumulants. The possibility of universality for

. . ’2'9 . .« . . .
sizé §ca|mg*‘. It .bgcomes infinite at cr!t!cal!ty. Thus, ‘."‘” these higher-order cumulants is studied by considering the
sufficiently large finite systems at bulk criticality are equiva- Isinag model with the square and the trianqular lattices. A
lent and will have the same values for the cumulant. For this> . . s _rang ) )
reason, Monte Carlo simulations of finite systems have beeff9¢ of lattice sizes is useq at bul_k criticality and_ with these
used widely to estimate these constants and probe universéfe-su'ts' we demonstrate universality for all the higher-order
ity. cumulant considered.

The fourth-, sixth-, eighth-, and tenth-order cumulants of In the next section, a brief description of the umbrella-

the order parameten{) distribution are defined in terms of sampling technique is given. In Sec. Ill, Monte Carlo results

the moments as are presented and the paper concludes with some remarks in
04= ((m*)—3(m?)2)/(m?)2, w N
ge=((m°) = 1Xm*)(m?)+30(m?)*)/(m?)%,  (2) Il. UMBRELLA-SAMPLING TECHNIQUE
gg= ((M®)— 28mP)(m?) — 35(m*)2+ 420(m*)(m?)? The umbrella-sampling technigttewas proposed many
~630(m))/(mf)’, 3 Yons i regions of phase space which have & very small
g (st PO e Sy sty omenitios
+126Qmf)(m?)2+315Q m*)2(m?) dard Metropolis method. This problem is especially impor-

N3 s ~ tant in the sampling of the higher-order moments of the dis-
—18 90qm*)(m?)"+22 68 m*)°)/(m")”.  (4) tribution. Fornth moments, the configurations are weighted
These are for the nearest-neighbor ferromagnetic Isin§y m". Since the tails of the distribution have a largerthe
model, where all the odd-order moments and cumulants vartail configurations are given larger weight in the sampling.
ish by symmetry. However, the tails of the distribution have exponentially
Prior to the present study, only the fourth- and lower-small probability of being sampled. In the umbrella-sampling
order cumulants of the magnetization distributions have beetechnique, the total distribution is sampled in a number of
studied in any detail:>*1°The higher-order cumulants have separate samplings. The total range of the order parameter is
not been probed extensively because they are very sensitivlivided into a nonoverlapping, but contiguous sequence of
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FIG. 1. Finite-size dependence of the fourth-order cumulant of FIG. 3. Finite-size dependence of the eighth-order cumulant of
the magnetization distribution at bulk criticality farx L lattices.  the magnetization distribution at bulk criticality farx L lattices.
The estimated errors are less than or about the size of the symbolhe estimated errors are less than or about the size of the symbols.
The solid line has the value 1.834. Diamonds and squares are for The solid line has the value 226.6. Diamonds and squares are for
the triangular and square lattices, respectively. See text. the triangular and square lattices, respectively. See text.

bins. (See Ref. 11, for a clear introductignEach one 1.0) and(—0.8 to —1.0). Typical ém ranges from 0.02 to
samples over only a single bin that spans a sufficiently smal).08. We use a second set of bins with the same bin width
range of the order parameter to ensure good statistics. Tdm, but ranges from(—[0.8+6m/2]) to (+[0.8+m/2]).
combine these separate samplings to form a single normaFhe two sets of bins represent a sequence of bins with maxi-
ized distribution, one considers an additional set of “um-mum overlaps between neighboring bins. Within each bin,
brella samplings” with a range of sampling that overlapsstandard Monte Carlo samplitfigs used with the additional
adjacent bins. This overlap can be described as a sort @éstriction that moves inton values outside of the bin are
“umbrella” covering regions of phase space common to twoforbidden.
different bins. By imposing the condition that distributions We considerL XL square and triangular lattices with an
from different bins with the same order parameter have thdsing spin degree of freedoifi=1) on each site, coupled to
same numerical value, one can combine the separate bin dihie nearest-neighbor site spin by ferromagnetic coupling
tributions to form a single normalized distribution. The magnetic field at each site is zero. We employ lattice
For our application of the Ising model, the order param-sizes ofL=8-100 and sample each bin with up to about 10
eter is the magnetization per spim - m ranges from—1to  Monte Carlo steps per spin after equilibrium. By varying the
+1 and is divided into a number of contiguous bins with binbin widths, we have checked that within the estimated errors,
width of ém for —0.8<m=0.8 and two tail bins 0f0.8 to  the results are not sensitive to the widths of the bins
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FIG. 2. Finite-size dependence of the sixth-order cumulant of FIG. 4. Finite-size dependence of the tenth-order cumulant of
the magnetization distribution at bulk criticality farx L lattices.  the magnetization distribution at bulk criticality farx L lattices.
The estimated errors are less than or about the size of the symbolBhe estimated errors are less than or about the size of the symbols.
The solid line has the value 13.96. Diamonds and squares are fdrhe solid line has the value 6314.0. Diamonds and squares are for
the triangular and square lattices, respectively. See text. the triangular and square lattices, respectively. See text.
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for sufficiently small bin widths. Standard periodic boundarypredictions that they are the same for all members of the
conditions are implemented. The order-disorder transition irsame universality class.
the bulk limit is known exactly for both latticé$'*to be at
J/kgT,=3In(v2+1) and 0.274681...}* for the square IV. REMARKS
and triangular lattice, respectively. ] )
In this paper, we present the higher-order cumulants of
Il MONTE CARLO RESULTS the ord'er parameter di_stribution at criticglity .for the two-'
dimensional nearest-neighbor ferromagnetic Ising model uni-
In Fig. 1, we present the finite-size dependence of theversality class. The new results are obtained with umbrella
fourth-order cumulant of the magnetization distribution atsampling Monte Carlo simulations. These cumulants are sig-
bulk criticality for L X L lattices. A wide range of lattice size nificant because they represent a quantitative test of the
for both the square and triangular lattices are used to test trehape universality of the critical-order parameter distribu-
universality predictions. The statistical errors are estimatedion. This universality has been predicted and is the same for
from different runs and standard block averagih@hey are  all members of the same universality class. Up to now, to the
less than or about the size of the symbols. The convergendeest of our knowledge, only the fourth-order cumulant of the
to the large lattice limit is very rapid. This limit is denoted by magnetization distributions has been studied in any detail.
the solid line with the value-1.834). That is in very good The set of higher-order cumulants represents an even more

agreement with previous estimatés® of ~—1.83. Dia- demanding test for universality, but has been difficult to ob-
monds and squares are for the triangular and square latticesjn accurately. This is because they are very sensitive to the
respectively. tails of the distribution, which cannot be sampled efficiently

The finite-size dependence of the sixth-order cumulant ofvith standard Monte Carlo sampling. Using the umbrella-
the magnetization distribution at bulk criticality is given in sampling technique, we are able to obtain accurate estimates
Fig. 2. Here the bulk limit is given by the solid line which for the fourth-, sixth-, eighth-, and tenth-order cumulants for
has the value 13(8), and the convergence in size is alsoboth the square and triangular lattices. A range of lattice
rapid. Figure 3 contains the finite-size dependence of theizes is simulated at bulk criticality and with these results,
eighth-order cumulant of the magnetization distribution atwe demonstrate universality for all the higher-order cumu-
bulk criticality. The solid line represents the estimated bulk-lants considered.
limit value of —226(6). The size-dependence convergence From our experiences with the present study, even higher-
continues to be very rapid. Finally, Fig. 4 has the finite-sizeorder cumulants can be estimated accurately with the sam-
dependence of the tenth-order cumulant of the magnetizatiopling technique used here. With a set of accurate estimates
distribution at bulk criticality. The solid line has the bulk- for the cumulants, an accurate analytic representation for the
limit value of 63X4). The universality of these critical cu- distribution function can be obtained using various moment-
mulants is evident and is indeed consistent with theoreticaéxpansion methods.
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