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Dissipative dynamics of vortex lines in superfluid*He
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We propose a Hamiltonian model that describes the interaction between a vortex line in sufetéadd
the gas of elementary excitations. An equation of irreversible motion for the density operator of the vortex,
regarded as a macroscopic quantum particle with a finite mass, is derived in the frame of generalized master
equations. This enables us to cast the effect of the coupling as a drag force with one reactive and one
dissipative component, in agreement with the assumption of the phenomenological theories of vortex mutual
friction in the two fluid model[S0163-18206)07646-1

I. INTRODUCTION if this time dependent regime were experimentally visual-
ized. In particular, it has been recently shdfvthat the cy-
Since the discovery of quantized vortices in liquid helium clotron motion is a natural solution of the nonlinear Sehro
I, it has been recognized that they might provide a mechadinger equation applied to a vortex. Dynami€aland
nism for the coupling of the superfluid to the normal fluid. In thermodynamicaf methods have been proposed to measure
the two fluid model, this coupling is represented by a mutuathe vortex inertial coefficient; our present purpose is neither
drag force with one dissipative and one conservative compao participate in the existing polemics, nor to propose a new
nent, whose respective strengths can be measured investiggiodel for the calculation of the vortex mass, but rather to
ing the attenuation of second sound at variousassume that it is a numerical parameter and proceed along

temperatures: Models for the friction coefficients which  similar lines as those invoked in the well established cyclo-
successfully fit the data up to 2.1 K have been presented ifgon motion already discussed in textbodks.

Refs. 4 and 5. The phenomenon of vortex mutual friction has  1he aim of the present work is to propose a Hamiltonian
ge_en observed as v;/]ell In rotating SIrJ]perﬂﬁ}e:I]e-B, th|shfaqt model for the coupling between a rectilinear vortex im-
) r:jngs(,j supplort tott N conje]f:t(ljj_re ! att such a mec .an';.mhl'ﬁ]ersed into the excitations of the superfluid, as will be dis-
Indeed a refevant source of diSsipative processes in NIy, cqeq in Sec. 1. Due to the translational symmetry of the

degenerate quantum fluids. It is also worthwhile to remin . .
. : roblem along an axis parallel to the vortex, the problem is
that in recent years, vortices have been seen to play arole [n ™ . . . )
o dimensional, i.e., we consider a point vortex on a plane.

hase transitions takin lace either in underpressurize . . .
b gp P e shall show in Sec. Il that, if one considers the vortex as

“He (Ref. 7) or in supersaturated solutions &fle in “He8 ; : ) ;

yal quantpm partlcle.undergomg Brownlgn moﬁ‘??m a.heat
fluctuations of the superfluid, which at nonvanishing tem-"€Servoir, it is posgble to estab!lsh the |rrever5|ple time evo-
peratures are embodied in the normal fluid, can be accountddtion of its density operator within the generalized master
for within a Lagrangian descriptichi However, micro- €quationlGME) approactf:*#In this way, in Sec. IV we are
scopic descriptions of the interaction between the superflui@ble to derive dissipative equations of motion for the canoni-
motion, especially when topological singularities are con-cal position-momentum variables of the vortex and for its
cerned, and collective excitations are not concluét@he  velocity. These variables can be seen to evolve under the
investigation of quantum tunneling of vortex lines in super-combined effect of the usual hydrodynamical lift on a rotat-
conductors and superfluids*has now improved our com- ing cylinder, plus a drag force. If the coupling is linear in the
prehension of, for example, the role of the inertial mass ofexcitation operators, the drag coefficients are governed by
the vortex(see also, Refs. 14-16, and cited thereind the  the dynamical susceptibility of the liquid. The consequences
influence of either pinning or dissipation on the tunnelingof the equations of motion thus obtained, the asymptotic ve-
rates. Indeed, the value of the vortex inertia is a fundamentabcity of the vortex and the relation of the current description
parameter in any theoretical description of vortex dynamicgo the phenomenological model are discussed in Sec. V,

and it remains a controversial isstfe.” Different starting  where the perspectives of the present approach are also out-
points assign to this inertia figures ranging from zero to in-ined.

finity, the latter arising from a logarithmic divergence with
the system size due to the renormalization effect induced by

the condensat_e _mo_tion. On the other hand, the vortex mass is Il. THE HAMILTONIAN MODEL
known to be finite in superconductof§Although the phe-
nomenological approachitsompletely disregard inertial ef- Let us first summarize the description of the free motion.

fects, the mass enters the description of the dynamics of &he Hamiltonian for a cylindrical vortex parallel to theaxis
free vortex, known to be cyclotronlike!®” through a fre- in liquid helium at zero temperature is in charge of providing
quency paramete®, which would be a measurable quantity the Magnus forcé.lt reads
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feature$® due to the fact that both the system and the reser-
Hvzm[p—qA(r)]Z+ MQugy, (2.)  voir have the same microscopic origin, which is just the case
here discussed.
where In this spirit, and considering that within a superfluid in
its ground state the vortex exhibits a solitonlike behavior, we

hpdl propose a vortex-plus-reservoir Hamiltonian, that modifies
A(r)= 2 (y,—x) (220 expression2.1) as follows:
: . . . 1
is the vector potential whose curl yields the vortex-velocity- H= m[p— gA(r)—AB]?+MQugy+Hg (2.5

dependent part of the Magnus force and the potential term

MQu,y gives the superfluid-velocity-dependent part of thisyith B a vector function of operators that represents the el-
force. HereM is the dynamical mass of the vortex, de-  ementary excitations of the superfluid aHg is the Hamil-
notes the number density of the superflud, its velocity  tonjan of these excitations. In E¢R.5) the interaction term
along thex axis, assumed to be uniforrh,is Planck’s con- Hine=—\B-V couples the reservoir and the vortex through

stant,| the system length along treaxis and the unperturbed velocity of the latter, being
qhpdl Px Q p, Q
Q=——" (2.3 S Ve BT
M V=l 2y’M+2X' (2.6
The quantityq= =1 is the sign of the vorticity according to In the present approach, the Hermitian oper&as as-

the right handed convention. Furthermore, at zero temperaociated to the creation of a density fluctuation in the liquid

ture, ps coincides with the total density per unit mashn, and could then be labelled by a transferred momerquidip

beingm the mass of a helium atom. to lowest order, one may have for each component of the
At this point it is convenient to remember the existing vectorB

theoretical uncertainty regarding the vortex mass parameter A

M that should appear in dynamical calculatibhis-'® and Ol+0,

keep in mind that in the phenomenological approathies By= 2

dynamical regime of the vortex is that in which the Magnus A

force balances the drag plus any applied forcas stated in whereog(oq) is the Feynman-Cohen operator that creates

the Introduction, our viewpoint here is identical to that of (destroy$ a density fluctuation quantum, i.e., a phonon or a

former authors'%3who assume a finite figure for the vor- roton

tex inertia and consider the cyclotronlike motion of a free 1 k-q

vortex as their starting point, with the frequenfy as the AT t_ = ot

leading parameter. Since it will be shown in Sec. IV that the Oa=ra Nk;q K PrPa-ko @8

dissipative motion is easily described in terms of the com-_ . . -
plex position variablee=x+iy and the velocitydz/dt, we being hereN the number of atoms in the liquid. Furthermore,

; . . we realize that the term?B2/2M appearing in Eq(2.5) can
here write the complex Hamilton equation that stems frorrbe absorbed into the Hamiltoniamzp WhiC% is ianzh:zge of

Eq. (2.1 providing the equilibrium density vector of the reservoir.

2.7)

d?’z . dz Ill. THE GENERALIZED MASTER EQUATION
W—IQ a—vs (2.4) - . .

The Hamiltonian (2.5 is of the form system-
plus-reservoir-plus-interactiott. The standard reduction-
projection procedure of nonequilibrium  statistical
mechanic£? enriched with the time convolutionless method
developed by Chaturvedi and Shib&teias already proven

be useful to derive a generalized master equat&viE),
with time-dependent coefficients, for the density operator

T is above 1 K, the normal component is mainly a gas oin a particle interacting with a heat reservoir in the weak-
] . . . . 7’28 . .

rotons, the phonons being the dominant excitations at |0we<|:oup!mg—non-Marl;ovrl]an limit: Ig t:]“s case,all |sdthe

temperatures. Therefore, at any temperature the interactidif"Sity operator of the vortex and the generalized master

of the vortex line with these elementary excitations produce§duation reads

with the complex Magnus force at the right-hand side.

We now assume liquid helium to contain elementary ex
citations. For nonvanishing temperatufieshese excitations
can be of thermal origin and thus give rise to the norma
fluid, while at zero temperature they must be created by a
external probe and yield a vanishing normal dengity If

damped motion of the vortex. As stated in the Introduction, do i N2 [t
the main goal of this article is to construct a Hamiltonian H+ g[Hu o= PJ dr{[vy,[v(—7),0]]
model which enables us to obtain this dissipative behavior. 0

For this purpose, we shall consider a description of quan- +[oy.[oy(—7),0]1 (7)

tum dissipation similar to that recently presented in order to

account for the irreversible evolution of solitoffsin which A2t

an effective Hamiltonian is constructed for the collective _'ﬁdeT{[vx’[vx(_T)"’h]
motion coupled to the residual excitations using the collec-

tive coordinate formalisri> This model exhibits unexpected +oy [vy(—=7),0l:By(7), (3D
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where[a,b] . denotes an anticommutator. In this expression,

the time dependent functiors and are the real and imagi-
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It is important to observe that the validity of the GME
(3.8) is more general than the weak-coupling approximation

nary parts, respectively, of the correlation between heat batbase. Indeed, if one expands the integral, time-dependent col-

operatorg?®

(Bj(m)Bj)=(7) +iy(7) 3.2

for j=x,y, assuming an isotropic reservoir. If the Hermitian

operatorB; is chosen according to Eq&.7) and (2.8), the
function

Sq(7) = g(7) +ithg(7) 3.3

lisional kernel of the master equation in powers of the cou-
pling parametei, as done, for instance, in Ref. 22, after a
lengthy calculation one can realize that the form of the new
GME is identical to Eq(3.8), at least up to the fourth order
in the expansion parameter, except for the fact that the coef-
ficients (3.4) to (3.6) become polynomials in.

Finally, we should also mention that the most common
assumptions considered in many applications are that the res-
ervoir is purely harmonic and/or that the interaction term is

is just the Fourier transform of the dynamical structure factolinear in its coordinates. If this is not the current case, the
S(q, @) of helium I and is experimentally known for a wide nonyanishing mean valug®;) must be considerédl and

range of transferred momenta!

modify the effective Hamiltoniari3.9). However, the equa-

Notice that the GME is a differential, rather than an inte-tions of motion that we shall derive in the next section re-

grodifferential, equation, since the unknownunder the in-
tegral sign is taken at time accordingly, it can be simplified
if we define the following time-dependent parameters,

M A2 [t ,
?7(t)=—zfodﬂ/f(7')smﬂr, (3.9
M A2 [t
?,u(t)= zjodﬂp(f)cosﬂr, (3.5
and
2
C(t)= %f;dr¢(7)coﬂr. (3.6

The velocities appearing in E¢3.1) are those of the free

vortex displayed in Eq(2.6) and their detailed time depen-
dence is extracted from Hamilton’s equations corresponding

to the Hamiltonian(2.1), namely
vx(1) =[vx(0) —vs]coddt—v,(0)sinQt+vg,

vy(t) =[vx(0)—vs]sinQt+uv(0)cod)t. (3.7

In terms of these quantities and using E@4) to (3.6), we
can write

do i

Tt 7[He 01= = CO{[v..[vx. 01+ [0y [oy,0]}
i Moy(t
fIL_ Z(){[vx,[vy,U]Jr]

_[va[UX1O-]+]}' (38)

The effective Hamiltonian contains a renormalization to the

main invariant, since these extra terms can be removed by a
Galilean transformation. Moreover, it should be noticed as
well that the correlation functioB(7)B;) for k# j, which

is in general a nonvanishing function, does not enter Eq.
(3..

IV. THE EQUATIONS OF IRREVERSIBLE MOTION

We are now in a position to derive equations of motion
for expectation valueéa) of arbitrary observablea, which
can be cast in the form

d{a) i

ot FllaHaD) =~ COIlavdvd +([[av,]o,D)
i Moy(t
fli_ ;( )(<[[ayvx]ivy]+>

_<[[a!vy]vvx]+>)' (41)

In order to derive equations of motion for the position and
momentum components of the vortex we will restrict our-
selves to the Markovian limit; in other words, we consider
that the correlation indicated by, is short lived, within
the observational times. The parameters in H§s4) and
(3.5 become then time independent and after some algebra,
elimination of the momentum permits us to write a unique
complex differential equation for the expectation value of its
velocity, that exhibits the effects of the coupling to the res-
ervoir. This equation is

d? d
%ﬁﬂﬁ(%—vs), 4.2

vortex mass, induced by the coupling to the thermal reser-

voir, plus a drift contribution. Its expression is

Mu(t)
2

Heg=H,+ (Vi +vd)+Mugo(t)ve—Mugy(toy,

(3.9

wherew(t) = u(t)|g=o— u(t). It is also worthwhile noticing
that, being the system translationally invariant on they)
plane, terms iH; proportional tov, vy play no role in the
dynamics.

where the quantity that renormalizes the complex Magnus
force is

B=1+u+ivy. 4.3
with . andy being the asymptotic values of Ed8.5) and
(3.4) respectively.

We here realize that the reservoir constituted by the exci-
tations of the superfluid provides both a dissipative and a
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conservative coqpling, respectively measured by the param- , Yo+ v6(v6— psgh)
etersy and u. This is in agreement with the structure of the a'= (=902 2 °
mutual friction force of the two fluid modér:® Moreover, PsAN=Y0)" T %0

keeping in mind that if the density fluctuations of the super-The inverse relationships givingy, v, in terms ofa,a’ can
fluid carry a definite momentum, the heat bath correlation pe found in Ref. 2. We see that in this case, the asymptotic
(BgBq(7)) is, to lowest order, just the Fourier transform of yelocity contains both the reactive and the resistive coeffi-
the dynamical structure factor, using standard relations ogients. However, measurements of second sound attenuation
linear response theotyone can readily show that in helium Il at temperatures below 1.5 K give values for

a,a’ around 10 2, providing thus a negligible correction to
(4.4) the unperturbed veloci_ty_s._ _ _

On the other hand, it is important to notice that according

_ A2l
priy= mx(q,ﬂ),

) ) o to the general equatioi.1) derived in this work, the expec-
where x(q,(2) is the dynamical susceptibility or response (4tion value of the free velocity operaté2.6), whose com-
function of the liquid(per unit length at momenturg and plex counterpart reads

energyf (). In the most general situation where thermal ex-

citations cover the whole momentum range, a summation p Q

over g should be applied on the right-hand side of Ej4). TV +1 57 (4.9
A consequence of this result is that the temperature depen- _

dence of the drag coefficients is provided by the variation ofsatisfies the evolution law

x(9,9Q) with T;*! it is then worthwhile to keep in mind that

the harmonic oscillator heat bath employed in previous in- t)) = 0))— el (1— &)
vestigations of vortex coupling to excitatidhg® predicts a (0(©)=| () ~vs Us B
temperature-independent dissipation stredgtHowever, if (4.10
the reservoir operator8; are described by nonlinear func- With 1= wo_o [cf. Eq. (3.5)]. Equation(4.10 is remark-

, t
tions of O, 04 rather than by the Feynman-Cohen operatorap)y close to the above expressi@n?) for vanishing normal
(2.8), it is possible to show that the drag coefficients vanishfyig velocity. Indeed, for a normal fluid at rest, E¢.10) is

at zero temperatur&;”®in such a case, the coupling is unef- of the form (4.7), with coefficientsyo, 7 (or @,a'), given
fective and the vortex moves freely governed by the Hamil-by

tonian(2.1), as expected.
Equation(4.2) can be straightforwardly integrated, giving

L ko

. ~ |
a mean value of the complex velocity operator Qptiy)==(v~ivy
d{(z) [d(z) 0
N | _ (1+u)ta—Qyt . -
dt | dt |, U5° e .. (49 %:a'—l—la. (4.11)

Si_ncer is alvyays a positive qu_a_ntity, thi§ expression CON-Elimination of 1 and y gives the relationship
tains exponential decay of the initial conditions, and the lim-
iting value of the vortex velocity is then the superfluid one

~ Psqh’:}l’o
Us: i i . . a:~2 ~ 2|lu“0|1
Let us now examine the situation as described by the phe- Yot (psah—vo)
nomenological theory® where the drag force is written as
~,  psah(yo—psah)
,[dz @' == —— 1ol (4.12
fo=—(yotivo) at Un) (4.6) Yo+ (psdh— 7o)

, o The interesting similitude between these relations and those
wherey,, v, are the strengths of the dissipative and conserin gqs. (4.8) gives support to the conjecture that the present
vative components and, is the normal fluid velocity. Itis  model embodies substantial aspects of the mechanism re-
also assumed that when equilibrium is reachiegcan be  sponsible of damped vortex motion in superfluid helium. The
expressed in the forma(—ia’) psgh(v,—vs). If one solves  gifferences between the relationships characterizing the phe-
Newton’s equation for a point particle with massmoving  nomenological model in Eq$4.8) and the present ones in
under the Magnus and the drag for@e6), one finds Egs.(4.12), are due to the fact that the structure of the drag
force is not identical in both approaches. In fact, a close look

d_Z: d_z v (o' +ia) (v,—ve) el (2= 7l/M)tg— yolt/M at Egs.(4.2), (4.3, and (4.6) shows that the Hamiltonian
dt |dt|,_o ° novs description gives rise to an extra component of the force,
. proportional to the relative two fluid velocity,—vs. This
t(a'+tia)(va—vg)tus, (4.7 supplementary component is not removed by the assumption

that the normal fluid lies at rest; however, it is also worth-
while to keep in mind that the assumption that the drag force
is proportional tov—v,, applies under the hypothesis of van-
Yo —, (4.8  ishing vortex mas$.If one is interested in getting rid of the
(psAh—7v0)"+ 75 extra force, a different model should be selected, so as to

wherea anda’ can be written in terms of, and y; as

a=psqh
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bring the two fluid dynamics into the picture. Such an im-  On the other hand, the phenomenological theories intro-
provement does not consist of a simple modification of theduce a mutual friction whose drift and dissipative compo-
Hamiltonian(2.9); instead, a totally different formulation is nents are proportional to the relative two-fluid velocity
required stemming from a Hamiltonian description of they, —v . The vortex velocity, either with respect to the super-
two fluids to which a suitable coupling is incorporated. Thisflyid or to the normal one, is determined by the force balance
philosophy fits more specifically the spirit of macroscopic,when inertial effects vanish; consequently, it depends upon
fluid dynamical models and is thus beyond the scope of theghe parameters of the drag. Instead, the present model should
present work. . _ be regarded as a description in the reference frame of the
As a final remark, we wish to recall that every time- oy fiuig, i.e., both, andd(z)/dt refer to the local ve-

dependept quantity here presented owes this depe_nc_;lencel&ity v, of the heat reservoir in the neighborhood of the
the special model feature that makes room to a finite, alI§/ortex. The coefficients that measure the drag effects thus

though unknown, inertial coefficient of the vortex. This pa- depend uoon the strenath of the counling to the thermal ex-
rameter rules the evolution since it appears in both the con- P P 9 piing

servative and the decay time scété. Eqs.(4.5), (4.7), and citations and upon their dynamical response; however, the
(4.10]; we then realize that as poi.nted .ou.t in R.ef’ 10. ex-fluid dynamics of the elementary excitations is not explicitly

perimental detection of the time-dependent regime wouldontemplated.
thus provide a means of measuring the vortex inertia. It We believe that the model here presented covers most

should be kept in mind that the present results concerning th@SPects of the description of dissipative dynamics of a vortex
dynamics cannot be extrapolated dowrMe=0; in fact, the line in helium Il and opens possibilities towards further im-

free Hamiltonian (2.1), the frequency(2.3), the vortex- Provements, among which, a definite one is the introduction
reservoir Hamiltonian(2.5) and the velocity(2.6) become of the motion of elementary excitations, to properly account
meaningless in such a case. However, the asymptotic veloger mutual friction in the sense of phenomenological theo-
ity does not depend upon the mass, since its value causes tfies. With respect to previous calculations of the drag coef-
Magnus and the drift force to cancel each other in the abficients carried, for example, in Refs. 4 and 5, our model,

sence of inertial effects. being quantal in nature, is not subjected to either the low-
temperature limitations of a hydrodynamical description as
V. DISCUSSION AND SUMMARY pointed out in(Ref. 4), or to uncertainties associated to a

classical approach to the roton-vortex collisidris.may be

Let us now examine further the characteristics of thealso mentioned that the model holds as well for vortex mo-
model here presented and its relationship to the phenomengon in liquid He; quantum statistics only enters the charac-
logical description of dissipation. On the one hand, it is im-terization of the excitations making the heat reservoir, which
portant to keep in mind that the vortex mass is assumed t@ould consist of the zero sound phonons of the fermion lig-
vanish in the phenomenological two-fluid model of mutualyid. No special differences with the present results would be
friction, where the velocity arises from the balance betweerexpected in that case, except from the fact that the larger core
the Magnus and the drag forces; it should be noticed that thisize of vortices in®He could probably enlarge the inertia
regime is also the time-asymptotic form of a Newton-like parameteM with a subsequent decrease in the oscillation
equation of motion if the vortex mass is finit&lhe precise frequency(Q.
value of the vortex inertial coefficient is thus not important
in the limiting regime, although it influences the dynamics at
finite times through the frequencQ [cf. Egs. (2.3 and ACKNOWLEDGMENTS
(4.7)], which is the relevant parameter of the model. In this
context, it is important to keep in mind that the coupling to We are pleased to acknowledge stimulating conversations
the thermal excitations further renormalizes the vortex massyith Dr. Manuel Barranco. This work has been supported by
in fact, inspection of the effective HamiltoniaB.9) shows  Grant No. PID 34520092 from Consejo Nacional de Investi-
us that the kinetic energy has been changed int@aciones Cienficas y Tenicas, Argentina and Grant No.
M (1+ u)Vv?/2. EX100/95 from Universidad of Buenos Aires.
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