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Dissipative dynamics of vortex lines in superfluid4He

H. M. Cataldo, M. A. Despo´sito, E. S. Herna´ndez, and D. M. Jezek
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and Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Argentina
~Received 5 June 1996; revised manuscript received 26 July 1996!

We propose a Hamiltonian model that describes the interaction between a vortex line in superfluid4He and
the gas of elementary excitations. An equation of irreversible motion for the density operator of the vortex,
regarded as a macroscopic quantum particle with a finite mass, is derived in the frame of generalized master
equations. This enables us to cast the effect of the coupling as a drag force with one reactive and one
dissipative component, in agreement with the assumption of the phenomenological theories of vortex mutual
friction in the two fluid model.@S0163-1829~96!07646-1#
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I. INTRODUCTION

Since the discovery of quantized vortices in liquid heliu
II, it has been recognized that they might provide a mec
nism for the coupling of the superfluid to the normal fluid.
the two fluid model, this coupling is represented by a mut
drag force with one dissipative and one conservative com
nent, whose respective strengths can be measured inves
ing the attenuation of second sound at vario
temperatures.1–3 Models for the friction coefficients which
successfully fit the data up to 2.1 K have been presente
Refs. 4 and 5. The phenomenon of vortex mutual friction
been observed as well in rotating superfluid3He-B;6 this fact
brings support to the conjecture that such a mechanism
indeed a relevant source of dissipative processes in hi
degenerate quantum fluids. It is also worthwhile to rem
that in recent years, vortices have been seen to play a ro
phase transitions taking place either in underpressur
4He ~Ref. 7! or in supersaturated solutions of3He in 4He.8

The interaction between the velocity field and the dens
fluctuations of the superfluid, which at nonvanishing te
peratures are embodied in the normal fluid, can be accou
for within a Lagrangian description.9,10 However, micro-
scopic descriptions of the interaction between the superfl
motion, especially when topological singularities are co
cerned, and collective excitations are not conclusive.2,3 The
investigation of quantum tunneling of vortex lines in sup
conductors and superfluids11–13has now improved our com
prehension of, for example, the role of the inertial mass
the vortex~see also, Refs. 14–16, and cited therein! and the
influence of either pinning or dissipation on the tunneli
rates. Indeed, the value of the vortex inertia is a fundame
parameter in any theoretical description of vortex dynam
and it remains a controversial issue.16,17 Different starting
points assign to this inertia figures ranging from zero to
finity, the latter arising from a logarithmic divergence wi
the system size due to the renormalization effect induced
the condensate motion. On the other hand, the vortex ma
known to be finite in superconductors.18 Although the phe-
nomenological approaches3 completely disregard inertial ef
fects, the mass enters the description of the dynamics
free vortex, known to be cyclotronlike,2,10,17 through a fre-
quency parameterV, which would be a measurable quanti
550163-1829/97/55~6!/3792~6!/$10.00
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if this time dependent regime were experimentally visu
ized. In particular, it has been recently shown10 that the cy-
clotron motion is a natural solution of the nonlinear Sch¨-
dinger equation applied to a vortex. Dynamical10 and
thermodynamical19 methods have been proposed to meas
the vortex inertial coefficient; our present purpose is neit
to participate in the existing polemics, nor to propose a n
model for the calculation of the vortex mass, but rather
assume that it is a numerical parameter and proceed a
similar lines as those invoked in the well established cyc
tron motion already discussed in textbooks.2

The aim of the present work is to propose a Hamilton
model for the coupling between a rectilinear vortex im
mersed into the excitations of the superfluid, as will be d
cussed in Sec. II. Due to the translational symmetry of
problem along an axis parallel to the vortex, the problem
two dimensional, i.e., we consider a point vortex on a pla
We shall show in Sec. III that, if one considers the vortex
a quantum particle undergoing Brownian motion20 in a heat
reservoir, it is possible to establish the irreversible time e
lution of its density operator within the generalized mas
equation~GME! approach.21,22In this way, in Sec. IV we are
able to derive dissipative equations of motion for the cano
cal position-momentum variables of the vortex and for
velocity. These variables can be seen to evolve under
combined effect of the usual hydrodynamical lift on a rot
ing cylinder, plus a drag force. If the coupling is linear in th
excitation operators, the drag coefficients are governed
the dynamical susceptibility of the liquid. The consequen
of the equations of motion thus obtained, the asymptotic
locity of the vortex and the relation of the current descripti
to the phenomenological model are discussed in Sec.
where the perspectives of the present approach are also
lined.

II. THE HAMILTONIAN MODEL

Let us first summarize the description of the free motio
The Hamiltonian for a cylindrical vortex parallel to thez axis
in liquid helium at zero temperature is in charge of providi
the Magnus force.2 It reads
3792 © 1997 The American Physical Society
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Hv5
1

2M
@p2qA~r !#21MVvsy, ~2.1!

where

A~r !5
hrsl

2
~y,2x! ~2.2!

is the vector potential whose curl yields the vortex-veloci
dependent part of the Magnus force and the potential t
MVvsy gives the superfluid-velocity-dependent part of th
force. HereM is the dynamical mass of the vortex,rs de-
notes the number density of the superfluid,vs its velocity
along thex axis, assumed to be uniform,h is Planck’s con-
stant,l the system length along thez axis and

V5
qhrsl

M
. ~2.3!

The quantityq561 is the sign of the vorticity according t
the right handed convention. Furthermore, at zero temp
ture, rs coincides with the total density per unit massr/m,
beingm the mass of a helium atom.

At this point it is convenient to remember the existin
theoretical uncertainty regarding the vortex mass param
M that should appear in dynamical calculations13,15,16 and
keep in mind that in the phenomenological approaches3 the
dynamical regime of the vortex is that in which the Magn
force balances the drag plus any applied force.23 As stated in
the Introduction, our viewpoint here is identical to that
former authors2,10,11,13who assume a finite figure for the vo
tex inertia and consider the cyclotronlike motion of a fr
vortex as their starting point, with the frequencyV as the
leading parameter. Since it will be shown in Sec. IV that
dissipative motion is easily described in terms of the co
plex position variablez5x1 iy and the velocitydz/dt, we
here write the complex Hamilton equation that stems fr
Eq. ~2.1!

d2z

dt2
5 iVS dzdt 2vsD ~2.4!

with the complex Magnus force at the right-hand side.
We now assume liquid helium to contain elementary

citations. For nonvanishing temperaturesT, these excitations
can be of thermal origin and thus give rise to the norm
fluid, while at zero temperature they must be created by
external probe and yield a vanishing normal densityrn . If
T is above 1 K, the normal component is mainly a gas
rotons, the phonons being the dominant excitations at lo
temperatures. Therefore, at any temperature the interac
of the vortex line with these elementary excitations produ
damped motion of the vortex. As stated in the Introducti
the main goal of this article is to construct a Hamiltoni
model which enables us to obtain this dissipative behavi

For this purpose, we shall consider a description of qu
tum dissipation similar to that recently presented in orde
account for the irreversible evolution of solitons,24 in which
an effective Hamiltonian is constructed for the collecti
motion coupled to the residual excitations using the coll
tive coordinate formalism.25 This model exhibits unexpecte
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features26 due to the fact that both the system and the res
voir have the same microscopic origin, which is just the ca
here discussed.

In this spirit, and considering that within a superfluid
its ground state the vortex exhibits a solitonlike behavior,
propose a vortex-plus-reservoir Hamiltonian, that modifi
expression~2.1! as follows:

H5
1

2M
@p2qA~r !2lB#21MVvsy1HB ~2.5!

with B a vector function of operators that represents the
ementary excitations of the superfluid andHB is the Hamil-
tonian of these excitations. In Eq.~2.5! the interaction term
H int52lB•v couples the reservoir and the vortex throu
the unperturbed velocity of the latter, being

v5S pxM 2
V

2
y,
py
M

1
V

2
xD . ~2.6!

In the present approach, the Hermitian operatorB is as-
sociated to the creation of a density fluctuation in the liqu
and could then be labelled by a transferred momentumq. Up
to lowest order, one may have for each component of
vectorB

Bq5
Ôq
†1Ôq

A2
, ~2.7!

whereÔq
†(Ôq) is the Feynman-Cohen operator that crea

~destroys! a density fluctuation quantum, i.e., a phonon o
roton

Ôq
†5rq

†2
1

N(
kÞq

k•q

k2
rk
†rq2k

† , ~2.8!

being hereN the number of atoms in the liquid. Furthermor
we realize that the terml2B2/2M appearing in Eq.~2.5! can
be absorbed into the HamiltonianHB , which is in charge of
providing the equilibrium density vector of the reservoir.

III. THE GENERALIZED MASTER EQUATION

The Hamiltonian ~2.5! is of the form system-
plus-reservoir-plus-interaction.21 The standard reduction
projection procedure of nonequilibrium statistic
mechanics,20 enriched with the time convolutionless metho
developed by Chaturvedi and Shibata,22 has already proven
to be useful to derive a generalized master equation~GME!,
with time-dependent coefficients, for the density operatos
of a particle interacting with a heat reservoir in the wea
coupling–non-Markovian limit.27,28 In this case,s is the
density operator of the vortex and the generalized ma
equation reads26

ds

dt
1

i

\
@Hv ,s#52

l2

\2E
0

t

dt$†vx ,@vx~2t!,s#‡

1†vy ,@vy~2t!,s#‡%f~t!

2 i
l2

\2E
0

t

dt$†vx ,@vx~2t!,s#1‡

1†vy ,@vy~2t!,s#1‡%c~t!, ~3.1!
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where@a,b#1 denotes an anticommutator. In this expressi
the time dependent functionsf andc are the real and imagi
nary parts, respectively, of the correlation between heat b
operators,29

^Bj~t!Bj&5f~t!1 ic~t! ~3.2!

for j5x,y, assuming an isotropic reservoir. If the Hermitia
operatorBj is chosen according to Eqs.~2.7! and ~2.8!, the
function

Sq~t!5fq~t!1 icq~t! ~3.3!

is just the Fourier transform of the dynamical structure fac
S(q,v) of helium II and is experimentally known for a wid
range of transferred momenta.30,31

Notice that the GME is a differential, rather than an in
grodifferential, equation, since the unknowns under the in-
tegral sign is taken at timet; accordingly, it can be simplified
if we define the following time-dependent parameters,

M

2
g~ t !52

l2

\ E
0

t

dtc~t!sinVt, ~3.4!

M

2
m~ t !5

l2

\ E
0

t

dtc~t!cosVt, ~3.5!

and

C~ t !5
l2

\2E
0

t

dtf~t!cosVt. ~3.6!

The velocities appearing in Eq.~3.1! are those of the free
vortex displayed in Eq.~2.6! and their detailed time depen
dence is extracted from Hamilton’s equations correspond
to the Hamiltonian~2.1!, namely

vx~ t !5@vx~0!2vs#cosVt2vy~0!sinVt1vs ,

vy~ t !5@vx~0!2vs#sinVt1vy~0!cosVt. ~3.7!

In terms of these quantities and using Eqs.~3.4! to ~3.6!, we
can write

ds

dt
1

i

\
@Heff ,s#52C~ t !$†vx ,@vx ,s#‡1†vy ,@vy ,s#‡%

1
i

\

Mg~ t !

2
$†vx ,@vy ,s#1‡

2@vy ,@vx ,s#1#%. ~3.8!

The effective Hamiltonian contains a renormalization to
vortex mass, induced by the coupling to the thermal res
voir, plus a drift contribution. Its expression is

Heff5Hv1
Mm~ t !

2
~vx

21vy
2!1Mvsv~ t !vx2Mvsg~ t !vy ,

~3.9!

wherev(t)5m(t)uV502m(t). It is also worthwhile noticing
that, being the system translationally invariant on the (x,y)
plane, terms inHeff proportional tovx ,vy play no role in the
dynamics.
,
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r

-
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It is important to observe that the validity of the GM
~3.8! is more general than the weak-coupling approximat
case. Indeed, if one expands the integral, time-dependent
lisional kernel of the master equation in powers of the co
pling parameterl, as done, for instance, in Ref. 22, after
lengthy calculation one can realize that the form of the n
GME is identical to Eq.~3.8!, at least up to the fourth orde
in the expansion parameter, except for the fact that the c
ficients ~3.4! to ~3.6! become polynomials inl.

Finally, we should also mention that the most comm
assumptions considered in many applications are that the
ervoir is purely harmonic and/or that the interaction term
linear in its coordinates. If this is not the current case,
nonvanishing mean valueŝBj& must be considered26 and
modify the effective Hamiltonian~3.9!. However, the equa-
tions of motion that we shall derive in the next section
main invariant, since these extra terms can be removed
Galilean transformation. Moreover, it should be noticed
well that the correlation function̂Bk(t)Bj& for kÞ j , which
is in general a nonvanishing function, does not enter
~3.1!.

IV. THE EQUATIONS OF IRREVERSIBLE MOTION

We are now in a position to derive equations of moti
for expectation valueŝa& of arbitrary observablesa, which
can be cast in the form

d^a&
dt

1
i

\
^@a,Heff#&52C~ t !~^†@a,vx#,vx‡&1^†@a,vy#,vy‡&!

1
i

\

Mg~ t !

2
~^†@a,vx#,vy‡1&

2^@@a,vy#,vx#1&!. ~4.1!

In order to derive equations of motion for the position a
momentum components of the vortex we will restrict ou
selves to the Markovian limit; in other words, we consid
that the correlation indicated byf,c is short lived, within
the observational times. The parameters in Eqs.~3.4! and
~3.5! become then time independent and after some alge
elimination of the momentum permits us to write a uniq
complex differential equation for the expectation value of
velocity, that exhibits the effects of the coupling to the re
ervoir. This equation is

d2^z&
dt2

5 iVbS d^z&
dt

2vsD , ~4.2!

where the quantity that renormalizes the complex Mag
force is

b511m1 ig. ~4.3!

with m andg being the asymptotic values of Eqs.~3.5! and
~3.4! respectively.

We here realize that the reservoir constituted by the e
tations of the superfluid provides both a dissipative an
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conservative coupling, respectively measured by the par
etersg andm. This is in agreement with the structure of th
mutual friction force of the two fluid model.1–3 Moreover,
keeping in mind that if the density fluctuations of the sup
fluid carry a definite momentumq, the heat bath correlation
^BqBq(t)& is, to lowest order, just the Fourier transform
the dynamical structure factor, using standard relations
linear response theory32 one can readily show that

m1 ig5
l2l

2p\M
x~q,V!, ~4.4!

where x(q,V) is the dynamical susceptibility or respon
function of the liquid~per unit length! at momentumq and
energy\V. In the most general situation where thermal e
citations cover the whole momentum range, a summa
overq should be applied on the right-hand side of Eq.~4.4!.
A consequence of this result is that the temperature de
dence of the drag coefficients is provided by the variation
x(q,V) with T;31 it is then worthwhile to keep in mind tha
the harmonic oscillator heat bath employed in previous
vestigations of vortex coupling to excitations11,13 predicts a
temperature-independent dissipation strength.29 However, if
the reservoir operatorsBj are described by nonlinear func
tions of Ôq

† ,Ôq rather than by the Feynman-Cohen opera
~2.8!, it is possible to show that the drag coefficients van
at zero temperature;24,26 in such a case, the coupling is une
fective and the vortex moves freely governed by the Ham
tonian ~2.1!, as expected.

Equation~4.2! can be straightforwardly integrated, givin
a mean value of the complex velocity operator

d^z&
dt

5Fd^z&
dt U

t50
2vsGeiV~11m!te2Vgt1vs . ~4.5!

SinceVg is always a positive quantity, this expression co
tains exponential decay of the initial conditions, and the li
iting value of the vortex velocity is then the superfluid o
vs .

Let us now examine the situation as described by the p
nomenological theory1–3 where the drag force is written as

f D52~g01 ig08!S dzdt 2vnD , ~4.6!

whereg0 ,g08 are the strengths of the dissipative and cons
vative components andvn is the normal fluid velocity. It is
also assumed that when equilibrium is reached,f D can be
expressed in the form (a2 ia8)rsqh(vn2vs). If one solves
Newton’s equation for a point particle with massM moving
under the Magnus and the drag force~4.6!, one finds

dz

dt
5Fdzdt U t50

2vs2~a81 ia!~vn2vs!Gei ~V2g08 l /M !te2g0l t /M

1~a81 ia!~vn2vs!1vs , ~4.7!

wherea anda8 can be written in terms ofg0 andg08 as

a5rsqh
g0

~rsqh2g08!21g0
2 , ~4.8!
-

-

of

-
n

n-
f

-

r
h

l-

-
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e-

r-

a85
g0
21g08~g082rsqh!

~rsqh2g08!21g0
2 .

The inverse relationships givingg0 ,g08 in terms ofa,a8 can
be found in Ref. 2. We see that in this case, the asympt
velocity contains both the reactive and the resistive coe
cients. However, measurements of second sound attenu
in helium II at temperatures below 1.5 K give values f
a,a8 around 1022, providing thus a negligible correction t
the unperturbed velocityvs .

On the other hand, it is important to notice that accord
to the general equation~4.1! derived in this work, the expec
tation value of the free velocity operator~2.6!, whose com-
plex counterpart reads

v5
p

M
1 i

V

2
z ~4.9!

satisfies the evolution law

^v~ t !&5F ^v~0!&2vsS 12
m0

b D GeiVbt1vsS 12
m0

b D .
~4.10!

with m05mV50 @cf. Eq. ~3.5!#. Equation~4.10! is remark-
ably close to the above expression~4.7! for vanishing normal
fluid velocity. Indeed, for a normal fluid at rest, Eq.~4.10! is
of the form ~4.7!, with coefficientsg̃0 ,g̃08 ~or ã,ã8), given
by

V~m1 ig!52~ g̃082 i g̃0!
l

M
,

m0

b
5ã81 i ã. ~4.11!

Elimination ofm andg gives the relationship

ã5
rsqhg̃0

g̃ 0
21~rsqh2g̃08!2

um0u,

ã85
rsqh~ g̃082rsqh!

g̃ 0
21~rsqh2g̃08!2

um0u. ~4.12!

The interesting similitude between these relations and th
in Eqs.~4.8! gives support to the conjecture that the pres
model embodies substantial aspects of the mechanism
sponsible of damped vortex motion in superfluid helium. T
differences between the relationships characterizing the p
nomenological model in Eqs.~4.8! and the present ones i
Eqs.~4.12!, are due to the fact that the structure of the dr
force is not identical in both approaches. In fact, a close lo
at Eqs. ~4.2!, ~4.3!, and ~4.6! shows that the Hamiltonian
description gives rise to an extra component of the for
proportional to the relative two fluid velocityvn2vs . This
supplementary component is not removed by the assump
that the normal fluid lies at rest; however, it is also wort
while to keep in mind that the assumption that the drag fo
is proportional tov2vn applies under the hypothesis of va
ishing vortex mass.2 If one is interested in getting rid of the
extra force, a different model should be selected, so a
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bring the two fluid dynamics into the picture. Such an im
provement does not consist of a simple modification of
Hamiltonian~2.5!; instead, a totally different formulation i
required stemming from a Hamiltonian description of t
two fluids to which a suitable coupling is incorporated. Th
philosophy fits more specifically the spirit of macroscop
fluid dynamical models and is thus beyond the scope of
present work.

As a final remark, we wish to recall that every tim
dependent quantity here presented owes this dependen
the special model feature that makes room to a finite,
though unknown, inertial coefficient of the vortex. This p
rameter rules the evolution since it appears in both the c
servative and the decay time scale@cf. Eqs.~4.5!, ~4.7!, and
~4.10!#; we then realize that as pointed out in Ref. 10, e
perimental detection of the time-dependent regime wo
thus provide a means of measuring the vortex inertia
should be kept in mind that the present results concerning
dynamics cannot be extrapolated down toM50; in fact, the
free Hamiltonian ~2.1!, the frequency~2.3!, the vortex-
reservoir Hamiltonian~2.5! and the velocity~2.6! become
meaningless in such a case. However, the asymptotic ve
ity does not depend upon the mass, since its value cause
Magnus and the drift force to cancel each other in the
sence of inertial effects.

V. DISCUSSION AND SUMMARY

Let us now examine further the characteristics of
model here presented and its relationship to the phenom
logical description of dissipation. On the one hand, it is i
portant to keep in mind that the vortex mass is assume
vanish in the phenomenological two-fluid model of mutu
friction, where the velocity arises from the balance betwe
the Magnus and the drag forces; it should be noticed that
regime is also the time-asymptotic form of a Newton-li
equation of motion if the vortex mass is finite.3 The precise
value of the vortex inertial coefficient is thus not importa
in the limiting regime, although it influences the dynamics
finite times through the frequencyV @cf. Eqs. ~2.3! and
~4.7!#, which is the relevant parameter of the model. In t
context, it is important to keep in mind that the coupling
the thermal excitations further renormalizes the vortex ma
in fact, inspection of the effective Hamiltonian~3.9! shows
us that the kinetic energy has been changed
M (11m)v2/2.
J

-
e

,
e

to
l-

n-

-
d
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t
t
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On the other hand, the phenomenological theories in
duce a mutual friction whose drift and dissipative comp
nents are proportional to the relative two-fluid veloci
vn2vs . The vortex velocity, either with respect to the supe
fluid or to the normal one, is determined by the force balan
when inertial effects vanish; consequently, it depends u
the parameters of the drag. Instead, the present model sh
be regarded as a description in the reference frame of
normal fluid, i.e., bothvs andd^z&/dt refer to the local ve-
locity vn of the heat reservoir in the neighborhood of t
vortex. The coefficients that measure the drag effects t
depend upon the strength of the coupling to the thermal
citations and upon their dynamical response; however,
fluid dynamics of the elementary excitations is not explici
contemplated.

We believe that the model here presented covers m
aspects of the description of dissipative dynamics of a vor
line in helium II and opens possibilities towards further im
provements, among which, a definite one is the introduct
of the motion of elementary excitations, to properly accou
for mutual friction in the sense of phenomenological the
ries. With respect to previous calculations of the drag co
ficients carried, for example, in Refs. 4 and 5, our mod
being quantal in nature, is not subjected to either the lo
temperature limitations of a hydrodynamical description
pointed out in~Ref. 4!, or to uncertainties associated to
classical approach to the roton-vortex collisions.5 It may be
also mentioned that the model holds as well for vortex m
tion in liquid 3He; quantum statistics only enters the chara
terization of the excitations making the heat reservoir, wh
would consist of the zero sound phonons of the fermion
uid. No special differences with the present results would
expected in that case, except from the fact that the larger
size of vortices in3He could probably enlarge the inerti
parameterM with a subsequent decrease in the oscillat
frequencyV.
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