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Antiferromagnetic spin ladders with odd and even numbers of chains

Asimkumar Ghosh and Indrani Bose
Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Calcutta-700 009, India

~Received 1 August 1996; revised manuscript received 8 October 1996!

We construct frustrated antiferromagnetic spin ladders withm chains for which the exact ground state can be
determined in a particular parameter regime. The excitation spectrum is shown rigorously to be gapless~with
gap! for odd ~even! m. In a general parameter regime, the four-chain and periodic ladders are studied using a
mean-field theory based on the bond operator formalism for spinS5

1
2. The excitation spectrum and the spin

gap are calculated in both the cases. The spin gap of the frustrated ladder system has a larger magnitude than
in the case of nonfrustrated ladders. For the frustrated periodic ladder, the spin gap vanishes at a critical value
of the interladder coupling strength which is larger than the critical value in the case of nonfrustrated periodic
ladders.@S0163-1829~97!06605-8#
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I. INTRODUCTION

Antiferromagnetic~AFM! spinS51/2 ladders have bee
extensively studied in recent times as the ladder interpol
between the one-dimensional~1D! chain and 2D plane.1 The
S51/2 Heisenberg AFM chain is exactly solvable using t
well-known Bethe ansatz.2 The ground state is disordere
and characterized by a power-law decay of the two-spin c
relation function. The excitation spectrum is known to
gapless. The planar~square lattice! S51/2 AFM with
nearest-neighbor coupling shows long-range AFM orde
zero temperature and the excitation spectrum is gapless

The copper-oxide planes of the high-Tc cuprate systems
in the undoped state serve as good examples of 2D AF
defined on the square lattice. This fact has sparked rene
interest in the study of low-dimensional AFM’s. One partic
larly interesting problem is to study the crossover from AF
chains to the square lattice. The crossover can be unders
by examiningn-chain spin ladders with increasing width
Such studies have yielded the surprising result that for
~even! values ofn, the excitation spectrum is gapless~with
gap!. Ladders consisting of an even number of chains hav
spin liquid ground state with exponential decay of the tw
spin correlation function. The spin-1 excitation of the ladd
has a finite energy gap. A ladder with an odd number
chains has quite different behavior and displays characte
tics similar to those of single chains, namely, gapless s
excitations and a power-law decay of the two-spin corre
tions. The significant difference between even-chain a
odd-chain ladders can be attributed to quantum effects.

The compound~VO! 2P2O7 has a two-chain ladder con
figuration of spin-1/2 V41 ions.3 Real compounds like sto
ichiometric Srn21Cun11O2n (n53,5,7,9, . . . ) ~Ref. 4! can
be described bym-chain spin ladders withm5(n11)/2.
Spin susceptibility and nuclear magnetic resonance~NMR!
experiments on the two-chain ladder systems show the e
ence of a gap in the excitation spectrum. Neutron scatte
and muon spin resonance experiments give clear sign
short-range spin order in the two-chain ladders.1 Three-chain
ladders~Sr2Cu3O5) by contrast show longer-range spin co
relations and a gapless spectrum. There is also true lo
550163-1829/97/55~6!/3613~7!/$10.00
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range order at low temperatures brought about by weak
terladder interactions.1

Some theoretical studies have been undertaken recent
understand the ‘‘odd-even’’ effect of spin ladders. Reigrotz
et al.5 have studied the properties of spin ladders with tw
three, and four chains expanded in the ratio of the intrach
and interchain coupling constants. Khveshchenko6 has
shown that for odd-chain ladders a topological term appe
in the effective action corresponding to the dynamics at lo
wavelengths. For even-chain ladders there is no such te
This topological term is similar to the one responsible for t
difference between integer and half-odd integer spin cha
Integer spin chains have a gap~the Haldane gap! in the ex-
citation spectrum whereas half-odd integer spin chains
gapless. Recent studies7,8 have shown that two-chain spi
ladders with both ferromagnetic and antiferromagnetic ru
exchange interactions are Haldane gap systems in the ap
priate limits. Rojo9 has further given a rigorous proof for th
absence of a gap for spin-1/2 ladders with an odd numbe
chains in the infinite chain length limit.

In this paper, we construct models of spin ladders w
odd and even numbers of chains for which the exact gro
states can be determined and the ‘‘odd-even’’ effect ass
ated with the excitation spectrum of ladders can be dem
strated rigorously. In Sec. II, a description of the ladders
given and the ground and first excited states determined
Sec. III, the properties of a four-chain ladder are stud
using a mean-field theory based on the bond oper
formalism.4,10 The calculations are further extended to pe
odic ladders. Section IV contains concluding remarks.

II. MODEL SPIN LADDERS

Bose and Gayen11–13 have constructed a two-chain sp
ladder model for which several exact results can be deri
both in the undoped and hole-doped states. The ladde
shown in Fig. 1. Every site is occupied by a spin of mag
tude 1/2. The spins interact with Heisenberg AFM exchan
interaction. The nearest-neighbor~NN! intrachain exchange
interaction is of strengthb, and the rung and NN diagona
exchange interactions are of strengthsa andg, respectively.
For b5g anda/b>2, Bose and Gayen11 showed that the
3613 © 1997 The American Physical Society
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3614 55ASIMKUMAR GHOSH AND INDRANI BOSE
exact ground state consists of singlet spin configurati
@(1/A2)(↑↓2↓↑)# along the rungs of the ladder. We co
struct spin ladders of increasing width by adding chains
stipulating that alternate two-chain ladders have no diago
exchange inteactions. The spins located in the rungs of
model interact via the ‘‘sawtooth-chain’’ interaction. Such
chain is illustrated in Fig. 2. In Figs. 3~a! and 3~b!, the spin
ladders with three and four chains, respectively, are sho
For both odd- and even-chain spin ladders one can w
down an exact eigenstate which is also the exact ground
in an appropriate parameter regime. The exact eigenstat
an even-chain spin ladder consists of spin singlets along
rungs of two-chain ladders with diagonal exchange inter
tions. The proof of the eigenstate can be easily obtained
ing the spin identitySn•(Sl1Sm)@ lm#[0 where @ lm# de-
scribes a spin singlet of spins at sitesl andm. Let h be the
strength of the exchange interaction between the n
nearest-neighbor~NNN! spins along the rungs. The rung e
change interactions for two chain ladders without diago
interactions are of strengthj. Consider the parameter regim
b5g5j5h anda/b> 3. In this regime, the exact eigen
state described before becomes the exact ground state
proof of the exact ground state can be obtained by using
well-known method of ‘‘divide and conquer.’’11,14Let E1 be
the energy of the exact eigenstate andEG the energy of the
exact ground state. ThenEG<E1. For the specified eigen
stateE1523Na/4 whereN is the total number of NN ver-
tical bonds~rungs! in the system along which singlets form
in the ground state. The total spin HamiltonianH can be
divided into two partsHL and HS . HL describes the ex
change interactions of all the two-chain ladders in the sys
with diagonal interactions. Each such ladder has excha
interaction strengthsa1 (a1> 2b), b, andb for the rung,
intrachain NN, and diagonal interactions, respectively. T
exact ground state energyEL523Na1/4.HS corresponds to
all the rung interactions in the system having the geometr
structure of sawtooth chains. All the spin-spin interactions
the sawtooth are of strengthb. The ground state energ
ES523Nb/4. LetCG be the exact ground state wave fun
tion. Then, by the variational theorem,

FIG. 1. The two-chain ladder with rung, horizontal, and diag
nal exchange interactions of strengthsa,b, andg and depicted by
dashed~bold!, solid ~bold!, and solid~thin! lines, respectively.

FIG. 2. The sawtooth chain with three different interactons
strengthsa, j, andh and depicted by dashed~bold!, dashed~thin!,
and dot-dashed lines, respectively.
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^CGuHuCG&5EG5$^CGuHLuCG&1^CGuHSuCG&%,

i.e.,E1>EG>EL1ES .
Now, E1523Na/4 (a5a11b>3b!5EL1ES . So E1

5EG and the exact eigenstate is also the exact ground st
For a spin ladder of an odd number of chains, all the cha
except one belong to the two-chain ladders with diagon
exchange interactions. Again, in the parameter regim
a> 3b andb5g5j5h, the exact ground state consists o
spin singlets along the rungs of the two-chain ladders w
diagonal interactions and the isolated chain has a spin c
figuration corresponding to that of the Heisenberg AF
~HAFM! chain. The proof of exact ground state is similar t
that for even-chain ladders.

We now consider the excited states of the system. F
odd-chain ladders, the lowest-lying excited state is the trip
(S51) excitation of the HAFM chain. The excitation energ
is given by15

v5
p

2
busin~q!u, ~2.1!

whereq is the momentum wave vector with respect to that
the chain ground state. The excitation is confined to the ch
which does not belong to the two-chain ladders with diag

-

f

FIG. 3. The three-chain ladder with five different interactions
strengthsa, b, g, j, andh and depicted by dashed~bold!, solid
~bold!, solid ~thin!, dashed~thin!, and dot-dashed lines, respec
tively. ~b! The four-chain ladder with five different interactions o
strengthsa, b, g, j, andh.
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55 3615ANTIFERROMAGNETIC SPIN LADDERS WITH ODD AND . . .
nal couplings. The spectrum is gapless forq50 andp. In
the spin-ladder systems considered, a periodic boundary
dition is assumed to hold true in the horizontal (x) direction.
The ladder has infinite length in this direction. For the tw
chain spin ladder shown in Fig. 1 and in the parameter
gime under consideration, the lowest excited states consi
a triplet along one of the rungs. The excitation energy m
sured with respect to the ground state energy isa which is a
measure of the spin gap. The triplet excitation is localiz
and has no dynamics in thex direction. For an even-chain
ladder, the spin dynamics is only in the verticaly direction
and the lowest excited state corresponds to that of the s
tooth chain. Consider the four-chain ladder shown
Fig. 3~b!. Exact diagonalization of four-sited sawtoo
chain shows that the first excited state has ene
@2(11A33)/4#b. The energy measured with respect to t
ground state energy,2 18b/4, gives a spin gap which is les
thana53b, the spin gap for the two-chain ladder. The sp
gap thus decreases in magnitude as the number of chai
the even-chain ladder increases from 2 to 4. In the next
tion, we consider more general parameter regimes in wh
the exact ground and excited states are not known. We s
the even-chain ladders only and determine the excita
spectrum and spin gap for both the four-chain and perio
ladders.

III. FOUR-CHAIN AND PERIODIC LADDER

The properties of a two-chain spin ladder are alrea
known in the mean-field theory.16 The Hamiltonian is given
by ~Fig. 1!

H5(
i

$aSi•Si81b~Si8•Si118 1Si•Si11!

1g~Si•Si118 1Si8•Si11!%. ~3.1!

The ground state is assumed to be in a dimerized phase
the singlet dimers located along the rungs. The bond oper
representation ofS51/2 spins is used to study the properti
of dimerized phases. We consider two spins (S51/2! Si8 and
Si placed on each rung. The Hilbert space consists of f
states which in appropriate combinations describe the sin
us& and the three tripletutx&,uty&, andutz& states. These state
are created out of the vacuumu0& by the singlet and triplet
creation operators

us&5s†u0&5
1

A2
~ u↑↓&2u↓↑&),

utx&5tx
†u0&52

1

A2
~ u↑↑&2u↓↓&),

uty&5ty
†u0&5

i

A2
~ u↑↑&1u↓↓&),

utz&5tz
†u0&5

1

A2
~ u↑↓&1u↓↑&). ~3.2!
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The spinsSi8 andSi , in terms of the singlet and triplet spi
operators, are given by4,10

Sia8 5 1
2 ~si

†t ia1t ia
† si2 i eabgt ib

† t ig!, ~3.3!

Sia5 1
2 ~2si

†t ia2t ia
† si2 i eabgt ib

† t ig!. ~3.4!

a, b, andg are the components along thex, y, andz axes,
respectively, ande is the Levi-Civitàsymbol and represent
the totally antisymmetric tensor. All repeated indices ov
a, b, andg are assumed to be summed over.

A constraint of the form

s†s1ta
† ta5 1 ~3.5!

is assumed to hold true for each dimer so that the phys
states can be either singlets or triplets. The singlet and tri
operators at each site satisfy bosonic commutation relati

@s,s†#5 1, @ ta ,tb
† #5dab , @s,ta

† #5 0. ~3.6!

One now substitutes the operator representation of s
given in Eqs.~3.3! and ~3.4! into the original Hamiltonian
@Eq. ~3.1!#. A site-dependent chemical potentialm i is in-
cluded in the Hamiltonian to impose the constraint of E
~3.5!. The transformed Hamiltonian can be solved by
mean-field decoupling of the quartic terms containing t
s and twot operators as well as fourt operators. One take
^si&5 s̄ and replaces the local constraintm i by a global one
m. One also defines two mean fields as

P5^t ia
† t i11,a&, Q5^t iat i11a& ~3.7!

Next, a Fourier transformation of the operators is taken. T
resultant Hamiltonian can be diagonalized by the Bogo
ubov transformation. Since the details of the calculation
available elsewhere,4 we quote the final results. The diago
nalized mean-field HamiltonianHm(m, s̄, P, Q) is given
by

Hm~m,s̄,P,Q!5N~2 3
4 s̄

2a2m s̄21m!

2
N

2
~a/42m!2

Nl2

3
~P22Q2!

1(
k

vk~gk
†gk1

1
2 !, ~3.8!

where

vk5ALk
22~2Dk!

2, ~3.9!

Lk5S a

4
2m D1S l1s̄

21
2 Pl2

3 D cosk,
Dk5S l1s̄

2

2
2
Ql2

3 D cosk,
l15~b2g!,

l25~b1g!. ~3.10!

The parametersm, s̄, P, andQ can be determined from
appropriate self-consistent equations and the spin gapD is
given by
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D5AS a

4
2m2

2 l2

3
~P1Q! D S a

4
2m2 2l1s̄

22
2 l2

3
~P2Q! D . ~3.11!

We now consider the four-chain spin ladder shown in Fig. 3~b!. The number of two-chain spin ladders is 2 and they
designated as left~top! and right~bottom! ladders. The two ladders are coupled by exchange interaction of strengthj. The
Hamiltonian describing the system is given by

H5(
i

$a~Sl i •Sl i8 1Sri •Sri8 !1b~Sl i8 •Sl i118 1Sl i •Sl i111Sri8 •Sri118 1Sri •Sri11!

1g~Sl i8 •Sl i111Sl i •Sl i118 1Sri8 •Sri111Sri •Sri118 !1hSl i8 •Sri8 1jSl i •Sri8 %. ~3.12!

The spin operators are expressed in terms of the singlet and triplet bond operators through the transformations give
~3.3! and ~3.4!. The transformed Hamiltonian is given by

H5(
i

H (
m5 l ,r

Fa~2 3
4smi

† smi1
1
4 tmia

† tmia!2mmi~smi
† smi1tmia

† tmia2 1!

1
l1

2
~ tmia
† tmi11 asmi11

† smi1tmia
† tmi11 a

† smi11smi1H.c.!2
l2

2
eabgeab8g8tmib

† tmi11 gtmib8
† tmi11 g8G

1
l3

4
~sli

† t l i at ri asri
† 1sli

† t l i at ri a
† sri1H.c.!2

l4

4
eabgeab8g8t l i b

† t l i gt ri b8
† t ri g8J , ~3.13!

where

l15b2g, l25b1g, l35h2j, l45h1j, ~3.14!

and wherem denotes the ladder index, left (l ) or right (r ) andmmi is the chemical potential which has been introduced to t
account of the constraint specified in Eq.~3.5!. One takes the expectation value^smi&5 s̄ and the local chemical potentia
mmi is replaced by the global onem. We perform a Fourier transformation of the operatorstmia5(1/AN)(ktmkae

2 ik•r i where
N is the number of dimers or rungs in a two-chain ladder andk is the wave vector along the ladder axis. The Fouri
transformed Hamiltonian is given by

H5 2N~2 3
4a s̄22m s̄21m!2 2

3l2N~P22Q2!2 1
6l4N~P8 22Q8 2!

1(
k

H (
m5 l ,r

@Aktmka
† tmka1Bk~ tmka

† tm2ka
† 1tmkatm2ka!#1C~ t lka

† t rka1t rka
† t lka!1D~ t lka

† t r2ka
† 1t lkat r2ka!J ,

~3.15!
w

nd
whereAk , Bk , C, andD are defined as

Ak5
a

4
2m1~l1s̄

21 2
3l2P!cosk,

Bk5~ 1
2 l1s̄

22 1
3l2Q!cosk,

C5 1
4l3s̄

21 1
6l4P8,

D5 1
4l3s̄

22 1
6l4Q8. ~3.16!

P, Q, P8, andQ8 are the four mean fields,

P5^tmia
† tmi11 a&, Q5^tmiatmi11 a&,

P85^t ri a
† t l i a&, Q85^t ri at l i a&.

We now perform a Bogolyubov transformation into two ne
boson operators in terms of thet operators of the left- and
right-hand ladders as
t1, 2ka5
1

A2
@~coshu1, 2kt lka1sinhu1, 2kt l2ka

† !

6~coshu1, 2ktrka1sinhu1, 2ktr2ka
† !#. ~3.17!

These are symmetric~bonding! and antisymmetric~anti-
bonding! combinations of the transformations in the left a
right ladders. The Hamiltonian@Eq. ~3.15!# can now be di-
agonalized to obtain

Hm~m,s̄,P,Q,P8,Q8!

5 2N~2 3
4a s̄22m s̄21m!2NS a

4
2m D 2 2

3 l2N~P22Q2!

2 1
6l4N~P8 22Q8 2!1 (

k,m51, 2
vmk~tmk

† tmk1
1
2 !, ~3.18!

wherev1, 2k is defined as

v1, 2k5A~C7Ak!
22~2Bk7D !2. ~3.19!
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The spin-triplet excitation spectrum of the four-chain ladd
consists of two branches corresponding to the bonding
antibonding states. The magnitude of the splitting of the t
branches is determined byl3 andl4. Thus the two branche
collapse into a single branch, when bothh5 0,j5 0 as in
the case of a single two-chain ladder.

Equation~3.19! describes the triplet excitation spectru
in a general parameter regime. The parame
m, s̄, P, Q, P8, andQ8 in the excitation spectrum ar
determined by solving the saddle-point equations

K dHm

dm L 5 0, K dHm

d s̄
L 5 0, K dHm

dP L 5 0,

K dHm

dQ L 5 0, K dHm

dP8 L 5 0, K dHm

dQ8 L 5 0. ~3.20!

At T5 0, the mean-field equations are obtained as

s̄25
3

2
1

1

8pE SC2Ak

v1
2
C1Ak

v2
Ddk,

P52
1

8pE SC2Ak

v1
2
C1Ak

v2
D coskdk,

Q52
1

8pE S 2Bk2D

v1
1
2Bk1D

v2
D coskdk,

P85
1

8pE SC2Ak

v1
1
C1Ak

v2
Ddk,

Q85
1

8pE S 2Bk2D

v1
2
2Bk1D

v2
Ddk,

m52 0.75a1l1~P1Q!1
l3

4
~P81Q8!. ~3.21!

Figure 4 shows the spin-triplet excitation spectrum of
four-chain ladder for the exchange interaction streng
b5 2g5 1 andj5 2h5 1, in units ofa. Figure 5 shows
the spin gap of the four-chain ladder versusj for b5 1,
h5j/2, andg5 0.5, in units ofa.

The ground state energy of the ladder system in the g
eral parameter regime is given by

Eg5 2N~2 3
4a s̄22m s̄21m!2NS a

4
2m D2 2

3l2N~P22Q2!

2 1
6l4N~P8 22Q8 2!1

1

2 (
k,m51, 2

vmk .

The parameter regime includes the pointa> 3b,
b5g5j5h at which the ground state and the correspo
ing energy are exactly known. For these parameter val
l15 0, l35 0 andl25 2b, l45 2b. Also, the four mean
fieldsP, Q, P8, andQ8 are zero,s̄25 1 andm520.75a.

From Eq.~3.19!, one then obtains a single excitation spe
trum of energyvk5a; i.e., the spectrum is dispersionles
The ground state energyEg becomes
r
d
o

rs

e
s

n-

-
s,

-

Eg5 2N~2 3
4a s̄22m s̄21m!2NS a

4
2m D1

1

2 (
k,m5 1, 2

vmk

52 3
2aN,

which is equal to the exact ground state energy. The me
field theory based on the bond operator formalism thus
produces the correct ground state energy in the approp
limit of the coupling parameters.

Next we consider a periodic array of ladders, i.e., consi
the full square lattice with exchange interactions as speci
before. The problem of interest is to find the value of t
interladder interaction strengthj at which the spin gap dis
appears. For the usual square latticeS51/2 HAFM with only

FIG. 4. The triplet excitation spectrum@bonding and antibond-
ing states of Eq.~3.19!# of the four-chain ladder with exchang
interaction strengthsb5 2g5 1, andj5 2h5 1, in units ofa.

FIG. 5. The spin gapD of the four-chain ladder vsj, for
h5j/2, b5 1, andg5 0.5, in units ofa.
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3618 55ASIMKUMAR GHOSH AND INDRANI BOSE
NN interactions, long-range AFM order exists in the grou
state and the spin gap is expected to vanish at a critical v
of the interladder exchange interactionj(h5 0,g5 0 in this
case!. The value obtained by Gopalanet al. is j 5 0.25. The
spin-ladder model constructed by us has not only NN
NNN ~along the rungs! as well as diagonal interactions. It
of interest to determine whether for this model also the s
gap vanishes at a critical value ofj. Using the formalism
already developed, we obtain the self-consistent equatio

s̄25
3

2
1

1

8p2E E Ck2Ak

v
dk,

P52
1

8p2E E Ck2Ak

v
coskxdk,

Q52
1

8p2E E 2Bk2Dk

v
coskxdk,

P85
1

8p2E E Ck2Ak

v
coskydk,

Q85
1

8p2E E 2Bk2Dk

v
coskydk,

m52 0.75a1l1~P1Q!1
l3

2
~P81Q8!, ~3.22!

whereAk , Bk , Ck , andDk are

Ak5
a

4
2m1~l1s̄

21 2
3l2P!coskx ,

Bk5~ 1
2l1s̄

22 1
3l2Q!coskx ,

Ck5~ 1
2l3s̄

21 1
3l4P8!cosky ,

Dk5~ 1
2l3s̄

22 1
3l4Q8!cosky . ~3.23!

Also, k is a two-dimensional wave vector with componen
kx ~along the ladder axis! and ky ~across the ladders!. The
excitation spectrumvk is given by

vk5A~Ck2Ak!
22~2Bk2Dk!

2. ~3.24!

The excitation spectrumvk has a minimum atk5(p, 0).
Figure 6 shows a plot of the spin gapD versus j for
b5 1,g 5 0.5, andh5j/2, in units ofa. The spin gapD
vanishes forj5 0.33.

IV. CONCLUSIONS

We have constructed spin ladders with odd and e
numbers of chains for which in a particular parameter reg
the exact ground state can be written down. It can furthe
shown rigorously that the excitation spectrum is gapl
~with a gap! for an odd~even! number of chains. The mean
field theory based on the bond operator formalism has b
applied to ladders with an even number of chains in a gen
parameter regime. Both the formalism and the results
tained are similar to those of Gopalanet al.4 for spin ladders
ue

t

n

n
e
e
s

en
al
b-

which differ from ours in that the diagonal and NNN inte
actions along the rung are absent. One significant differe
is in the inclusion of terms containing four triplet operato
in our mean-field theory. For the ladder models conside
by Gopalanet al. these terms have a negligible contributio
and so have been ignored. In the present case, the term
no longer be neglected. The results of Gopalanet al.4 can be
recovered from our results by puttingg50,h50. Inclusion
of these extra interactions has the effect of renormalizing
original coupling parameters of the Hamiltonian when e
pressed in terms of the singlet and triplet operators. For
four-chain spin ladder considered in Ref. 4, the coupl
parametersb2g and h2j in Eq. ~3.14! are b and 2j,
respectively. The inclusion of frustrating further-neighbor i
teractions in our model has the effect of increasing the s
gap. For the periodic ladder, the spin gap vanishes atj 5
0.33 ~Fig. 6!. The decrease of the spin gap withj is ex-
plained by the delocalization of the singlets across the l
ders. The decrease of the gap is faster than that of a f
chain ladder.

The mean-field theory based on the bond operator form
ism reproduces the exact ground state energy in the ap
priate limit. The same is true for two other spin models in 1
and 2D, namely, the Majumdar-Ghosh chain17 and theJ1-
J2-J3-J4-J5 model proposed by Bose and Mitra.18,19

The ground state of both the models can be determi
exactly at particular values of the parameters. The gro
states consist of a periodic arrangement of dimers. Me
field theory based on the bond operator formalism de
mines the ground-state energy correctly in the exactly so
able limit. In the same limit, the mean-field theory yields
dispersionless excitation spectrum for both the spin mod
This is also true for the ladder spin system, signifying th
the three spin models share common features.

The sawtooth chain which describes the exchange in
actions along the rungs of the ladder system has been stu
earlier by Kubo.20 The ground state of the chain is doub

FIG. 6. The spin gapD of the periodic ladder vsj, for
h5j/2, b5 1, andg5 0.5, in units ofa. The spin gap vanishes
for j5 0.33.
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degenerate and the spin dynamics is described in term
kink and antikink excitations.

Consider the parameter regime in which the exact gro
state of the ladder system is known. The sawtooth ch
interactions are now~Fig. 2! h5j5a/3. In this case the
ground state is nondegenerate with spin singlets form
along the stronger bonds. Kink and antikink excitatio
which can be considered as spin defects separating the
degenerate ground states are absent in this case. Spin e
tions are now created if one of the singlets is replaced b
co

n

.

of

d
in

g
s
wo
ita-
a

triplet and the triplet is allowed to propagate. In a sawtoo
chain with doubly degenerate ground states these excitat
have a higher energy than the kink and antikink excitatio
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