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Antiferromagnetic spin ladders with odd and even numbers of chains
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We construct frustrated antiferromagnetic spin ladders mitthains for which the exact ground state can be
determined in a particular parameter regime. The excitation spectrum is shown rigorously to be (@éfiiess
gap for odd (even m. In a general parameter regime, the four-chain and periodic ladders are studied using a
mean-field theory based on the bond operator formalism forSpié. The excitation spectrum and the spin
gap are calculated in both the cases. The spin gap of the frustrated ladder system has a larger magnitude than
in the case of nonfrustrated ladders. For the frustrated periodic ladder, the spin gap vanishes at a critical value
of the interladder coupling strength which is larger than the critical value in the case of nonfrustrated periodic
ladders[S0163-18207)06605-§

[. INTRODUCTION range order at low temperatures brought about by weak in-
terladder interactions.

Antiferromagnetic(AFM) spin S=1/2 ladders have been Some theoretical studies have been undertaken recently to
extensively studied in recent times as the ladder interpolategnderstand the “odd-even” effect of spin ladders. Reigrotzki
between the one-dimensior@D) chain and 2D planéThe €t al® have studied the properties of spin ladders with two,
S=1/2 Heisenberg AFM chain is exactly solvable using thethree,_ and fou_r chains _expanded in the ratio of the intrachain
well-known Bethe ansazThe ground state is disordered @nd interchain coupling constants. Khveshchénkms
and characterized by a power-law decay of the two-spin corSNown that for odd-chain ladders a topological term appears
relation function. The excitation spectrum is known to beln the €ffective action corresponding to the dynamics at long
gapless. The planafsquare lattice S=1/2 AFM with wavelengths. For even-chain ladders there is no such term.

nearest-neighbor coupling shows long-range AFM order aj[I'h|s topological term is similar to the one responsible for the

zero temperature and the excitation spectrum is gapless difference between integer and half-odd integer spin chains.
The copper-oxide planes of the high-cuprate systems Integer spin chains have a gape Haldane gapn the ex-

in th doned q | o ,Citation spectrum whereas half-odd integer spin chains are
in the undoped state serve as good examples of 2D AFM'§55jess. Recent studiéshave shown that two-chain spin

defined on the square lattice. This fact has sparked renewgggqers with both ferromagnetic and antiferromagnetic rung
interest in the study of low-dimensional AFM's. One particu- eychange interactions are Haldane gap systems in the appro-
larly interesting problem is to study the crossover from AFM priate limits. Roj8 has further given a rigorous proof for the
chains to the square lattice. The crossover can be understog@sence of a gap for spin-1/2 ladders with an odd number of
by examiningn-chain spin ladders with increasing width. chains in the infinite chain length limit.
Such studies have yielded the surprising result that for odd In this paper, we construct models of spin ladders with
(even values ofn, the excitation spectrum is gaple@sith odd and even numbers of chains for which the exact ground
gap. Ladders consisting of an even number of chains have atates can be determined and the “odd-even” effect associ-
spin liquid ground state with exponential decay of the two-ated with the excitation spectrum of ladders can be demon-
spin correlation function. The spin-1 excitation of the ladderstrated rigorously. In Sec. I, a description of the ladders is
has a finite energy gap. A ladder with an odd number ofdiven and the ground and first excited states determined. In
chains has quite different behavior and displays characterissec. Ill, the properties of a four-chain ladder are studied
tics similar to those of single chains, namely, gapless spitising a mean-field theory based on the bond operator
excitations and a power-law decay of the two-spin correlaformalism**° The calculations are further extended to peri-
tions. The significant difference between even-chain anddic ladders. Section IV contains concluding remarks.
odd-chain ladders can be attributed to quantum effects.
The compoundVO),P,0; has a two-chain ladder con-
figuration of spin-1/2 \V* ions® Real compounds like sto-
ichiometric Sr,_;Cu,,,0,, (n=3,5,7,9...) (Ref. 4 can Bose and Gayén ' have constructed a two-chain spin
be described bym-chain spin ladders withm=(n+1)/2. ladder model for which several exact results can be derived
Spin susceptibility and nuclear magnetic resonafit®R)  both in the undoped and hole-doped states. The ladder is
experiments on the two-chain ladder systems show the exisshown in Fig. 1. Every site is occupied by a spin of magni-
ence of a gap in the excitation spectrum. Neutron scatterintyde 1/2. The spins interact with Heisenberg AFM exchange
and muon spin resonance experiments give clear signs dfiteraction. The nearest-neighb@N) intrachain exchange
short-range spin order in the two-chain laddefiree-chain  interaction is of strengttB, and the rung and NN diagonal
ladders(Sr,Cu;Os) by contrast show longer-range spin cor- exchange interactions are of strengthand y, respectively.
relations and a gapless spectrum. There is also true longror 8=y and a/3=2, Bose and Gayéh showed that the
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FIG. 1. The two-chain ladder with rung, horizontal, and diago-
nal exchange interactions of strengthg3, and y and depicted by (a)
dashedbold), solid (bold), and solid(thin) lines, respectively.

exact ground state consists of singlet spin configurations /
[(1\2)(11—11)] along the rungs of the ladder. We con- ,-'
struct spin ladders of increasing width by adding chains and
stipulating that alternate two-chain ladders have no diagonal
exchange inteactions. The spins located in the rungs of the '\.\
model interact via the “sawtooth-chain” interaction. Such a
chain is illustrated in Fig. 2. In Figs.(8® and 3b), the spin
ladders with three and four chains, respectively, are shown.
For both odd- and even-chain spin ladders one can write
down an exact eigenstate which is also the exact ground state
in an appropriate parameter regime. The exact eigenstate for
an even-chain spin ladder consists of spin singlets along the -

. SIStS . —----z — = 3
rungs of two-chain ladders with diagonal exchange interac-

tions. The proof of the eigenstate can be easily obtained us- - =8 e m— 5@
ing the spin identityS,- (§+S,)[Im]=0 where[Im] de-

scribes a spin singlet of spins at sileandm. Let » be the () —+—:—-- =

strength of the exchange interaction between the next-

nearest-neighbaiNNN) spins along the rungs. The rung ex-

change interactions for two chain ladders without diagonal FIG. 3. The three-chain ladder with five different interactions of
interactions are of strength Consider the parameter regime Strengthsz, B, v, & andz and depicted by dashetlold), solid
B=vy=¢=17 and a/B= 3. In this regime, the exact eigen- (_bold), solid (thin), das_hed(thln), gnd _dot-c_iashed _Ilnes, respec-
state described before becomes the exact ground state. Tﬁ\éely. (b) The four-chain ladder with five different interactions of
proof of the exact ground state can be obtained by using th&irengthse, 8. v, & andz.

well-known method of “divide and conquer'®***Let E, be

the energy of the exact eigenstate dfylthe energy of the (VolH[We)=Ec={(Ws|HL|Ve)+(Vs|HdVe)},

exact ground state. ThelB;<E,. For the specified eigen-

stateE;= —3Na/4 whereN is the total number of NN ver- i.e.,E;=Eg=E, +Eg.

tical bonds(rungs in the system along which singlets form  Now, E;=—3Na/4 (a=a;+B=38)=E +Egs. So E;

in the ground state. The total spin Hamiltoniehcan be =Eg and the exact eigenstate is also the exact ground state.
divided into two partsH, and Hg. H, describes the ex- For a spin ladder of an odd number of chains, all the chains
change interactions of all the two-chain ladders in the systerexcept one belong to the two-chain ladders with diagonal
with diagonal interactions. Each such ladder has exchangexchange interactions. Again, in the parameter regime
interaction strengths; («,= 28), B, and g for the rung, «= 3B andB=y=§¢= 7, the exact ground state consists of
intrachain NN, and diagonal interactions, respectively. Thespin singlets along the rungs of the two-chain ladders with
exact ground state ener@y = —3Na;/4. Hg corresponds to  diagonal interactions and the isolated chain has a spin con-
all the rung interactions in the system having the geometricdiiguration corresponding to that of the Heisenberg AFM
structure of sawtooth chains. All the spin-spin interactions i(HAFM) chain. The proof of exact ground state is similar to
the sawtooth are of strengtB. The ground state energy that for even-chain ladders.

Es=—3Np/4. Let 5 be the exact ground state wave func- We now consider the excited states of the system. For

tion. Then, by the variational theorem, odd-chain ladders, the lowest-lying excited state is the triplet
(S=1) excitation of the HAFM chain. The excitation energy
A~ A A A ~ is given by®
/ \\\ / \\ / \\\ 4 \\\ /N
/ \\\ / \\ / \\ / \\\ / \\
4PN, ¥ SV UV A VRN -
0= Blsing)], 2.0
——— - Z - =% ----- =

FIG. 2. The sawtooth chain with three different interactons ofwhereq is the momentum wave vector with respect to that of
strengthsy, &, and# and depicted by dashébold), dashedthin), the chain ground state. The excitation is confined to the chain
and dot-dashed lines, respectively. which does not belong to the two-chain ladders with diago-
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nal couplings. The spectrum is gapless €pr 0 and . In
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The spinsS' andS;, in terms of the singlet and triplet spin

the spin-ladder systems considered, a periodic boundary copperators, are given By°

dition is assumed to hold true in the horizonta) @irection.
The ladder has infinite length in this direction. For the two-

chain spin ladder shown in Fig. 1 and in the parameter re-
gime under consideration, the lowest excited states consist of
a triplet along one of the rungs. The excitation energy mea-

sured with respect to the ground state energy ishich is a
measure of the spin gap. The triplet excitation is localize
and has no dynamics in thedirection. For an even-chain
ladder, the spin dynamics is only in the vertigatirection

Slla:%(Si-rtia_’_ti-rasi_i6aﬁ‘yti‘rﬁti'y)! (33)

3&2%(_SiTtia_tiTaSi_ieaﬁ'yti‘rﬁtiy)- (34)
a, B, andy are the components along tkey, andz axes,
espectively, and is the Levi-Civitasymbol and represents
he totally antisymmetric tensor. All repeated indices over
a, B, andy are assumed to be summed over.

A constraint of the form

and the lowest excited state corresponds to that of the saw-
tooth chain. Consider the four-chain ladder shown in (3.5
Fig. 3b). Exact diagonalization of four-sited sawtooth ) )

chain shows that the first excited state has energys assumed to hold true for each dimer so that the physical
[—(1+ 33)/4]8. The energy measured with respect to theStates can be enher_smgle_ts or tnple.ts. The smgl_et and tr_|plet
ground state energy: 188/4, gives a spin gap which is less operators at each site satisfy bosonic commutation relations

thana=3p, the spin gap for the two-chain ladder. The spin f1_ tq_ tq_

gap thus decreases in magnitude as the number of chains in [s,81]= 1, [tatp]=0up, [St]=0. (36

the even-chain ladder increases from 2 to 4. In the next se®@ne now substitutes the operator representation of spins
tion, we consider more general parameter regimes in whiclgiven in Egs.(3.3) and (3.4) into the original Hamiltonian

the exact ground and excited states are not known. We stud¥q. (3.1)]. A site-dependent chemical potential is in-

the even-chain ladders only and determine the excitatiogluded in the Hamiltonian to impose the constraint of Eq.
spectrum and spin gap for both the four-chain and periodi¢3.5). The transformed Hamiltonian can be solved by a
ladders. mean-field decoupling of the quartic terms containing two
s and twot operators as well as fouroperators. One takes
(siy=s and replaces the local constrajat by a global one

] ] ] m. One also defines two mean fields as
The properties of a two-chain spin ladder are already
P=(tltis10),  Q=(tiati+1a) 3.7

known in the mean-field theory. The Hamiltonian is given
by (Fig. 1 Next, a Fourier transformation of the operators is taken. The
resultant Hamiltonian can be diagonalized by the Bogoly-
ubov transformation. Since the details of the calculation are
available elsewheréwe quote the final results. The diago-
nalized mean-field HamiltoniaRl (., s, P, Q) is given

by

sfs+tlt,= 1

Ill. FOUR-CHAIN AND PERIODIC LADDER

H=2 {aS S +B(S S+ Su)

+¥S S+ S-S} 3.9

NX,

3

The ground state is assumed to be in a dimerized phase with
the singlet dimers located along the rungs. The bond operator
representation db=1/2 spins is used to study the properties
of dimerized phases. We consider two spiBs=(/2) S/ and

S placed on each rung. The Hilbert space consists of four

—g(aM—m (P?-Q?)

states which in appropriate combinations describe the singlet + ; o Vevt 3), (3.8
|s) and the three tripldt,),|t,), and|t,) states. These states
are created out of the vacuui@) by the singlet and triplet where
creation operators
o= VA= (240, (3.9
1
sy=s'l0)y=— - : PA
s)=s'|0) \/§(|Tl> [LT)) Ak=<%—,u NN E 2)cosk,
1 s
oV _ N1S® QA
t=t10)=——=(11)=|11)). AKZ(T-T)COK
ty=tloy=—= (11411 1) .
ty)=t,[0)=—=([TT)+|L1)),
T2 No=(B+7Y). (3.10

The parameterg, s, P, andQ can be determined from
appropriate self-consistent equations and the spin/yap
given by

1

ltz>=t§|0>:ﬁ<m>+|w>). (3.2
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\/ o 2\, 2\
A= (4 ,U«__(P"‘Q))(__M 2MS——(P Q). (3.1

We now consider the four-chain spin ladder shown in Fidp).3The number of two-chain spin ladders is 2 and they are
designated as leftop) and right(bottom ladders. The two ladders are coupled by exchange interaction of stréngtte
Hamiltonian describing the system is given by

H:Ei {a(Si-Si+Si-Si)+B(Si Si+1+SiSic1+Si-Si+1tSi-Sivn)
TS Si+1TSi Si+1t S St Si- S0+ 78-S+ ESi- S (3.12

The spin operators are expressed in terms of the singlet and triplet bond operators through the transformations given in Egs.
(3.3) and(3.4). The transformed Hamiltonian is given by
H= E { E (= 3ShiSmiT 7 thiatmia) = Mmi(ShiSmit thistmia— 1)

Ay
t T 2 T t
+ ?(tmlatml+1asml+ 1Sm|+tm|atm|+1asm|+1sm|+ H. C) 2 Eaﬁ'yeaﬂ"y/tmiﬂtmi+lytmiﬁ/th—ly'

tT

E — M T T 3
+ ”aS”+H.C.) 4 Euﬁyeaﬁ"y’tliﬁtli‘ytriﬁ/triy/ , ( 13)

7 (ST tiiatriaSt +STtiia

where

N=B—y, N=B+y, N3=n—§ N=7+¢, (3.14

and wheram denotes the ladder index, leff)(or right (r) andu,,; is the chemical potential which has been introduced to take
account of the constraint specified in H8.5). One takes the expectation val(®,;)=s and the local chemical potential
wmi is replaced by the global one. We perform a Fourier transformation of the operatgys = (1/VN) Sy t.e 'K " where

N is the number of dimers or rungs in a two-chain ladder &nid the wave vector along the ladder axis. The Fourier-
transformed Hamiltonian is given by

H= 2N(—3as"— us%+ 1)~ SAN(P2— Q%) — IA,N(P' 2-Q' ?)

+; > A ket Bt ket tmkatm-ka) 1+ C(thkatrkat thatika) + D (tkat! ket ticats —ka) |

m=1,r

(3.19

whereA,, By, C, andD are defined as
[(cosh9y, adie+sinhOy atfy,)

1
71, ZI(a:T
2
*(coshfy, xtik,t Sinhdy, 2kt;r_ )] (317

= (1A ;57— 1),0)cox Thesg are symmgtriCbonding and anti§ymmetric{anti-

271 32 bonding combinations of the transformations in the left and
right ladders. The HamiltoniafEg. (3.15] can now be di-
agonalized to obtain

o
A= 7 — o+ (N 1S%+ 2\ ,P)co,

C: %)\352-"' %)\4'3,,

D=7A35"—N4Q’. (316  Hp(u,s,P,Q,P",Q")
P, Q, P’, andQ’ are the four mean fields, o
= 2N(—%a?—u§z+,u)—N(z—M> — 5N N(P?-Q?)

P=(thistmi+1a)r  Q=(tmictmi+1a):

' ’ i)
=(thatiia), Q' =(trialiia)- —SAN(P'2-Q" )+ ,rrgl,zwmk(fkakar%)' (3.18

We now perform a Bogolyubov transformation into two new wherew, 4 is defined as
boson operators in terms of theoperators of the left- and
right-hand ladders as w1 2=V(CFA)?—(2B,+D)% (3.19
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The spin-triplet excitation spectrum of the four-chain ladder
consists of two branches corresponding to the bonding an

antibonding states. The magnitude of the splitting of the two

branches is determined by and\ 4. Thus the two branches
collapse into a single branch, when baji+ 0,£= 0 as in
the case of a single two-chain ladder.

Equation(3.19 describes the triplet excitation spectrum
in a general parameter regime. The
u, s, P, Q, P, andQ’ in the excitation spectrum are
determined by solving the saddle-point equations

SHm\ SHm\ SHm\

L - T
OHm\ OHp\ OHp\

50 |~ (5 )70 (5g7)=0 (320

At T= 0, the mean-field equations are obtained as

3 1 C—-A CH+A
F=sh— K2 X dk,
2 8w w1 w>
1 C—-Ay C+A
P=—5— - cokdk,

8 wq (OF)

1 ZBk—D+ZBk+D dcd
Q_ G wq o co k’
1 C—-Ay CH+A
P'=— + dk,
8 w1 s
1 2By—D 2By+D
Q'=5= - dk,

8 w1 o

u=— 0.75%+\(P+Q)+ %(P%Q’). (3.20)

Figure 4 shows the spin-triplet excitation spectrum of the
four-chain ladder for the exchange interaction strengths

B= 2y=1 and&é= 2»= 1, in units of @. Figure 5 shows
the spin gap of the four-chain ladder versfidor 8= 1,
n=¢&/2, andy= 0.5, in units ofa.

The ground state energy of the ladder system in the gen-

eral parameter regime is given by

63
£ 2N(—%a§z—,u§z+,u)—N(Z_M)_g)\ZN(pz_Qz)
1 ’2 r 2 1
— 8NP 2-Q' A+ 5 Omk.
2 km=1,2
The parameter regime includes the poink= 383,

B=7y= &= 7 at which the ground state and the correspond-
ing energy are exactly known. For these parameter values,

A= 0, A3= 0 and\,= 28, As= 2B. Also, the four mean
fieldsP, Q, P’, andQ’ are zeros“= 1 andu=—0.7%.

From Eq.(3.19, one then obtains a single excitation spec-
trum of energyw,= «; i.e., the spectrum is dispersionless.
The ground state enerdy, becomes
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d

0-9

wi(k)

0.5

27

0.

FIG. 4. The triplet excitation spectrufibonding and antibond-
ing states of Eq(3.19] of the four-chain ladder with exchange
interaction strength®= 2y= 1, andé= 2»= 1, in units ofa.

1
J’__
2 km=1,2

o
2N(—%a§Z—M§Z+M)—N<Z—,u

Omk

3
—3saN,

which is equal to the exact ground state energy. The mean-
field theory based on the bond operator formalism thus re-
produces the correct ground state energy in the appropriate
limit of the coupling parameters.

Next we consider a periodic array of ladders, i.e., consider
the full square lattice with exchange interactions as specified
before. The problem of interest is to find the value of the
interladder interaction strength at which the spin gap dis-
appears. For the usual square latze1/2 HAFM with only

04r
031
éO-Z o
)
0.1f
0.0 1 1 | |
0.00 0.25 0.50 0.75 1.00

FIG. 5. The spin gapA of the four-chain ladder v¢, for
n=¢/2, B= 1, andy= 0.5, in units ofa.



3618 ASIMKUMAR GHOSH AND INDRANI BOSE 55

NN interactions, long-range AFM order exists in the ground 04r
state and the spin gap is expected to vanish at a critical value
of the interladder exchange interactiéfmy= 0,y= 0 in this
case. The value obtained by Gopala al.is ¢ = 0.25. The
spin-ladder model constructed by us has not only NN but 03k
NNN (along the rungsas well as diagonal interactions. It is

of interest to determine whether for this model also the spin

gap vanishes at a critical value ¢f Using the formalism
already developed, we obtain the self-consistent equations

?02‘
3 1 Cr— A
=" 4
S 2 871'2] f w dk,
po f fck_Ak s, dk Y
- 872 ® cosdx,
_ 1 2By—Dy 00 | .
Q="gx2 o cosudk, N o 0z 03 o4
¢
pro_? ffck_Ak %, dk
877 w cosydx, FIG. 6. The spin gapA of the periodic ladder vs£, for
n=¢&/2, B= 1, andy= 0.5, in units ofe. The spin gap vanishes
;L 1 ffZBk_Dk 4 dk for &= 0.33.
Q - 87? 0) cosydx,

which differ from ours in that the diagonal and NNN inter-

N actions along the rung are absent. One significant difference
u=— 0.75¢+\(P+Q)+ _3(p’+Q’), (3.22 isin the inclusion of terms containing four triplet operators

2 in our mean-field theory. For the ladder models considered
by Gopalaret al. these terms have a negligible contribution
and so have been ignored. In the present case, the terms can
a no longer be neglected. The results of Gopadaal? can be
A=~ =+ (N 187+ 5N, P)co,, recovered from our results by putting=0,7=0. Inclusion
of these extra interactions has the effect of renormalizing the
original coupling parameters of the Hamiltonian when ex-
pressed in terms of the singlet and triplet operators. For the
four-chain spin ladder considered in Ref. 4, the coupling

whereA,, By, Cy, andDy are

Bi= (31157~ 351,Q)cosk,,

Cy=(3\38"+ 3N4P’)cOk,, parameters3—y and »— ¢ in Eq. (3.14 are 8 and — ¢,
respectively. The inclusion of frustrating further-neighbor in-
Dy=(3N357— $14Q’) Ok, . (3.23  teractions in our model has the effect of increasing the spin

) } . ) gap. For the periodic ladder, the spin gap vanishe§ at
Also, k is a two-dimensional wave vector with componentsg 33 (Fig. 6. The decrease of the spin gap withis ex-

ky (along the ladder ajsandk, (across the laddersThe  plained by the delocalization of the singlets across the lad-

excitation spectrunm, is given by ders. The decrease of the gap is faster than that of a four-
_ — 7 —— chain ladder.

0= V(Cx=AY? = (2B —Dy)* (3.24 The mean-field theory based on the bond operator formal-

The excitation spectrunw, has a minimum ak=(m, 0).  iSm reproduces the exact ground state energy in the appro-

Figure 6 shows a plot of the spin gap versus¢ for  Priate limit. The same is true for two other spin models in 1D
B= 1,y = 0.5, andy=&/2, in units ofa. The spin gaph and 2D, namely, the Majumdar-Ghosh cHaiand theJ;-
vanishes forg= 0.33. J,-J5-J4-J5 model proposed by Bose and Mit

The ground state of both the models can be determined
exactly at particular values of the parameters. The ground
states consist of a periodic arrangement of dimers. Mean-

We have constructed spin ladders with odd and evefiield theory based on the bond operator formalism deter-
numbers of chains for which in a particular parameter regimenines the ground-state energy correctly in the exactly solv-
the exact ground state can be written down. It can further bable limit. In the same limit, the mean-field theory yields a
shown rigorously that the excitation spectrum is gaplesslispersionless excitation spectrum for both the spin models.
(with a gap for an odd(even number of chains. The mean- This is also true for the ladder spin system, signifying that
field theory based on the bond operator formalism has beethe three spin models share common features.
applied to ladders with an even number of chains in a general The sawtooth chain which describes the exchange inter-
parameter regime. Both the formalism and the results obactions along the rungs of the ladder system has been studied
tained are similar to those of Gopalanal? for spin ladders earlier by Kubc®® The ground state of the chain is doubly

IV. CONCLUSIONS
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degenerate and the spin dynamics is described in terms dfiplet and the triplet is allowed to propagate. In a sawtooth
kink and antikink excitations. chain with doubly degenerate ground states these excitations

Consider the parameter regime in which the exact grounthave a higher energy than the kink and antikink excitations.
state of the ladder system is known. The sawtooth chain

interactions are nowFig. 2 »=¢&=a/3. In this case the

ground state is nondegenerate with spin singlets forming ACKNOWLEDGMENTS
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