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Phase transitions in antiferromagnetic quantum spin chains with bond alternation

Shoji Yamamoto
Institute für Theoretische Physik, Universita¨t Hannover, Appelstrasse 2, 30167 Hannover, Germany

and Department of Physics, Faculty of Science, Okayama University, Okayama 700, Japan*
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We study the phase transitions in antiferromagnetic quantum spin chains with bond alternation,
H5J( i@12(21)id#Si•Si11 , of spinS51, 3/2, and 2. On the one hand, using a transfer matrix technique, we
make a simple variational approach, which results in the better estimates of the transition points than by the
O~3! nonlinear-s-model quantum field theory. On the other hand, employing a quantum Monte Carlo method,
we calculate the generalized string order parameter,Ostring

z (u)5 limL→`Ostring
z (u;L) with Ostring

z (u;L)
5^SL/4

z ) j5L/4
3L/421exp@iuSj

z#S3L/4
z &. It turns out that the transition points are successfully detected by observing the

overall behavior ofOstring
z (u) at various values ofd. Investigating the dependences ofOstring

z (u;L) on u, L, and
S, we discuss the applicability of the valence-bond-solid picture to the ground states of the present Hamil-
tonian.@S0163-1829~97!01406-9#
er
ne
b
m
fa
n
an
tio

o
p
n

ge
e

re
ra
rg

s

e

he
n
p,

te

d-

ical
as
-

yet,
d in

he

ce-

t, re-
solid
ly

t in

as-
ll

ion

.
the
licit
ns.
an
in
rgy
mic
s,
han
of
I. INTRODUCTION

The qualitative difference of the low temperature prop
ties between integer-spin and half-odd-integer-spin o
dimensional Heisenberg antiferromagnets predicted
Haldane1 is now widely accepted and may be one of co
mon sense in the field of condensed matter physics. In
various numerical methods made sure of both the existe
of the excitation gap immediately above the ground state
the exponential decay of the ground-state spin correla
function not only in theS51 case2–6 but also in theS52
case.7–14

However, there are brand-new attempts15–19 to find out a
more generic criterion for whether the system is massive
massless, where integer-spin and half-odd-integer-s
chains are not distinguished but are globally treated i
wider Hamiltonian space. Developing the O~3! nonlinear-
s-model quantum field theory,1 Affleck20 already pointed
out a few years after Haldane’s conjecture that even inte
spin chains should be critical if a certain interaction is add
to the pure Heisenberg Hamiltonian. His argument20,21 was
unique in that he made such a suggestion not introducing
anisotropic term but breaking the symmetry of parity. In
cent years, motivated by Affleck’s prediction, seve
authors15–19,22–25 numerically investigated the Heisenbe
Hamiltonian with bond alternation,

H5J(
i

@12~21! id#Si•Si11 , ~1.1!

whereSi
25S(S11), which is expected to be in the massle

phase when the so-called topological anglew[2pS(12d)
is equal top ~mod 2p),20 namely, to encounter successiv
phase transitions of 2S times while d moves from21 to
1. Singh and Gelfand22 made the first approach to detect t
critical point in the case ofS51 using a series-expansio
method. Since then, density-matrix renormalization-grou23

quantum Monte Carlo,16,24and exact diagonalization25 meth-
ods were in succession applied to theS51 study and they all
concluded that the critical point actually exists but is loca
550163-1829/97/55~6!/3603~10!/$10.00
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at d5dc.0.25 which somewhat deviates from the fiel
theoretical prediction,dc51/2. Quite recently, theS53/2
case18 was also discussed, making use of the numer
renormalization-group technique and the critical point w
detected atd5dc.0.42, still showing a quantitative discrep
ancy from the field-theoretical prediction,dc52/3. In the
S52 case, the transition points have not been specified
but three distinctive phases have been actually observe
the region 0<d<1.19

Thus, it is quite likely that the phase transitions and t
critical phenomena of the present~or possibly more exten-
sive! Hamiltonians are described in terms of a generic s
nario. In this context, it has been pointed18,19 out that the
successive phase transitions may be, to a certain exten
garded as ones between the so-called valence-bond-
~VBS! states26,27 of different types, which are schematical
shown in Fig. 1. On the other hand, the present author15,16

has shown that the critical points of theS51 chain belong to
the same universality class as theS51/2 Heisenberg antifer-
romagnet. In such circumstances, it is unfortunate tha
contrast to the vigorous argument in theS51 case, there
appeared few works in the larger-spin cases yet. Thus,
suming that the half-odd-integer-S Heisenberg points are a
massless critical,1,28–30here we treat the Hamiltonian~1.1! of
S51, 3/2, and 2. We adopt the periodic boundary condit
and therefore treat the region 0<d<1, because now the
Hamiltonians with6d should be equivalent to each other

Calculation of the gap between the ground state and
first excited state may be the most naive and thus exp
approach in investigating the continuous phase transitio
However, the rapid decrease of the gap in magnitude with
increase ofS clearly makes such an approach less feasible
the larger-spin cases. It is also unfortunate that the ene
gap shows a slow convergence in taking the thermodyna
limit. For instance, in theS52 case, the Haldane gap, that i
the gap at the Heisenberg point, is already smaller t
0.1J ~Refs. 8–14! and is being discussed with chains
length larger than a few hundred sites.12,14 Therefore, even
with the density-matrix renormalization-group method12,18

and the approved quantum Monte Carlo approach,13,14it may
3603 © 1997 The American Physical Society
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3604 55SHOJI YAMAMOTO
be rather hard to directly detect the massless points of
S52 chain. Thus here we no longer persist in observing
energy gap itself but expect the generalized string or
parameter27

Ostring
z ~u!5 lim

u i2 j u→`
K Siz)

k5 i

j21

exp@ iuSk
z#Sj

zL , ~1.2!

to play an indicator of the phase transitions, where^A& de-
notes the grand-state average of the operatorA. This idea is
based on the fact that each of the VBS states has a un
u dependence ofOstring

z (u).17,27 More specifically, under a
certain applicability of the VBS picture to the present Ham
tonian, its ground states may be qualitatively identified w
one of the VBS states and therefore the transition po
between them should be successfully detected by obser
Ostring
z (u) as a function ofu at various values ofd. Therefore

we employ a quantum Monte Carlo method to calcul
Ostring
z (u;L).
On the other hand, we would rather aim to reveal

physical mechanism of this phenomenon than totally dev
ourselves to specification of the transition points. From t
point of view, we discuss the subject in another way mak
use of simple variational wave functions which are line
combinations of the proper VBS states. Although the
proach is so naive as to result in the discontinuous ph

FIG. 1. Schematic representations of the VBS states forS51 ~a!
and ~b!, S53/2 ~c! and ~d!, andS52 ~e!–~g!, where the symbol
d and the segment denote a spin 1/2 and a singlet pair, res
tively, while the circle represents an operation of constructin
spinS by symmetrizing the 2S spin 1/2’s inside. The configuration
~a!–~g! are called (1, 1), (2, 0), (2, 1), (3, 0), (2, 2), (3, 1), (4,
VBS states, respectively. We find out 2S11 states of this type in
the spin-S case. Under the periodic boundary condition, all the r
are essentially identified with any of the present ones, becaus
versing the sign ofd is no more than interchanging the two subla
tices. Thus, while the system goes through all the configuration
encounters 2S transition points.
e
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transitions, it is more useful than the O~3! nonlinear-
s-model quantum field theory in estimating the transiti
points.

This paper is organized as follows. In Sec. II, defining t
appropriate transfer matrices,17,25,31,32 we obtain the indi-
vidual forms ofOstring

z (u) which characterize the VBS state
shown in Fig. 1. In Sec. III, we perform the variational ca
culation and qualitatively verify the underlying mechanis
of the successive phase transitions. In Sec. IV, we presen
quantum Monte Carlo study. After we briefly describe t
numerical procedure, we estimate the transition points m
ing the best use ofOstring

z (u). Section V is devoted to sum
mary and discussion, where we graphically present all
results obtained and discuss the validity of the VBS pict
for the ground states of the present Hamiltonian.

II. GENERALIZED STRING ORDER PARAMETER

Let us call the VBS state withm valence bonds betwee
sites 2j21 and 2j andn between 2j and 2j11 the (m,n)
VBS state. The usual Affleck-Kennedy-Lieb-Tasaki~AKLT !
state26 in the case ofS5m is identified with the (m,m) VBS
state, which is invariant under translation. We show in S
III that within a simple variational approach, even the VB
states themselves play the approximate ground states o
present Hamiltonian with certain values ofd.

Using the Schwinger boson representation,

Si
15ai

†bi , Si
z5 1

2 ~ai
†ai2bi

†bi !,
~2.1!

Si
25aibi

† , Ŝi5
1
2 ~ai

†ai1bi
†bi !,

the (m,n) VBS state is written as

u~m,n!VBS&5)
j51

L/2

~a2 j21
† b2 j

† 2b2 j21
† a2 j

† !m

3~a2 j
† b2 j11

† 2b2 j
† a2 j11

† !nu0&&, ~2.2!

where u0&& is the Bose vacuum andL is the chain length.
Due to the periodic boundary condition, we adopt the ide
tities,aL11

† 5a1
† andbL11

† 5b1
† . It is of great use to introduce

an alternative representation of matrix-product type:

u~m,n!VBS&5Tr@g1
A

^g2
B

^ •••^gL21
A

^gL
B#, ~2.3!

where at sites 2j21 and 2j we define then3m and the
m3n matrices,g2 j21

A andg2 j
B respectively, as

g2 j21
A ~p;q!5~21!n2pAnCpmCq~a2 j21

† !n2p1q

3~b2 j21
† !m1p2qu0&&2 j21 , ~2.4a!

g2 j
B ~q;p!5~21!m2qAnCpmCq~a2 j

† !m1p2q

3~b2 j
† !n2p1qu0&&2 j , ~2.4b!

with the local vacuum stateu0&& i . Hereg(r ;s) denotes the
(r ,s) element of the matrixg. For the convenience of the
later calculation, we list in the Appendix the concrete form
of theg matrices in terms of theSi

z eigenstates.
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55 3605PHASE TRANSITIONS IN ANTIFERROMAGNETIC . . .
In order to actually calculate the generalized string or
parameter, we take the following expression:

Ostring
z ~u!5 lim

L→`

Ostring
z ~u;L !, ~2.5!

where

Ostring
z ~u;L !5K SL/4z )

j5L/4

3L/421

exp@ iuSj
z#S3L/4

z L . ~2.6!

Defining then23m2 and them23n2 transfer matrices,

GA~p,p8;q,q8!5g2 j21
A† ~p;q!g2 j21

A ~p8;q8!, ~2.7a!

GB~q,q8;p,p8!5g2 j
B†~q;p!g2 j

B ~q8;p8!, ~2.7b!

we can straightforwardly evaluateOstring
z (u;L) for each VBS

state as

Ostring
z ~u;L !5

Tr@~GAGB!L/421GAPB~QAQB!L/421QARB#

Tr@~GAGB!L/2#
,

~2.8!
ha

ys
g
c
r

rwhere

PB~q,q8;p,p8!5g2 j
B†~q;p!S2 j

z exp@ iuS2 j
z #g2 j

B ~q8;p8!,
~2.9a!

QA~p,p8;q,q8!5g2 j21
A† ~p;q!exp@ iuS2 j21

z #g2 j21
A ~p8;q8!,

~2.9b!

QB~q,q8;p,p8!5g2 j
B†~q;p!exp@ iuS2 j

z #g2 j
B ~q8;p8!,

~2.9c!

RB~q,q8;p,p8!5g2 j
B†~q;p!S2 j

z g2 j
B ~q8;p8!. ~2.9d!

It may be noted that as far as we take an interest only in
thermodynamic-limit properties,GA andGB should be effi-
ciently reduced in their dimensions~into then3m and the
m3n matrices!.17 Let us take a glance at a few examples
Ostring
z (u;L):

~a! S51,m5n51:
Ostring
z ~u;L !5

@~4/9!~23!L14#sin2~u/2!1~8/3!~23!~L/2!cos2~u/2!

~23!L13
, ~2.10!

~b! S51,m52, n50:

Ostring
z ~u;L !5

4

9
sin2u, ~2.11!

~c! S53/2,m52, n51:

Ostring
z ~u;L !5

6~L/2!~25/36!sin2u16~L/4!~5/6!cosu~4cosu11!14sinucosu

6~L/2!13
, ~2.12!
~d! S53/2,m53, n50:

Ostring
z ~u;L !5

1

4 F32sinS 3u

2 D1
1

2
sinS u

2D G
2

. ~2.13!

Instead of carrying out further demonstration, we note t
Ostring
z (u;L) generally shows anL dependence in the AKLT

and the partially dimerized VBS states, while it is alwa
free fromL in the totally dimerized VBS states. Now, takin
theL→` limit for Ostring

z (u;L), we obtain the characteristi
u dependences of the generalized string order paramete
each VBS state as follows:

~a! S51,m5n51:

Ostring
z ~u!5

16

9 F12sinS u

2D G
2

, ~2.14!

~b! S51,m52, n50:

Ostring
z ~u!5

4

9
sin2u, ~2.15!
t

for

~c! S53/2,m52, n51:

Ostring
z ~u!5

25

36
sin2u, ~2.16!

~d! S53/2,m53, n50:

Ostring
z ~u!5

1

4 F32sinS 3u

2 D1
1

2
sinS u

2D G
2

, ~2.17!

~e! S52,m52, n52:

Ostring
z ~u!5sin2u, ~2.18!

~f! S52,m53, n51:

Ostring
z ~u!5

9

25F32sinS 3u

2 D1
1

2
sinS u

2D G
2

, ~2.19!



li

av
o
en
a
lf.

a-
at
g
-

S

it

ds
-
r-

te
-

ny
he
te
-
c
lts
eal

the

p-
-
ion
of
nal
ld-

3606 55SHOJI YAMAMOTO
~g! S52,m54, n50:

Ostring
z ~u!5

4

25
@2sin~2u!1sinu#2. ~2.20!

Finally in this section, we add that althoughOstring
z (u;L)

for the (m,n) VBS state becomes more and more comp
cated with the increase ofm and n, the corresponding
Ostring
z (u) is compactly written as27

Ostring
z ~u!5u f m,n~eiu!u2, ~2.21!

where

f m,n~z!5
m1n12

2~m12!~m11!(k50

m

~2k2m!zk. ~2.22!

III. VARIATIONAL APPROACH

The linear combination of all the possible (m,2S2m)
VBS states may be a naive but suggestive variational w
function for the ground state of the present Hamiltonian
spinS. Such a trial wave function is reasonable to the ext
that it is obviously singlet and includes the exact solutions
d561, namely, the totally dimerized VBS states, in itse
The variational approach of this type25 was actually made to
theS51 bilinear-biquadratic Hamiltonian with bond altern
tion and resulted in the qualitatively reliable ground-st
phase diagram. Here we develop the argument to the lar
spin chains reviewing theS51 case for the sake of refer
ence. It is enough for us to treat only the (m,2S2m) VBS
states withm>S due to the equivalence of thed,0 region
to thed.0 one under the periodic boundary condition.

A. S51

The trial wave function for the region 0<d<1 should be
constructed from the AKLT and the totally dimerized VB
states as

uC~u!&5cosu
u~1,1!VBS&
i~1,1!VBSi 1sinu

u~2,0!VBS&
i~2,0!VBSi , ~3.1!

where iAi denotes the norm of the state vectoruA&.
uC(u)& is correctly normalized in the thermodynamic lim
because of the asymptotic orthogonality,

^~2,0!VBSu~1,1!VBS&
i~2,0!VBSii~1,1! VBSi 5

2~23!~L/2!

3L/4A3L13~21!L
→0~L→`!.

~3.2!

We further note that the orthogonality of this type still hol
in the larger-spin cases,27 namely, the matrix elements be
tween the (m,n) VBS and the (m8,n8) VBS states necessa
ily vanish in the thermodynamic limit unlessm5m8 and
n5n8. With the compact expression~2.3! and theG matri-
ces~2.7!, it is straightforward to derive

^~1,1!VBSuHu~1,1!VBS&
i~1,1!VBSi2 52

4L@3L19~21!L22#

3@3L13~21!L#
,

~3.3a!
-

e
f
t
t

e
er-

^~2,0!VBSuHu~2,0!VBS&
i~2,0!VBSi2 52L~11d!, ~3.3b!

^~2,0!VBSuHu~1,1!VBS&
i~2,0!VBSii~1,1!VBSi 52

2

3
LS 2

1

A3D
L/2

~51d!.

~3.3c!

Here we certainly find that the matrix element~3.3c! van-
ishes in theL→` limit. Now we obtain

lim
L→`

^C~u!uHuC~u!&
L

5S d2
1

3D cos2u2~11d!, ~3.4!

which leads to the simple solution,

u50 S 0<d,
1

3D , u5
p

2 S 13,d<1D . ~3.5!

Therefore, the variational ground state is the AKLT sta
itself for udu,1/3, while the totally dimerized VBS state it
self for udu.1/3.

In theS51 case, using various numerical methods, ma
authors22–25 have already come to an agreement with t
conclusiondc.0.25. Therefore, the thus-obtained estima
of the transition point,dc51/3, is much better than the field
theory result,dc51/2. However, owing to the asymptoti
orthogonality~3.2!, the present variational calculation resu
in the discontinuous transition. In order to describe the r
picture, that is, the continuous transition,15,16,20–25 in this
context we may have to take the valence bonds beyond
nearest sites into the trial wave function.

B. S53/2

The similar treatment is available in theS53/2 case as
well constructing the trial wave function as

uC~u!&5cosu
u~2,1!VBS&
i~2,1!VBSi 1sinu

u~3,0!VBS&
i~3,0!VBSi . ~3.6!

The asymptotic orthogonality

^~3,0!VBSu~2,1!VBS&
i~3,0!VBSii~2,1!VBSi 5

2~26!~L/2!

4L/2A6L/213
→0

~L→`!, ~3.7!

again simplifies the calculation and we finally obtain

lim
L→`

^C~u!uHuC~u!&
L

5
65

48S d2
7

13D cos2u2
15

8
~11d!.

~3.8!

Therefore we reach the simple scenario just the same,

u50 S 0<d,
7

13D , u5
p

2 S 713,d<1D . ~3.9!

The recent density-matrix renormalization-group a
proach has concluded thatdc.0.42, which is in good agree
ment with the present quantum Monte Carlo calculat
which is shown in Sec. IV. Thus, as far as an estimation
the transition points is concerned, the simplest variatio
approach is still better than the semiclassical-limit fie
theory result,dc52/3.
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C. S52

TheS52 case can be discussed in the same way but
trial wave function is now constructed from the VBS sta
of three types as

uC~u,f!&5cosu
u~2,2!VBS&
i~2,2!VBSi 1sinu cosf

u~3,1!VBS&
i~3,1!VBSi

1sinu sinf
u~4,0!VBS&
i~4,0!VBSi . ~3.10!

Making the full use17 of the asymptotic orthogonality, we
obtain

lim
L→`

^C~u!uHuC~u!&
L

5F95 S d2
2

3D cos2f
13S 122d D Gsin2u2

9

2
.

~3.11!

Therefore the variational ground state is given by

u50, f50 S 0<d,
1

4D ,
u5

p

2
, f50 S 14,d,

2

3D ,
u5

p

2
, f5

p

2 S 23,d<1D . ~3.12!

The quantum Monte Carlo calculation presented in S
IV shows that the second transition point~with the larger
value of d) is still better specified by the present approa
than by the field theory. On the other hand, the two appro
mate treatments result in the same estimate of the first t
sition point~with the smaller value ofd), which implies that
the ground states of the present Hamiltonian in the Hald
phase are less described in terms of the AKLT state
largerS. All the values obtained in this section are grap
cally presented in Sec. V together with the quantum Mo
Carlo results and the field-theoretical prediction.

IV. QUANTUM MONTE CARLO APPROACH

It is well known that the AKLT states generally give co
siderably small correlation lengths33 in comparison with ones
on the Heisenberg points. Several authors34–36 have pointed
out that once the Hamiltonian deviates from the AKLT poi
there occur certain quantum fluctuations to break the per
hidden order.37 Thus the ground states of the present Ham
tonian should more or less deviate from the pure VBS c
figurations unlessudu51. We have nonetheless found out
the preceding section that within the naivest variational tre
ment, all the possible (m,2S2m) VBS states play, in turn
the ground state of the present Hamiltonian of spinS while
d moves from21 to 1. The result allows us to expect th
the VBS picture is still valid with the present Hamiltonia
The overall behavior ofOstring

z (u) actually supports the quali
e
s

c.

i-
n-

e
r
-
e

,
ct
-
-

t-

tative applicability of the VBS scenario to the success
phase transitions.

A. Numerical procedure

HereOstring
z (u;L) is evaluated as the canonical average

Ôstring
z (u;L)5SL/4

z ) j5L/4
3L/421exp@iuSj

z#S3L/4
z at a sufficiently low

temperatureb215kBT:

Ostring
z ~u;L !5

Tr@e2bHÔstring
z ~u;L !#

Tr@e2bH#
. ~4.1!

Decomposing the partition functionZ[Tr@e2bH# as

Z.TrF S )
i51,3, . . .

e2bhi ,i11 /n )
i52,4, . . .

e2bhi ,i11 /nD nG ,
~4.2!

with a Trotter numbern and local Hamiltonians

hi ,i115J@12~21! id#Si•Si11 , ~4.3!

we carry out the world-line Monte Carlo sampling38 on the
equivalent (111)-dimensional Ising system39 of L32n
size. We take a set of values forn and then dependence is
extrapolated into then→` limit. Since the finiten effect on
Ostring
z (u) is remarkably variable according tou, the n→`

extrapolation is essential in observing the overall behavio
Ostring
z (u). The numerical algorithm to update the spin co

figuration is detailed elsewhere,40 which should be well de-
signed especially for large-spin systems of great degree
freedom so as to obtain reliable estimates within feas
Monte Carlo steps.

We treated the chains ofL516, 32, and 64 in theS51
case, while in the larger-spin cases we calculated the ch
of length up toL5128. We tookkBT/J50.02 in combina-
tion with n540, 60, 80, and 120. Preliminary calculations
kBT/J50.04 and 0.02 resulted in almost the same estima
within the numerical accuracy and thus the temperat
kBT/J50.02 is reliable enough to describe the ground-st
properties. We calculatedOstring

z (u) settingu to a finite set
~generally 17 sometimes 33! of evenly spaced values be
tween 0 andp and theu dependence is interpolated for th
sake of presentation. The numerical precision in the fi
results is almost down to two decimal places, namely, th
may be, at most, slight uncertainty in the second decim
place. The largest uncertainty appears in the vicinity of
critical points. The dominant errors occur generally in t
Monte Carlo sampling itself rather than in then→` or the
L→` extrapolation.

B. S51

In Fig. 2 we showOstring
z (u) as a function ofu changing

the value ofd. It is obvious that with an increase ofd the
system encounters the phase transition between the Hal
and the dimer phases which are qualitatively identified w
the (1,1) VBS and the (2,0) VBS states, respectively. Wh
the system already looks completely dimerized atd50.5, the
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3608 55SHOJI YAMAMOTO
ground state atd50.0 still deviates from the AKLT configu-
ration to a certain extent. The reduction of the order para
eter atu5p is nothing but a consequence of the doma
walls in the hidden order.35 However, interestingly, the
qualitative u dependence is kept almost unbroken on b
sides of the transition point. If we specify the phase tran
tion through a change of theu dependence in the vicinity o
u5p, that is, the change from the convex curve to the c
cave one, we come to the conclusion thatdc.0.245, which
is in good agreement with the well-accepted estim
dc.0.25 ~Refs. 22–25! obtained with various methods an
from various standpoints.

It is interesting to observe the size dependences
Ostring
z (u;L) in considering the applicability of the VBS pic

ture to the present Hamiltonian. Let us recall Eqs.~2.10! and
~2.11!, namely, thatOstring

z (u;L) shows an actual size depe
dence in the AKLT state, while no size dependence in
totally dimerized VBS state. We show in Fig. 3 the si
dependences ofOstring

z (u;L) at d50.0 @Fig. 3~a!# and
d50.5 @Fig. 3~b!#, which are typical of the Haldane and th
dimer phases, respectively. We find that the Haldane ph
gives a much more significant size dependence than
dimer phase, which is qualitatively consistent with the VB
scenario. However, the size dependence of Eq.~2.10! is so
weak as to exhibit no visible difference in the scale of F
3~a!. Therefore, as for the short-chain properties, th
should be remarkable differences between the present
the AKLT models. This may be attributed to the discrepan
of the ~Néel! correlation lengthj. Although even the pure
Heisenberg Hamiltonian givesj.6,3–6 the AKLT model
shows the extremely short-range correlation,j51/ln3. It is
well understood thatOstring

z (u50;L), that is, the Ne´el corre-
lation looks significant unlessL@j in Fig. 3~a!.

C. S53/2

Figure 4 showsOstring
z (u) as a function ofu at various

values ofd. We find the transition between the intermedia
and the dimer phases which are qualitatively identified w
the (2,1) VBS and the (3,0) VBS states, respectively. T

FIG. 2. Generalized string order parameterOstring
z (u) as a func-

tion of u at various values ofd in theS51 case. The dashed line
represent ones for the AKLT@Fig. 1~a!# and the (2,0) VBS@Fig.
1~b!# states, namely, Eqs.~ 2.14! and ~ 2.15!.
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overall behavior ofOstring
z (u) well supports the applicability

of the VBS picture. However, it seems that the maximu
value position ofOstring

z (u) in the intermediate phase slightl
deviates fromu5p/2 given by the pure (2,1) VBS state
Carefully observing theu dependences aroundu5p again,
we conclude thatdc50.4360.01, which coincides with the
recent pioneering estimatedc50.4260.02 ~Ref. 18! within
the numerical accuracy. Now the generalized string or
parameter may be really recognized as a reliable indicato
the phase transitions.

Let us observe size dependences ofOstring
z (u;L). We show

in Fig. 5 the size dependences ofOstring
z (u;L) at d50.2 @Fig.

5~a!# andd50.6 @Fig. 5~b!#, which are typical of the inter-
mediate and the dimer phases, respectively. It is clear tha
finite size effect is much more strong in the intermedia
phase than in the dimer phase, which is qualitatively con
tent with Eqs.~2.12! and~2.13!. However, theL dependence
of Eq. ~2.12! is much weaker than the one in Fig. 5~a!. This
quantitative difference is again due to the remarkable d
crepancy of the correlation length. While the correlati
length of the present model withd50.20 is measured a
j.10, the (2,1) VBS state givesj52/ln6. We actually ob-
serve in Fig. 5~a! that the Ne´el correlation of theL532 chain
is still far from the bulk behavior.

FIG. 3. Size dependence ofOstring
z (u;L) as a function ofu at

d50.0 ~a! and d50.5 ~b!, where the ground state is qualitative
described by the AKLT@Fig. 1~a!# and the (2,0) VBS@Fig. 1~b!#
states, respectively. Here the dashed line represents theL→` be-
havior, namely, the correspondingOstring

z (u), obtained by extrapo-
lating the raw data.
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D. S52

Here the Haldane, the intermediate, and the dimer ph
are expected to appear one by one, which are qualitati
identified with the (2,2) VBS, the (3,1) VBS, and th
(4,0) VBS states, respectively. In Fig. 6 we showOstring

z (u)
as a function ofu changing the value ofd. Figures 6~a! and
6~b! focus on the first~Haldane-intermediate! and the second
~intermediate-dimer! transitions, respectively. Theu depen-
dences ofOstring

z (u) in the intermediate and the dimer phas
still look consistent with ones of the (2,1) VBS and th
(3,0) VBS states, respectively, whereas the (2,2) VBS s
seems to describe less the Haldane phase of the pre
Hamiltonian. Even atd50.0, the maximum-value position o
Ostring
z (u) clearly deviates fromp/2 given by the AKLT

state. This is a contrast to theS51 case. However, the over
all behavior ofOstring

z (u) still bears a certain analogy to th
VBS picture to the extent that it enables us to detect
transition points. Theu dependences in the vicinity o
u5p remain useful and we conclude thatdc150.1860.01
and dc250.54560.005 for the first and the second trans
tions, respectively. The second transition seems to take p
more sharply and therefore it is better specified than the
one.

We show in Fig. 7 howOstring
z (u;L) converges into

Ostring
z (u) at d50.0 @Fig. 7~a!#, 0.4 @Fig. 7~b!#, and 0.7@Fig.

7~c!#, where the system is in the Haldane, the intermedi
and the dimer phases, respectively. It is Figs. 7~a! and 7~b!
that show significant size dependences, which are ra
strong around the minimum-value points, while relative
weak around the maximum-value points. In general, w
decrease ofL, the maximum-value points move left and th
curves become flatter in the vicinity ofu50 andp. This
behavior somewhat resembles one observed in Fig. 6
increase ofd and thus implies that for smallL ’s the system
with its small gap and large correlation length still loo
critical.13

V. SUMMARY AND DISCUSSION

We have extensively investigated the successive ph
transitions of the antiferromagnetic Heisenberg chains w

FIG. 4. Generalized string order parameterOstring
z (u) as a func-

tion of u at various values ofd in theS53/2 case. The dashed line
represent ones for the (2,1) VBS@Fig. 1~c!# and the (3,0) VBS
@Fig. 1~d!# states, namely, Eqs.~ 2.16! and ~ 2.17!.
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bond alternation being based on the applicability of the V
picture to this phenomenon. For the purpose of understa
ing the nature of each phase, in Table I we characterize
(m,n) VBS state by the Ne´el order parameter
ONéel[Ostring

z (0) and den Nijs–Rommelse string order p
rameterONR[Ostring

z (p). Heres and3 represent surviving
and vanishing order parameters, respectively. SinceONR is
directly related with the hiddenZ23Z2 symmetry27,41 for
integer spins, we indicate as well whether it is broken or
in the cases ofS51 and 2. The quantum Monte Carlo ca
culation has shown that the phase transitions in the pre
model are almost consistent with this VBS picture.

The transition points have been estimated not only e
ploying the quantum Monte Carlo method but also with u
of the simple variational wave functions. The quantu
Monte Carlo results well coincide with all the previous es
mates obtained through various approaches and therefor
generalized string order parameter does work as an indic
of the present successive phase transitions. It is usefu
graphically present in Fig. 8 all the findings in comparis
with the field-theoretical prediction.20 All in all, the varia-
tional approach is better than the field-theoretical one. Ho
ever, its quantitative superiority seems to be reduced w
increase ofS. This may be attributed to two reasons. On t

FIG. 5. Size dependence ofOstring
z (u;L) as a function ofu at

d50.2 ~a! and d50.6 ~b!, where the ground state is qualitative
described by the (2,1) VBS@Fig. 1~c!# and the (3,0) VBS@Fig.
1~d!# states, respectively. Here the dashed line represents
L→` behavior, namely, the correspondingOstring

z (u), obtained by
extrapolating the raw data.
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one hand, it is a matter of course that the O~3! nonlinear-
s-model quantum field theory is more justified for largerS
because of its semiclassical treatment. On the other hand
present variational approach, which simply approxima
each phase by one of the VBS states, is expected to bec
less valid with increase ofS. In this context, let us take a
look at the explicit expression of the spin-S Hamiltonian
whose ground state is the (m,n) VBS state (m1n52S).
Such a Hamiltonian is easily constructed as17,26

H~m,n!VBS5 (
i51,3, . . .

Pn
S~Si•Si11!1 (

i52,4, . . .
Pm
S~Si•Si11!,

~5.1!

where

Pl
S~Si•Si11!5

1

Nl
S)
J50

l

@2Si•Si1112S~S11!2J~J11!#,

~5.2!

is the (l11)th-order polynomials of the exchange interacti
Si•Si11 so as to project out the subspaces w
(Si1Si11)

2. l ( l11); l50, 1, . . . , 2S. Here Nl
S has been

just introduced so as to take the coefficient of the linear te

FIG. 6. Generalized string order parameterOstring
z (u) as a func-

tion of u at various values ofd in theS52 case. The dashed line
represent ones for the AKLT@Fig. 1~e!#, the (3,1) VBS@Fig. 1~f!#
and the (4,0) VBS@Fig. 1~g!# states, namely, Eqs.~ 2.18!, ~ 2.19!,
and ~ 2.20!.
the
s
me

as unity. Since it is obvious thatP2S
S (Si•Si11)50, we write

down in the following a few examples ofH(m,n)VBS with
m,2S:

H~1,1!VBS5(
i51

L FSi•Si111
1

3
~Si•Si11!

21
2

3G , ~5.3!

H~2,1!VBS5(
i51

L FSi•Si111
9971~21! i511

3159
~Si•Si11!

2

FIG. 7. Size dependence ofOstring
z (u;L) as a function ofu at

d50.0 ~a!, d50.4 ~b!, and d50.7 ~c!, where the ground state i
qualitatively described by the AKLT@Fig. 1~e!#, the (3,1) VBS
@Fig. 1~f!#, and the (4,0) VBS@Fig. 1~g!# states, respectively. Her
the dashed line represents theL→` behavior, namely, the corre
spondingOstring

z (u), obtained by extrapolating the raw data.
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1
8$11~21! i%

243
~Si•Si11!

31
5885

5616G , ~5.4!

H~2,2!VBS5(
i51

L FSi•Si111
2

9
~Si•Si11!

2

1
1

63
~Si•Si11!

31
10

7 G , ~5.5!

H~3,1!VBS5(
i51

L FSi•Si111
871~21! i67

220
~Si•Si11!

2

1
7$11~21! i%

90
~Si•Si11!

3

1
11~21! i

180
~Si•Si11!

41
15

11G . ~5.6!

Thus, with an increase ofS, the additional higher-order term
appear in the VBS Hamiltonians. We have actually obser
in Figs. 2 and 6~a! that the ground state of the present Ham
tonian in the Haldane-phase region more and more devi
from the AKLT state asS increases. We have at the sam
time found in Figs. 4 and 6 that in the intermediate-pha
region, the discrepancy between the ground state of
present Hamiltonian and the corresponding VBS state
looks less significant. This may be understood assuming
the interactions between the sites with stronger bon
namely, between sites 2j21 and 2j here, are more effective
than the rest, which is obvious in the strong-dimerizat
limit. In this sense, the VBS HamiltoniansH(m,n)VBS with
n<1 or m<1, which effectively stay within the second
order polynomials of the exchange interaction, are gener
expected to qualitatively well describe the ground states
the present Hamiltonian. In other words, the smallerS and
stronger dimerization, the better is the VBS picture app
cable to the ground states of the present Hamiltonian.

Here we have concentrated ourselves on detecting a s
of the transition points and revealing the underlying scena
One of the following subjects to be discussed should be
universal character of the critical points. It is all the mo
interesting under the field-theoretical prediction29,30 of the
generic critical behavior for a certain class of isotropic an
ferromagnets. In fact several authors have already conclu
that not only theS53/2 Heisenberg point3,42,43but also the
presentS51 critical points15,16,25belong to the same univer

TABLE I. Nature of the (m,n) VBS state.

S (m,n) ONéel ONR Z23Z2 symmerty

(1,1) 3 s Broken
1

(2,0) 3 3 Unbroken
(2,1) 3 3 2

3/2
(3,0) 3 s 2

(2,2) 3 3 Unbroken
2 (3,1) 3 s Broken

(4,0) 3 3 Unbroken
d

es

e
e
ill
at
s,

n

ly
f

-

ies
o.
e

-
ed

sality class as theS51/2 Heisenberg model. In order t
make sure of such a fascinating scenario, it is importan
perform a further numerical specification of the critic
points by means of various approaches. We hope that
present study will motivate further exploration into the top
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APPENDIX: CONCRETE FORMS OF THE g MATRICES

~a! S51,m5n51:

g2 j21
A 5g2 j

B 5F 2u0& 2A2u11&

A2u21& u0&
G . ~A1!

~b! S51,m52, n50:

g2 j21
A 5@ u21&u0&u11&#, ~A2a!

g2 j
B 5T@ u11&2u0&u21&#. ~A2b!

FIG. 8. Transition points in the spin Hamiltonian space span
by the spin quantum numberS and the alternating couplingd,
where the symbolss, 3, andL denote the estimates obtaine
through the O~3! nonlinear-s-model quantum field theory, the
variational approach, and the quantum Monte Carlo method, res
tively. We also plotted the criterion for the critical behavio
2S(12d)5p ~mod 2p), which is predicted by the field-theoretica
approach. The numerical uncertainty of the quantum Monte C
estimates is within the size of the symbols.
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~c! S53/2,m52, n51:

g2 j21
A 5F 2u2 1

2 & 2A2u1 1
2 & 2A3u1 3

2 &

A3u2 3
2 & A2u2 1

2 & u1 1
2 &

G , ~A3a!

g2 j
B 5TF u1 1

2 & 2A2u2 1
2 & A3u2 3

2 &

A3u1 3
2 & 2A2u1 1

2 & u2 1
2 &

G . ~A3b!

~d! S53/2,m53, n50:

g2 j21
A 5@ u2 3

2 & u2 1
2 & u1 1

2 & u1 3
2 &#, ~A4a!

g2 j
B 5T@2u1 3

2 & u1 1
2 & 2u2 1

2 & u2 3
2 &#. ~A4b!

~e! S52,m5n52:

g2 j21
A 5g2 j

B 5F u0& A3u11& A6u12&

2A3u21& 22u0& 2A3u11&

A6u22& A3u21& u0&
G .

~A5!
y

Jp

s

~f! S52,m53, n51:

g2 j21
A 5F2u21& 2A2u0& 2A3u11& 22u12&

2u22& A3u21& A2u0& u11&
G ,

~A6a!

g2 j
B 5TF 2u11& A2u0& 2A3u21& 2u22&

22u12& A3u11& 2A2u0& u21&
G .
~A6b!

~g! S52,m54, n50:

g2 j21
A 5@ u22& u21& u0&u11& u12&#, ~A7a!

g2 j
B 5T@ u12& 2u11& u0&2u21& u22&#. ~A7b!

Here, in comparison with the original definitions~2.4!, some
of the expressions have been adjusted with regard to
coefficients so as to simplify the actual calculations.
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