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Phase transitions in antiferromagnetic quantum spin chains with bond alternation
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We study the phase transitions in antiferromagnetic quantum spin chains with bond alternation,
H=J33[1-(—1)'8]S-S .1, of spinS=1, 3/2, and 2. On the one hand, using a transfer matrix technique, we
make a simple variational approach, which results in the better estimates of the transition points than by the
O(3) nonlineare-model quantum field theory. On the other hand, employing a quantum Monte Carlo method,
we calculate the generalized string order parame@fy,6)=Ilim__..Ogng(6;L) with Ogynf6;L)
=(S{ITPE 4 exifi 6S71S5, 4 It turns out that the transition points are successfully detected by observing the
overall behavior oDémng( ) at various values od. Investigating the dependences@ﬁt,ing( #;L) oné, L, and
S, we discuss the applicability of the valence-bond-solid picture to the ground states of the present Hamil-
tonian.[S0163-182607)01406-9

[. INTRODUCTION at 6= 6.=0.25 which somewhat deviates from the field-
theoretical predictiond.=1/2. Quite recently, thes=3/2
The qualitative difference of the low temperature proper-casé® was also discussed, making use of the numerical
ties between integer-spin and half-odd-integer-spin onerenormalization-group technique and the critical point was
dimensional Heisenberg antiferromagnets predicted byletected ab= 6.=0.42, still showing a quantitative discrep-
Haldané is now widely accepted and may be one of com-ancy from the field-theoretical predictiod,=2/3. In the
mon sense in the field of condensed matter physics. In fac®=2 case, the transition points have not been specified yet,
various numerical methods made sure of both the existendeut three distinctive phases have been actually observed in
of the excitation gap immediately above the ground state anthe region 6< §<1.°
the exponential decay of the ground-state spin correlation Thus, it is quite likely that the phase transitions and the
function not only in theS=1 casé® but also in theS=2 critical phenomena of the preseftr possibly more exten-
case/ 14 sive) Hamiltonians are described in terms of a generic sce-
However, there are brand-new attenipté’to find out a  nario. In this context, it has been pointéd out that the
more generic criterion for whether the system is massive osuccessive phase transitions may be, to a certain extent, re-
massless, where integer-spin and half-odd-integer-spigarded as ones between the so-called valence-bond-solid
chains are not distinguished but are globally treated in &VBS) state€®?’ of different types, which are schematically
wider Hamiltonian space. Developing the(3D nonlinear-  shown in Fig. 1. On the other hand, the present adtt6r
o-model quantum field theory Affleck®® already pointed has shown that the critical points of tBe=1 chain belong to
out a few years after Haldane’s conjecture that even integethe same universality class as tBe 1/2 Heisenberg antifer-
spin chains should be critical if a certain interaction is addedomagnet. In such circumstances, it is unfortunate that in
to the pure Heisenberg Hamiltonian. His argumi&fitwas  contrast to the vigorous argument in tBe=1 case, there
unique in that he made such a suggestion not introducing aappeared few works in the larger-spin cases yet. Thus, as-
anisotropic term but breaking the symmetry of parity. In re-suming that the half-odd-integ&Heisenberg points are all
cent years, motivated by Affleck’s prediction, severalmassless criticat?®~*°here we treat the Hamiltoniga.1) of
authord®1922-% numerically investigated the Heisenberg S=1, 3/2, and 2. We adopt the periodic boundary condition
Hamiltonian with bond alternation, and therefore treat the region<<1, because now the
Hamiltonians with= § should be equivalent to each other.
Calculation of the gap between the ground state and the
first excited state may be the most naive and thus explicit
approach in investigating the continuous phase transitions.
whereS?=S(S+1), which is expected to be in the masslessHowever, the rapid decrease of the gap in magnitude with an
phase when the so-called topological angke27S(1— 6) increase ofS clearly makes such an approach less feasible in
is equal torr (mod 27),%° namely, to encounter successive the larger-spin cases. It is also unfortunate that the energy
phase transitions of & times while 6 moves from—1 to  gap shows a slow convergence in taking the thermodynamic
1. Singh and Gelfarfd made the first approach to detect the limit. For instance, in th&=2 case, the Haldane gap, that is,
critical point in the case o6=1 using a series-expansion the gap at the Heisenberg point, is already smaller than
method. Since then, density-matrix renormalization-gréup, 0.1J (Refs. 8—1% and is being discussed with chains of
quantum Monte Carl&$?*and exact diagonalizatiéhmeth-  length larger than a few hundred sifés* Therefore, even
ods were in succession applied to B 1 study and they all with the density-matrix renormalization-group metfotf
concluded that the critical point actually exists but is locatedand the approved quantum Monte Carlo appradchit may

H=JZi [1-(—1)'6]S S+, (1.2)
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S=1 transitions, it is more useful than the (¥ nonlinear-

o-model quantum field theory in estimating the transition
@ £HHHHHS points.

This paper is organized as follows. In Sec. Il, defining the
& (o) (o) () appropriate transfer matricé§?>3132we obtain the indi-
vidual forms ofOg;,( #) which characterize the VBS states
Ss=3p shown in Fig. 1. In Sec. lll, we perform the variational cal-
culation and qualitatively verify the underlying mechanism

© —®®@-®-®®— of the successive phase transitions. In Sec. IV, we present the

quantum Monte Carlo study. After we briefly describe the

@ %%% numerical procedure, we estimate the transition points mak-

ing the best use 0Dy, #). Section V is devoted to sum-

S22 mary and discussion, where we graphically present all the
results obtained and discuss the validity of the VBS picture

© W for the ground states of the present Hamiltonian.
® _E';t@-@@@:@_ Il. GENERALIZED STRING ORDER PARAMETER
v EESED Let us call the VBS state witi valence bonds between

sites 7 —1 and 3 andn between 2 and J +1 the (m,n)

) i VBS state. The usual Affleck-Kennedy-Lieb-TasékKLT)

an dF(Ik:()B)' gzs?i:/ge(r;ag(r:‘crie(g)reZircnjtgtl:c)gs(g)f_t(hg? Vvshsef;a:if;n(ﬁol staté® in the case oB=m is identified with the (,m) VBS
' ' ' state, which is invariant under translation. We show in Sec.

® and the segment denote a spin 1/2 and a singlet pair, respeg- o . -
tively, while the circle represents an operation of constructing aﬁl that within a simple variational approach, even the VBS

spinS by symmetrizing the 3 spin 1/2's inside. The configurations states themsglve; pla)_/ the approxmate ground states of the

(8—(g) are called (1, 1), (2,0), (2, 1), (3,0), (2,2), (3, 1), (4,0) Present Hamiltonian with certain values &f

VBS states, respectively. We find ouS2 1 states of this type in Using the Schwinger boson representation,

the spinS case. Under the periodic boundary condition, all the rest
e ' St=a'b,, S=1i(a'a;—b'b)

are essentially identified with any of the present ones, because re- i i i = 20 4= Dy bi),

versing the sign ob is no more than interchanging the two sublat- R (2.7

tices. Thus, while the system goes through all the configurations, it S =ab/, S=%(a'a+b/b),

encounters 3 transition points.

the (m,n) VBS state is written as

be rather hard to directly detect the massless points of the L2

S=2 chain. Thus here we no longer persist in observing the |(m,n)VBS)= H (a}._.bl—bl _,al)m
energy gap itself but expect the generalized string order ’ jop o ATrA em1m
paramet

X (aZjbEJ 1T sza;j+1)n|0>>, (2.2

Ogtring( 0) = lim

li=j[—e

S,ZH exr[iesi]sjz Due to the periodic boundary condition, we adopt the iden-
k=i tities,a/ , ;=a] andb/ , ;=b] . Itis of great use to introduce
an alternative representation of matrix-product type:

< i-1 > where|0)) is the Bose vacuum and is the chain length.
. (12

to play an indicator of the phase transitions, whehe de- A B A 5
notes the grand-state average of the operatdFhis idea is |(MN)VBS)=Tr{g1®g,® - ®g_1®gc], (2.3

based on the fact Ehat each of the VBS states has a unique. o at sites P-1 and 3 we define thenxm and the

0 dependence 00%;{6)."*" More specifically, under a : A 2 :
certain applicability of the VBS picture to the present Hamil- mxn matricesgs; -, andg;; respectively, as

tonian, its ground states may be qualitatively identified with B ~
one of the VBS states and therefore the transition points 95— 1(P;0)=(—1)""P/sCpmCq(al; )" P
between them should be successfully detected by observing

OZind 6) as a function o at various values of. Therefore X (03— )™ P790)),; 1, (2.4
we employ a quantum Monte Carlo method to calculate
Oiring( 0 L). , 95/(a;P)=(~ D)™ 0/ iCprCq(af)™ P~
On the other hand, we would rather aim to reveal the
physical mechanism of this phenomenon than totally devote x(bgj)nfp+q|0>>2j , (2.4b

ourselves to specification of the transition points. From this

point of view, we discuss the subject in another way makingwith the local vacuum statf0)); . Hereg(r;s) denotes the
use of simple variational wave functions which are linear(r,s) element of the matribg. For the convenience of the
combinations of the proper VBS states. Although the apiater calculation, we list in the Appendix the concrete forms
proach is so naive as to result in the discontinuous phasef the g matrices in terms of th&’ eigenstates.
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In order to actually calculate the generalized string ordemwhere
parameter, we take the following expression:

PB(q,0';p.p’) =05/ (0;p)Sexdi6S5,195,(a";p’),

Oétring( 0):L|im Oétring( H;L), (25) (2_93
where QA(p.p';0.a") =05 1(p;a)exdioss; 1195 1(p";a"),
3L/4-1 (2.9b
Orind ;L) ={ Si/a 'Hm eXF[iGSjZ]SgL/4>- (2.6) o _ .
1= Q%(q,a';p.p") =05, (q;p)exdi6S5195(a’;p’),
Defining then?x m? and them?x n? transfer matrices, (2.99
GA(p.p'0.0) =G 1(Pia) g5 1 (P'i0"), (273 R%(a.9";p.p") =03/ (4;P)S395,(a";p").  (2.90

B . 1y — ~BT/~- B Fen!
G*(a,a";p,p") =02 (A;P)G2;(A";P"), (27D |t may be noted that as far as we take an interest only in the

we can straightforwardly evalua@?, 6;L) for each vBS  thermodynamic-limit properties3* and G® should be effi-
state as ciently reduced in their dimensioriito thenxm and the
mx n matrice3.!” Let us take a glance at a few examples of
Tr[(GAG B)L/47 lGAPB(QAQB)L/47 lQARB] oétring( o: L)
Tr[(GAGB)LIZ] '
(2.9 (@ S=1,m=n=1:

Oétring( 0; L) =

[(4/19)(—3)-+4]sir?(6/2) + (8/3)(— 3) D co( 612)

Oétring( 0’L): (_3)L+3 ’ (21@
(b) S=1, m=2,n=0:
4 4 H
Ostring( o;L)= §S|n201 (2.1
(c) S=3/2,m=2,n=1:
, 6(-2(25/36)sin? 6+ 69 (5/6)cosd(4co+ 1) + 4sindcosy
Ostring 0:L) = 613 , (2.12
[
(d) S=3/2,m=3,n=0: (c) S=3/2,m=2,n=1:
o 0'L—13'30+1'02 01 25
suind 0;L) = 7| 5Sin| —-| + 5sin| 5 (2.13 Ol 0) = 5SIrPO), (2.16

Instead of carrying out further demonstration, we note that
Ogind( ;L) generally shows ah dependence in the AKLT (d) S=3/2,m=3,n=0:
and the partially dimerized VBS states, while it is always

free fromL in the totally dimerized VBS states. Now, taking 113 [(36\ 1 [#\]2
the L— o limit for Ogyin 6;L), we obtain the characteristic O%ind 0) = 2 Esin(7 + Esin(iﬂ , (2.19
0 dependences of the generalized string order parameter for
each VBS state as follows:
(@ S=1,m=n=1; (e) S=2,m=2,n=2:
16[1  (6\]? 2 i
Oguind 0) =g Esin( 5) : (2.14 OZtrind 0) =SiN’6, (2.18
(b) S=1, m=2, n=0: (f) S=2, m=3,n=1:
) 4 ) 9(3 (36 1 [6\]
OZuind 0) = §S|n29, (2.15 O%uind )= 5¢| 58N 5|+ 3sin 5 ||, (2.19
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(g9 S=2, m=4,n=0:
4
OZtind 0) = 2—5[25ir(20)+sin0]2. (2.20

Finally in this section, we add that aIthou@it,ing( o;L)

for the (m,n) VBS state becomes more and more compli-

cated with the increase ofh and n, the corresponding
OZying 6) is compactly written &

Oétring( 0):|fm,n(ei0)|2y (2.21

where
m+n+2 O
fnn(2)= szo (2k—m)z*.  (2.22

Ill. VARIATIONAL APPROACH

The linear combination of all the possiblen2S—m)
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(2,0VBS|H|(2,0VBS
: |(2,$)V|BS||2 >:—l-(1+5). (3.30
<(2’0)VBS|H|(1-1)VBS>__2L ! Li2 s
I(20VvBS[l(LYVBS] ~ 37| 3 (5+96).
(3.39

Here we certainly find that the matrix elemei®39 van-
ishes in theL —co limit. Now we obtain

lim W= ( 5— %) cosh—(1+6), (3.9

L—oo

which leads to the simple solution,

6=0

0<$6 ! T |2 o<1 3
<6<- =— |=<68<

<3 , 6 5 3< . (35
Therefore, the variational ground state is the AKLT state
itself for | 8| <1/3, while the totally dimerized VBS state it-
self for | 8]>1/3.

VBS states may be a naive but suggestive variational wave In th%_Sgl case, using various numerical methods, many
function for the ground state of the present Hamiltonian ofaUth0f§_ have already come to an agreement with the
spinS. Such a trial wave function is reasonable to the exteneonclusions.=0.25. Therefore, the thus-obtained estimate

that it is obviously singlet and includes the exact solutions af the transition pointg.= 1/3, is much better than the field-
5=+1, namely, the totally dimerized VBS states, in itself. theory result,5.=1/2. However, owing to the asymptotic
The variational approach of this tyPavas actually made to orthogonality(3.2), the present variational calculation results
theS=1 bilinear-biquadratic Hamiltonian with bond alterna- in the discontinuous transition. In order to describe the real
tion and resulted in the qualitatively reliable ground-statepicture, that is, the continuous transitibi,>?°=?%in this
phase diagram. Here we develop the argument to the largegontext we may have to take the valence bonds beyond the
spin chains reviewing th&=1 case for the sake of refer- nearest sites into the trial wave function.

ence. It is enough for us to treat only then,@S—m) VBS
states withm=S due to the equivalence of th&<0 region
to the 6>0 one under the periodic boundary condition.

A. S=1
The trial wave function for the region©06<1 should be

constructed from the AKLT and the totally dimerized VBS

states as

|(1,1)VBS)
I(1,DVBS|

_|(2,0VBS)
Szoves)’

| (6))=cosd (3.1)

where |A| denotes the norm of the state vectph).

|W(6)) is correctly normalized in the thermodynamic limit

because of the asymptotic orthogonality,

((2,0VBS|(1,)VBS)  2(-3)*+?
[(2.0VBS[[[(1,) VBS| ~ 37431 3(- 1)t

—0(L—).
(3.2

We further note that the orthogonality of this type still holds
in the larger-spin casé$,namely, the matrix elements be-

tween the (n,n) VBS and the (n’,n’) VBS states necessar-
ily vanish in the thermodynamic limit unless=m’ and
n=n’. With the compact expressig2.3 and theG matri-
ces(2.7), it is straightforward to derive

((L,)VBS|H|(1,)VBS)
ENEEE -

4L[3"+9(—1)72)
3[3t+3(—1)H]
(3.39

B. S=3/2

The similar treatment is available in tif&=3/2 case as
well constructing the trial wave function as

(2,)VBS) ~ _ |(3,0VBS)

sing .
[(2,2VBS| [(3,0VBS|
The asymptotic orthogonality

|W(6))=cosp

(3.6

((3,0VBS|(2,)VBS)  2(—6)2 0
= —
1(3,0VBS|[[(2,)VBS|  4t2,/6172+3
(L—), (3.7
again simplifies the calculation and we finally obtain

(W(G)IHI\I’(@))_%( 7
m L 48|79 13

L—oo

)co§0— %5(1+5).

(3.8
Therefore we reach the simple scenario just the same,

7
—< 8= 1) . (3.9

=0 0=<$6 —7 ==
=
0 <13]" ¢ 13

13 2
The recent density-matrix renormalization-group ap-
proach has concluded thdt=0.42, which is in good agree-
ment with the present quantum Monte Carlo calculation
which is shown in Sec. IV. Thus, as far as an estimation of
the transition points is concerned, the simplest variational
approach is still better than the semiclassical-limit field-
theory result,5.= 2/3.
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C.S=2 tative applicability of the VBS scenario to the successive

The S=2 case can be discussed in the same way but thehase transitions.
trial wave function is now constructed from the VBS states

of three types as A. Numerical procedure
(2,2 VBS) (3,1 VBS) Here Ogynd 6;L) is evaluated as the canonical average of
|W(8,¢))=cost————or +5iNf cospr——— OZind 0;L) =S T3 lexd 1 0SS5, ,, at a sufficiently low
1(2,2VBS] [(3,DVBY| string( 6; 1al17=7a 1 1S304 y
temperature8” 1=kgT:
Csing s ¢|(4,0)VBS) (3.10
sind siNgr—————==r - . .
I(4,0VBS| Trie 0% 4 6;L)]

_ , , OZyind O;L) = S 4.1

Making the full usé’ of the asymptotic orthogonality, we S Trie™”"]

obtain
Decomposing the partition functiah=Tr[e” #"] as
V()| H|V (6 9 2
lim M:[E(é_ g)cos’xﬁ .
L—o Z:Tr H e—lBhiyiJrl/n H e—,Bhi'Hl/n ,
1 9 i=13, ... i=24,...
s i2, 2 4.2
+3|5 5) sirf6 >
(3.11) with a Trotter numben and local Hamiltonians

Therefore the variational ground state is given by hi,i+1=J[1—(—1)i5]3 Sy, 4.3
=0, ¢=0 (Og 5<£), we carry out the world-line Monte Carlo samplifign the
4 equivalent (1 1)-dimensional Ising systeth of LXx2n

size. We take a set of values forand then dependence is
extrapolated into the— o limit. Since the finiten effect on
OGuingd( 0) is remarkably variable according # the n—o
extrapolation is essential in observing the overall behavior of
T T (2 O%tring #). The numerical algorithm to update the spin con-
b=%, ¢=3 (§< 5<1)- (312 figuration is detailed elsewhef®which should be well de-
signed especially for large-spin systems of great degrees of
The guantum Monte Carlo calculation presented in SecerEdom so as to obtain reliable estimates within feasible
IV shows that the second transition poifith the larger ~Monte Carlo steps.
value of 8) is still better specified by the present approach We treated the chains ¢f=16, 32, and 64 in th&=1
than by the field theory. On the other hand, the two approxicase, while in the larger-spin cases we calculated the chains
mate treatments result in the same estimate of the first trar®f length up toL =128. We tookkgT/J=0.02 in combina-
sition point(with the smaller value o6), which implies that  tion with n=40, 60, 80, and 120. Preliminary calculations at
the ground states of the present Hamiltonian in the HaldanksT/J=0.04 and 0.02 resulted in almost the same estimates
phase are less described in terms of the AKLT state fowithin the numerical accuracy and thus the temperature
larger S. All the values obtained in this section are graphi-KksT/J=0.02 is reliable enough to describe the ground-state
cally presented in Sec. V together with the quantum Monteproperties. We calculate@g 6) setting 6 to a finite set

I o 1 s 2
9—5, b= 1°9<3)

Carlo results and the field-theoretical prediction. (generally 17 sometimes B3f evenly spaced values be-
tween 0 andr and thed dependence is interpolated for the
IV. QUANTUM MONTE CARLO APPROACH sake of presentation. The numerical precision in the final

results is almost down to two decimal places, namely, there

It is well known that the AKLT states generally give con- may be, at most, slight uncertainty in the second decimal
siderably small correlation lengtfisn comparison with ones place. The largest uncertainty appears in the vicinity of the
on the Heisenberg points. Several autAtr® have pointed critical points. The dominant errors occur generally in the
out that once the Hamiltonian deviates from the AKLT point, Monte Carlo sampling itself rather than in the- or the
there occur certain quantum fluctuations to break the perfedt—co extrapolation.
hidden ordef’ Thus the ground states of the present Hamil-
tonian should more or less deviate from the pure VBS con-
figurations unles$s|=1. We have nonetheless found out in
the preceding section that within the naivest variational treat- In Fig. 2 we showOg;,{ #) as a function of¢ changing
ment, all the possiblen,2S—m) VBS states play, in turn, the value ofé. It is obvious that with an increase @f the
the ground state of the present Hamiltonian of spiwhile  system encounters the phase transition between the Haldane
6 moves from—1 to 1. The result allows us to expect that and the dimer phases which are qualitatively identified with
the VBS picture is still valid with the present Hamiltonian. the (1,1) VBS and the (2,0) VBS states, respectively. While
The overall behavior 0®§mng( 0) actually supports the quali- the system already looks completely dimerizedat0.5, the

B. S=1
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0.0 0.2 0.4 0.6 0.8 1.0
0/m

FIG. 2. Generalized string order paramaﬂﬁring( ) as a func-
tion of # at various values o8 in the S=1 case. The dashed lines
represent ones for the AKLTFig. 1(a@)] and the (2,0) VBYFig.
1(b)] states, namely, Eq$.2.14) and( 2.15.

ground state af=0.0 still deviates from the AKLT configu-
ration to a certain extent. The reduction of the order param-
eter atf= is nothing but a consequence of the domain
walls in the hidden ordet> However, interestingly, the
qualitative § dependence is kept almost unbroken on both
sides of the transition point. If we specify the phase transi-
tion through a change of th& dependence in the vicinity of . . . .
0=, that is, the change from the convex curve to the con- 0.0 0.2 0.4 0.6 0.8 1.0
cave one, we come to the conclusion tidgt=0.245, which 8/m

is in good agreement with the well-accepted estimate

5,~0.25 (Refs. 22—25 obtained with various methods and  FIG. 3. Size dependence @fg,{#;L) as a function of¢ at
from various standpoints. 6=0.0 (a) and 56=0.5 (b), where the ground state is qualitatively

It is interesting to observe the size dependences oféscribed by the AKLT[Fig. 1(a)] and the (2,0) VBSFig. 1(b)]

- g L : i i -the be-
OZ,. (6:L) in considering the applicability of the VBS pic- statfes, respectively. Here the d_ashed line repr_esenﬂs
tu?gnfc(J the present Hamiltonian. Let us recall Egs10 and r"’t‘.v 'Orihnamelya Te correspondirt@, . 6), obtained by extrapo-
(2.12), namely, thaDgy;,( 6;L) shows an actual size depen- aling the raw data.

dence in the AKLT state, while no size dependence in theyerall behavior ODétring( 6) well supports the applicability
tOtally dimerized VBS state. We show in F|g 3 the Sizeof the VBS picture_ However, it seems that the maximum-
dependences 0f0g;,{6;L) at 6=0.0 [Fig. 3@] and value position 0f0%i,4( 6) in the intermediate phase slightly
6=0.5[Fig. 3(b)], which are typical of the Haldane and the deviates from#= /2 given by the pure (2,1) VBS state.
dimer phases, respectively. We find that the Haldane phasgarefully observing thed dependences arourt= 7 again,
gives a much more significant size dependence than th&e conclude tha$,=0.43+0.01, which coincides with the
dimer phase, which is qualitatively consistent with the VBSrecent pioneering estimai® =0.42+0.02 (Ref. 18 within
scenario. However, the size dependence of dlO is so  the numerical accuracy. Now the generalized string order
weak as to exhibit no visible difference in the scale of Fig.parameter may be really recognized as a reliable indicator of
3(a). Therefore, as for the short-chain properties, therehe phase transitions.
should be remarkable differences between the present and Let us observe size dependence©gf;, 6;L). We show
the AKLT models. This may be attributed to the discrepancyin Fig. 5 the size dependences®f,;,{ ;L) at 5=0.2[Fig.
of the (NGED correlation |ength§ Although even the pure S(a)] and 6=0.6 [F|g ab)], which are typ|ca| of the inter-
Heisenberg Hamiltonian giveg=6,"° the AKLT model  mediate and the dimer phases, respectively. It is clear that the
shows the extremely short-range correlatigm; 1/In3. It is finite size effect is much more strong in the intermediate
well understood tha®g;,( 6=0;L), that is, the Nel corre-  phase than in the dimer phase, which is qualitatively consis-
lation looks significant unless>¢ in Fig. 3(a). tent with Egs(2.12 and(2.13. However, thel dependence
of Eq. (2.12 is much weaker than the one in Figap This
quantitative difference is again due to the remarkable dis-
crepancy of the correlation length. While the correlation
Figure 4 showsDg;,{6) as a function off at various length of the present model with=0.20 is measured as
values ofé. We find the transition between the intermediateé=10, the (2,1) VBS state gives=2/In6. We actually ob-
and the dimer phases which are qualitatively identified withserve in Fig. %a) that the Nel correlation of the. = 32 chain
the (2,1) VBS and the (3,0) VBS states, respectively. Thds still far from the bulk behavior.

C.S=3/2
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0.8

(@)

Ozslring(e > L)

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
6/mn o/m

FIG. 4. Generalized string order paramaﬂﬁring( ) as a func-
tion of @ at various values of in the S=3/2 case. The dashed lines
represent ones for the (2,1) VB%ig. 1(c)] and the (3,0) VBS

0.6
[Fig. 1(d)] states, namely, Eq$.2.16) and( 2.17).

D.S=2 o)
Here the Haldane, the intermediate, and the dimer phases <

are expected to appear one by one, which are qualitatively

identified with the (2,2) VBS, the (3,1) VBS, and the © 02 |

(4,0) VBS states, respectively. In Fig. 6 we shd)@tring( 0)

as a function off changing the value of. Figures a) and

6(b) focus on the firsfHaldane-intermediajeand the second 0.0

(intermediate-dim@rtransitions, respectively. The depen- 0.0 0.2 04 06 0.8 10

dences 0Dg 6) in the intermediate and the dimer phases 8/n

still look consistent with ones of the (2,1) VBS and the

(3,0) VBS states, respectively, whereas the (2,2) VBS state FIG. 5. Size dependence @, ¢;L) as a function off at

seems to describe less the Haldane phase of the preseht0.2 (a) and §=0.6 (b), where the ground state is qualitatively

Hamiltonian. Even ad= 0.0, the maximum-value position of described by the (2,1) VB$Fig. 1(c)] and the (3,0) VBYFig.

oémng(g) clearly deviates fromm/2 given by the AKLT  1(d)] states, respectively. Here the dashed line represents the

state. This is a contrast to tif=1 case. However, the over- L— behavior, namely, the correspondi@ny¢), obtained by

all behavior ofO%;;,{ ) still bears a certain analogy to the extrapolating the raw data.

VBS picture to the extent that it enables us to detect th

transition points. The# dependences in the vicinity of

0= remain useful and we conclude thét; =0.18+0.01

a_md 502=0.54_5t0.005 for the first a_n_d the second transi- m.n) VBS state by the Kel order parameter

tions, respectively. The second transition seems to take plau% . =O%_(0) and den Nijs—Rommelse string order pa-

more sharply and therefore it is better specified than the first N strin R ) g order p

one. rameterOyng= Ogyin 7). HereO and X represent surviving
We show in Fig. 7 hOWOémng(ﬁ;L) converges into and vanishing order parameters, respectively. SiDgg is

: : - 7.41
OZind 0) at 6=0.0[Fig. 7(@)], 0.4[Fig. 7(b)], and 0.7[Fig. directly related with the hidde&@,xZ, symmetry’*! for

7(0)], where the system is in the Haldane, the intermediatemteger spins, we indicate as well whether it is broken or not

and the dimer phases, respectively. It is Figa) and 7b) in the cases 06=1 and 2. The quantum Monte Carlo cal-
=" pn » resp Y- . culation has shown that the phase transitions in the present
that show significant size dependences, which are rather

> . ) . model are almost consistent with this VBS picture.
strong around the minimum-value points, while relatively s . .

. ! . The transition points have been estimated not only em-
weak around the maximum-value points. In general, with

decrease ok, the maximum-value points move left and the ploying the guantum Monte Carlo meth_od but also with use
curves beco}ne flatter in the vicinity ¢f=0 and =. This of the simple variational wave fu_nctlons. The guantum
behavior somewhat resembles one observed in I.:ig 6 wit onte Carl_o results well co!nmde with all the previous esti-

: o : : ates obtained through various approaches and therefore the
increase ofs and thus implies that for small’s the system

with its small aap and larae correlation lenath still looks generalized string order parameter does work as an indicator
critical 13 9ap 9 9 of the present successive phase transitions. It is useful to

graphically present in Fig. 8 all the findings in comparison
V. SUMMARY AND DISCUSSION with the field-theoretical predictiof?. All in all, the varia-
tional approach is better than the field-theoretical one. How-
We have extensively investigated the successive phasver, its quantitative superiority seems to be reduced with
transitions of the antiferromagnetic Heisenberg chains withincrease ofS. This may be attributed to two reasons. On the

%ond alternation being based on the applicability of the VBS
picture to this phenomenon. For the purpose of understand-
ing the nature of each phase, in Table | we characterize the
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(b) ) OL= 16

O ing® 3 L)

0/n
FIG. 6. Generalized string order parame®,;,( ) as a func- 12
tion of @ at various values o in the S=2 case. The dashed lines © OL=16
represent ones for the AKLIFig. 1(e)], the (3,1) VBS[Fig. 1(f)] 10 ;éf 25
and the (4,0) VBYFig. 1(g)] states, namely, Eq$.2.18, ( 2.19, -

L =128
and( 2.20. \ °

one hand, it is a matter of course that th€3Ononlinear-
o-model quantum field theory is more justified for lardger
because of its semiclassical treatment. On the other hand, the
present variational approach, which simply approximates
each phase by one of the VBS states, is expected to become
less valid with increase o%. In this context, let us take a
look at the explicit expression of the spBiHamiltonian
whose ground state is then(n) VBS state (n+n=2S).

Such a Hamiltonian is easily constructed’#8

FIG. 7. Size dependence @fg;,(6;L) as a function ofé at
6=0.0 (a), 6=0.4 (b), and 6=0.7 (c), where the ground state is

Hmnyves= 2 Pﬁ(S-SH)—F_ 2 P%(S-SH), qualitatively described by the AKLTFig. 1(e)], the (3,1) VBS
=13, ... i=24,... [Fig. 1(f)], and the (4,0) VBSFig. 1(g)] states, respectively. Here
(5.9 the dashed line represents the-o behavior, namely, the corre-
where spondingogtring( ), obtained by extrapolating the raw data.
as unity. Since it is obvious th@5¢(S - S ;1) =0, we write
S 1] down in the following a few examples ¥, nves With
PSS 1)= sl [28:S1+28(8+)-30+ 1], m<2s:
Di=
(5.2

- 1 ,. 2
_ ) ) ] H(l,l)VBS:E S-S+ §(3'3+1) 3l (5.3
is the ( + 1)th-order polynomials of the exchange interaction =1

S-S.1 SO as to project out the subspaces with
(S+S.1)%>I(1+1); 1=0,1, ..., B. Here N¥ has been
just introduced so as to take the coefficient of the linear term

- 997+ (—1)'511
H(Z,l)VBS:iZ:l [3 St W(S -Si+1)?
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TABLE I. Nature of the (n,n) VBS state.

2
S (m,n) Oneel Onr Z,XZ, symmerty //‘/
(1,1) X O Broken ”/ ;’4
1 /
(2,0) X X Unbroken '
(2,1) X X - “ 1
3/2 —
(3,0 X O - /
(2,2) X X Unbroken — i e
2 (3,1) X O Broken /// 25’:2:11:):3 approach
(4’0) X % Unbroken o O‘Quantun‘l Monte Carlo
-1.0 -0.5 0.0 0.5 1.0
)
8{1+(-1)"} 3,
+ 243 (S-S+0)7F 5616 (5.4 FIG. 8. Transition points in the spin Hamiltonian space spanned

by the spin quantum numbe$ and the alternating coupling,
L where the symbol$D, X, and ¢ denote the estimates obtained
H(Z,Z)VBSZE [S Siit g (3 Si1)? through the @) nonlineare-model quantum field theory, the
= variational approach, and the quantum Monte Carlo method, respec-
tively. We also plotted the criterion for the critical behavior,
(5.5 2S(1- 6) == (mod 27), which is predicted by the field-theoretical
approach. The numerical uncertainty of the quantum Monte Carlo
estimates is within the size of the symbols.

1 3
+55(8°8.0°

87+(—1)'67 )
H(3,1>vas:i21 S-St 55 (5S4 sality class as the&s=1/2 Heisenberg model. In order to
N make sure of such a fascinating scenario, it is important to
7{1+ -1)1 perform a further numerical specification of the critical

(S-§+0° points by means of various approaches. We hope that the
present study will motivate further exploration into the topic.
1+(- 1) ay
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stronger dimerization, the better is the VBS picture appli-
cable to the ground states of the present Hamiltonian. (@ S=1,m=n=1:
Here we have concentrated ourselves on detecting a series

of the transition points and revealing the underlying scenario. 9t _,=gB 0y -2+ 1) (A1)
One of the following subjects to be discussed should be the 2i-17 92 \/§| -1) |0)

universal character of the critical points. It is all the more

interesting under the field-theoretical predict®f of the (b) S=1, m=2,n=0:

generic critical behavior for a certain class of isotropic anti- A

ferromagnets. In fact several authors have already concluded 921—1:“ — Do)+ 1)1, (A23)

that not only theS=3/2 Heisenberg poiff>*3but also the 5
preseniS=1 critical points>*®?*belong to the same univer- 95 =TI[+1)—[0)[-1)]. (A2b)
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(c) S=3/2,m=2,n=1:

A —|=3) —V2|+3) -3+ Asa
Joi_1= s a
e V2eh vy
o] P —\2|-1) ﬁl—%] n3b)
VB -2y b
(d) S=3/2,m=3, n=0:
g 1=[1=3) 1-3) [+3) [+, (Ada
g5 =T[—1+3) [+3) —1-3) |- (Adb)
(e) S=2, m=n=2:
|0) V3|+1)  \B|+2)
9%-1=05= —\3[-1) -20) —3[+1)].
V6|-2)  V3|-1) |0)
(A5)

SHOJI YAMAMOTO 55

(f) S=2,m=3,n=1:

A 717D =200 —\3+1) —2[+2)
92]—1__2|_2> V3l-1)  \2]0) |+1) |
(A6a)
o[ D VP -\E-1 2-2)
2T 42y B+ —y2l0)  [-1) )
(A6b)

(g) S=2, m=4,n=0:

95 -1=[1-2) |-1) [0)|+1) [+2)], (A7a)

95=T[|+2) —|+1) [0)—|-1) |-2)]. (A7b)

Here, in comparison with the original definitio(®.4), some
of the expressions have been adjusted with regard to their
coefficients so as to simplify the actual calculations.
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