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Constructing Penrose-like tilings from a single prototile and the implications for quasicrystals
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We present two sets of rules for constructing quasiperiodic tilings that suggest a simpler structural model of
quasicrystals and a more plausible explanation of why quasicrystals form. First, we show that quasiperiodic
tilings can be constructed from a single prototile with matching rules which constrain the way that neighbors
can overlap. Second, we show that maximizing the density of a certain cluster of fat and thin tiles can force a
Penrose tiling without imposing the usual Penrose matching rules.@S0163-1829~97!02706-9#
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I. INTRODUCTION

Quasicrystals are solids with quasiperiodic translatio
order and crystallographically disallowed rotational symm
try. A leading model for describing their structure and pro
erties has been the Penrose tiling picture,1 based on the two-
dimensional aperiodic pattern invented by Roger Penrose2 in
1974. The Penrose pattern is composed of fat and
rhombi with matching rules which constrain the way neig
boring tiles can join together edge-to-edge. Penrose sho
that the only plane-filling tiling consistent with those matc
ing rules is uniquely the Penrose pattern. The generaliza
to three-dimensional structures with icosahedral symm
composed of rhombohedral bricks with matching rules
been found. In the Penrose tiling picture, one imagines
the tiles represent two distinct clusters of atoms and
matching rules represent atomic interactions.

The Penrose tiling picture successfully explains all of
known structural and physical properties of quasicrystals,
cluding the microscopic arrangement of atoms as view
with scanning tunneling electron microscopy.3,4 Neverthe-
less, serious theoretical doubts about its validity have
mained. The physical conditions required to emulate a P
rose tiling appear to be much more complex than wha
needed to form periodic crystals. For example, the Pen
tiling picture suggests that the atoms must organize intotwo
distinct clusters which act as the building blocks of the q
sicrystalline structure, whereas crystals require only a sin
building block. The condition for crystals seems intuitive
simple: it is easy to imagine a single building block arisi
as a low-energy atomic cluster of the given elements.
quasicrystals, the energetics must be delicately balance
allow two distinct clusters to intermix with a specific ratio
densities. Furthermore, the atomic interactions must res
clusters so that they join only according to the match
rules. Concerns about these conditions have led to a pr
eration of alternative models for quasicrystals, including
icosahedral glass, random tiling, and entropic pictures.5 The
alternatives all predict imperfect quasiperiodic structu
with differing degrees and types of imperfection and th
also predict that quasicrystals are metastable. Yet, rec
highly perfect quasicrystals have been discovered—as
550163-1829/97/55~6!/3520~13!/$10.00
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fect as periodic crystals made of similar elements—and so
appear to be thermodynamically stable. The peculiar sit
tion has developed that the Penrose tiling picture has b
increasingly supported observationally, while it has remain
questionable theoretically.

In this paper, we discuss two schemes for construct
quasiperiodic tilings which address the theoretical criticis
of the Penrose tiling picture. Although the work present
here is, for the most part, an abstract study of the propert
tilings, the results may profoundly influence our intuitio
about quasicrystals. First, in Sec. II, we present a sim
proof of the claim6 that a quasiperiodic tiling can be force
using only a single type of tile~plus matching rule!. Second,
in Sec. III, we show that matching rules can be discard
altogether. Instead, maximizing the density of a chosen c
ter of tiles suffices. The results are surprising from a ma
ematical standpoint and suggest an explanation of why q
sicrystals form. The basic conclusions were discussed
short paper,7 and here we produce the detailed proofs wh
establish the results.

In particular, the second approach suggests a simple t
modynamic mechanism for quasicrystal formation. If o
imagines that the chosen cluster of tiles represents some
ergetically preferred atomic cluster, then minimizing the fr
energy would naturally maximize the cluster density an
thereby, force quasicrystallinity. We first show that t
ground state is the perfect~Penrose-like! quasicrystal state if
the clusters are assigned the same energy independe
local environment, as discussed in our short paper. In
case, maximizing density and minimizing energy are equi
lent. In this paper, we also show the same ground-state
sults if different energies are assigned to the cluster depe
ing on its local environment. This is a significant extensi
of our earlier results since some difference in cluster ener
for different environments seems a natural idea. Convers
it shows that the same maximum-density configuration is
ground state for a range of energetic assignments. This c
ter model of quasicrystals had been conjectured previou
by the authors,8 and now it is proven to be mathematical
possible. In our concluding remarks in Sec. IV, we discu
the implications of our mathematical result for future the
retical and experimental research in quasicrystals.
3520 © 1997 The American Physical Society
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55 3521CONSTRUCTING PENROSE-LIKE TILINGS FROM A SINGLE . . .
II. CONSTRUCTION SCHEME I: SINGLE TILE
WITH A OVERLAPPING RULE

We first show that a quasiperiodic tiling can be force
using a single type of tile combined with an overlapping rule
Because neighboring tiles overlap, the result is an unconve
tional tiling, perhaps better termed a ‘‘covering.’’

As an analogy to a real atomic structure for quasicrysta
the overlaps should be construed as the sharing of ato
between neighboring clusters, rather than interpenetration
two complete clusters. This paper suggests that the shar
of atoms by clusters may be an important structural mo
that may play an important role in the formation and stabilit
of quasicrystals.

The construction was originally proposed by Gummel
who presented an elaborate proof.6 Our contribution is a very
simple, alternative proof which makes clear the relation
Penrose tilings and leads us to a second scheme.

For our example, the single tile is chosen to be the dec
gon shown in Fig. 1~a!. Unlike Penrose tiles, the decagon
are permitted to overlap, but only in certain discrete way
Two decagons may overlap only if similarly shaded region
overlap and the overlap area is greater than or equal to
hexagonal overlap area shown inA. Counting the relative
orientations of the neighboring decagons, one finds that t
overlap rule permits five types of nearest-neighbor config
rations: four A-type overlaps and oneB-type overlap as
shown in Fig. 1~b!. TheA andB overlaps produce two dif-
ferent separations between the centers of neighboring de
gons. Roughly speaking, these two distances, which hav
relatively irrational ratio, replace the two tile types in the
usual Penrose tilings.

Our proof that the overlap rules force uniquely a quas
periodic tiling analogous to a Penrose tiling is based on i
scribing each decagon with a Penrose fat rhombus t

FIG. 1. A quasiperiodic tiling can be forced using marked dec
gons shown in~a! with overlapping rules. Overlapping rules de-
mand that two decagons may overlap only if shaded regions over
and if the overlap area is greater than or equal to the overlap reg
in A. This permits five types of pairwise overlaps, four types ofA
overlaps and one type ofB-type overlap as shown in~b!. If each
decagon is inscribed with a fat rhombus, as shown in~c!, the in-
scribed rhombi from two overlapping decagons share at least o
vertex ~d! and as much as a complete edge.
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marked with single and double arrows, as illustrated in F
1~c!. We remind the reader that the original Penrose tiling
constructed from fat and thin rhombi. Two edges may jo
together only if the type and direction of arrows match.9,10

For any two overlapping decagons, the ‘‘inscribed’’ rhom
share at least one vertex and sometimes share an e
Where the rhombi join at a vertex only, there is an op
angle formed by the edges which are the location and sh
where rhombi can be fit according to the Penrose match
rules as shown in Fig. 1~d!. For these ‘‘implied’’ rhombi, the
arrows are fixed by the arrows on adjoining inscrib
rhombi.

We will show that the overlap rules force precisely t
same nearest-neighbor configurations of inscribed and
plied rhombi as do the Penrose edge-matching rules. G
melt showed that there are exactly 20 different ways a gi
decagon can be surrounded by neighbors, where surroun
a decagon means the edges of the decagon is covered b
interior of other decagons byA or B overlaps.6 Figures 2~a!–
2~c! show all 20 ways of surrounding a decagon with cor
sponding rhombus tile configurations. These 20 allow
decagon configurations have been broken into three gro

The first nine decagon configurations@Fig. 2~a!# are in
one-to-one correspondence with the nine ways of surrou
ing the fat rhombus inscribed in the central decagon
neighboring fat and thin rhombi according to the Penro
matching rules. By ‘‘surrounding’’ a rhombus, we mean th
all four of its edges are joined to neighboring rhombi wi
matching arrows; furthermore, three of its vertices must
surrounded by corners of neighboring rhombi. The neighb
ing rhombi may be inscribed in neighboring decagons
implied. The fourth vertex~at which the two double-arrow
edges of the central rhombus meet! is not completely sur-
rounded in some of the nine configurations. Later, we disc
how this last vertex is also forced to be a Penrose-like c
figuration when one applies the overlap rules beyond
central decagon to neighboring decagons.

The next eight decagon configurations are shown in F
2~b!. The inscribed rhombi of the central decagon in th
group are only partially surrounded. However, when t
decagon overlap rules are applied to neighbors of the cen
decagon, the result is one of the nine ways of complet
surrounding the central rhombus, as discussed in the
grouping. Hence, these eight configurations do not add
new constraints beyond what is already imposed by the
nine configurations.

The remaining three configurations are shown in Fig. 2~c!.
These configurations of inscribed and implied rhombi d
play no matching rule violation. However, they never occ
in a perfect Penrose tiling. This is because a mismatch
inevitable if one continues to add rhombi. Similarly, th
three configurations of decagons do not occur in a per
decagon tiling because, if one continues to add decagon
decagon overlap-rule violation is inevitably forced; that
some neighboring decagons cannot be surrounded by on
the 20 configurations. Hence, the three configurations p
equivalent roles in decagon tilings and Penrose rhombus
ings.

We have shown that all decagons in a perfect deca
tiling are surrounded by one of the first nine configuratio
in Gummelt’s list. In three of these configurations~Configu-
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FIG. 2. Twenty ways of surrounding a decagon and correspo
ing rhombus tile configurations.~a! First group; central fat rhomb
are surrounded by fat and thin rhombi according to the Pen
matching rules. ~b! Second group; center decagons are surroun
by other decagons but the central rhombi are only partially s
rounded. Each configuration is a subconfiguration of one of the n
configurations in~a!, and so imposes no new constraints.~c! Third
group; any way of adding decagons to these three configurat
forces a mismatch. Similarly, any way of adding rhombi to t
rhombus configuration forces a mismatch~e.g., some open angle
formed by the edges of fat rhombi cannot be filled by arr
matched rhombi!. Hence, these configurations never appear in
perfect tiling.
ration 7, 8, and 9!, the central inscribed rhombus is su
rounded on all edges and all four vertices by neighbor
rhombi. So these map into a unique, Penrose rhombus
figuration. In the remaining six configurations, the four
vertex is incomplete. For four of the six cases~Configuration
3, 4, 5, and 6!, simple experimentation shows that there is
unique way to complete the fourth by applying the sa
overlap rules to one of the neighboring decagons. For
remaining two configurations, Configuration 1 and 2, the
are two distinct allowed ways of adding overlapping dec
gons so that the inscribed rhombi complete the vertex. T
two configurations of inscribed decagons are also distin
but each corresponds to an allowed Penrose configura
Counting all of these, the nine decagon configurations m
into 11 ways of completely surrounding a central fat rho
bus by neighboring rhombi, precisely the number and ty
allowed by the Penrose arrow rules.@One of the 11 rhombus
configurations, does not occur in a perfect Penrose tiling
does the analogous decagon configuration occur in a pe
decagonal tiling. Although the configuration itself obeys t
matching rules~overlap rules!, it is impossible to add the
configuration without ultimately producing a matching ru
~overlap rule! violation.# That is, restricting the surround
ings of every fat rhombus to these 11 types is equivalen
enforcing the Penrose arrow rules for fat rhombi; in a P
rose tiling, every thin tile adjoins fat tiles, so fixing the su
rounding of every fat rhombus automatically fixes the en
ronment of every thin rhombus. Hence, the decagon ove
rules are equivalent to Penrose arrow rules, and the proo
completed.

A significant corollary is that the two-tile Penrose tilin
can be reinterpreted in terms of a single, repeating motif. T
analog for quasicrystals is that the atomic structure, wh
has been described in terms of two or more cluster units
the past, can be reinterpreted in terms of a single, repea
atomic cluster. This reinterpretation of the structure itself i
simplification which is valid independent of whether overl
energetics is an important factor in quasicrystal formation
not.

III. CONSTRUCTION SCHEME II:
MAXIMIZING CLUSTER DENSITY

Here we show the Penrose matching rules can be repla
by a different tiling principle and still obtain the same tiling
Namely, if one allows any possible configuration of fat a
thin rhombi, a perfect Penrose tiling can be picked out
maximizing the density of a particular tile cluster. As
model for quasicrystals, the notion is that the chosen clu
represents some low-energy, microscopic cluster of ato
Minimizing the energy naturally maximizes the cluster de
sity and forces quasiperiodicity. Our result suggests that
energetic conditions required for quasicrystal formation
only that a single chosen cluster be low energy, which
similar to the conditions needed to form periodic crystals a
simpler to envisage than the conditions needed to form
different tiles plus matching rules.

For this paper, we will focus on the tile cluster,C, defined
as

Definition.A C cluster is composed of five fat and tw
thin rhombi plus two side hexagons composed of two fat a
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55 3523CONSTRUCTING PENROSE-LIKE TILINGS FROM A SINGLE . . .
one thin rhombus each, as shown in Fig. 3. Penrose tili
experts will recognize the central seven tiles as being a Ja
configuration and the central decagon as being
‘‘cartwheel.’’ 11 It should be emphasized that this is only
particular example of a tile cluster that suffices; other choic
are possible.

Our central proposition is
Proposition. The Penrose tiling uniquely has the maxi

mum density ofC clusters among tilings constructed from
Penrose rhombi. The density is defined as the number ofC
clusters per unit area. Two tilings are considered to be d
tinct only if they differ from one another by patches whos
density has nonzero measure.

Our choice for theC clusters was motivated by the over
lapping decagons described in the previous section. TheC
clusters in a Penrose tiling and the decagons in a decag
tiling ~Scheme I! are in one-to-one correspondence. That i
if decagons are placed so that they circumscribe the cen
seven tiles of theC cluster, the decagons form a perfec
decagon tiling obeying the overlap rules described in th
previous section. Although the decagon andC cluster have
different exterior shapes, their key similarity is that two
neighboringC clusters can share tiles in two ways isomor
phic to theA andB overlaps of decagons; see Fig. 4.

Figures 3~c! and 3~d! show the relation between a marked
decagon and aC cluster. Consider the central seven tiles o
theC cluster. Shade a dart-shaped region in each fat rho
bus and the entire interior of each thin rhombus as shown
Fig. 3~c!. For a particular choice of orientations for the fa
rhombi, the resulting shadings within aC cluster join to-
gether in a pattern that is equivalent to that of an overlai
marked decagon that circumscribes the central seven tiles
shown in Fig. 3~d!. ~We have added a third hexagon antici
pating our result that two side hexagons guarantee the th

FIG. 3. ~a! A C cluster consists of five fat and two thin rhomb
with two side hexagons composed of two fat and one thin rhomb
each. There are two possible configurations for filling each si
hexagon. This gives rise to three types,Ca , Cb , andCc , depending
on the orientation of the tiles within the two side hexagons~b!.
Shade a dart-shaped region in each fat rhombus and the entire
terior of each thin rhombus as shown in~c!. For a particular choice
of orientations for the fat rhombi, the resulting shadings within aC
cluster join together in a pattern that is equivalent to that of a
overlaid, marked decagon that circumscribes the central seven ti
as shown in~d!.
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hexagon in a tiling with maximum density ofC clusters; see
Sec. III C!

In broad outline, our formal proof of the proposition
based on the properties of tilings under ‘‘deflation.’’ Defl
tion corresponds to replacing each completeC cluster by a
larger, ‘‘deflated’’ fat rhombus using a slight generalizatio
of the self-similar substitution rules introduced by Penro
The deflated rhombi form a new tiling~with holes, in gen-
eral! which can be deflated again. We show that, if the
were a tiling with a greater density ofC clusters than Pen
rose tiling, then deflating the tiling increases the density f
ther. Repeated deflation leads to an unbounded den
which is impossible. Hence, there can be no tiling w
greater density ofC clusters than Penrose tiling. Then w
show that the Penrose tiling is the unique one which has
maximum density ofC clusters.

A. Terminology and notation

For the details of the proof, it is useful to introduce som
specialized terminology and notation.

~i! C(a,b,c) : By definition, a tile cluster is identified as aC
cluster independent of the orientation of its side hexago
However, for the purpose of proof, it is useful to distingui
three types ofC clusters depending on which way the sid
hexagons are flipped:Ca , Cb , andCc as shown in Fig. 3~b!.
The reflection ofCb around the vertical axis is also consid
ered to be typeCb .

~ii ! r andR: For any given configurationX, we userX to
represent the number per unit area where an acute rhom
has area equal to unity; and we useRX be the number perC
cluster. For example,rC is the number ofC clusters per unit
area. Note thatRC51 by definition. To refer to the values o
r andR in a perfect Penrose tiling, we add a superscript:r0

andR0. For example,

s
e

in-

n
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FIG. 4. ~a! Shows aC cluster with a decagon circumscribing th
central seven rhombi. The center of theC cluster is defined to be
the center of the decagon.~b! Shows the two kinds of overlap
betweenC clusters which bring the centers closest together.~TheA
types have the same separation between centers.! If decagons are
circumscribed about the central seven rhombi of eachC cluster, the
A- andB-type overlaps betweenC clusters transform into precisel
theA- andB-type overlaps between decagons described in the
vious section.
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rC
051/~3t11!,

rB
051/@t2~3t11!#,

RB
051/t2,

wheret5~11A5!/2 is the golden ratio and subscriptB re-
fers to pairs of neighboringC clusters withB overlaps.~B
overlaps play an important role in the proof.!

~iii ! Area per configuration,A~a!: A~a! represents the
area of a configurationa. aøb is the union of configurations
a andb. For example,

A~C!59t14,

~iv! C-kites (KC) andH-kites (KH): Because theC clus-
ters can overlap, it is important for the proof to have a re
able scheme for assigning, or at least bounding the area
cupied by a givenC cluster. A useful trick is to decorat
eachC cluster with the kite-shape shadings shown in Fig.
A C-kite, KC , is the shaded subregion of aC cluster shown
in Fig. 5~a!. For any twoC clusters which do not have aB
overlap, the associatedC-kites do not overlap. Hence, if
given C cluster has noB overlaps whatsoever, it can b
assigned at least the area ofKC . Conversely, the only way a
C cluster can be assigned less area thanKC is if it has B
overlaps.

An H-kite, KH , refers to the shaded subregion of a hex
gon belonging to aC cluster as shown in Fig. 5~b!. We apply
the termH-kite only to hexagons which belong to someC
cluster. Note that

A~KC!5t4,

A~KH!5t2.

~v! Deflation: ‘‘Deflation,’’ as used in this paper, is
transformation in which eachC cluster is replaced by a larg
fat rhombus, as shown in Fig. 6~a!. The large rhombus will
be referred to as the ‘‘deflated rhombus.’’ Note that the
flated rhombus replacing oneC cluster is unable to overlap
the deflated rhombus replacing any otherC cluster no matter
how the two are juxtaposed or overlapped.

This definition of deflation is closely related to the se
similar inflation and deflation operations introduced by P
rose. The Penrose operations produce both deflated fat
thin rhombi, whereas here we only introduce the fat rhom
The Penrose deflation operation acting on a perfect Pen
tiling produces a scaled-up version of a perfect Penrose ti
composed of deflated fat and thin rhombi, demonstrating
self-similar structure. Penrose’s operation is defined only
Penrose tilings and subconfigurations. Our deflation op
tion acting on a perfect Penrose tiling reproduces

FIG. 5. ~a! C-kite; ~b! H-kite.
-
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scaled-up fat rhombi, but does not explicitly constru
scaled-up thin rhombi. Instead, holes are left between
deflated fat rhombi where the thin rhombi fit. It is a min
difference if one is only considering perfect Penrose tilin
For more general tilings, as must be considered in this pr
the difference is more significant. Our deflation is defined
Penrose and non-Penrose. In either case, one obtains a
rangement of deflated rhombi separated by spaces or h
but, the holes do not have to be shaped so that scaled-up
rhombi fit, in general.

~vi! DeflatedC cluster,DC: The deflation operation can
be repeated. Identify all configurations of deflated rhom
which form a scaled-up version of theC cluster, as shown in
Fig. 6, and replace with a yet larger, fat rhombus: a dou
deflated rhombus. We call the group of nineC clusters a
‘‘deflatedC cluster,’’ DC. The positions of the first fiveC
clusters in theDC relative to one another is fixed, but th
pairs on either side can be flipped independently, just as
hexagons can be independently flipped in aC cluster. This
results in three kinds ofDC clusters,DCa , DCb , andDCc .
Repeated deflations are defined analogously.

B. Proving the maximum density proposition

The first goal is to prove thatrC<r C
0 for any definite

tiling. Then, we show that the Penrose tiling is the uniq
tiling with rC5r C

0 .

1. An overview

To obtain a lower bound on the average area occupied
C clusters, we sum theC-kite subareas and divide by th
number ofC’s, correcting for cases whereC-kites overlap.
TheC-kite is a subregion of aC cluster with area 3t12; we
can consider it to be a core area of theC cluster which
is only overlapped by a neighboringC-kite if there is aB

FIG. 6. Deflation replaces eachC cluster with a large, fat rhom-
bus, as shown in~a!. A deflatedC clusterDC is composed of the
nine deflated rhombi obtained by replacing each of nineC clusters
numbered from 1 to 9 with a fat rhombus, as shown in~b!. TheDC
cluster can be deflated again by replacing it with the very la
rhombus~doubly deflated tile! shown in~b!.
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overlap. More precisely, althoughC clusters can overlap to
some degree, the only possibilities for close overlap arA
overlaps, in which the correspondingC-kites meet along an
edge; orB overlaps, in which a specific overlap ofC-kites
occurs~recall Fig. 4!. In a Penrose tiling, theC-kites fill the
entire plane without holes. If theC-kite is not overlapped by
any neighboring one, the correspondingC cluster can be
assigned the entire area of aC-kite ~at least that!; for these
cases, theC clusters occupy area>3t12, so they decreas
the density relative to the Penrose valuerC51/~3t11!. Two
C clusters withB overlaps are assigned area less than 3t11
due to the overlap of theirC-kites. Hence, we reach an im
portant conclusion:B overlaps are the only mechanism f
exceeding Penrose density.

To exceed the Penrose density, a tiling must have morB
overlaps than in a Penrose tiling. However, this condition
not sufficient. In Penrose tiling, everyB overlap of twoC
clusters is surrounded by aDC cluster. In a non-Penros
tiling, a fraction ofB overlaps may not be part of aDC
cluster~i.e., one or more of the seven otherC clusters that
compose aDC cluster is absent!. In these cases, it is nece
sary to show by explicit constructions that one can alw
identify ‘‘extra’’ area ‘‘P’’ nearby the associatedB overlap
which does not belong to theC-kite of anyC cluster and is
not associated with any otherB overlap. This important par
of the argument is detailed in the next subsection. The ‘‘
tra,’’ unassigned area occupies at least as much area as s
by theB overlap. Hence, aB overlap which is not part of a
DC cluster does not contribute to decreasing the density
C clusters below the Penrose value.

Suppose there were a tiling with a density ofC clusters
greater than the Penrose value. Then, it must have a hi
density ofDC clusters than in a Penrose tiling,RDC.t22,
whereRDC is the number ofDC clusters divided by the
number ofC clusters. Under deflation and rescaling the a
by t2, eachDC cluster becomes aC cluster of the deflated
tiling whose density ist2RDCrC . SinceRDC.t22, the de-
flated tiling has a density ofC clusters that is strictly greate
than the original tiling. Repeating the deflationad infinitum
would lead to a tiling with an unbounded density ofC clus-
ters. This is impossible~sinceC clusters occupy finite area!,
and so there can be no tiling with higherC-cluster density. A
corollary is that, if theC-cluster density equals the Penro
value, thenRDC5t22 ~the Penrose tiling value! and the
C-cluster density in thedeflatedtiling must also equal the
Penrose value. This corollary is then used to establish
the Penrose tiling is the unique configuration with the ma
mal density value.

2. Formal argument

Let xm be a hypothetical tiling which has therC.r C
0 . We

set out to prove:
Theorem 1. In xm , RDC.t22. If Theorem 1 holds, then

the density of DC clusters in tiling xm is
rDC5RDCrC.t22rC . Under deflation, eachDC cluster be-
comes aC cluster composed of deflated tiles. If we resca
the deflated rhombi byt2 so that they have the same area
the original rhombi, the resulting tiling has a density ofC
clusterst2rDC which is strictly greater thanrC . Repeated
deflation leads to a sequence of tilings with increasingC
cluster density without bound, which is impossible. Hen
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Theorem 1 is the key to proving thatxm is impossible and all
tilings must haverC<r C

0 . We build to Theorem 1 through a
series of subsidiary theorems.

By checking all hexagons which may share a tile withC
clusters, it is straightforward to see that:

Lemma 1: For a givenH-kite, there are only two ways
that it can overlap with aC-kite, shown in Fig. 7.

Corollary 1.1 An H-kite is completely overlapped by a
C-kite or it has no overlaps withC-kites at all.

Definition.Configurationn is the union ofC clusters from
1 to n as enumerated in Fig. 6~b! ~n51, . . . ,9!. The number
order in the figure is significant.Rn is theR value of Con-
figurationn. By definitionR151. R2 meansRB , the pairs of
C clusters~belonging to aDC cluster! with B overlap.

Theorem 2. In xm , R2.t22.
Proof: The overlap between theC-kites of any twoC

clusters with aB overlap corresponds to anH-kite with area
t2. All other C-kites do not overlap. Hence, the fractiona
area occupied byC-kites overall,a1[A(øKC)/A(xm), is
given by

a15rC~t42R2t
2!.

~That is, areat4 for eachC-kite minus areat2 for eachB
overlap.! Sincea1<1 by definition andrC.r C

0 by assump-
tion, R2t

2 must be greater than 1 @note that
rC
051/~3t11!51/~t421!#. Hence,R2.t22.
This proves that the number ofB overlaps perC cluster,

R2, must exceedt
22 in order for tilingxm to haverC.r C

0 .
This is necessary because onlyB overlaps bringC clusters
close enough together to exceed the Penrose density oC
clusters locally. But,R2.t22 is not sufficient to prove that
rC.r C

0 : the area saved by a givenB overlap may be com-
pensated by other areas which do not belong to anyC clus-
ter.

In fact, we claim that exactly this happens if aB overlap
is not surrounded by the seven otherC clusters needed to
form aDC cluster about it. We first consider the case ofB
overlaps in Configuration 2~B overlapped! clusters for
whichC cluster number 3 in Fig. 6 is missing. We show tha
each suchB overlap is compensated by ‘‘extra area’’P2
adjoining the Configuration-2 cluster which is not assigne
to any otherC cluster. We then repeat a similar argument fo
cases of Configuration-3 clusters whereC clusters 1 through
3 are present, but 4 is missing, etc. We identify ‘‘extra area
P3, P4, etc., and use this to showR3, R4, etc., all must
exceedt22. Each case in the sequence requires its own d
tailed analysis, although the basic structure of the argume
is the same. We stop once we have shown th
RDC[Rg.t22. Then, our deflation argument described i
the previous subsection can be applied.

FIG. 7. An H-kite ~dark grey! is either a subarea of aC-kite
~light grey!—the two ways shown in 6~a! and 6~b! above—or it has
no overlap with aC-kite at all.
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The technically complicated part of the proof is checki
that ‘‘extra area’’ is not double counted; that is,Pi must not
overlap any otherPj with j< i . If it does, we must identify
an alternative choice forPi . This is done on a case by cas
basis below. In some cases, we may state that it is ‘‘imp
sible’’ for Pi andPj to overlap. By impossible, we mean on
of two conditions:~a! it is geometrically impossible to jux
tapose a Configuration-i and Configuration-j cluster so that
Pi andPj overlap; or,~b! it is geometrically possible to join
the Configuration-i and Configuration-j clusters, but then an
additionalC cluster is forced in between.Pi is defined only
for Configuration i which are not part of a Configuratio
i11; but joining a Configurationi onto a Configurationj
transforms the Configuration-i cluster to a Configuration
i11 cluster. Lemma 2 is an explicit example of~b!. After
Lemma 2, we simply state when an overlap is impossi
without specifying whether the reason is~a! or ~b!.

Theorem 3. In xm , R3.t22.
Proof: Figure 8 shows a Configuration-2 cluster which

not included in a Configuration-3 cluster. The rhombi w
solid lines belong to the Configuration 2. Dashed-line rhom
would also be there if this cluster were included in a Co
figuration 3. Since it is not, one or more of the dashed-l
rhombi must be missing. Then the dark, shaded region
‘‘extra area’’ P2 which is not assigned to anyC cluster. The
extra area, with magnitudet2, compensates for the are
saved by theB overlap betweenC1 andC2.

ThenA(P2)5t2 andRP2
5R22R3 since any twoP2’s do

not overlap. Leta2 be the fractional area occupied by th
union of all KC’s and P2’s. From Theorem 2, we know
R2.t22. Now we have

FIG. 8. The assignment of ‘‘extra area’’P2 as described in
proof of Theorem 3.
s-

e

i
-
e
is

a25rC@t42R2t
21~R22R3!t

2#5rC~t42R3t
2!,

Sincea2<1, we haveR3.t22.
Theorem 4. In xm , R4.t22.
Proof: Figure 9 shows a Configuration 3 which is n

included in a Configuration 4 in part~a!. The rhombi with
solid lines belong to Configuration 3. Dashed-line rhom
would also be there if this were a subconfiguration of a C
figuration 4. Since the Configuration 3 is not included in
Configuration 4, one or more of the dashed rhombi must
missing. Then, the dark, shaded region is ‘‘extra area’’P3
provided that this area does not overlap any otherP2 or P3
assigned to another configuration. This must be checked.
possible for the region shaded in~a! to overlap aP2 from a
neighboring Configuration 2, as illustrated in~b!. But, then,
it is possible to make a different, choice ofP3 which is not
overlapped, as shown by the dark shading in~b!. Another
possibility is that the shaded region in~a! overlaps aP3
belonging to a neighboring Configuration 3, as shown in~c!.
Once again, a different, choice ofP3 that is not overlapped
can be made, as shown by the dark shading. In any c
there is always a regionP3 of areat2 which can be assigned
to any Configuration 3 that does not belong to a Configu
tion 4.

The R value for P3 is R32R4 . From Theorem 3, we
knowR3.t22. Let a3 be the area density occupied byKC’s,
P2’s, andP3’s. Then, we have

a35rC@t42R3t
21~R32R4!t

2#5rC~t42R4t
2!.

Therefore,R4.t22.
Theorem 5. In xm , R5.t22.
Proof: Figure 10~a! shows a Configuration 4 which is no

included in a Configuration 5. The rhombi with solid line
belong to Configuration 4. Dashed-line rhombi would also
there if this were a subconfiguration of a Configuration
Since it is not, one or more of the dashed rhombi must
missing. Then, the dark, shaded region is ‘‘extra area’’P4
provided that this area does not overlap any otherP2, P3, or
P4 assigned to a neighboring configuration. Lemma 2 sho
that it is impossible for aP4 to overlap aP3, leaving two
cases. Figure 10~b! shows the case where the shaded reg
in ~a! overlaps aP2 belonging to a neighboring Configura
tion 2. In this case, a different, choice ofP4 can be made, as
shown by the dark shading in~b!. Similarly, Fig. 10~c! shows
the case where the shaded region in~a! overlaps aP4 belong-
ing to a neighboring Configuration 4. Then a different, u
overlapped choice ofP4 can be made, as shown by the da
shading in~c!. In any case, there is always a regionP4 of
FIG. 9. The assignment of ‘‘extra area’’P3 as
described in proof of Theorem 4.
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FIG. 10. The assignment of ‘‘extra area’’P4
as described in proof of Theorem 5.
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areat2 which can be assigned to any configuration 4 t
does not belong to a configuration 5.

Since any twoP4’s do not overlap,RP4
5R32R4. From

Theorem 4, we knowR4.t22. Let a4 be the area densit
occupied byKC’s, P2’s, P3’s, andP4’s. Then, we have

a45rC@t42R4t
21~R42R5!t

2#5rC~t42R5t
22!.

Therefore,R5.t22.
Lemma 2. A P4 cannot overlap anyP3.
Proof: Figure 11 illustrates what happens if one were

try to bring together a Configuration 3 with aP3 and a Con-
figuration 4 with aP4 so thatP3 and P4 overlap ~in the
shaded region!. Different cases must be analyzed becau
for example,P4 may be anH-kite, as in Fig. 10~a!, or P4
may have a different shape, as in Figs. 10~b! and
10~c!. @Note: P4 in Fig. 10~b! has the same geometric
shape as in Fig. 10~a!, but it is not anH-kite because it does
not belong to a hexagon which is part of aC cluster. Simi-
larly, only in Fig. 9~a! doesP3 correspond to anH-kite.#

If P4 andP3 are bothH-kites, an overlap is not possibl
because it forces a tile conflict atX. If one is anH-kite shape
but not the other, a similar conflict results.

The remaining case to consider is if theP4 of a Configu-
ration 4 and theP3 of a Configuration 3 do not correspond
anH-kite, as in Fig. 9~b! or Fig. 10~b!. @Overlaps are not
possible ifP3 corresponds to the case shown in Fig. 9~c! or
P4 corresponds to the case in Fig. 10~c!.# This case occurs
where there is also the overlap of aP2 belonging to a third,
Configuration-2 cluster. Here, it is geometrically possible
join the Configuration-3 and Configuration-4 clusters, b
then an additionalC cluster is forced in between, as show
in Fig. 11~b!. The Configuration 4 is transformed into a Co
figuration 5, and so there is noP4 region to identify. ~Re-
call, P4 is only defined for Configuration-4 clusters that a
not part of a Configuration 5.! Thus, there is never a cas
whereP4 andP3, as defined in the previous theorems, c
overlap.

Theorem 6. In xm , R6.t22.
t

,

t

Proof: Figures 12 and 13 illustrate a Configuration
which is not included in a Configuration 6, showingP5 pro-
vided that this area does not overlap any otherP2, P3, P4, or
P5 assigned to another configuration. The markings in~a! for
each figure are defined as in previous figures. Figure 12 c
ers the case where theC1 cluster in the Configuration 5 is
typeCa ; Fig. 13 covers the case where it is typeCb .

Let us first consider Fig. 12: If the shaded region in~a!
overlaps aP2 belonging to a neighboring Configuration 2, a
shown in~b!, then a different, unoverlapped choice ofP5 can
be made, as shown by the dark shading. If the shaded re
in ~a! overlaps aP4, there are two possibilities depending o
whether theP4 corresponds to case~a! or ~b! in Fig. 10; in
either case, a different unoverlapped choice ofP5 can be
made as shown in the dark shading in~c! or ~d!, respectively.
If the P4 corresponds to case~c! in Fig. 10, it cannot also
overlap aP5. If the shaded region in~a! overlaps anotherP5
there is only the possibility shown in~e! and the choice ofP5
for one of the Configuration-5 clusters can be made diff
ently, as shown by the dark shading.

Next, let us consider Fig. 13: The only geometric pos
bilities for overlap are if the shaded region in~a! overlaps a
P4 of a neighboring cluster of the type shown in Fig. 10~a! or
a P5 of a neighboring cluster, similar to Fig. 12~e!. For each
case, a different, unoverlapped choice ofP5 can be made, as
shown by the dark shading in~b! and ~c!. In any case, aP5
does not overlap with anyPi for i,5 and any twoP5’s do
not overlap each other. SinceRP5

5R52R6, and, from Theo-
rem 5, we knowR5.t22, we have

rC@t42R5t
21~R52R6!t

2#<1,

and we haveR6.t22.
Theorem 7. In xm , R7.t22.
Proof: Figure 14 shows a Configuration 6 which is n

included in a Configuration 7 for the case where theC1 clus-
ter is typeCa in part~a! and for the case where theC1 cluster
is typeCb in part ~b!. In both cases, the ‘‘extra area’’P6 is
shown for cases in which this area does not overlap any o
2.

s
-

FIG. 11. Two cases considered in Lemma
Overlap betweenP4 andP3 is ruled out because
there is a geometrical conflict between tile
@markedX in ~a!#, or because juxtaposing con
figurations force newC clusters where theP4 and
P5 were supposed to overlap@shaded region in
~b!#. See proof of Lemma 2 for discussion.
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FIG. 12. The assignment of ‘‘extra area’’P5
if the C1 cluster is typeCa , as described in proof
of Theorem 6.
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P2 throughP6 assigned to another configuration. If theC1
cluster is typeCa , there is no possible overlap with anoth
Pi . If the C1 cluster is typeCb , the only possible overlap is
with theP3 of a neighboring Configuration 3, in which cas
a different, choice ofP6 can be made, as shown by the da
shading in~c!.

SinceP6 can always be defined such that it does not ov
lap otherPi , i<6, theR value forP6 is RP6

5R62R7. From
Theorem 6, we knowR6.t22.

rC@t42R6t
21~R62R7!t

2#<1,

and we haveR7.t22.
Theorem 8. In xm , R8.t22.
Proof: From Fig. 6, one sees thatC6 andC8 are mirror

images with respect to the vertical line bisecting theB over-
lap. Recall thatP5 ~or P7! is extra area defined whenC6 ~or
C8! is missing. So the analysis of cases whereP7 overlapsPi
for i52,3,4 is similar to those forP5. ~To be precise, the
case of overlap betweenP7 andP2 is equivalent toP5 and
r-

P2; betweenP7 and P3 is equivalent toP5 and P4; and
betweenP7 andP4 is equivalent toP5 andP3.!

The new checks are for the case whereP7 ~corresponding
to anH-kite! overlaps with aP5. In this case, as shown in
Fig. 15~a!, we can find the dark region which does not ove
lap with anyPi for i<6. Also, it is possible for twoP7’s to
overlap; we have not illustrated the resolution of this ca
because it is similar geometrically to the case of twoP5’s
overlapping~see Theorem 6!. By similar analysis to the
previous theorems, we obtainR8.t22.

Finally, we are prepared to prove Theorem 1:
Theorem 1. In xm , RDC[R9.t22.
Proof: C9 is in a position that is a mirror toC7 in the

deflatedC cluster, so the analysis forP8 is similar toP6 in
Theorem 7, so far as cases of overlap with anyPi for i,6.
The only case of overlap ofP8 with Pi for i>6 is P8 ~cor-
responding to anH-kite! overlapping withP6. In this case,
as shown in Fig. 15~b!, we can identify the shaded regio
which does not overlap with anyPi for i<7. It is not geo-
metrically possible to arrange twoP8’s to overlap.
FIG. 13. The assignment of ‘‘extra area’’P5
if the C1 cluster is typeCb , as described in proof
of Theorem 6.
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55 3529CONSTRUCTING PENROSE-LIKE TILINGS FROM A SINGLE . . .
Following the same analysis as in previous theorems,
obtainR9.t22. Hence, deflatingxm and rescaling the de
flated tiles byt2 produces a tiling withrC8 5t2RDCrC which
is strictly greater thanrC . How much so? Suppose we p
rametrize the fractional excess ofrC over rC

0 as

rC5rC
0 ~11a!. ~1!

Then, since

rC~t42Rgt
2!<1,

FIG. 14. The assignment of ‘‘extra area’’P6, as described in
proof of Theorem 7.

FIG. 15. Assignment ofP7 in ~a! andP8 in ~b! for special cases
described in proofs of Theorems 8 and 1.
e

we have

Rg>S 11t4a

11a D Y t2; ~2!

consequently, the increase inC clusters under deflation is
rC8 5t2RDCrC5rC

0 (11t4a). Repeated deflations woul
lead to an unbounded density@r C

0 (11t4na).rC asn→`#,
which is impossible.

Now let us show that the Penrose tiling is the uniq
tiling with rC51/~3t11!. If a tiling hasC-cluster density
rC5r C

0 ~the Penrose value!, then RDC5t22 and the
C-cluster density in the deflated tiling must equal the P
rose value from the same arguments given in Theor
1, . . . ,8,Suppose there were a non-Penrose tiling with
same density. We have shown that the only local configu
tions which can increase the density above the Penrose v
areDC clusters, and that the increase in density is due to
B overlap ofC-kites, which is the same perDC cluster.
Now, the hypothetical tiling has the same density ofDC
clusters and, hence, the same density ofB overlaps sur-
rounded byDC clusters as Penrose tiling. However, by de
nition, the non-Penrose tiling must also have patches w
nonzero area measure which violate the Penrose matc
rules, and so cannot belong to theC-kite of anyC cluster.
Since theDC-cluster density is the same but there are th
patches, the average area perC cluster must be less than th
Penrose density. A conceivable exception is if there hap
to be additionalB overlaps which do not belong toDC clus-
ters whose overlap area exactly compensates the area o
patches. Even this possibility can be eliminated because
corollary states thatRDC51/t2, which means that the densit
of C clusters remains unchanged under deflation and res
ing. Yet, the patches grow: a patch excluded from aC cluster
must also be excluded from aDC cluster, but, also, someC
clusters that border the patches cannot be part of aDC clus-
ter and add to the patch area. Since the number ofC clusters
remains fixed but the patches grow, theC-cluster density in
the deflated tiling must be less than the Penrose value.
contradicts the corollary; hence, uniqueness is establishe

C. Is the C cluster unique?

The particular choice ofC cluster considered in this pape
is not the unique cluster whose density is maximal in a P
rose tiling. ~It was chosen primarily because it makes f
the simplest proof.! As a simple example, consider th
clusterC8 which consists ofC plus an additional side hexa
gon, as shown in the right most cluster of Fig. 3~d!. In a
perfect Penrose tiling, everyC cluster lies within aC8 clus-
ter. Due to the one-to-one correspondence between the
types of clusters, the density ofC clusters andC8 clusters are
the same in Penrose tiling. On the other hand, the densit
C8 clusters cannot be greater than that ofC cluster in any
non-Penrose tiling because everyC8 cluster guarantees aC
cluster. The consequence of this observation is that Pen
tiling has the maximum density ofC8 clusters as well asC
cluster. Or, equivalently, maximizing the density ofC8 clus-
ters also forces a Penrose tiling.
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D. Maximum density and energetics

We have proven that maximizing the density ofC clusters
forces a perfect Penrose tiling. The notion is that the clu
represents a low-energy atomic cluster and that minimiz
the energy naturally maximizes the density. What kind
Hamiltonian is needed so that the minimum energy confi
ration is the one that maximizes theC-cluster density?

A simple Hamiltonian with this property is one that a
signs energy2e~e.0! to everyC cluster and zero energy t
all other clusters. It is obvious that the ground state of t
Hamiltonian has the maximum density ofC clusters. How-
ever, this choice is not unique.

As an example, we illustrate a Hamiltonian which assig
C clusters different energies depending on the orientation
their side hexagons~which is the same as assigning differe
energies according to their local environments!. In Fig. 16,
we show each of the three types ofC clusters and introduce
a way of assigning core areas, using a different shape foCa
throughCc . This differs from the assignment in the previo
sections which assigns the sameC-kite core area to eachC
cluster. Now, consider a Hamiltonian which assig
ea52gt3 to aCa , eb52g~t31t4!/2 to aCb andec52gt4 to
aCc cluster and zero for all other clusters. These choice
ei are proportional to the magnitudes of the respective c
areas perC cluster for each given type,ai . If Ni , i5a, b, or
c is the number ofC clusters of typei , the total energy of a
configuration is2SNie i}2SNiai , which is the total area
occupied by the union of all core areas. The energy densi
minimized by the configuration whose core areas have

FIG. 16. A core area assignment that differs from theC-kites
considered in the proof. EachC cluster in a tiling can be assigned
rhombus-, trapezoid-, or kite-shaped core area depending
whether it is of typeC(a,b,c) . In a perfect Penrose tiling, these jo
to form a plane-filling tiling without holes or overlaps, as shown
the figure. This assignment of core area differs from the const
tion used in the proof which assigns the sameC-kite core area to
eachC cluster. Different assignments are used to explore how
ferent ways of assigning energy per cluster can lead to the s
final structure.
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greatest fractional coverage of the plane. The Penrose t
is the unique tiling in which the core areas cover 100% of
total plane. Consequently, the Penrose tiling must be
ground state of the Hamiltonian.

A second, similar example is shown in Fig. 17. In th
case, the core area assignment is a little more complica
First, as can be seen from~a!, parts of the ‘‘core area’’ lie
outside theC cluster itself. This technical difference does n
affect our argument, though. Second, there are certain c
figurations, shown in~b!, for which the core areas overlap
unlike the case of Fig. 16. In these cases, though, an alte
tive assignment is possible, as shown in~b!, such that the
assigned core area areaa52t13 for Ca , ab55/2t13/2 for
Cb andac53t11 forCc for anyC cluster. For the particular
case of a perfect Penrose tiling, the core areas as assign
~a! never overlap@so the subsidiary rule in~b! does not have
to be invoked#; instead, the core areas join to form a pla
filling tiling without holes. Consequently, technical diffe
ences aside, the situation is the same as in Fig. 16 excep
the area assignments are different forC(a,b,c) . This enables
us to choose a different energy assignment,ea52d~2t13!,
eb52d$~5t13!/2%, andec52d~3t11!, such that the Penros
is, again, the unique ground state of the Hamiltonian.

on

c-

f-
e

FIG. 17. A third core area assignment forC clusters leading to
a different prescription for assigning energy per cluster. The c
area depends on whether a givenC cluster is of typeC(a,b,c) . For
certain arrangements, shown in~b!, the core areas can overlap. F
these configurations, though, it is possible to assign the overlap
to one of theC-cluster pair and a different region of the same ar
~black! to the other cluster. With this rule, the assigned core area
aa52t13 for Ca , ab55/2t13/2 for Cb andac53t11 for Cc for
anyC cluster in a Penrose or non-Penrose arrangement. In a pe
Penrose tiling, the special cases shown in~b! do not occur; that is,
the core areas as assigned in~a! join to form a plane-filling tiling
without holes or overlaps as shown in~c!.
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Since the Penrose tiling is the ground state of three
ferent Hamiltonians~one which assigns2e to all C clusters
and two linearly independent choices which assign differ
energies toC clusters in different local environments!, the
Penrose tiling is also the ground state of any linear com
nation of the three Hamiltonians~provided e,g and d are
positive. So, in the three-dimensional parameter space~ea ,
eb , ec!, there is a three-dimensional region of nonzero m
sure for which the Hamiltonian maximizesC-cluster density
and selects the Penrose tiling for the ground state.

We note that the proofs that the two other Hamiltonia
have a Penrose-tiling ground state stand independently o
central proof that Penrose tiling has the maximum density
C clusters. We have approached our investigation from
point-of-view that maximizing the density is a simple a
natural criterion, and so we have made this result our foc
However, others may consider the corresponding energe
assignment in which allC clusters have the same energy
be artificial since differentC clusters have different loca
environments. Here, we have shown that the two points
view are not contradictory—the Penrose tiling emerges
ther way.

We speculate that the Penrose ground state is stable u
even a wider class of Hamiltonians in which nonzero ene
is assigned to other types of tile clusters provided their
signed energy,ki satisfiesuki u!e. Suppose one tried to intro
duce a small, nonzerokX to increase the density of a certa
cluster X ~not C! with respect to its density in a perfec
Penrose tiling. The density would be increased only by c
ating Penrose mismatches, which destroy one or morC
clusters each. That is, for every fewX’s gained, one or more
C clusters would be destroyed. An energy proportional toki
would be gained for each addedX, but this would be accom
panied by a loss of energy proportional toe for eachC
cluster that is destroyed. It seems that there must be a fi
band of ukui!e for which the Penrose tiling is preserved
the ground-state configuration.

The last speculation, along with the rigorous resu
above, strongly suggest that there is a robust range of Ha
tonians which maximizeC-cluster density and pick out th
Penrose tiling as the ground state. The principal requirem
for the Hamiltonian is thatC clusters have low energy,
condition similar to the condition that determines crys
structure. It seems that the ground state does not dep
sensitively on other details, such as whether other clus
have the same or different energies or whether allC clusters
have the same energy or different energies. This is a sig
cant improvement over the old Penrose tiling picture ba
on two types of tiles and matching rules, which seemed
require delicate tuning of Hamiltonian parameters.

We note that the models we have been considering in
section begin with two rhombus tiles~without matching
rules! as fundamental building blocks. We were seeking
ground state among all possible configurations of these t
This approach is convenient for comparing with the Penr
matching rule model and the random tiling model, both
which are constructed from rhombus tiles. An open issu
whether the presumption of two building blocks, rhombus
otherwise, is necessary.
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IV. CONCLUDING REMARKS

Although the results of this paper are mathematical
nature, they have several important implications for t
physics of quasicrystals. First, the decagon construc
shows that the atomic structure of a quasicrystal can be c
acterized in terms of the decoration of a single cluster, rat
than two clusters as the Penrose tiles would suggest. Fur
more, the single cluster has to have the property that it
share atoms with neighbors in accordance with overla
This greatly simplifies the problem of searching for stru
tural models for quasicrystals. It immediately applies
three-dimensional decagonal quasicrystals, where decag
prisms would replace the decagons. The analog of the d
gon for icosahedral quasicrystals is the triacontrahedron.

Second, the constructions imply a closer tie between q
sicrystals and crystals. Now one can say that both can
described in terms of the packing of a single cluster. In
crystal, the cluster is called the unit cell, and it packs ed
to-edge with its neighbors. In this picture, quasicrystals c
respond to a generalization in which the ‘‘unit cells’’ ove
lap. In both cases, the formation of the particular struct
may be described in terms of a low-energy atomic clus
Hence, perhaps one heads towards a more unified pictu
ordered solids.

Third, the constructions imply a simpler explanation
why quasicrystals form, shedding, new light on an old m
tery. They make it plausible that quasicrystals can be und
stood by considering the energetics of microscopic clus
and that cluster overlap is an important structural eleme
The atomic structures of known quasicrystals include at
clusters which can share atoms using geometries analo
to those considered here.5 This has motivated several close
related models of quasicrystals based on clusters.8,12–15

Our concept can be tested by studying theoretically
energetics of atom clusters found in real quasicrystals. O
can use total-energy calculations to estimate the energetic
the clusters and to test if overlap is energetically preferr
Perhaps the modeling studies will lead to suggestions
new quasicrystals. The second construction scheme, in a
tion to posing an explanation of why quasicrystals form, a
suggests a kinematic mechanism to explain how they fo
namely, by local atomic rearrangement that increases the
cal density of some certain atom cluster which then for
quasicrystallinity. From future structural and kinematic
studies of known quasicrystals, these principles may be
tablished, perhaps enabling the reliable prediction of n
quasicrystals.
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