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Constructing Penrose-like tilings from a single prototile and the implications for quasicrystals
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We present two sets of rules for constructing quasiperiodic tilings that suggest a simpler structural model of
quasicrystals and a more plausible explanation of why quasicrystals form. First, we show that quasiperiodic
tilings can be constructed from a single prototile with matching rules which constrain the way that neighbors
can overlap. Second, we show that maximizing the density of a certain cluster of fat and thin tiles can force a
Penrose tiling without imposing the usual Penrose matching ri€463-18207)02706-9

[. INTRODUCTION fect as periodic crystals made of similar elements—and some
appear to be thermodynamically stable. The peculiar situa-
Quasicrystals are solids with quasiperiodic translationation has developed that the Penrose tiling picture has been
order and crystallographically disallowed rotational symme-ncreasingly supported observationally, while it has remained
try. A leading model for describing their structure and prop-questionable theoretically.
erties has been the Penrose tiling pictubased on the two- In this paper, we discuss two schemes for constructing
dimensional aperiodic pattern invented by Roger Pefirmse quasiperiodic tilings which address the theoretical criticisms
1974. The Penrose pattern is composed of fat and thiof the Penrose tiling picture. Although the work presented
rhombi with matching rules which constrain the way neigh-here is, for the most part, an abstract study of the property of
boring tiles can join together edge-to-edge. Penrose showedings, the results may profoundly influence our intuition
that the only plane-filling tiling consistent with those match-about quasicrystals. First, in Sec. Il, we present a simple
ing rules is uniquely the Penrose pattern. The generalizatioproof of the clainfi that a quasiperiodic tiling can be forced
to three-dimensional structures with icosahedral symmetrysing only a single type of tiléplus matching rulg Second,
composed of rhombohedral bricks with matching rules hasn Sec. lll, we show that matching rules can be discarded
been found. In the Penrose tiling picture, one imagines thaaltogether. Instead, maximizing the density of a chosen clus-
the tiles represent two distinct clusters of atoms and theer of tiles suffices. The results are surprising from a math-
matching rules represent atomic interactions. ematical standpoint and suggest an explanation of why qua-
The Penrose tiling picture successfully explains all of thesicrystals form. The basic conclusions were discussed in a
known structural and physical properties of quasicrystals, inshort papef,and here we produce the detailed proofs which
cluding the microscopic arrangement of atoms as vieweestablish the results.
with scanning tunneling electron microscopl Neverthe- In particular, the second approach suggests a simple ther-
less, serious theoretical doubts about its validity have remodynamic mechanism for quasicrystal formation. If one
mained. The physical conditions required to emulate a Perimagines that the chosen cluster of tiles represents some en-
rose tiling appear to be much more complex than what isrgetically preferred atomic cluster, then minimizing the free
needed to form periodic crystals. For example, the Penrosenergy would naturally maximize the cluster density and,
tiling picture suggests that the atoms must organizetiwto  thereby, force quasicrystallinity. We first show that the
distinct clusters which act as the building blocks of the qua-ground state is the perfe®Penrose-likgquasicrystal state if
sicrystalline structure, whereas crystals require only a singléhe clusters are assigned the same energy independent of
building block. The condition for crystals seems intuitively local environment, as discussed in our short paper. In this
simple: it is easy to imagine a single building block arising case, maximizing density and minimizing energy are equiva-
as a low-energy atomic cluster of the given elements. Folent. In this paper, we also show the same ground-state re-
guasicrystals, the energetics must be delicately balanced gults if different energies are assigned to the cluster depend-
allow two distinct clusters to intermix with a specific ratio of ing on its local environment. This is a significant extension
densities. Furthermore, the atomic interactions must restriaif our earlier results since some difference in cluster energies
clusters so that they join only according to the matchingfor different environments seems a natural idea. Conversely,
rules. Concerns about these conditions have led to a prolifit shows that the same maximum-density configuration is the
eration of alternative models for quasicrystals, including theground state for a range of energetic assignments. This clus-
icosahedral glass, random tiling, and entropic pictdréee  ter model of quasicrystals had been conjectured previously
alternatives all predict imperfect quasiperiodic structuresy the author§,and now it is proven to be mathematically
with differing degrees and types of imperfection and theypossible. In our concluding remarks in Sec. IV, we discuss
also predict that quasicrystals are metastable. Yet, recentie implications of our mathematical result for future theo-
highly perfect quasicrystals have been discovered—as peretical and experimental research in quasicrystals.
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marked with single and double arrows, as illustrated in Fig.
1(c). We remind the reader that the original Penrose tiling is
constructed from fat and thin rhombi. Two edges may join
together only if the type and direction of arrows match.
For any two overlapping decagons, the “inscribed” rhombi
share at least one vertex and sometimes share an edge.
(a) (b) Where the rhombi join at a vertex only, there is an open
angle formed by the edges which are the location and shape
where rhombi can be fit according to the Penrose matching
rules as shown in Fig.(f). For these “implied” rhombi, the
arrows are fixed by the arrows on adjoining inscribed
rhombi.

We will show that the overlap rules force precisely the
same nearest-neighbor configurations of inscribed and im-

{c) (d) plied rhombi as do the Penrose edge-matching rules. Gum-
melt showed that there are exactly 20 different ways a given
decagon can be surrounded by neighbors, where surrounding

FIG. 1. A quasiperiodic tiling can be forced using marked deca-g decagon means the edges of the decagon is covered by the
gons shown in(@ with overlapping rules. Qverlapping _rules de- interior of other decagons by or B 0ver|ap§ Figures 2a)—
man_d that two decagon_s may overlap only if shaded regions over!aQ(C) show all 20 ways of surrounding a decagon with corre-
_and if th_e overlgp area is greater than_ or equal to the overlap reglogponding rhombus tile configurations. These 20 allowed
?Vg'laTh'S erm'tS five t’(’g_es of pa"vlv'se Ovegaps' Tour It?’peﬁ?f decagon configurations have been broken into three groups.

ps and one type @-type overlap as shown ith). If eac The first nine decagon configuratiofiig. 2(a)] are in
decagon is inscribed with a fat rhombus, as showricin the in- gne-to-one correspondence with the nine ways of surround-
scribed rhombi from two overlapping decagons share at least ong ! - .
vertex(d) and as much as a complete edge. ing the fat rhombus |r_lscr|bed in the c_entral decagon by
neighboring fat and thin rhombi according to the Penrose
matching rules. By “surrounding” a rhombus, we mean that
all four of its edges are joined to neighboring rhombi with
matching arrows; furthermore, three of its vertices must be

We first show that a quasiperiodic tiling can be forcedsurrounded by corners of neighboring rhombi. The neighbor-
using a single type of tile combined with an overlapping rule.ing rhombi may be inscribed in neighboring decagons or
Because neighboring tiles overlap, the result is an unconvenmplied. The fourth vertexat which the two double-arrow
tional tiling, perhaps better termed a “covering.” edges of the central rhombus meet not completely sur-

As an analogy to a real atomic structure for quasicrystalstounded in some of the nine configurations. Later, we discuss
the overlaps should be construed as the sharing of atoni®w this last vertex is also forced to be a Penrose-like con-
between neighboring clusters, rather than interpenetration diguration when one applies the overlap rules beyond the
two complete clusters. This paper suggests that the sharingentral decagon to neighboring decagons.
of atoms by clusters may be an important structural motif The next eight decagon configurations are shown in Fig.
that may play an important role in the formation and stability2(b). The inscribed rhombi of the central decagon in this
of quasicrystals. group are only partially surrounded. However, when the

The construction was originally proposed by Gummelt,decagon overlap rules are applied to neighbors of the central
who presented an elaborate pr8@ur contribution is a very decagon, the result is one of the nine ways of completely
simple, alternative proof which makes clear the relation tosurrounding the central rhombus, as discussed in the first
Penrose tilings and leads us to a second scheme. grouping. Hence, these eight configurations do not add any

For our example, the single tile is chosen to be the decanew constraints beyond what is already imposed by the first
gon shown in Fig. (a). Unlike Penrose tiles, the decagons nine configurations.
are permitted to overlap, but only in certain discrete ways. The remaining three configurations are shown in Fig).2
Two decagons may overlap only if similarly shaded regionsThese configurations of inscribed and implied rhombi dis-
overlap and the overlap area is greater than or equal to th@ay no matching rule violation. However, they never occur
hexagonal overlap area shown An Counting the relative in a perfect Penrose tiling. This is because a mismatch is
orientations of the neighboring decagons, one finds that thimevitable if one continues to add rhombi. Similarly, the
overlap rule permits five types of nearest-neighbor configuthree configurations of decagons do not occur in a perfect
rations: four A-type overlaps and on®-type overlap as decagon tiling because, if one continues to add decagons, a
shown in Fig. 1b). The A andB overlaps produce two dif- decagon overlap-rule violation is inevitably forced; that is,
ferent separations between the centers of neighboring decaeme neighboring decagons cannot be surrounded by one of
gons. Roughly speaking, these two distances, which have the 20 configurations. Hence, the three configurations play
relatively irrational ratio, replace the two tile types in the equivalent roles in decagon tilings and Penrose rhombus til-
usual Penrose tilings. ings.

Our proof that the overlap rules force uniquely a quasi- We have shown that all decagons in a perfect decagon
periodic tiling analogous to a Penrose tiling is based on intiling are surrounded by one of the first nine configurations
scribing each decagon with a Penrose fat rhombus tilén Gummelt's list. In three of these configuratiof@onfigu-

II. CONSTRUCTION SCHEME I: SINGLE TILE
WITH A OVERLAPPING RULE



3522 HYEONG-CHAI JEONG AND PAUL J. STEINHARDT 55

ration 7, 8, and § the central inscribed rhombus is sur-
rounded on all edges and all four vertices by neighboring
rhombi. So these map into a unique, Penrose rhombus con-
figuration. In the remaining six configurations, the fourth
vertex is incomplete. For four of the six cag€@onfiguration

3, 4, 5, and B simple experimentation shows that there is a
unique way to complete the fourth by applying the same
overlap rules to one of the neighboring decagons. For the
remaining two configurations, Configuration 1 and 2, there
are two distinct allowed ways of adding overlapping deca-
gons so that the inscribed rhombi complete the vertex. The
two configurations of inscribed decagons are also distinct,
but each corresponds to an allowed Penrose configuration.
Counting all of these, the nine decagon configurations map
into 11 ways of completely surrounding a central fat rhom-
bus by neighboring rhombi, precisely the number and types
allowed by the Penrose arrow rul¢®ne of the 11 rhombus
configurations, does not occur in a perfect Penrose tiling nor
does the analogous decagon configuration occur in a perfect
decagonal tiling. Although the configuration itself obeys the
matching rules(overlap ruley it is impossible to add the
configuration without ultimately producing a matching rule
(overlap rulg violation] That is, restricting the surround-
ings of every fat rhombus to these 11 types is equivalent to
enforcing the Penrose arrow rules for fat rhombi; in a Pen-
rose tiling, every thin tile adjoins fat tiles, so fixing the sur-
rounding of every fat rhombus automatically fixes the envi-
ronment of every thin rhombus. Hence, the decagon overlap
rules are equivalent to Penrose arrow rules, and the proof is
completed.
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'lq\ A significant corollary is that the two-tile Penrose tiling
1 %@3 can be reinterpreted in terms of a single, repeating motif. The
‘y analog for quasicrystals is that the atomic structure, which
has been described in terms of two or more cluster units in
’,\;L‘ the past, can be r'eintgrpreted in terms of a single,_repeating
&d’ atomic cluster. This reinterpretation of the structure itself is a
simplification which is valid independent of whether overlap
energetics is an important factor in quasicrystal formation or
(b) not.
S
&‘aj IIl. CONSTRUCTION SCHEME II:
MAXIMIZING CLUSTER DENSITY
@A iﬁ Her_e we shqu the _Pemose mat(;hing rgles can be r(_eplaced
3 204<) by a different tiling principle and still obtain the same tiling.

&
s

U
~ Namely, if one allows any possible configuration of fat and
(c) thin rhombi, a perfect Penrose tiling can be picked out by
maximizing the density of a particular tile cluster. As a

FIG. 2. Twenty ways of surrounding a decagon and CorresIoonop:nodel for quasicrystals, the notiqn is that. the chosen cluster
ing rhombus tile configurationga) First group; central fat rhombi fépresents some low-energy, microscopic cluster of atoms.
are surrounded by fat and thin rhombi according to the PenrosMinimizing the energy naturally maximizes the cluster den-
matching rules. (b) Second group; center decagons are surroundedity and forces quasiperiodicity. Our result suggests that the
by other decagons but the central rhombi are only partially surenergetic conditions required for quasicrystal formation are
rounded. Each configuration is a subconfiguration of one of the nin@nly that a single chosen cluster be low energy, which is
configurations in(@), and so imposes no new constrairty. Third ~ similar to the conditions needed to form periodic crystals and
group; any way of adding decagons to these three configurationsimpler to envisage than the conditions needed to form two
forces a mismatch. Similarly, any way of adding rhombi to the different tiles plus matching rules.
rhombus configuration forces a mismat@hg., some open angles For this paper, we will focus on the tile clust€r, defined
formed by the edges of fat rhombi cannot be filled by arrowgs
matched rhombi Hence, these configurations never appear in a Definition. A C cluster is composed of five fat and two
perfect tiling. thin rhombi plus two side hexagons composed of two fat and
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FIG. 3. (a) A C cluster consists of five fat and two thin rhombi
with two side hexagons composed of two fat and one thin rhombus FIG. 4. () Shows &C cluster with a decagon circumscribing the
each. There are two possible configurations for filling each sidecentral seven rhombi. The center of tBecluster is defined to be
hexagon. This gives rise to three typ€s,, C,, andC,, depending  the center of the decagofb) Shows the two kinds of overlaps
on the orientation of the tiles within the two side hexagdbs betweenC clusters which bring the centers closest togettigne A
Shade a dart-shaped region in each fat rhombus and the entire if¥pes have the same separation between centérdecagons are
terior of each thin rhombus as shown(i). For a particular choice  circumscribed about the central seven rhombi of éaduster, the
of orientations for the fat rhombi, the resulting shadings withid a A- andB-type overlaps betwee@ clusters transform into precisely
cluster join together in a pattern that is equivalent to that of arthe A- andB-type overlaps between decagons described in the pre-
overlaid, marked decagon that circumscribes the central seven tilegious section.
as shown in(d).
hexagon in a tiling with maximum density €f clusters; see
one thin rhombus each, as shown in Fig. 3. Penrose tilingec. 11l C
experts will recognize the central seven tiles as being a Jack In broad outline, our formal proof of the proposition is
configuration and the central decagon as being @ased on the properties of tilings under “deflation.” Defla-
“cartwheel.” * It should be emphasized that this is only ation corresponds to replacing each compl€teluster by a
particular example of a tile cluster that suffices; other choicesarger, “deflated” fat rhombus using a slight generalization
are possible. of the self-similar substitution rules introduced by Penrose.
Our central proposition is The deflated rhombi form a new tilingvith holes, in gen-
Proposition. The Penrose tiling uniquely has the maxi- era) which can be deflated again. We show that, if there
mum density ofC clusters among tilings constructed from were a tiling with a greater density & clusters than Pen-
Penrose rhombi. The density is defined as the numb& of rose tiling, then deflating the tiling increases the density fur-
clusters per unit area. Two tilings are considered to be disther. Repeated deflation leads to an unbounded density,
tinct only if they differ from one another by patches whosewhich is impossible. Hence, there can be no tiling with
density has nonzero measure. greater density ofS clusters than Penrose tiling. Then we
Our choice for theC clusters was motivated by the over- show that the Penrose tiling is the unique one which has the
lapping decagons described in the previous section.@he maximum density ofC clusters.
clusters in a Penrose tiling and the decagons in a decagon
tiling (Scheme ) are in one-to-one correspondence. That is,
if decagons are placed so that they circumscribe the central
seven tiles of theC cluster, the decagons form a perfect For the details of the proof, it is useful to introduce some
decagon tiling obeying the overlap rules described in thespecialized terminology and notation.
previous section. Although the decagon adluster have (i) Ca,b,c) - By definition, atile cluster is identified asG
different exterior shapes, their key similarity is that two cluster independent of the orientation of its side hexagons.
neighboringC clusters can share tiles in two ways isomor- However, for the purpose of proof, it is useful to distinguish
phic to theA andB overlaps of decagons; see Fig. 4. three types ofC clusters depending on which way the side
Figures 3c) and 3d) show the relation between a marked hexagons are flippe,, C,, andC,; as shown in Fig. @).
decagon and & cluster. Consider the central seven tiles of The reflection ofC,, around the vertical axis is also consid-
the C cluster. Shade a dart-shaped region in each fat rhonered to be typeC,, .
bus and the entire interior of each thin rhombus as shown in (ii) p andR: For any given configuratioX, we usepy to
Fig. 3(c). For a particular choice of orientations for the fat represent the number per unit area where an acute rhombus
rhombi, the resulting shadings within @ cluster join to- has area equal to unity; and we URg be the number peC
gether in a pattern that is equivalent to that of an overlaidgluster. For exampley is the number oC clusters per unit
marked decagon that circumscribes the central seven tiles, asea. Note thaR.=1 by definition. To refer to the values of
shown in Fig. &d). (We have added a third hexagon antici- p andR in a perfect Penrose tiling, we add a superscrpft:
pating our result that two side hexagons guarantee the thirand R®. For example,

A. Terminology and notation
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(@)

FIG. 5. (a) C-kite; (b) H-kite.

pd=1/(37+1),
pp=1[7(3r+1)],
Rg=1/7,

where 7=(1+/5)/2 is the golden ratio and subscriptre-
fers to pairs of neighborin@ clusters withB overlaps.(B
overlaps play an important role in the prgof.

(i) Area per configurationA(a): A(a) represents the
area of a configuration. aU g is the union of configurations FIG. 6. Deflation replaces ea€hcluster with a large, fat rhom-

« and 8. For example, bus, as shown iifa). A deflatedC clusterDC is composed of the
nine deflated rhombi obtained by replacing each of rinelusters
A(C)=97+4, numbered from 1 to 9 with a fat rhombus, as showfbin TheDC

cluster can be deflated again by replacing it with the very large

(iv) C-kites (Kc) andH-kites (Ky): Because th€ clus- thombus(doubly deflated tilgshown in(b).

ters can overlap, it is important for the proof to have a reli-
able scheme for assigning, or at least bounding the area o
cupied by a giverC cluster. A useful trick is to decorate
eachC cluster with the kite-shape shadings shown in Fig. 5
A C-kite, K¢, is the shaded subregion ofGcluster shown

in Fig. 5@a). For any twoC clusters which do not have B
overlap, the associate@-kites do not overlap. Hence, if a
given C cluster has ndB overlaps whatsoever, it can be
assigned at least the areakof . Conversely, the only way a
C cluster can be assigned less area tHanis if it has B
overlaps.

An H-kite, K, refers to the shaded subregion of a hexa-
gon belonging to & cluster as shown in Fig.(6). We apply
the termH-kite only to hexagons which belong to sor@e
cluster. Note that

gbaled—up fat rhombi, but does not explicitly construct
scaled-up thin rhombi. Instead, holes are left between the
'deflated fat rhombi where the thin rhombi fit. It is a minor
difference if one is only considering perfect Penrose tilings.
For more general tilings, as must be considered in this proof,
the difference is more significant. Our deflation is defined for
Penrose and non-Penrose. In either case, one obtains an ar-
rangement of deflated rhombi separated by spaces or holes;
but, the holes do not have to be shaped so that scaled-up thin
rhombi fit, in general.

(vi) DeflatedC cluster,DC: The deflation operation can
be repeated. Identify all configurations of deflated rhombi
which form a scaled-up version of ti@cluster, as shown in
Fig. 6, and replace with a yet larger, fat rhombus: a doubly

AKo)=7* deflated rhombus. We call the group of ni@eclusters a
c ' “deflated C cluster,” DC. The positions of the first fiv€
A(Ky) = 72. clusters in theDC relative to one another is fixed, but the

pairs on either side can be flipped independently, just as side
(v) Deflation: “Deflation,” as used in this paper, is a hexagons can be independently flipped i€ aluster. This
transformation in which eacB cluster is replaced by a large results in three kinds ddC clustersPC,, DC,,, andDC,.
fat rhombus, as shown in Fig(#. The large rhombus will Repeated deflations are defined analogously.
be referred to as the “deflated rhombus.” Note that the de-
flated rhombus replacing or@ cluster is unable to overlap B. Proving the maximum density proposition
the deflated rhombus replacing any otlecluster no matter
how the two are juxtaposed or overlapped. o o .
This definition of deflation is closely related to the self- :!:!ng. thlhen, v:ve OShOW that the Penrose tiling is the unique
similar inflation and deflation operations introduced by pen-"Nd WIth pc=pc.
rose. The Penrose operations produce both deflated fat and
thin rhombi, whereas here we only introduce the fat rhombi.
The Penrose deflation operation acting on a perfect Penrose To obtain a lower bound on the average area occupied per
tiling produces a scaled-up version of a perfect Penrose tiling clusters, we sum th€-kite subareas and divide by the
composed of deflated fat and thin rhombi, demonstrating itsiumber ofC’s, correcting for cases whe@-kites overlap.
self-similar structure. Penrose’s operation is defined only foiThe C-kite is a subregion of & cluster with area 3+2; we
Penrose tilings and subconfigurations. Our deflation operasan consider it to be a core area of t@ecluster which
tion acting on a perfect Penrose tiling reproduces thds only overlapped by a neighboring-kite if there is aB

The first goal is to prove thapc<p2 for any definite

1. An overview
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overlap. More precisely, althoudh clusters can overlap to
some degree, the only possibilities for close overlap Aare
overlaps, in which the correspondi@kites meet along an
edge; orB overlaps, in which a specific overlap @fkites
occurs(recall Fig. 4. In a Penrose tiling, th€-kites fill the
entire plane without holes. If thé-kite is not overlapped by
any neighboring one, the correspondifgcluster can be
assigned the entire area ofCakite (at least that for these
cases, the&C clusters occupy arezx37+2, so they decrease
the density relative to the Penrose vaje=1/(37+1). Two
C clusters withB overlaps are assigned area less thah B

due to the overlap of theiC-kites. Hence, we reach an im-
portant conclusionB overlaps are the only mechanism for

exceeding Penrose density.
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FIG. 7. An H-kite (dark grey is either a subarea of @-kite
(light grey)—the two ways shown in(@) and &b) above—or it has
no overlap with aC-kite at all.

Theorem 1 is the key to proving thgt, is impossible and all

To exceed the Penrose density, a tiling must have rBore tilings must havepc=<p¢. We build to Theorem 1 through a
overlaps than in a Penrose tiling. However, this condition isseries of subsidiary theorems.

not sufficient. In Penrose tiling, evely overlap of twoC
clusters is surrounded by RC cluster. In a non-Penrose
tiling, a fraction of B overlaps may not be part of BC
cluster(i.e., one or more of the seven oth@rclusters that

compose DC cluster is abseitIn these cases, it is neces-
sary to show by explicit constructions that one can alway

identify “extra” area “P” nearby the associateB overlap
which does not belong to th@-kite of anyC cluster and is
not associated with any oth8roverlap. This important part

S

By checking all hexagons which may share a tile with
clusters, it is straightforward to see that:

Lemma 1: For a givenH-kite, there are only two ways
that it can overlap with &£-kite, shown in Fig. 7.

Corollary 1.1 An H-kite is completely overlapped by a
C-kite or it has no overlaps witkC-kites at all.
Definition.Configuratiomn is the union ofC clusters from
1 ton as enumerated in Fig(® (n=1,...,9. The number
order in the figure is significanR, is the R value of Con-
figurationn. By definitionR;=1. R, meansRg, the pairs of

of the argument is detailed in the next subsection. The “ex¢ clusters(beionging to aDC cluste) with B overlap.
tra,” unassigned area occupies at least as much area as savedrheorem 2. In Xms Ry>7 2.

by theB overlap. Hence, 8 overlap which is not part of a

Proof: The overlap between th€-kites of any twoC

DC cluster does not contribute to decreasing the density Oé|u5ters with e8B Over|ap Corresponds to a&th-kite with area

C clusters below the Penrose value.
Suppose there were a tiling with a density @fclusters

7. All other C-kites do not overlap. Hence, the fractional
area occupied by-kites overall,al=A(UKc)/A(xm), IS

greater than the Penrose value. Then, it must have a highgiven by

density of DC clusters than in a Penrose tilinBpc>7 2,
where Rp is the number ofDC clusters divided by the

al=pc(m—Ry7).

number ofC clusters. Under deflation and rescaling the area (That is, area” for eachC-kite minus area? for eachB

by 7%, eachDC cluster becomes & cluster of the deflated
tiling whose density is”’Rpcpc. SinceRpe>7 2, the de-
flated tiling has a density df clusters that is strictly greater
than the original tiling. Repeating the deflatiad infinitum
would lead to a tiling with an unbounded density®fclus-
ters. This is impossiblésinceC clusters occupy finite arga
and so there can be no tiling with high@rcluster density. A

overlap) Sinceal=<1 by definition andp.>p 2 by assump-
tion, R,” must be greater than 1[note that
p2=1/(3r+1)=1/(#*—1)]. Hence,R,>7 2.

This proves that the number &f overlaps pelC cluster,
R,, must exceed 2 in order for tiling ,, to havepc>p 2.
This is necessary because omfdyoverlaps bringC clusters
close enough together to exceed the Penrose densi€y of

corollary is that, if theC-cluster density equals the Penrose clusters locally. ButR,>7 2 is not sufficient to prove that
value, thenRpc=7 2 (the Penrose tiling valueand the —pc>p@: the area saved by a givédoverlap may be com-
C-cluster density in theleflatedtiling must also equal the Pensated by other areas which do not belong to @rgfus-
Penrose value. This corollary is then used to establish thd€'-

the Penrose tiling is the unique configuration with the maxi- [N fact, we claim that exactly this happens iBaoverlap
mal density value. is not surrounded by the seven otherclusters needed to

form aDC cluster about it. We first consider the caseBof
overlaps in Configuration 2B overlapped clusters for
which C cluster number 3 in Fig. 6 is missing. We show that
each suchB overlap is compensated by “extra are@,
adjoining the Configuration-2 cluster which is not assigned
to any otherC cluster. We then repeat a similar argument for
the density of DC clusters in tling x, Is cases of Configuration-3 clusters wh&elusters 1 through
poc=Rpcpc>1 2pc. Under deflation, eacB C cluster be- 3 are present, but 4 is missing, etc. We identify “extra area”
comes &C cluster composed of deflated tiles. If we rescaleP5, P,, etc., and use this to shoR;, R,, etc., all must
the deflated rhombi by” so that they have the same area asexceedr 2. Each case in the sequence requires its own de-
the original rhombi, the resulting tiling has a density®f tailed analysis, although the basic structure of the argument
clusters 7ppc Which is strictly greater tham.. Repeated is the same. We stop once we have shown that
deflation leads to a sequence of tilings with increasthg RDCERQ>T_2. Then, our deflation argument described in
cluster density without bound, which is impossible. Hencethe previous subsection can be applied.

2. Formal argument

Let x,, be a hypothetical tiling which has thg>p 2. We
set out to prove:
Theorem 1. In x,,, Rpc>7 2. If Theorem 1 holds, then
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a2=pc[ =R, +(Ry—R3) ] = pc(7*—R37),

Sincea2<1, we haveR;>7 2

Theorem 4 In x,, R;>7 2.

Proof. Figure 9 shows a Configuration 3 which is not
included in a Configuration 4 in patg). The rhombi with
solid lines belong to Configuration 3. Dashed-line rhombi
would also be there if this were a subconfiguration of a Con-
figuration 4. Since the Configuration 3 is not included in a
Configuration 4, one or more of the dashed rhombi must be
missing. Then, the dark, shaded region is “extra aréy’
provided that this area does not overlap any othgior P,
assigned to another configuration. This must be checked. It is
possible for the region shaded (@) to overlap aP, from a
neighboring Configuration 2, as illustrated (in). But, then,

FIG. 8. The assignment of “extra areaP, as described in it is possible to make a different, choice Bf which is not
proof of Theorem 3. overlapped, as shown by the dark shadingbh Another

) ] ] . possibility is that the shaded region {@) overlaps aP,

The techmcally complicated part of the proof is checking belonging to a neighboring Configuration 3, as showfcin
that “extra area” is not double counted; that I, must not  once again, a different, choice 8% that is not overlapped
overlap any otheP; with j<i. If it does, we must identify can pe made, as shown by the dark shading. In any case,
an alternative choice foP;. This is done on a case by case ipere is always a regioRs of areas” which can be assigned

basis below. In some cases, we may state that it is “imposgg any Configuration 3 that does not belong to a Configura-
sible” for P; andP; to overlap. By impossible, we mean one jgp, 4.

of two conditions:(a) it is geometrically impossible to jux- The R value for P; is Rs—R,. From Theorem 3, we

tapose a Configurationand Configuratiorj- cluster so that  ynowR,>72 Leta3 be the area density occupied Ky's,
P andP; overlap; or,(b) it is geometrically possible to join  p 5 ang Pys. Then, we have

the Configuration-and Configuratiorj- clusters, but then an

add|t|ona_1IC cIL_JSth is forced in betweer®; is deﬁngd on[y a3=pa 7= Ry + (Re— Ry) 72]= pe( 74— Ry 7).
for Configurationi which are not part of a Configuration

i +1; but joining a Configuration onto a Configuration Therefore R,>7 2.

transforms the Configuration-cluster to a Configuration- Theorem 5 In y;,, Re>7 2

i+1 cluster. Lemma 2 is an explicit example @f. After Proof. Figure 1Ga) shows a Configuration 4 which is not

Lemma 2, we simply state when an overlap is impossiblencluded in a Configuration 5. The rhombi with solid lines

without specifying whether the reason(a& or (b). belong to Configuration 4. Dashed-line rhombi would also be
Theorem 3. In xn,, Rs>7 2 there if this were a subconfiguration of a Configuration 5.

Proof: Figure 8 shows a Configuration-2 cluster which is Since it is not, one or more of the dashed rhombi must be
not included in a Configuration-3 cluster. The rhombi with missing. Then, the dark, shaded region is “extra aréy’
solid lines belong to the Configuration 2. Dashed-line rhombiprovided that this area does not overlap any ofhgrP3, or
would also be there if this cluster were included in a Con-p, assigned to a neighboring configuration. Lemma 2 shows
figuration 3. Since it is not, one or more of the dashed-linghat it is impossible for &, to overlap aP3, leaving two
rhombi must be missing. Then the dark, shaded region igases. Figure 1B) shows the case where the shaded region
“extra area” P, which is not assigned to ary cluster. The  in (a) overlaps aP, belonging to a neighboring Configura-
extra area, with magnitude?, compensates for the area tion 2. In this case, a different, choice B, can be made, as
saved by theB overlap betweelC; andC,. shown by the dark shading {b). Similarly, Fig. 1Gc) shows

ThenA(P,) =7 andRp,=R,—R; since any twaP,'s do  the case where the shaded regiofanoverlaps &, belong-
not overlap. Leta2 be the fractional area occupied by the ing to a neighboring Configuration 4. Then a different, un-
union of all K’s and P,’'s. From Theorem 2, we know overlapped choice dP, can be made, as shown by the dark
R,>7 2 Now we have shading in(c). In any case, there is always a regiBg of

FIG. 9. The assignment of “extra ared’; as
described in proof of Theorem 4.
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FIG. 10. The assignment of “extra ared,
as described in proof of Theorem 5.

arear which can be assigned to any configuration 4 that Proof Figures 12 and 13 illustrate a Configuration 5
does not belong to a configuration 5. which is not included in a Configuration 6, showiRg pro-
Since any twoP,’s do not overlapRp,=R3—R,. From  vided that this area does not overlap any ofdgrPs, Py, or

Theorem 4, we knovR,>7 2. Let a4 be the area density Psassigned to another configuration. The marking&jrfor

occupied byK¢'s, P,'s, Py's, andP,’s. Then, we have each figure are defined as in previous figures. Figure 12 cov-
ers the case where th@; cluster in the Configuration 5 is
ad=pc[ 74— Rym2+ (R4~ Rs) 78] = pe( 74— Rg72). type C,; Fig. 13 covers the case where it is tyPg.
Let us first consider Fig. 12: If the shaded region(an
Therefore Rg>7 2. overlaps &P, belonging to a neighboring Configuration 2, as
Lemma 2 A P, cannot overlap anp;. shown in(b), then a different, unoverlapped choiceRy can

Proof. Figure 11 illustrates what happens if one were toPe made, as shown by the dark shading. If the shaded region
try to bring together a Configuration 3 withRy and a Con-  in (&) overlaps &,, there are two possibilities depending on
figuration 4 with aP, so thatP; and P, overlap (in the ~ Whether theP, corresponds to cas@) or (b) in Fig. 10; in
shaded region Different cases must be analyzed because€ither case, a different unoverlapped choicePgfcan be
for example,P, may be anH-kite, as in Fig. 10a), or P, ~ Made as shown in the dark shad_lanmor (d),_ respectively.
may have a different shape, as in Figs. (0 and If the P, corresponds to cas(e_) in Fig. 10, it cannot also
10(c). [Note: P, in Fig. 10b) has the same geometrical Overlap aPs. If the shaded region ife) overlaps anothels
shape as in Fig. 18), but it is not anH-kite because it does there is only the possibility shown i) and the choice oPs
not belong to a hexagon which is part ofacluster. Simi-  for one of the Configuration-5 clu_sters can be made differ-
larly, only in Fig. 9a) doesP; correspond to ahi-kite.] ently, as shown by the dark shading. _ _

If P, and P, are bothH-kites, an overlap is not possible ~ Next, let us consider Fig. 13: The only geometric possi-
because it forces a tile conflict %t If one is anH-kite shape  bilities for overlap are if the shaded region (@ overlaps a
but not the other, a similar conflict results. P, of a neighboring cluster of the type shown in Fig(d)r

The remaining case to consider is if tRg of a Configu- @ Ps 0f a neighboring cluster, similar to Fig. (. For each
ration 4 and thé®; of a Configuration 3 do not correspond to ¢ase, a different, unoverlapped choiceRefcan be made, as
an H-kite, as in Fig. @) or Fig. 1ab). [Overlaps are not Shown by the dark shading itb) and(c). In any case, ®5
possible ifP; corresponds to the case shown in Fig)r ~ does not overlap with anf; for i <5 and any twoPs's do
P, corresponds to the case in Fig.(@0] This case occurs hotoverlap each other. Sin&_=Rs— Rs, and, from Theo-
where there is also the overlap ofPg belonging to a third, rem 5, we knowRg>7 2, we have
Configuration-2 cluster. Here, it is geometrically possible to
join the Configuration-3 and Configuration-4 clusters, but pc[™—Rs7+ (Rs— Rg) ?]<1,
then an additionaC cluster is forced in between, as shown
in Fig. 11(b). The Configuration 4 is transformed into a Con- and we haveRg>7 2.
figuration 5, and so there is ri®, region to identify. (Re- Theorem 7. In y,,, R;>7 2
call, P, is only defined for Configuration-4 clusters that are  Proof: Figure 14 shows a Configuration 6 which is not
not part of a Configuration 5.Thus, there is never a case included in a Configuration 7 for the case where @eclus-
where P, and P53, as defined in the previous theorems, canter is typeC, in part(a) and for the case where ti@ cluster
overlap. is type C,, in part (b). In both cases, the “extra aredPy is

Theorem 6 In xm, Rg>7 2 shown for cases in which this area does not overlap any other

FIG. 11. Two cases considered in Lemma 2.
Overlap betweerP, and P is ruled out because
there is a geometrical conflict between tiles
[markedX in (a)], or because juxtaposing con-
figurations force nevC clusters where the, and
P were supposed to overldshaded region in
() (b) (b)]. See proof of Lemma 2 for discussion.
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FIG. 12. The assignment of “extra areds
if the C, cluster is typeC,, as described in proof
of Theorem 6.

P, through P4 assigned to another configuration. If thg  P,; betweenP, and P5 is equivalent toP5 and P,; and
cluster is typeC,, there is no possible overlap with another betweenP; and P, is equivalent toPs and P5.)
P; . If the C, cluster is typeC,,, the only possible overlap is The new checks are for the case whBre(corresponding
with the P of a neighboring Configuration 3, in which case to anH-kite) overlaps with aPg. In this case, as shown in
a different, choice 0P can be made, as shown by the dark Fig. 15a), we can find the dark region which does not over-
shading in(c). _ _ lap with anyP; for i<6. Also, it is possible for twdP's to
SincePg can always be defined such that it does not overgyerjap; we have not illustrated the resolution of this case
lap otherP;, i<6, theR value forPg is Rp =Rg—Ry7. From  pacayse it is similar geometrically to the case of tRgs
Theorem 6, we knowRs>17 . overlapping(see Theorem )6 By similar analysis to the
previous theorems, we obtalRy>7 2.
[~ R+ (Rg—R)72]=1 Finally, we are prepared to prove Theorem 1:
pcl 7= Re7 +(Re—Ry) 7] <1, Theorem 1. In x,,, Rpc=Rg>7 2.
and we haveR,>7 2 Proof: Cgqis in a position that is a mirror t€- in the
Theorem 8. In x,,, R8>T*2_ deflatedC cluster, so the analysis fd?g is similar to Pg in
Proof: From Fig. 6, one sees th@ andCg are mirror ~ Theorem 7, so far as cases of overlap with &qyfor i <6.
images with respect to the vertical line bisecting Bhever-  The only case of overlap d?g with P; for i=6 is Pg (cor-
lap. Recall thaPs (or P) is extra area defined whely (or  responding to ard-kite) overlapping withPg. In this case,
Cg) is missing. So the analysis of cases whieseverlapsP; as shown in Fig. 1%), we can identify the shaded region
for i=2,3,4 is similar to those foP5. (To be precise, the which does not overlap with any; for i<7. It is not geo-
case of overlap betweeR; and P, is equivalent toP; and  metrically possible to arrange twig's to overlap.

FIG. 13. The assignment of “extra areds
if the C, cluster is typeC,, as described in proof
of Theorem 6.




FIG. 14. The assignment of “extra aredg, as described in
proof of Theorem 7.
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we have

1+
1+«

Ry=

@

/o

consequently, the increase @ clusters under deflation is
pe=1Rpcpc=p(1+7*a). Repeated deflations would
lead to an unbounded dens[y2(1+ 7*"a)>pc asn—ox],
which is impossible.

Now let us show that the Penrose tiling is the unique
tiling with pc=1/(37+1). If a tiling has C-cluster density
pc=p2 (the Penrose valye then Rpc=72 and the
C-cluster density in the deflated tiling must equal the Pen-
rose value from the same arguments given in Theorem
1,...,8,Suppose there were a non-Penrose tiling with the
same density. We have shown that the only local configura-

tions which can increase the density above the Penrose value

areDC clusters, and that the increase in density is due to the
B overlap of C-kites, which is the same pddC cluster.
Now, the hypothetical tiling has the same density»€
clusters and, hence, the same densityBobverlaps sur-
rounded byDC clusters as Penrose tiling. However, by defi-

Following the same analysis as in previous theorems, w@ition, the non-Penrose tiling must also have patches with

obtainRy>7 2. Hence, deflating,, and rescaling the de-

flated tiles bys* produces a tiling wittpi.= 7Rpcpc which

is strictly greater tham.. How much so? Suppose we pa-

rametrize the fractional excess pf overp2 as
pc=pe(lta). (1)

Then, since

pc( - RgTz)g 1,
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FIG. 15. Assignment oP; in (a) andPg in (b) for special cases
described in proofs of Theorems 8 and 1.

nonzero area measure which violate the Penrose matching
rules, and so cannot belong to tRekite of any C cluster.
Since theD C-cluster density is the same but there are these
patches, the average area @ecluster must be less than the
Penrose density. A conceivable exception is if there happen
to be additionaB overlaps which do not belong @C clus-

ters whose overlap area exactly compensates the area of the
patches. Even this possibility can be eliminated because the
corollary states thaRpc=1/7%, which means that the density

of C clusters remains unchanged under deflation and rescal-
ing. Yet, the patches grow: a patch excluded fro@ @uster
must also be excluded fromC cluster, but, also, somg&
clusters that border the patches cannot be part@€aclus-

ter and add to the patch area. Since the numb€&r dlusters
remains fixed but the patches grow, Becluster density in

the deflated tiling must be less than the Penrose value. This
contradicts the corollary; hence, uniqueness is established.

C. Is the C cluster unique?

The particular choice oF cluster considered in this paper
is not the unique cluster whose density is maximal in a Pen-
rose tiling. (It was chosen primarily because it makes for
the simplest proof. As a simple example, consider the
clusterC’ which consists of plus an additional side hexa-
gon, as shown in the right most cluster of Figd3 In a
perfect Penrose tiling, evel@ cluster lies within aC’ clus-
ter. Due to the one-to-one correspondence between the two
types of clusters, the density 6fclusters andC’ clusters are
the same in Penrose tiling. On the other hand, the density of
C' clusters cannot be greater than that®fcluster in any
non-Penrose tiling because evely cluster guarantees @
cluster. The consequence of this observation is that Penrose
tiling has the maximum density &’ clusters as well a€
cluster. Or, equivalently, maximizing the density®f clus-
ters also forces a Penrose tiling.
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FIG. 16. A core area assignment that differs from @wkites ;ﬂl!“
considered in the proof. Ea¢h cluster in a tiling can be assigned a ﬁ@{i

rhombus-, trapezoid-, or kite-shaped core area depending on
whether it is of typeC, ) - In @ perfect Penrose tiling, these join

to form a plane-filling tiling without holes or overlaps, as shown in
the figure. This assignment of core area differs from the construc- FIG. 17. A third core area assignment forclusters leading to
tion used in the proof which assigns the sa@wite core area to  a different prescription for assigning energy per cluster. The core
eachC cluster. Different assignments are used to explore how dif-area depends on whether a giv@rcluster is of typeC, p ) - For
ferent ways of assigning energy per cluster can lead to the sameertain arrangements, shown(im, the core areas can overlap. For

final structure. these configurations, though, it is possible to assign the overlap area
to one of theC-cluster pair and a different region of the same area
D. Maximum density and energetics (black to the other cluster. With this rule, the assigned core area are

Lo . a,=27+3 for C,, a,=5/27+3/2 for C,, anda,=37+1 for C, for
We have proven that maximizing the density®Elusters  5ny ¢ cluster in a Penrose or non-Penrose arrangement. In a perfect
forces a perfect Penrose tiling. The notion is that the clustepenrose tiling, the special cases showrttindo not occur; that is,

represents a low-energy atomic cluster and that minimizinghe core areas as assigned(@ join to form a plane-filling tiling
the energy naturally maximizes the density. What kind ofwithout holes or overlaps as shown (¢).
Hamiltonian is needed so that the minimum energy configu-
ration is the one that maximizes ti&cluster density? greatest fractional coverage of the plane. The Penrose tiling
A simple Hamiltonian with this property is one that as- is the unique tiling in which the core areas cover 100% of the
signs energy-e(e>0) to everyC cluster and zero energy to total plane. Consequently, the Penrose tiling must be the
all other clusters. It is obvious that the ground state of thigground state of the Hamiltonian.
Hamiltonian has the maximum density Gf clusters. How- A second, similar example is shown in Fig. 17. In this
ever, this choice is not unique. case, the core area assignment is a little more complicated.
As an example, we illustrate a Hamiltonian which assigngFirst, as can be seen frofa), parts of the “core area” lie
C clusters different energies depending on the orientations adutside theC cluster itself. This technical difference does not
their side hexagon@vhich is the same as assigning different affect our argument, though. Second, there are certain con-
energies according to their local environments Fig. 16, figurations, shown in(b), for which the core areas overlap,
we show each of the three types®fclusters and introduce unlike the case of Fig. 16. In these cases, though, an alterna-
a way of assigning core areas, using a different shap€for tive assignment is possible, as shown(ln, such that the
throughC, . This differs from the assignment in the previous assigned core area asg=27+3 for C,, a,=5/27+3/2 for
sections which assigns the safiekite core area to eacB  C, anda,=37+1 for C_ for anyC cluster. For the particular
cluster. Now, consider a Hamiltonian which assignscase of a perfect Penrose tiling, the core areas as assigned in
e,=—vyrtoaC,, =—y7r+7)/2toaC,ande,=—yr"to  (a) never overlagso the subsidiary rule itb) does not have
a C, cluster and zero for all other clusters. These choices ofo be invoked; instead, the core areas join to form a plane
¢ are proportional to the magnitudes of the respective coréilling tiling without holes. Consequently, technical differ-
areas peC cluster for each given type, . If N;,i=a, b, or  ences aside, the situation is the same as in Fig. 16 except that
c is the number ofC clusters of type, the total energy of a the area assignments are different @, , ¢, . This enables
configuration is—2N;e;> —2N;a;, which is the total area us to choose a different energy assignmegt — 827+3),
occupied by the union of all core areas. The energy density ig,=— &(57+3)/2}, ande.=— 837+1), such that the Penrose
minimized by the configuration whose core areas have thes, again, the unique ground state of the Hamiltonian.
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Since the Penrose tiling is the ground state of three dif- IV. CONCLUDING REMARKS
ferent Hamlltoma_neéone which asggnsatp all C.clustgrs Although the results of this paper are mathematical in
and two linearly independent choices which assign different . T
) o . nature, they have several important implications for the
energies toC clusters in different local environmentghe : : . .
S . .physics of quasicrystals. First, the decagon construction
Penrose tiling is also the ground state of any linear combi: . .
. 2 : shows that the atomic structure of a quasicrystal can be char-
nation of the three Hamiltonianrovided ¢,y and & are

. . . i acterized in terms of the decoration of a single cluster, rather
positive. So, in the three-dimensional parameter sgagce

. . . : than two clusters as the Penrose tiles would suggest. Further-
&, €), there is a three-dimensional region of nonzero mea-

sure for which the Hamiltonian maximiz&3-cluster density more, the single cluster has to have the property that it can

and selects the Penrose tiling for the ground state. share atoms with neighbors in accordance with overlaps.

We note that the proofs that the two other HamiltoniansThlS greatly simplifies the problem of searching for struc-

- . tural models for quasicrystals. It immediately applies to
have a Penrose-tiling ground state stand independently of o . . .
. i . ree-dimensional decagonal quasicrystals, where decagonal
central proof that Penrose tiling has the maximum density o

C clusters. We have approached our investigation from th&"'Sms vyould replace the. decagor]s. The _analog of the deca-
point-of-view that maximizing the density is a simple and gon for icosahedral quasicrystals is the triacontrahedron.

o . Second, the constructions imply a closer tie between qua-
natural criterion, and so we have made this result our focus,

. . “Sicrystals and crystals. Now one can say that both can be
However, others may consider the corresponding energetic . : : .
. . . escribed in terms of the packing of a single cluster. In a
assignment in which alC clusters have the same energy to

be artificial since differenC clusters have different local crystal, the cluster is called the unit cell, and it packs edge-

) : to-edge with its neighbors. In this picture, quasicrystals cor-
environments. Here, we have shown that the two points-of- L ! W .,

. . " .respond to a generalization in which the “unit cells” over-
view are not contradictory—the Penrose tiling emerges eis . )
ther way lap. In both cases, the formation of the particular structure

We speculate that the Penrose ground state is stable uncﬁ?y be described in terms of a low-energy atomic cluster.

) N . . ence, perhaps one heads towards a more unified picture of
even a wider class of Hamiltonians in which nonzero energy

is assigned to other types of tile clusters provided their as(_)rdergd solids. : . . .
Third, the constructions imply a simpler explanation of

signed energyx; satisfiedx;|<e. Suppose one tried to intro- why quasicrystals form, shedding, new light on an old mys-

duce a small, nonzergy to increase the density of a certain . ; .
cluster X (not C) with respect to its density in a perfect tery. They make |t_plau5|ble that qua5|cry§tals can_be under-
hy : . stood by considering the energetics of microscopic clusters

P(_anrose tiling. Th_e density WOUI.d he increased anly by C"®and that cluster overlap is an important structural element.
ating Penrose mismatches, which destroy one or n@re e aomic structures of known quasicrystals include atom
clusters each. That is, for every fédis gained, one or more | sters which can share atoms using geometries analogous
C clusters would be destroyed. An energy proportionato 1 those considered he}dhis has motivated several closely
would be gained for each addd but this would be accom-  g|ated models of quasicrystals based on cludt&st®
panied by a loss of energy proportional &for eachC Our concept can be tested by studying theoretically the
cluster that is destroyed. It seems that there must be a fini@]ergetics of atom clusters found in real quasicrysta|s_ One
band of|«|,<e for which the Penrose tiling is preserved as can use total-energy calculations to estimate the energetics of
the ground-state configuration. the clusters and to test if overlap is energetically preferred.

The last speculation, along with the rigorous resultsPerhaps the modeling studies will lead to suggestions for
above, strongly suggest that there is a robust range of Hamikew quasicrystals. The second construction scheme, in addi-
tonians which maximizeC-cluster density and pick out the tion to posing an explanation of why quasicrystals form, also
Penrose tiling as the ground state. The principal requiremerstuggests a kinematic mechanism to explain how they form:
for the Hamiltonian is thaC clusters have low energy, a namely, by local atomic rearrangement that increases the lo-
condition similar to the condition that determines crystalcal density of some certain atom cluster which then forces
structure. It seems that the ground state does not depertiasicrystallinity. From future structural and kinematical
sensitively on other details, such as whether other clustergfudies of known quasicrystals, these principles may be es-
have the same or different energies or whethe€atlusters tablls_hed, perhaps enabling the reliable prediction of new
have the same energy or different energies. This is a signifduasicrystals.
cant improvement over the old Penrose tiling picture based
on two types of tiles and matching rules, which seemed to
require delicate tuning of Hamiltonian parameters. ACKNOWLEDGMENTS
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