
PHYSICAL REVIEW B 1 JANUARY 1997-IVOLUME 55, NUMBER 1
Nonperturbative theory of magnetocrystalline anisotropy energy
for wires and rings of Fe adatoms

R. Družinić and W. Hübner*
Institute for Theoretical Physics, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 17 May 1996!

The magnetocrystalline anisotropy energyEanis for free-standing chains~quantum wires! and rings of Fe
adatomsN5~2, . . . ,48! is determined using an electronic tight-binding theory. Treating spin-orbit coupling
nonperturbatively, we analyze the relationship between the electronic structure of the Fed electrons and
Eanis(nd), for both the chain and ring conformations. We find thatEanis(N) is larger for wires than for rings or
infinite monolayers. GenerallyEanis(nd) decreases in chains upon increasingN, while for ringsEanis(nd) is
essentially independent ofN. For increasingN, Eanis(nd) in rings approaches the results for free-standing
monolayers. Small rings exhibit clear odd-even oscillations ofEanis(N). Within our theoretical framework we
are able to explain the experimentally observed oscillations ofEanis(nd) during film growth with a period of
one monolayer. Finally, a generalization of Hund’s third rule on spin-orbit coupling to itinerant ferromagnets
is proposed.@S0163-1829~97!05401-5#
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I. INTRODUCTION

Over the past decades information technology has b
determined by semiconductor applications. However,
cently the technology of such devices has been limited du
the optical wavelength. Thus, quantum structures on
nanoscale can offer interesting perspectives for electronic
plications. Manipulations on this scale require us to deve
nanotools: Low-temperature scanning tunneling microsco
do not only allow for theprobing of metallic surfaces with
atomic resolution, but also for single-atommanipulationon
surfaces. It has recently been demonstrated that lateral s
tures of adatoms can be generated by the scanning tunn
microscope~STM! tip ~Crommie and co-workers,1,2 Meyer,
Zophel, and Rieder,3 Rieder and Baratoff.4! Modern STM
techniques now allow for the preparation of quantum rin
~QR’s!. Examples of QR’s, which have been prepared,
rings of 48 Fe adatoms1 or stadia.2 The latter shape is moti
vated by the search for quantum-chaotic behavior, which
far has not been successful due to strong scattering of
electrons by the ring atoms. The QR of adsorbate atoms
boundary condition for the wave function of the substr
surface state. The quantum-mechanical electron distribu
of this state can therefore be measured by STM, and is fo
to be in remarkable agreement with standard prediction
quantum mechanics. However, the magnetic moment
magnetocrystalline anisotropy for these nanoscopic st
tures have not yet been determined in experiment.

In this paper, we are not interested in the surface state
rather in the magnetic anisotropy properties of the quan
ring itself. Since it is known that the magnetocrystalline a
isotropy energyEanis is enhanced in thin magnetic films com
pared to three-dimensional bulk media, one might specu
about a further increase ofEanisupon reduction of the dimen
sionality to one dimension. Thus we calculateEanis for QR’s
and quantum wires~QW’s!. These chains are frequently re
alized by the enhanced adsorption probability of adatoms
step edges.
550163-1829/97/55~1!/347~9!/$10.00
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We analyze for chains and rings for different numbe
N of Fe adatoms how the magnetocrystalline anisotropy
ergyEanisdepends on the electronic structure. To our know
edge, the first attempt of this kind was made by Wang, W
and Freeman5 for a pair of two Fe atoms to explain th
dependence of the electronic states. While they treated s
orbit coupling ~SOC! in second-order perturbation theor
we include SOC completely nonperturbatively without r
sorting to degenerate or nondegenerate perturbation theo
any order. It is shown that for the diatomic pair there a
important contributions to the magnetocrystalline anisotro
energy as a function of the numbernd of d electrons per
atomEanis(nd) due to the different lifting of band degenera
cies for different magnetization directions. We find th
Eanis}lso

2 is valid for the diatomic pair. However,Eanis(nd)
can change its sign with respect tolso due to level crossings
in the energy-level scheme of the diatomic pair. In the sa
way we calculateEanis(nd) for chains and rings with differ-
ent numbersN of Fe atoms. In small rings there are oscill
tions ofEanis(N) between rings with an even or odd numb
of atoms. For our calculation we use two models:~i! an
extension of the diatomic pair model5 to N atoms, and~ii ! a
conventional tight-binding description of the wires and rin
including SOC. Our paper is organized as follows: In Sec.
the diatomic-pair model~Sec. II A! and the tight-binding
model~Sec. II B! are presented together with the determin
tion of SOC~Sec. II C! andEanis ~Sec. II D!. Results for the
diatomic-pair model are shown in Sec. III A, while resu
for the tight-binding model are discussed in Sec. III B.

II. THEORY

A. Diatomic-pair model

We follow the ideas of Wang, Wu, and Freeman, a
extend their diatomic pair model to the case ofN atoms. We
start from the following Hamiltonian:6,7

H5 (
i ,g,s

e igcigs
1 cigs1 (

~ i , j !g,b,s,s8
t ig jbcigs

1 cjbs8
~1!
347 © 1997 The American Physical Society
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TABLE I. The nonvanishing energy integrals in terms of two-center integrals, which we used fo
tight-binding model.

Exy,xy 3l2m2~Vdds!1~l21m224l2m2!~Vddp!1~n21l2m2!~Vddd!

Eyz,yz 3m2n2~Vdds!1~n21m224m2n2!~Vddp!1~l21m2n2!~Vddd!

Ezx,zx 3n2l2~Vdds!1~n21l224l2n2!~Vddp!1~m21l2n2!~Vddd!

Exy,x22y2 3
2lm~l22m2!~Vdds!12lm~m22l2!~Vddp!11

2lm~l22m2!~Vddd!
Exy,z2 A3lm@n22 1

2 ~ l 21m2!#~Vdds!22A3lmn2~Vddp!1
1
2A3ml~11n2!~Vddd!

Ex22y2,x22y2 3
4~l

22m2!2~Vdds!1@l21m22~l22m2!2#~Vddp!1@n211
4~l

22m2!2#~Vddd!
Ex22y2,z2 1

2A3~ l 22m2!@n22 1
2 ~ l 21m2!#~Vdds!1

1
4A3~11n2!~ l 22m2!~Vddd!

Ez2,z2 @n22 1
2 ( l

21m2)#2(Vdds)13n2( l 21m2)(Vddp)1
3
4 ( l

21m2)2(Vddd)
ite
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The summation is taken overN sitesi , while the second sum
is over pairs of nearest neighbors. As usual,cigs

1 (cigs) cre-
ates~destroys! an electron with spins at site i and orbital
g. Furthermoree ig is the on-site energy of an electron at s
i and orbitalg. For simplicity we sete ig50, since we con-
sider only orbitals of the 3d type. The basis functionsfk ,
k51, . . . ,5 (k56, . . .,10) are the atomic 3d orbitals con-
ventionally denoted byxy, yz, zx, x22y2, and 3z22r 2,
wherez denotes the interatomic axis, together with the s
eigenstatesu↑& and u↓& with respect to the spin quantizatio
axis zM . The complete ferromagnetic tight-binding Ham
tonian is

H tb5H1Hex, ~2!

with the diagonal on-site matrixHex5(Hex
( i ) and

Hex
~ i !5SHex

↑↑ Hex
↑↓

Hex
↓↑ Hex

↓↓D 5
Jex
2 S 21 O

O 1 D , ~3!

which is actually independent ofi . 1 and21 denote 535
diagonal matrices, andO is a 535 zero matrix. The matrix
of the HamiltonianH tb is then given by

H tb5S Hex
~1! H inter

~1,2!
••• •••

H inter
~2,1! Hex

~2!
••• •••

A A � H inter
~N21,N!

A A H inter
~N,N21! Hex

~N!

D , ~4!

with the intersite Hamiltonian matrix

H inter
~ i , j !5:SH inter

↑↑ O

O Hinter
↓↓ D , ~5!

where

H inter
↓↓ 5H inter

↑↑ 5:S Vddd 0 0 0 0

0 Vddp 0 0 0

0 0 Vddp 0 0

0 0 0 Vddd 0

0 0 0 0 Vdds

D .

~6!
n

Due to the symmetry of the atomic 3d orbitals, the domi-
nant overlaps result from thed-orbitals of the same kind
thus yielding nonvanishing contributions only in the diagon
elements of the off-diagonal HamiltonianH inter

( i , j ) . Conse-
quently the nearest-neighbor hoppingt ig jb of Eq. ~1! reduces
to t ig jg , which is equivalent to the three independent non
nishing interactionsVdds , Vddp , and Vddd in Eq. ~6!. In
rings, with periodic boundary conditions, the interaction b
tween the first and last atoms of the corresponding ch
must be additionally included. As in Ref. 5 we us
Vdds520.25 eV, Vddp50.18 eV, Vddd520.04 eV, and
Jex53.0 eV, and a lattice parametera 5 5.98 a.u. which
matches the fictitious W~001! substrate.

B. Tight-binding model

The main disadvantage of the diatomic pair model is
unrealistic description of tiltedd bonds. To perform more
realistic calculations ofEanis(nd) in rings, we have to con-
sider how the bond angles are changed between ne
neighbors of Fe atoms. This aspect is taken into accoun
the tight-binding model, within the two-cente
approximation.7 The tight-binding HamiltonianH tb has the
same structure for this model as the matrix in Eq.~4!. Only
the elements ofH inter

( i , j ) will change their values and positions
because the bond angles have changed. The Hamiltonia
parametrized in terms of the two-center integra
Ed,d( l ,m,n) of Slater and Koster,7 given in Table I, withd
as one of the five 3d functionsxy, yz, zx, x22y2, andz2, the
latter denoting 3z22r 2 for simplicity. The direction of the
vectorRj2Ri , pointing along the bond from one atom t
each of its nearest neighbors, is given by the direction
sines l , m, and n. Thus in the tight-binding model both
blocksH inter

↑↑ 5H inter
↓↓ of H inter

( i , j ) change to

S Exy,xy 0 0 Exy,x22y2 Exy,z2

0 Eyz,yz 0 0 0

0 0 Ezx,zx 0 0

Ex22y2,xy 0 0 Ex22y2,x22y2 Ex22y2,z2

Ez2,xy 0 0 Ez2,x22y2 Ez2,z2

D .

~7!

Since we take the (x,y) plane as the ring or chain plane, a
direction cosinesn must be zero. This thus further simplifie
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the nonvanishing two-center integrals of Table I. The ot
two direction cosinesl andm are determined by the bon
angle between the Fe atoms.

If we calculate the magnetic anisotropy of single
double chains we assume them to lie also in the (x,y) plane,
and to be parallel to thex axis. We couple them either fer
romagnetically or antiferromagnetically, by changing t
sign of Jex.

C. Spin-orbit coupling

Magnetocrystalline anisotropy is caused by SOC betw
thed states. SOC is introduced in the usual spherical on-
form asHSO5lSOl•s, with the orbital and spin-moment vec
tors l ands, respectively, and the atomic spin-orbit couplin
constantlSO. Expressing the components of the orbital m
mentum operatorl in the rotated frame (xM ,yM ,zM), where
zM is the spin quantization axis, which is parallel to t
direction of magnetization (u,f), we may rewrite
HSO5(HSO

( i ) in the following form:8,9

HSO
~ i !5:S HSO

↑↑ HSO
↑↓

HSO
↓↑ HSO

↓↓ D 5
lSO

2 S l zM l xM2 i l yM

l xM1 i l yM 2 l zM,
D .

~8!

HereHSO
↑↑52HSO

↓↓ andHSO
↓↑52(HSO

↑↓ )* , with

HSO
↑↑5

lSO

2 S 0 iv 2 iu 2iw 0

2 iv 0 iw 2 iu 2A3iu
iu 2 iw 0 2 iv A3iv

22iw iu iv 0 0

0 A3iu 2A3iv 0 0

D
~9!

and

HSO
↑↓5

lSO

2 S 0 v8 2u8 2w8 0

2v8 0 w8 2u8 2A3u8

u8 2w8 0 2v8 A3v8

22w8 u8 v8 0 0

0 A3u8 2A3v8 0 0

D .

~10!

The variablesu, v, w, u8, v8, and w8 are given by
u5sinuMcosfM , v5sinuMsinfM , w5cosuM , u852sinfM
1 i cosuMcosfM , v85cosfM1i cosuMsinfM , and w85
2 i sinuM . The value for the SOC constantlSO is taken from
the Fe atom10: lSO550 meV.

Now we have set up the Hamiltonian matrix in terms
the magnetization direction (u,f). Since SOC operates to
good approximation only on site, the matrix elements
HSO
i occur exclusively in the diagonal blocks ofH tb in Eq.

~4!; consequently, the matrix elements really occur only
the diagonal and off-diagonal blocks ofHex

( i ) . For chains,
HSO
( i ) is independent of sitei , while for rings the situation is

more complicated. If the magnetic moments are all para
r

n
te

-

f

f

l,

HSO
( i ) is independent of the site indexi . However, if the mag-

netic moments have a radial configuration,HSO
( i ) does depend

on i .
Now the total HamiltonianH tot is

H tot5H1Hex1HSO.

In our treatment SOC is included nonperturbatively.11 So we
also obtain contributions toEanis(nd) from higher-order per-
turbation theory and may obtain information about the sc
ing behavior ofEanis(nd) with the SOC constantlSO.

D. Anisotropy energy

In both models we define the magnetic anisotropy ene
as the difference of energies for perpendicular magnetiza
E' and parallel magnetizationEi :

Eanis~nd!:5E'2Ei . ~11!

Note that for the diatomic pair-model~as defined in Sec
II A ! E' (Ei) refers to magnetization perpendicular~paral-
lel! to the interatomic bonds. For the tight-binding model~as
defined in Sec. II B! E' (Ei), however, refers to magnetiza
tion perpendicular~parallel! to the plane of the QR, which is
the (x,y) plane. The QW’s in this case are assumed to lie
the x direction. ThusE' (Ei) refers toM i ẑ (M i x̂).

We define the magnetic anisotropy energy per atom
the diatomic-pair model as

Eanis~nd!:5Etot~u5p/2,;nd!2Etot~u50;nd!. ~12!

Due to the chosen coordinate system, there is nof depen-
dence ofEanis(nd) in contrast to the tight-binding model. Fo
the tight-binding model we defineEanis(nd) as

Eanis~nd!:5Etot~u50;nd!2Etot~u5p/2,f;nd!. ~13!

The in-plane anglef is chosen such that the resultin
uEanisu is the largest possible.Etot(u,f;nd) is the ground-
state energy per atom of the chain or ring with a total
nd 3d electrons per atom,N Fe atoms, and the magnetizatio
direction denoted by (u,f).9 Using the so-called ‘‘force
theorem’’ the total energy per atomEtot is given by

Etot~u,f;nd!5
1

N(
m

Em~u,f! f 0„Em~u,f!2EF~u,f;nd!….

Here f 0(DE) is the Fermi function at zero temperature a
EF(u,f;nd) is the Fermi energy. For a given bandfillin
nd , EF(u,f;nd) is determined self-consistently by

nd5
1

N(
m

f 0„Em~u,f!2EF~u,f;nd!….

Themth eigenvalue of the total HamiltonianH tot with mag-
netization along (u,f) is given by Em . Note that the
magnetic-moment direction enters only by SOC and can
adjusted for each atomic site individually.

There has been an extensive and in part controversial
cussion in the literature on the application of the for
theorem.12–15Part of this controversy was reconciled in o
recent paper.16 However, some questions remain. In th
present paper, however, we do not address this ques
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Rather we adopt the point of view that the lifting of dege
eracies is physically relevant, since it expresses the sym
try of the system. Therefore it should not be omitted, sin
our calculation mainly focuses on these qualitative symme
aspects rather than the quantitative values of the magn
crystalline anisotropy in the chains and rings. Thus a cor
nonperturbative treatment of the degeneracies is essenti

Concerning the anticipated magnetic order of the QW a
QR in our electronic theory, we make the following remark
~i! The interatomic distance in our model is chosen in acc
dance with the lateral lattice constant of a thin bcc-Fe film
a W~001! substrate, which is magnetically ordered. Ho
ever, the STM experiments produce QR with the interatom
distance of 8–10 Å, which probably would not order, exce
for possible indirect-exchange effects related to the subst
Our interest, however, is mainly in small QR’s, which mig
be produced in the near future, with closer nearest-neigh
distances and magnetic order. Furthermore it is importan
note that the assumption of magnetic long-range order in
electronic theory is not in contrast to the well-known gene
theorems of the~ii ! Ising17 and ~iii ! Heisenberg models.18

III. RESULTS AND DISCUSSION

A. Results from the diatomic-pair model

In Fig. 1, the magnetocrystalline anisotropy ener
Eanis(nd) per atom is shown as a function of 3d band filling
nd for the Fe diatomic pair~dashed curve!. First we note that,
as expected,Eanis is enhanced compared to Fe monolay
(Eanis51, . . . ,16 meV for thedimer vs' 300 meV for an
Fe monolayer!, because of the symmetry reduction from tw
dimensional~2D! to 1D. This is in accordance with recen
studies of magnetism in nickel clusters. Apsel, Deng, a

FIG. 1. Dependence of the magnetocrystalline anisotropy
ergyEanis on the 3d-band filling nd for a diatomic pair. While the
dashed curve refers to the hoppings given in the text, the do
curve refers to hoppings scaled with an overall factor oft50.7.
Negative values ofEanis(nd) correspond to a perpendicular ea
axis. The solid curve show the contributions ofEanis

antipar(nd) to
Eanis(nd) from antiparallel spins. As can be seen the main contri
tion to Eanis(nd) results fromEanis

par (nd), due to the large exchang
splitting Jex in Fe. The zeros inEanis

antipar(nd) at nd52.5 and 7.5 in-
dicate a sign change imposed by a generalization of Hund’s t
rule ~see text!.
-
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Bloomfield19 observed enhanced magnetic moments
small nickel clusters and find magnetization minima for clu
ters with closed geometrical shells and maxima for relativ
open clusters.

In Fig. 1, the dependence ofEanis(nd) on the scaling of all
d-electron hopping parameters with an overall parametet
for the diatomic pair is also presented~dotted curve!. The
absolute value of the magnetic anisotropy ene
uEanis(nd)u increases for decreasingt ~decreasing bandwidth!
for the easy axis perpendicular to the bond@Eanis(nd),0#,
and decreases for the easy axis parallel to the b
@Eanis(nd).0#. Note that, contrary to the situation in thi
films, no convergence problems occur inEanis due to our
finite system. Our calculation is performed in real space,
we sum over discrete energy levels. Thus the change of
occupation number isnnd50.5, and we obtain 20 points fo
Eanis(nd) of the diatomic pair. When the band is complete
empty or filled, no contribution to Eanis results:
Eanis(nd50;10)50. While this is trivially the case for an
empty band, this relation holds with 14 significant digits f
the completely filled case, which yields an independ
check of our numerical accuracy. We find for Fe, with
atomic band filling nd56, an in-plane easy axis fo
Eanis~Fe!56.1 meV. Since the diatomic pair is a small sy
tem, it is not necessary to implicitly assume hybridizati
with s electrons.

We find for the diatomic pair a mirror symmetry o
Eanis(nd) with respect to half-filling (nd55), where the
spin-up subband is completely full. However, the cor
sponding points of the curve are not totally symmetric, an
close inspection shows that there are deviations of this mi
symmetry of the order 1025 eV. This small symmetry viola-
tion results from the combined action of SOC and the h
ping interaction. A detailed analysis shows that this asymm
try increases monotonously with increasing SOC. Especi
for nd52.5 and 7.5 this asymmetry is clearly visible in Fi
1. To illustrate the origin of this asymmetry we split th
spin-orbit coupling matrixHSO into two partsHSO

par and
HSO
antipar for the coupling between parallel and antiparal

spin states, and recalculateEanis(nd) with either of the two
matrices instead ofHSO itself:

HSO5SHSO
↑↑ 0

0 HSO
↓↓ D 1S 0 HSO

↑↓

HSO
↓↑ 0

D 5:HSO
par1HSO

antipar.

So we obtain the curveEanis
antipar(nd) ~solid curve! of Fig. 1,

which exhibits a mirror symmetry with respect to half-fillin
(nd55). Due to the large exchange splittingJex, which
completely separates the spin subbands,Eanis

antipar(nd) is very
small and thusEanis'Eanis

par (nd). TheEanis
antipar(nd) contribution

prefers an easy magnetic direction perpendicular~parallel! to
the molecule axis if the spin-down subband is less~more!
than half-filled, and vice versa for the majority subband,
agreement with the result of Wang, Wu, and Freeman.5 Also
for larger chainsEanis

antipar(nd) changes its sign atnd52.5 and
7.5, which also seems to be a general trend in
monolayers.16 This is a generalization of Hund’s third rul
on SOC which applies to itinerant magnetic systems~see the
Appendix!.
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While for Fe parameters the relationEanis
par (nd)

1Eanis
antipar(nd)'Eanis(nd) holds to a good approximation

small deviations are responsible for the asymmetry m
tioned above. This asymmetry only occurs if we take in
account at least the matrix elements ofHSO for the p and
d bonds, and is absent for all other combinations.

The electronic origin ofEanis(nd) of the diatomic pair can
be explained from its energy-level scheme in Fig. 2, for
two magnetization directionsEm(u50! ~parallel to molecule
axis! andEm(u5p/2! ~perpendicular to molecule axis!. Only
the spin-up states are shown in Fig. 2 for simplicity; due
the exchange splittingJex53.0 eV, the spin-down states~not
shown in the figure! are located symmetrically to these ban
with respect to the zero of the energy scale. The individ
levels of the spin-up subband have been labeled by the n
bers 1, . . . ,10 in theabsence of SOC. Without SOC, th
lowest bonding~level 1! and the highest antibonding stat
~level 10! result from the splittings caused byVdds . Due to
the inequalitiesuVddsu.uVddpu.uVdddu ~Sec. II B! the low-
est bonding and antibonding states are split by 2uVddsu,
while in each case two doubly degeneratep- (d-! bonding
and antibonding states result fromVddp andVddd @see Eq.
~6!#. Thus levels 2 and 3~4 and 5! of Fig. 2 correspond to the
p- (d-! bonding states, while levels 8 and 9~6 and 7! are
equivalent to the corresponding antibonding states. Thes
maining degeneracies are lifted very strongly by SOC
Em(u50!, and therefore level crossings may occur. ForEm
(u5p/2! the degeneracies are only weakly lifted. The ele
tronic origin of Eanis(nd) for the diatomic pair results from
~i! different SOC-inducedshifting of occupied, nondegene
ate levelsfor the two magnetization directions, and~ii ! dif-
ferent lifting of degenerate levels. Note that the lifting of
degeneracies can favor a magnetization parallel as we
perpendicular to the bond axis.

Next we investigate the dependence ofEanis on lSO. We
find a parabolic shape ofEanis(lSO) for all of thend values of
the diatomic pair in agreement with Wang, Wu, a

FIG. 2. Energy levels of the diatomic pair for the two magne
zation directionsEm(u50) ~magnetization in bond direction! and
Em(u5p/2) ~perpendicular to the bond axis!. For simplicity only
the spin-up states of the energy scale are shown in the plot.
magnetization perpendicular to the bond axis the degeneracie
very weakly lifted by SOC, in contrast to the case of magnetizat
in the bond direction, where SOC lifts the degeneracies so stro
that levels 5 and 6 intersect.
-

e

o

l
m-

re-
r

-

as

Freeman,5 irrespective of the value of the spin-orbit couplin
constant. To demonstrate this, we show in Fig. 3 the mag
tocrystalline anisotropy energyEanis(lSO) for the band fill-
ingsnd51 and 2.5. In Fig. 3, however, we see a discontin
ous change of the slope fornd52.5, because a level crossin
~see Fig. 2! has occurred between levels 5 and 6 f
lSO50.04 eV. The inversion of these levels is indicated
the labeling in Fig. 2, forl50.05 eV. ThusEanis(nd) can
change its sign because of the level crossings. To explain
nd51 the dependence ofEanis on SOC, we have to study th
contribution of level shifts for different magnetization dire
tions. We find that the shifting ofnondegenerate statesis for
both magnetization directions proportional tolSO

2 . For the
case of a perpendicular easy axis, the prefactor is larger.
shifting ofdegenerate statesfor magnetization parallel to the
bond axis is in all cases proportional tolSO, and for mag-
netization perpendicular to the bond axis proportional
lSO
2 . To illustrate this, in the inset of Fig. 3 we show th

dependence of the level shifts onlSO for the nondegenerate
level 1 ~this corresponds tond50.5! and the degenerate leve
2 (nd51!, for both magnetization directions (u50;p/2) for
the diatomic pair. Foru5p/2 and small SOC there is a fla
slope of the energy of both levels, while the slope increa
with increasinglSO. Otherwise, the slope of the energy
both levels foru50 increases less strongly with increasin
lSO. Thus in Fig. 3 the magnetic anisotropy ener
Eanis(nd51) decreases for larger SOC with increasi
lSO, as a result of the different position of the energy lev
for the two magnetization directions entering the calculat
of Eanis(nd). This yields another reason for the sign chan
of Eanis(nd).

Again we point out here that the anisotropy energy exh
its a parabolic shape as a function of spin-orbit coupling~as
shown in Fig. 3!, although there exist discontinuous deriv
tives where levels cross. Thus the parabolic shape domin

or
are
n
ly

FIG. 3. The dependence of the magnetocrystalline anisotr
energyEanisonlSO ~eV! for nd52.5 ~solid line! and 1~dashed line!
for the diatomic pair. Fornd52.5 a discontinuous change of th
slope occurs due to the crossing of levels 5 and 6 in the case
magnetization parallel to the bond axis. Fornd51 Eanis decreases
with increasinglSO. This behavior is explained in the inset of Fig
3 ~see text!. The inset shows the shift of levels 1 (nd50.5! and 2
(nd51! as a function oflSO for the diatomic pair and magnetizatio
in bond direction (u50) and perpendicular to bond (u5p/2).
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the curve rather than the linear dependence. This is in ag
ment with the results for free-standing monolayers.13,16

Another important consequence of the level crossing
be seen in Fig. 1. The magnetic anisotropy ene
Eanis(nd) of the quarter-band filling (nd52.5 and 7.5! of both
subbands depends sensitively on the hopping parameters
cause the level crossings then occur for smaller value
lSO ~decreasingt), or, in the other case of increasingt for
larger values oflSO.

In Fig. 4 ~dashed curve!, Eanis(nd) is shown as a function
of 3d-band filling nd for the five-atom Fe ring. In the five
atom ring we find a translational symmetry ofEanis(nd) with
respect to half-filling. This symmetry behavior ofEanis(nd) is
found in all rings with a small odd numberN
5~3,7,9,11, . . . ! of adatoms. In rings, with an even numb
of atoms and all chains irrespective on whetherN is odd or
even, we find a mirror symmetry ofEanis(nd) with respect to
half-filling. This behavior is also valid in the tight-bindin
model, and will be discussed again in Sec. III B. If the nu
ber of atoms continues increasing (N545,47, . . . !, we then
also find a mirror symmetry ofEanis(nd) with respect to half-
filling in odd rings.

B. Results of the tight-binding model

The tight-binding model is better than the diatomic-p
model, because it additionally allows to take into account
following points: ~i! The change of the binding angles b
tween nearest neighbors of adatoms in rings is considere
a realistic way. ~ii ! Due to the extraf dependence o
Eanis(nd) in the tight-binding model, it is possible to choos
any magnetic-moment direction in the plane of the ring
chain.~iii ! Furthermore, in the tight-binding model it is po
sible to couple the free-standing chains and rings to the s
strate. This extension of the theory, however, has not b
performed in this work.

For all chains it is easily checked thatEanis(nd) is equal in
both models. There is a general trend thatEanis(N) decreases

FIG. 4. The dependence of the magnetocrystalline anisotr
energyEanis on the 3d-band fillingnd for the five-atom ring calcu-
lated in the diatomic pair model~dashed curve! and the tight-
binding model~solid curve!. In both models, there is a translation
symmetry with respect to half-fillingnd55. In the tight-binding
model all moments in-plane are choosen to be parallel to each o
for this case.
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with increasing numberN of Fe atoms in chains~compare
Figs. 1 and 8!. For rings this is not the case, as will b
discussed below.

The solid curve in Fig. 4 showsEanis(nd) for the tight-
binding five ring. Although this curve is different from th
result in the diatomic-pair model, the translational symme
survives. A detailed analysis yields that the tight-bindi
model has the same symmetry behavior for small odd ri
as the diatomic-pair model. The translational symmetry c
be traced back to the absence of a mirror symmetry betw
the levels in each of the two spin subbands with respec
6Jex/2.

A very important point for the theory of small particles
the existence of a shell structure. Here we discuss in part
lar the oscillations ofEanisas a function of band fillingnd for
rings with an even or odd number of adatoms. If the ma
netic moment is along the layer normal, it lies in plan
perpendicular to all bonds of the ring. But if the magne
moment lies in the ring plane~assuming exchange-enforce
parallel moment alignment!, it is twice parallel to a bond
axis in rings with an even number ofN, andonce in rings
with an odd number ofN. This is schematically illustrated in
Fig. 5 for the trimer@Fig. 5~a!#, tetramer@Fig. 5~b!#, and
hexamer ring@Fig. 5~c!#. In even rings, whereN is a multiple
of 4 the moment lies also twice perpendicular to a bond a
@see Fig. 5~b!#.

We investigate exemplarily, for the four-Fe-atom rin
three different configurations of the magnetic moment dir
tion, which are shown in Fig. 6. Since in larger rings t
exchange interaction could possibly not enforce para
alignment of all magnetic moments, as assumed p
viously,20,21 we calculatedEanis(nd) for parallel magnetic
moment alignment (p), radial moment configurations alon
the bonds~i!, or half of the nearest-neighbor bond angle~h!.
Since there is af dependence ofEanis(nd) in the tight-
binding model, we find the following in-plane symmetry
rings for the first two configurations (p) and (i ):

Eanis~u;f50;nd!5Eanis~u;f5360/N;nd!. ~14!

Note that this symmetry is absent for case (h). In Fig. 6,
Eanis(nd) is shown as a function of 3d-band fillingnd of the
four-atom Fe ring, for the three configurations (p), (i ), and
(h). Especially for thep bond, the magnetic anisotropy en
ergy Eanis(nd) has the lowest values for configuration (p).
However, this is not the ground-state configuration for
with atomic band fillingnd56. For all three configurations
we obtain a parallel easy axis ofEanis~Fe!, while its value is
the largest where the magnetic moments are arranged in
figuration (h). This is the ground state of the three config
rations for Fe, with the lowest total energy. In order to d
termine the ground-state configuration for the case of b

y

er

FIG. 5. Odd-even oscillations of the rings~schematic!.
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55 353NONPERTURBATIVE THEORY OF . . .
filling around nd57.5, we have to note that we obtain
perpendicular easy axis for the two radial configurations
an in-plane easy axis for configuration (p). In this case both
radial configurations have the same total energy, which
to be compared with the total energy that results from
magnetization in plane (p). A close inspection of all discrete
band fillings betweennd57 and 8 shows that configuratio
(p) has the lowest total energy in this range.

Within our theoretical framework we are able to expla
in a simple way a recently discovered phenomenon, viz.
cillations of Eanis(nd) during film growth with a period of
one monolayer.22 The in-plane lattice spacing during epita
ial growth of Co on a Cu~001! single-crystal substrate i
found to oscillate as a function of coverage and produ
anisotropy oscillations.23 These oscillations are schema
cally illustrated in Fig. 7, which shows the connection b
tween the change of the lattice spacing fromR to R1 due to
the growth and the corresponding change ofEanis. After
starting the deposition, Co islands nucleate on the Cu
face. The Co atoms are relaxing in the direction of the cen
of the island. This gives rise to a reduced in-plane latt
spacing. If the growth of theN11 layer is completed,Eanis
(N11 layer! nearly returns to the value ofEanis(N layer!.
For uncompleted layers, however, the in-plane lattice c
stant is very different from that of complete layers and the
fore oscillations occur inEanis(N layer! as expected. As a
model assumption of this situation the four-atom Fe ring c
be considered. We scale alld-electron hopping parameter
belonging toone bond of the four-atom Fe ring with a pa
rametert8, while leaving the others unchanged. Then we a
find anisotropy oscillations, due to the changed position

FIG. 6. Dependence of the magnetocrystalline anisotropy
ergyEanis on the 3d-band fillingnd for a four-atom ring calculated
in the tight-binding model for the three displayed magnetic mom
configurations. In (p) all moments are parallel to each other, wh
in ( i ) and (h) the two radial configurations are given, where
moments are in the bond directions or half to these.
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some levels in the energy-level scheme of the four-atom
ring. For decreasingt8 for one bond,Eanis(nd) is increasing
or decreasing dependent onnd . To make our point clear, we
again emphasize that there is no oscillatory behavior of
anisotropy with the lattice constant which makes the anis
ropy oscillate upon growth but rather an oscillation of t
lattice constant itself due to the incompleteness of the gr
ing layer. The anisotropy energy is a smooth function of
lattice constant~also in our calculation!, but follows the
lattice-constant oscillation.

Finally, in this paper we would like to discuss some r
sults for larger QR’s and QW’s, in order to reach the expe
mental situation. In Fig. 8,Eanis(nd) is shown as a function
of 3d-band fillingnd of the 48-atom Fe ring~solid curve!, for
the p configuration of Fig. 6. A comparison of the thre
configurations (p, i , andh) shows only marginal deviation
of the total energy for the 48 QR’s; thus we may assume
p configuration to be the ground state. For an effective ba
filling of nd

eff56.6 we find an in-plane easy axis wit
Eanis~Fe!51.45 meV, assuming implicitly a hybridization o
the d electrons withs electrons for this larger system. Th
shape of the curve is very similar to that of the tight-bindi
calculations for free-standing Fe monolayers.16,24 As can be
seen from the comparison of Figs. 8, 4, and 6,Eanis(N) is
essentially independent ofN.

Since metal atoms aggregating during film growth pref
ably on step edges@see Ref. 20 for Fe/W~110!# may cause
one-dimensional metallization and magnetic properties, i
of interest to calculate the magnetocrystalline anisotropy
larger QW’s. The origin of magnetic step anisotropies resu
from the modified local symmetry of step atoms compared
surface atoms. In Fig. 8,Eanis(nd) is shown as a function o
3d-band fillingnd for the 48-atom Fe chain, for two differen
scalings of the hopping parameters~the dashed curve refer
to the unscaled caset51!. The value ofEanis(nd) is consid-
erably lower compared to the diatomic pair. However, it
still much larger then the values for free standing Fe mo
layers. The shape of the curve fort51 is very similar to the
diatomic pair~see Fig. 1!, irrespective of the atomic numbe
N. Thus we expect very large contributions toEanis(nd) in all
chains from SOC-induced lifting of degeneracies. Compa
son of Figs. 1 and 8 indicates that, upon decreasingt, the

n-

t

FIG. 7. Schematic sketch of anisotropy oscillations during
growth of Co on Cu. We expect that the change of the lattice sp
ing fromR to R1 due the growth of the (N11) layer will produce
oscillations ofEanis, which are found in the calculation for th
four-atom Fe ring, used to simulate this system.
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shape of the curve will change similarly for the 48-ato
QW, and for the dimer due to level crossings.

In order to show how sensitive the magnetocrystalline a
isotropy energy depends on spin configuration, we calcu
Eanis(nd) for two 48-atom Fe chains which are antiferroma
netically ~AF! or ferromagnetically~FM! coupled to each
other~Fig. 9!. In these 96-atom systemsEanis(N) has further
decreased in both cases. In AF coupled chainsEanis(nd) is
less dependent on the scaling of the interchain hopping t
in FM coupled chains. Note that the shape ofEanis(nd) for
AF coupled chains is similar to that of the 48-atom Fe cha
In this case the shape will not change if the interchain ho
ping t l is varied, in contrast to FM coupled chains. Thus t
breakdown of the one dimensionality in two FM couple
chains will changeEanis(nd) very strongly. We find in this
case a perpendicular easy axis withEanis~Fe!
520.36 meV (t l 5 1!. This value is of the same order o
magnitude as for Fe monolayers. Experimental resu
show25 that surface and step anisotropies are of the sa
order of magnitude, both exhibiting symmetry-breaking
was introduced by Ne´el’s phenomenological model.26,27This
is in agreement with our results for two FM coupled chain
The opposite sign and same order of magnitude for surf
and step anisotropies is reproduced.
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FIG. 8. Dependence of the magnetocrystalline anisotropy
ergyEanison the 3d-band fillingnd for a 48-atom ring~solid curve!
for the tight-binding model, with the configuration that all momen
in plane are parallel to each other. The dashed~dotted! curves
shows the dependence ofEanis(nd) for a 48-atom chain for two
different scalings of the hoppingt51 (t5 1
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APPENDIX: HUND’S THIRD RULE

The curve ofEanis
antipar(nd) changes it sign atnd52.5 and

7.5 ~see Fig. 1!. This sign change occurs exactly, when
each case the two subbands are half filled.

Wang, Wu, and Freeman5 also found this behavior fo
SOC between the opposite spin states for the dimer w
can be understood from the following equation (z denoting
the symmetry axis andx an arbitrary direction in the perpe
dicular plane!:

DEud5Eud~x!2Eud~z!5
j2

DEex
(
o2

^o2u 12 ~3Lz
22L2!uo2&.

~A1!

ud (o2) represents SOC between the opposite spin s
~represents occupied spin-down states!, andDEex is the ex-
change splitting. The sign ofDEud depends only on the axia
component of the angular momentum. Three st
(Lz50,61), which are first occupied, make negative con
butions, and two (Lz562) contribute positively. Due to th
hybridization, the two antibonding states withLz562,
which contribute positively, will be occupied next, and the
fore it comes to a sign change.

This behavior is also valid in larger chains a
monolayers.16,24 If one spin subband is half-filled, there
L50, and from this results no contribution to the anisotro
energy. The antibonding states will be occupied in rev
order, and thus there is a sign change atnd52.5 and 7.5.

n-
FIG. 9. Dependence of the magnetocrystalline anisotropy

ergy Eanis on the 3d-band filling nd for two antiferromagnetically
~dashed curve! and ferromagnetically~solid and dotted curve!
coupled 48-atom Fe chains for the tight-binding model.
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