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Nonperturbative theory of magnetocrystalline anisotropy energy
for wires and rings of Fe adatoms
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(Received 17 May 1996

The magnetocrystalline anisotropy enefgy,;s for free-standing chaingquantum wires and rings of Fe
adatomsN= (2, . .. ,48 is determined using an electronic tight-binding theory. Treating spin-orbit coupling
nonperturbatively, we analyze the relationship between the electronic structure of ttheeléetrons and
E.nid Ng), for both the chain and ring conformations. We find tRgt;{N) is larger for wires than for rings or
infinite monolayers. Generallig,,{ny) decreases in chains upon increashgwhile for ringsE,,dny) is
essentially independent &. For increasingN, E,,d{nq) in rings approaches the results for free-standing
monolayers. Small rings exhibit clear odd-even oscillationE gf{ N). Within our theoretical framework we
are able to explain the experimentally observed oscillations gf(n,) during film growth with a period of
one monolayer. Finally, a generalization of Hund’s third rule on spin-orbit coupling to itinerant ferromagnets
is proposed[S0163-182807)05401-3

I. INTRODUCTION We analyze for chains and rings for different numbers
N of Fe adatoms how the magnetocrystalline anisotropy en-
Over the past decades information technology has beeergy E,nis depends on the electronic structure. To our knowl-
determined by semiconductor applications. However, reedge, the first attempt of this kind was made by Wang, Wu,
cently the technology of such devices has been limited due tand Freemahfor a pair of two Fe atoms to explain the
the optical wavelength. Thus, quantum structures on théiependenc_e of the el_ectronlc states. While they_ treated spin-
nanoscale can offer interesting perspectives for electronic afvbit coupling (SOQ in second-order perturbation theory,
plications. Manipulations on this scale require us to develop’® include SOC completely nonperturbatively without re-
nanotools: Low-temperature scanning tunneling microscopes0rting to degenerate or nondegenerate perturbation theory of
do not only allow for theprobing of metallic surfaces with a1y order. It is shown that for the diatomic pair there are
atomic resolution, but also for single-atamanipulationon important contrlbutllons to the magnetocrystalline anisotropy
surfaces. It has recently been demonstrated that lateral stru%[]ergé as a fgnctkontr?f (tjhf? nuTtI).?[.H of ?belegtzjons per
tures of adatoms can be generated by the scanning tunneli OmEandng) due to the different lifting of band degenera-
. . . 2 cies for different magnetization directions. We find that
microscope(STM) tip (Crommie and co-workers? Meyer, 2 ; ) . .
Zophel, and Riedet,Rieder and Baratoffi Modern STM Eanig* A5 1S valid for the diatomic pair. Howeveganidna)
techniques now allow for the preparation of quantum ringscan change its sign with respect)thQUe t‘.) Ievgl Crossings
(QR'S). Examples of QR’s, which have been prepared, ar in the energy-level scheme of the diatomic pair. In the same
rings of 48 Fe adatorhwr stadia The latter shape is moti- Wway we caloulateEynd ) for chains and rings with differ-

. : ) ent numbers\ of Fe atoms. In small rings there are oscilla-
vated by the search for quantum-chaotic behavior, which SQons of E,{N) between rings with an even or odd number

far has not been successful due to strong scattering of the: ~+oms™ For our calculation we use two mode: an
electrons by thg .ring atoms. The QR of .adsorbate atoms setstension of the diatomic pair modeb N atoms, andii) a
boundary condition for the wave function of the substrate;onyentional tight-binding description of the wires and rings
surface state. The quantum-mechanical electron dlstnbutlomdudmg SOC. Our paper is organized as follows: In Sec. I,
of this state can therefore be measured by STM, and is founge diatomic-pair modelSec. Il A) and the tight-binding
to be in remarkable agreement with standard predictions g odel(Sec. Il B are presented together with the determina-
guantum mechanlcs. However, the magnetic moment angon of SOC(Sec. Il O andE,y; (Sec. 11 D). Results for the
magnetocrystalline anisotropy for these nanoscopic strucgiatomic-pair model are shown in Sec. Il A, while results

tures have not yet been determined in experiment. for the tight-binding model are discussed in Sec. Il B.
In this paper, we are not interested in the surface state but
rather in the magnetic anisotropy properties of the quantum Il. THEORY

ring itself. Since it is known that the magnetocrystalline an-
isotropy energyE ,nisiS enhanced in thin magnetic films com-
pared to three-dimensional bulk media, one might speculate We follow the ideas of Wang, Wu, and Freeman, and
about a further increase &, upon reduction of the dimen- extend their diatomic pair model to the case\bfitoms. We
sionality to one dimension. Thus we calcul&g,sfor QR’s  start from the following Hamiltoniafi”’
and quantum wiregQW'’s). These chains are frequently re-

alized by the enhanced adsorption probability of adatoms on _ At

step edges. : i%:o E'yc'”c""Jr(i,i)%mm

A. Diatomic-pair model

tiigCiyaCigor (1)
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TABLE I. The nonvanishing energy integrals in terms of two-center integrals, which we used for the
tight-binding model.

Exyxy 312MR(Vgq,) + (124 mP—412mP) (Vyg,,) + (M2 +12mP) (Vggs)

Eyzyz 3mPn?(Vygo) + (NP4 P —4mPn?) (Vg + (124 mPn?) (Vgs)

Ezxzx 3n212(Vgq,) + (N2 +12—4120?)(Vyg,) + (MP+12n2) (Vggs)

Exy-y? AIM(12—=mA) (V) + 2m(mP—12)(Vyq,) + sIm(12—1m?) (Vgqs)

Exy.22 V3IMEn2— (124 M) (Vag,) — 2/3IMM(Vgg,) + 3V3MI(L+12) (Vag)
Exto 22y 02— 122 (Vyq,) + 12+ mP— (12— P)?] (V) + [P+ 5012 = P)%] (V)
Exeye.z L3(12=mA)[n? = 3124 M) 1(Vaae) + $VB(L+12) (17~ m2) (V)
Bz [n?=3(12+m?)12(Vaqo) + 3n2(12+m?) (Vaq,) + 512+ m?)2(Vgq5)

The summation is taken ovél sitesi, while the second sum

is over pairs of nearest neighbors. As usmﬁ;v(ciw) cre-
ates(destroy$ an electron with spirr at sitei and orbital

y. Furthermore; , is the on-site energy of an electron at site elements of the off-diagonal HamiltoniaH ;L)

i and orbitaly. For simplicity we sef;,=0, since we con-
sider only orbitals of the @ type. The basis functiong,,
k=1,...,5 k=6,...,10) are the atomic 8 orbitals con-
ventionally denoted byy, yz, zx, x2—y?, and 3?>—r?,

Due to the symmetry of the atomid3rbitals, the domi-
nant overlaps result from thd-orbitals of the same kind,
thus yielding nonvanishing contributions only in the diagonal
Conse-
quently the nearest-neighbor hopping ; of Eq. (1) reduces
tot;,;,, which is equivalent to the three independent nonva-
nishing interactionsVyqy,, Vgdz,» and Vygs in Eq. (6). In
rings, with periodic boundary conditions, the interaction be-

wherez denotes the interatomic axis, together with the spintween the first and last atoms of the corresponding chain
eigenstate$]) and||) with respect to the spin quantization must be additionally included. As in Ref. 5 we use
axis zy, . The complete ferromagnetic tight-binding Hamil- Vg4,= —0.25 eV, V44,=0.18 eV, Vy4s= —0.04 eV, and

tonian is
Hp=H+Hegy, 2

with the diagonal on-site matrik¢=SH{) and

Ju[~1 O
“2lo 1) ©

il
il

Hex

H(i):
e

which is actually independent of 1 and —1 denote 5<5
diagonal matrices, an@ is a 5X5 zero matrix. The matrix
of the HamiltonianHy, is then given by

HE HRE
HiE HE) o
Hy= _ ) 4
* Hi(rﬂerlyN)
H > WY
with the intersite Hamiltonian matrix
mn
H(I’J):: Hinter O (5)
"0 M)
where
Vagas O 0 0 0
0 Vygnr 0 0 0
H ilniter: HiTnTter: : 0 0 Vaar 0 0
0 0 0 Vgs O
0 0 0 0 Vydo

(6)

Jo=3.0 eV, and a lattice parametar = 5.98 a.u. which
matches the fictitious V001) substrate.

B. Tight-binding model

The main disadvantage of the diatomic pair model is its
unrealistic description of tiltedl bonds. To perform more
realistic calculations oE,,{ny) in rings, we have to con-
sider how the bond angles are changed between nearest
neighbors of Fe atoms. This aspect is taken into account in
the tight-binding model, within the two-center
approximation’. The tight-binding HamiltoniarH,, has the
same structure for this model as the matrix in ). Only
the elements oH i(rL;,Js), will change their values and positions,
because the bond angles have changed. The Hamiltonian is
parametrized in terms of the two-center integrals
Eq.q(l,m,n) of Slater and Kostef,given in Table I, withd
as one of the five@functionsxy, yz, zx, x2—y?, andz?, the
latter denoting 32—r? for simplicity. The direction of the
vector Rj—R;, pointing along the bond from one atom to
each of its nearest neighbors, is given by the direction co-
sinesl, m, and n. Thus in the tight-binding model both
blocksH/ . =HL of H(:) change to

inter— ' linter inter

Exy.xy 0 0 Exy,x2—y2 Eyy,22
0 Eyzyz O 0 0
0 0 E.x2x 0 0
Exz—y2xy 0 0 Evey2y2 y2 By y252
Ez2xy 0 0 Ezxe-y2 E,2 ;2

)

Since we take thex(y) plane as the ring or chain plane, all
direction cosines must be zero. This thus further simplifies
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the nonvanishing two-center integrals of Table I. The othengg) is independent of the site indéxHowever, if the mag-

two direction cosines and m are determined by the bond patic moments have a radial configuratida’fﬁ)o does depend
angle between the Fe atoms.

If we calculate the magnetic anisotropy of single orOn
double chains we assume them to lie also in thg) plane,
and to be parallel to thg axis. We couple them either fer- Hior=H+ Het Hso.
romagnetically or antiferromagnetically, by changing the
sign of Jey.

i.
Now the total HamiltoniarH,; is

In our treatment SOC is included nonperturbativeifo we
also obtain contributions t&,,{ny) from higher-order per-

. . . turbation theory and may obtain information about the scal-

C. Spin-orbit coupling ing behavior ofE,,i{ng) with the SOC constant g
Magnetocrystalline anisotropy is caused by SOC between

thed states. SOC is introduced in the usual spherical on-site D. Anisotropy energy

form asHgo= \gd - s, with the orbital and spin-moment vec-
tors| ands, respectively, and the atomic spin-orbit coupling as
constant\ so. Expressing the components of the orbital mo-
mentum operatok in the rotated framexy, ,Yu ,Zw), Where

Z\ is the spin quantization axis, which is parallel to the EandNa): =E, —Ej. (12)
direction of magnetization €,¢), we may rewrite
Hso=2=HY) in the following form5°

In both models we define the magnetic anisotropy energy
the difference of energies for perpendicular magnetization
E, and parallel magnetizatioB, :

Note that for the diatomic pair-modéhs defined in Sec.
I1A) E, (E)) refers to magnetization perpendiculg@aral-
- ' | Ll lel) to the interatomic bonds. For the tight-binding mogkd
) Hso Hso| Aso 2y X Y defined in Sec. Il BE, (E;), however, refers to magnetiza-
SO~ - HLL  HYY “ 2\, ' tion perpendiculatparalle) to the plane of the QR, which is
®) the (x,y) plane. The QW’s in this case are assiumed to lie in
the x direction. Thust, (E) refers toM|z (M|[X).
HereHgIJ:—Hglo and H%g:_(H;L * Wwith We_,- defl_ne th_e magnetic anisotropy energy per atom for
the diatomic-pair model as

M+IIyM —IZM,

0 v —iu2w 0 Eand Na): =Eiol 0=/2,ing) ~ Eiol 6=0ing).  (12)
\ -l 0 iw - —iu —\Biu Due to the chosen coordinate system, there ispndepen-
HLL=250 iu —iw 0 —iv J3iv dence ofE,i{ngy) in contrast to the tight-binding model. For
502 the tight-binding model we defing,{ny) as
—2iw iu iv 0 0 g g anis Mg
0 \/§iu —\/§iv 0 0 EanidNa): =Eio 0=0;ng) —Eo 0=7/2,;ng). (13
©) The in-plane angle¢ is chosen such that the resulting
and |Eanid is the largest possibleE( 0, ¢;ny) is the ground-
state energy per atom of the chain or ring with a total of
, , , ngy 3d electrons per atonN Fe atoms, and the magnetization
0 v —ut 2w 0 direction denoted by €, ¢).° Using the so-called “force
-v' 0 w’ -u’ —3u theorem” the total energy per atoR, is given by
)\SO ’ ’ ' '
HTSIOZT u —-W 0 ) \/§v 1
ow' o o0 0 Eiol 0,$ina) =y 2 En(0,0)fo(En(0,6) ~ Ex(6, $ing)).
0 3w -3 0 0 (10) Here fo(AE) is the Fermi function at zero temperature and

Er(6,¢;ny) is the Fermi energy. For a given bandfilling

The variablesu, v, w, u’, v’, and w’ are given by Ny, Ec(6,¢;ny) is determined self-consistently by

U= SsinfyCospy, v =SinbySingy , W=C0H,, U’ = —singy

1
+i coshycospy, v’ =cospy+icosBysingy, and w’'= nd:NE fo(En(0,0) —Er(6,¢;ny)).
—i sindy, . The value for the SOC constaxgg is taken from m
the Fe atorff: Aso=50 meV. The mth eigenvalue of the total Hamiltonid#,,; with mag-

Now we have set up the Hamiltonian matrix in terms of petization along ¢,¢) is given by E,,. Note that the
the magnetization directiond(¢). Since SOC operates to a magnetic-moment direction enters only by SOC and can be
good approximation only on site, the matrix elements Ofadjusted for each atomic site individually.

so occur exclusively in the diagonal blocks bify, in Eq. There has been an extensive and in part controversial dis-
(4); consequently, the matrix elements really occur only incussion in the literature on the application of the force
the diagonal and off-diagonal blocks &f{). For chains, theorem:2~'%Part of this controversy was reconciled in our
HY) is independent of site, while for rings the situation is recent papet® However, some questions remain. In the
more complicated. If the magnetic moments are all parallelpresent paper, however, we do not address this question.
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Bloomfield® observed enhanced magnetic moments for
small nickel clusters and find magnetization minima for clus-
ters with closed geometrical shells and maxima for relatively
open clusters.

In Fig. 1, the dependence Bf,,{ ny) on the scaling of all
d-electron hopping parameters with an overall parameter
for the diatomic pair is also presentédotted curveé The
absolute value of the magnetic anisotropy energy
|Eanidng)| increases for decreasingdecreasing bandwidth
for the easy axis perpendicular to the bdrig,,d{ng)<O0],
and decreases for the easy axis parallel to the bond
[Eanidng)>0]. Note that, contrary to the situation in thin
L films, no convergence problems occur By, due to our
o 1 2 3 4 5 6 7 8 9 10 finite system. Our calculation is performed in real space, and

number ng of 3d electrons per atom we sum over discrete energy levels. Thus the change of the
occupation number ianyg=0.5, and we obtain 20 points for

FIG. 1. Dependence of the magnetocrystalline anisotropy enEanidNg) Of the diatomic pair. When the band is completely
ergy Eanis on the 3i-band filling ng for a diatomic pair. While the empty or filled, no contribution to E,,s results:
dashed curve refers to the hoppings given in the text, the dottef;{ng=0;10)=0. While this is trivially the case for an
curve refers to hoppings scaled with an overall factortef.7.  empty band, this relation holds with 14 significant digits for
Negative values oE,,{ng) correspond to a perpendicular easy the completely filled case, which yields an independent
axis. The solid curve show the contributions Bfi#*(ng) to  check of our numerical accuracy. We find for Fe, with its
Eanidng) from antiparallel spins. As can be seen the main contribugtomic band filling ng=6, an in-plane easy axis for
tion to E,dng) results fromEgﬁ{s(n_d), due to the large exchange E..d{F&=6.1 meV. Since the diatomic pair is a small sys-
splitting Jy in Fe. The zeros iEgu™(ng) atng=2.5 and 7.5 in-  tam it is not necessary to implicitly assume hybridization
dicate a sign change imposed by a generalization of Hund's thirqiih s electrons.
rule (see text We find for the diatomic pair a mirror symmetry of

_ _ . Eanidng) with respect to half-filling 64=5), where the
Rather we adopt the point of view that the lifting of degen-spin_up subband is completely full. However, the corre-
eracies is physically relevant, since it expresses the symmeyonding points of the curve are not totally symmetric, and a
try of the system. Therefore it should not be omitted, sincg|ose inspection shows that there are deviations of this mirror
our calculation mainly focuses on these qualitative symmetrymmetry of the order I eV. This small symmetry viola-
aspects rather than the quantitative values of the magnetgy, results from the combined action of SOC and the hop-
crystalline anisotropy in the chains and rings. Thus a correching interaction. A detailed analysis shows that this asymme-

nonperturbative treatment of the degeneracies is essential.yry increases monotonously with increasing SOC. Especially
Concerning the anticipated magnetic order of the QW andor ;=2 5 and 7.5 this asymmetry is clearly visible in Fig.

QR in our electronic theory, we make the following remarks:y 14 jllustrate the origin of this asymmetry we split the

g) The 'Tﬁﬁtoﬂc d||'s|'czatr:_ce In outr mtodfel |tsh_chgsenF|n ff"l‘ccor'spin_—orbit coupling matrixHgg into two parts HE and
ance with the lateral lattice constant of a thin bee-re 'mOMgg'paf for the coupling between parallel and antiparallel

a W(001) substrate, which is magnetically ordered. How- _ = : .

. ) . . spin states, and recalculaig,{ ng) with either of the two

ever, the STM experiments produce QR with the mteratomlcmatrices nstead O« itself:

distance of 8—10 A, which probably would not order, except SO '

for possible indirect-exchange effects related to the substrate.

Our interest, however, is mainly in small QR’s, which might

be produced in the near future, with closer nearest-neighbor Hgo=

distances and magnetic order. Furthermore it is important to

note that the assumption of magnetic long-range order in our

electronic theory is not in contrast to the well-known generalso we obtain the curv&"3(n) (solid curve of Fig. 1,

E anis (MeV per atom)

HL, O 0 HL
0 HL g 0

__ . pgpar antipar
=!HgotHgo .

theorems of théii) Ising'’ and (i) Heisenberg modef¥. which exhibits a mirror symmetry with respect to half-filling
(ng=5). Due to the large exchange splittinky,, which
lIl. RESULTS AND DISCUSSION completely separates the spin subbarEf§i?(ny) is very

small and thus i~ ER2(ng). The EANiP(ny) contribution
prefers an easy magnetic direction perpendic(paralle) to

In Fig. 1, the magnetocrystalline anisotropy energythe molecule axis if the spin-down subband is |és®re
E.nidNg) per atom is shown as a function ofl dand filling  than half-filled, and vice versa for the majority subband, in
ngq for the Fe diatomic paifdashed curve First we note that, agreement with the result of Wang, Wu, and FreemAtso
as expectedE,s is enhanced compared to Fe monolayersfor larger chainsE2n*?(ny) changes its sign aiy=2.5 and
(Eanis= 1, . ..,16 meV for thedimer vs~ 300 neV for an 7.5, which also seems to be a general trend in Fe
Fe monolayey, because of the symmetry reduction from two monolayers® This is a generalization of Hund’s third rule
dimensional(2D) to 1D. This is in accordance with recent on SOC which applies to itinerant magnetic systésee the
studies of magnetism in nickel clusters. Apsel, Deng, andAppendiX.

A. Results from the diatomic-pair model
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FIG. 2. Energy levels of the diatomic pair for the two magneti-
zation directionsE,(#=0) (magnetization in bond directiprand FIG. 3. The dependence of the magnetocrystalline anisotropy
E(6==w/2) (perpendicular to the bond axid~or simplicity only  energyE,,is0n\gg (eV) for ng=2.5(solid line) and 1(dashed ling
the spin-up states of the energy scale are shown in the plot. Fdor the diatomic pair. Fomy=2.5 a discontinuous change of the
magnetization perpendicular to the bond axis the degeneracies astope occurs due to the crossing of levels 5 and 6 in the case of a
very weakly lifted by SOC, in contrast to the case of magnetizatiormagnetization parallel to the bond axis. Fy=1 E,;s decreases
in the bond direction, where SOC lifts the degeneracies so stronglwith increasing\ so. This behavior is explained in the inset of Fig.
that levels 5 and 6 intersect. 3 (see text The inset shows the shift of levels h=0.5 and 2
(ng=1) as a function oh g for the diatomic pair and magnetization
While for Fe parameters the relatiorERY(ny) in bond direction f=0) and perpendicular to bond € 7/2).
+E2P(ng) ~Eanidng) holds to a good approximation,
small deviations are responsible for the asymmetry menEreemarirrespective of the value of the spin-orbit coupling
tioned above. This asymmetry only occurs if we take intoconstant. To demonstrate this, we show in Fig. 3 the magne-
account at least the matrix elementstdé, for the = and  tocrystalline anisotropy energifa,{Aso) for the band fill-
5 bonds, and is absent for all other combinations. ingsng=1 and 2.5. In Fig. 3, however, we see a discontinu-
The electronic origin of ,,{Ng) of the diatomic pair can ©us change of the slope fog=2.5, because a level crossing
be explained from its energy-level scheme in Fig. 2, for the(See Fig. 2 has occurred between levels 5 and 6 for
two magnetization directiong,,(6=0) (parallel to molecule Aso=0.04 eV. The inversion of these levels is indicated by
axis) andE ,,(#=/2) (perpendicular to molecule axi©Only  the labeling in Fig. 2, fox=0.05 eV. ThusE,,{ng) can
the Spin_up states are shown in F|g 2 for Simp"city; due tochange its Sign because of the level Crossings. To explain for
the exchange splittinde,=3.0 eV, the spin-down statésot ~ Na=1 the dependence &,,son SOC, we have to study the
shown in the figur:eare located Symmetrica”y to these bandscontribution of level shifts for different magnetization direc-
with respect to the zero of the energy scale. The individuafions. We find that the shifting afondegenerate statés for
levels of the spin-up subband have been labeled by the nunfoth magnetization directions proportional X§,. For the
bers 1...,10 in theabsence of SOC. Without SOC, the case of a perpendicular easy axis, the prefactor is larger. The
lowest bonding(level 1) and the highest antibonding states shifting of degenerate statésr magnetization parallel to the
(level 10 result from the splittings caused by, . Due to  bond axis is in all cases proportional Xgo, and for mag-
the inequalitiedVy4,|>Vag-|>|Vaasl (Sec. Il B the low-  netization perpendicular to the bond axis proportional to
est bonding and antibonding states are split 4y g,|, \3o. To illustrate this, in the inset of Fig. 3 we show the
while in each case two doubly degenerate (5-) bonding dependence of the level shifts arg for the nondegenerate
and antibonding states result frov,, andV4qs [see Eq. level 1(this corresponds tng=0.5) and the degenerate level
(6)]. Thus levels 2 and 8 and 5 of Fig. 2 correspond to the 2 (ng=1), for both magnetization direction®€ 0;/2) for
- (6-) bonding states, while levels 8 and(® and 7 are  the diatomic pair. Fo¥= /2 and small SOC there is a flat
equivalent to the corresponding antibonding states. These relope of the energy of both levels, while the slope increases
maining degeneracies are lifted very strongly by SOC fomwith increasing\so. Otherwise, the slope of the energy of
En(6=0), and therefore level crossings may occur. Egy  both levels ford=0 increases less strongly with increasing
(6=m/2) the degeneracies are only weakly lifted. The elec-Aso. Thus in Fig. 3 the magnetic anisotropy energy
tronic origin of E,{ny) for the diatomic pair results from E,,{ng=1) decreases for larger SOC with increasing
(i) different SOC-inducedhifting of occupied, nondegener- \gg, as a result of the different position of the energy levels
ate levelsfor the two magnetization directions, afid) dif-  for the two magnetization directions entering the calculation
ferent lifting of degenerate level®Note that the lifting of of E,d{ng). This yields another reason for the sign change
degeneracies can favor a magnetization parallel as well asf E ni{ng)-
perpendicular to the bond axis. Again we point out here that the anisotropy energy exhib-
Next we investigate the dependenceigf;son Aso. We  its a parabolic shape as a function of spin-orbit coupliag
find a parabolic shape &,,{ A so) for all of theny values of  shown in Fig. 3, although there exist discontinuous deriva-
the diatomic pair in agreement with Wang, Wu, andtives where levels cross. Thus the parabolic shape dominates
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with increasing numbeN of Fe atoms in chaingcompare
Figs. 1 and 8 For rings this is not the case, as will be
discussed below.

The solid curve in Fig. 4 showE,,{ny) for the tight-
binding five ring. Although this curve is different from the
result in the diatomic-pair model, the translational symmetry
survives. A detailed analysis yields that the tight-binding

FIG. 4. The dependence of the magnetocrystalline anisotrop¥n0d6| has the same symmetry behavior for small odd rings

energyE,,is on the 3-band filling ny4 for the five-atom ring calcu-
lated in the diatomic pair modeldashed curveand the tight-
binding model(solid curve. In both models, there is a translational
symmetry with respect to half-fillingqiy=5. In the tight-binding

model all moments in-plane are choosen to be parallel to each other

for this case.

the curve rather than the linear dependence. This is in agre
ment with the results for free-standing monolay€ert®
Another important consequence of the level crossing ca

be seen in Fig. 1. The magnetic anisotropy energy’

E.nidng) of the quarter-band fillingr{yz=2.5 and 7.5 of both

as the diatomic-pair model. The translational symmetry can
be traced back to the absence of a mirror symmetry between
the levels in each of the two spin subbands with respect to
+Jed2.

A very important point for the theory of small particles is
the existence of a shell structure. Here we discuss in particu-
lar the oscillations oE,;sas a function of band fillingy for
rings with an even or odd number of adatoms. If the mag-
Retic moment is along the layer normal, it lies in planes
erpendicular to all bonds of the ring. But if the magnetic
moment lies in the ring plan@ssuming exchange-enforced

subbands depends sensitively on the hopping parameters, Rarallel moment alignmejtit is twice parallel to a bond
cause the level crossings then occur for smaller values diiS in rings with an even number &f, andoncein rings

A so (decreasing), or, in the other case of increasimgor
larger values oh go.

In Fig. 4 (dashed curve E,,{ng) is shown as a function
of 3d-band filling nq for the five-atom Fe ring. In the five-
atom ring we find a translational symmetry Bf,{ ny) with
respect to half-filling. This symmetry behavior Bf,,{ng) is
found in all rings with a small odd numbem
=(3,7,9,11...) of adatoms. In rings, with an even number
of atoms and all chains irrespective on whethkeis odd or
even, we find a mirror symmetry &, {nq) with respect to
half-filling. This behavior is also valid in the tight-binding
model, and will be discussed again in Sec. Il B. If the num-
ber of atoms continues increasiny£45,47 . . .), we then
also find a mirror symmetry d&,,,{ny) with respect to half-
filling in odd rings.

B. Results of the tight-binding model
The tight-binding model is better than the diatomic-pair

with an odd number oN. This is schematically illustrated in
Fig. 5 for the trimer[Fig. 5a)], tetramer[Fig. 5b)], and
hexamer ringFig. 5(c)]. In even rings, wher#l is a multiple

of 4 the moment lies also twice perpendicular to a bond axis
[see Fig. B)].

We investigate exemplarily, for the four-Fe-atom ring,
three different configurations of the magnetic moment direc-
tion, which are shown in Fig. 6. Since in larger rings the
exchange interaction could possibly not enforce parallel
alignment of all magnetic moments, as assumed pre-
viously 2>t we calculatedE,{ny) for parallel magnetic
moment alignment), radial moment configurations along
the bondgi), or half of the nearest-neighbor bond anie
Since there is ap dependence of,,{ny) in the tight-
binding model, we find the following in-plane symmetry in
rings for the first two configurationgp) and ():

Eanid 0;6=0;nq) = Eanid 6;6=360N;ng). (14

model, because it additionally allows to take into account théNote that this symmetry is absent for cadg.(In Fig. 6,

following points: (i) The change of the binding angles be-
tween nearest neighbors of adatoms in rings is considered
a realistic way.(ii) Due to the extra¢p dependence of

Eanidng) in the tight-binding model, it is possible to choose

Eanidng) is shown as a function ofd3band filling ng4 of the
four-atom Fe ring, for the three configurations)( (i), and
(h). Especially for ther bond, the magnetic anisotropy en-
ergy E.nid ng) has the lowest values for configuratiop)(

any magnetic-moment direction in the plane of the ring orHowever, this is not the ground-state configuration for Fe
chain. (iii ) Furthermore, in the tight-binding model it is pos- with atomic band fillingny=6. For all three configurations
sible to couple the free-standing chains and rings to the sulwe obtain a parallel easy axis Bf,{Fe), while its value is
strate. This extension of the theory, however, has not beethe largest where the magnetic moments are arranged in con-

performed in this work.
For all chains it is easily checked thag,{ ngy) is equal in
both models. There is a general trend tBgt{ N) decreases

figuration (). This is the ground state of the three configu-
rations for Fe, with the lowest total energy. In order to de-
termine the ground-state configuration for the case of band
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-8¢ 1 FIG. 7. Schematic sketch of anisotropy oscillations during the
0 1 2 3 4 5 6 7 8 9 10 growth of Co on Cu. We expect that the change of the lattice spac-
(a) number ng of 3d electrons per atom ing from R to R; due the growth of theN+ 1) layer will produce
oscillations of E,,s, which are found in the calculation for the
P @) (h) four-atom Fe ring, used to simulate this system.
- AN
] some levels in the energy-level scheme of the four-atom Fe
T T l T ring. For decreasing’ for one bond E,,{ny) is increasing
or decreasing dependent ngp. To make our point clear, we

again emphasize that there is no oscillatory behavior of the
anisotropy with the lattice constant which makes the anisot-

FIG. 6. Dependence of the magnetocrystalline anisotropy enropy oscillate upon growth but rather an oscillation of the
ergy Eqnis on the &-band filling ny for a four-atom ring calculated  |attice constant itself due to the incompleteness of the grow-
in the tight-binding model for the three displayed magnetic momen§ng layer. The anisotropy energy is a smooth function of the
configurations. In ) all moments are parallel to each other, while lattice constant(also in our calculatiop but follows the
in (i) and () the two radial configurations are given, where all . S
moments are in the bond directions or half to these. Iattl(?e_cons.tant_ oscillation. . .

Finally, in this paper we would like to discuss some re-

- . sults for larger QR’s and QW's, in order to reach the experi-
filing around ny=7.5, we have to note that we obtain a ger Q Q P

perpendicular easy axis for the two radial configurations andmental S”“?“_O”- In Fig. 8anidNa) i shown asa function
an in-plane easy axis for configuratiop)( In this case both of 3d-band.f|lllng.nd of the. 48-atom Fe ersoIld curve, for
radial configurations have the same total energy, which ha@e P conﬂguratpn of Fig. 6. A comparison of th? Fhree
to be compared with the total energy that results from the&onfigurations p, i, andh) shows only marginal deviations
magnetization in planeg). A close inspection of all discrete ©f the total energy for the 48 QR's; thus we may assume the
band fillings betweemy=7 and 8 shows that configuration P configuration to be the ground state. For an effective band
(p) has the lowest total energy in this range. filling of n§ﬁ=6.6 we find an in-plane easy axis with
Within our theoretical framework we are able to explain EanidF€)=1.45 meV, assuming implicitly a hybridization of
in a simple way a recently discovered phenomenon, viz. osthe d electrons withs electrons for this larger system. The
cillations of E,{ngy) during film growth with a period of shape of the curve is very similar to that of the tight-binding
one monolayef? The in-plane lattice spacing during epitax- calculations for free-standing Fe monolay¥$* As can be
ial growth of Co on a C(001) single-crystal substrate is seen from the comparison of Figs. 8, 4, andeg,{N) is
found to oscillate as a function of coverage and producegssentially independent &f.
anisotropy oscillation&® These oscillations are schemati-  Since metal atoms aggregating during film growth prefer-
cally illustrated in Fig. 7, which shows the connection be-ably on step edgelsee Ref. 20 for Fe/\WL10)] may cause
tween the change of the lattice spacing freo R; due to  one-dimensional metallization and magnetic properties, it is
the growth and the corresponding changeEqf,s. After  of interest to calculate the magnetocrystalline anisotropy of
starting the deposition, Co islands nucleate on the Cu sufarger QW’s. The origin of magnetic step anisotropies results
face. The Co atoms are relaxing in the direction of the centefrom the modified local symmetry of step atoms compared to
of the island. This gives rise to a reduced in-plane latticesurface atoms. In Fig. &,,id{ngy) is shown as a function of
spacing. If the growth of th&l+ 1 layer is completedE,,s  3d-band fillingny for the 48-atom Fe chain, for two different
(N+1 layen nearly returns to the value d&,,{N layen. scalings of the hopping parametdtbe dashed curve refers
For uncompleted layers, however, the in-plane lattice conto the unscaled cage=1). The value ofE,,{Nny) is consid-
stant is very different from that of complete layers and there-erably lower compared to the diatomic pair. However, it is
fore oscillations occur irE,,;{ N layen as expected. As a still much larger then the values for free standing Fe mono-
model assumption of this situation the four-atom Fe ring carayers. The shape of the curve fiorl is very similar to the
be considered. We scale allelectron hopping parameters diatomic pair(see Fig. ], irrespective of the atomic number
belonging toone bond of the four-atom Fe ring with a pa- N. Thus we expect very large contributionsig,{ngy) in all
rametert’, while leaving the others unchanged. Then we alsachains from SOC-induced lifting of degeneracies. Compari-
find anisotropy oscillations, due to the changed position ofon of Figs. 1 and 8 indicates that, upon decreasjriye
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FIG. 8. Dependence of the magnetocrystalline anisotropy ens FIG. 9. Dependence of the magnetocrystalline anisotropy en-
T . . . ergy E.nis on the 3l-band filling ny for two antiferromagnetically
ergy Eanis 0N the &-band fillingng for a 48-atom ringsolid curve (dashed curve and ferromagnetically(solid and dotted curye
for the tight-binding model, with the configuration that all moments coupled 48-atom Fe chains for the tight-binding model
in plane are parallel to each other. The dasltedtted curves '
shows the dependence &f,,{ngy) for a 48-atom chain for two
different scalings of the hopping=1 (t=13).
APPENDIX: HUND'S THIRD RULE

shape of the curve will change similarly for the 48-atom The curve Ongﬂiﬁspar(nd) changes it sign ahy=2.5 and

QW, and for the dimer due to level crossings. 7.5 (see Fig. 1 This sign change occurs exactly, when in
In order to show how sensitive the magnetocrystalline anggch case the two subbands are half filled.

isotropy energy depends on spin configuration, we calculate Wang, Wu, and Freemaralso found this behavior for

Ean{ng) for two 48-atom Fe chains which are antiferromag-go ¢ petween the opposite spin states for the dimer which

netically (AF) or ferromagnetically(FM) coupled to each .., po nderstood from the following equatiandenoting

other(Fig. 9). In these 96-atom systens,,,{ N) has further . . 2 A )
decreased in both cases. In AF coupled ch&pgdng) is g:sufgrm;?;;;y axis and an arbitrary direction in the perpen

less dependent on the scaling of the interchain hopping than
in FM coupled chains. Note that the shapekgf{ny) for

AF coupled chains is similar to that of the 48-atom Fe chain. £2

In this case the shape will not change if the interchain hop- - _ -2 “11(31L2—-12)|o"
ping tl is varied, in contrast to FM coupled chains. Thus the ABur=Eud )~ Eud2) AEex? (0 [z(8L~LAlo7).
breakdown of the one dimensionality in two FM coupled (A1)
chains will changeE,n,i{ng) very strongly. We find in this

case a perpendicular easy axis WithE,,{Fe _ . .
——0.36 meV ¢l = 1). This value is of the same order of ud (o™) represents SOC between the opposite spin states

magnitude as for Fe monolayers. Experimental resulté'éPresents occupied spin-down statesid AE., is the ex-
show?® that surface and step anisotropies are of the samghange spliting. The sign &E,4 depends only on the axial
order of magnitude, both exhibiting symmetry-breaking ascomponent of the angular momentum. Three states
was introduced by N&'s phenomenological modé&t?’ This  (L.=0,%1), which are first occupied, make negative contri-
is in agreement with our results for two FM coupled chains.butions, and twol(,= =2) contribute positively. Due to the
The opposite sign and same order of magnitude for surfacBybridization, the two antibonding states with,=*2,
and step anisotropies is reproduced. which contribute positively, will be occupied next, and there-
fore it comes to a sign change.
This behavior is also valid in larger chains and
monolayers®24 If one spin subband is half-filled, there is
We would like to thank Professor K. H. Bennemann for L=0, and from this results no contribution to the anisotropy
many stimulating discussions and his continued support oénergy. The antibonding states will be occupied in reverse
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