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Molecular dynamics investigation of dynamic crack stability
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A series of molecular-dynamics simulations has been performed in order to evaluate the effects of several
physical factors on dynamic crack stability. These factors are the crystalline structure and the interatomic
interaction modeled by various empirical potentials. For brittle crack propagation at low temperature we find
that steady-state crack velocities are limited to a band of accessible values. Increasing the overload beyond
KIc , the crack can propagate with a steady-state velocity, which quickly reaches the terminal velocity of about
0.4 of the Rayleigh wave speed. The magnitude of the terminal velocity can be related to the nonlinearity of the
interatomic interaction. Further increasing the overload does not change the steady-state velocity dramatically,
but significantly increases the amplitude of acoustic emission from the crack tip. Loading the crack even
further leads to instabilities which take the form of cleavage steps, dislocation emission, or branching. The
instability is closely related to the buildup of a localized coherent, phononlike field generated by the bond-
breaking events. The form of the instability depends critically on crystal structure and on the crystallographic
orientation of the crack system but can also be correlated with the relative ease of dislocation generation~and
motion!. @S0163-1829~97!08305-7#
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I. INTRODUCTION

Fracture of materials is essentially a dynamic process
least in the final stage.1 Although this last stage of fractur
might at first seem rather irrelevant, closer considerat
shows that dynamic fracture is also one of the underly
physical processes in the so-called semibrittle fract
regime2 where materials toughness is governed by the co
petition of the dynamic atomic bond breaking and dislo
tion mobility. Semibrittle fracture is usually observed in m
terials which undergo a brittle-to-ductile transition~below
the transition temperature! and consequently we need to d
velop deeper insight into the dynamic fracture process
order to eventually understand the brittle-to-ductile tran
tion.

Dynamic fracture has been stimulating interest not o
because of its fundamental importance in understanding f
ture processes and because of practical applications su
engineering design and earthquake prediction, but also
cause of the challenges to mathematical analyses and ex
mental techniques. A number of points remain unclear in
description of this dynamic process, especially at the ato
istic scale. A very important one is how to understand
consequence of a mechanical overload of the crack, wh
eventually leads to an instability of the perfectly brittl
atomically sharp crack. In this paper, we will show that u
derstanding complex processes such as crack branching
dislocation emission from a dynamic crack requires reali
treatment of the truly atomistic dynamics, and that differe
interatomic potentials have a profound effect on the beh
ior.

Dynamic instability has not been seriously explored d
to its highly nonlinear character~see Ref. 1! although Yof-
fe’s analysis3 implies that the stresses at the crack tip m
550163-1829/97/55~6!/3445~11!/$10.00
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cause the crack to branch at sufficiently high speeds. T
phenomenon has received much attention, following rec
experimental studies.4–7 Langeret al.8 have introduced dis-
sipation into continuum dynamic theory. Lately Chinget al.9

have studied a two-dimensional cohesive-zone model
fracture dynamics and found that moving cracks are stron
unstable against deflection in essentially all conventio
cohesive-zone models. They also concluded that quasis
instability analyses10 are inherently incapable of detectin
dynamic instabilities, even in the quasistatic limit. The fa
ure of continuum instability analyses is not very surprisi
since lattice features and realistic nonlinearity at the dyna
crack tip are not included. The work of Marder an
co-workers11,12is a lattice theory. Beyond the instability the
find crack branching at a critical velocity. However, th
atomic interactions in their model are extremely simplifie
so that they cannot realistically treat crack branching a
dislocation emission. Xu and Needleman13 have also inves-
tigated crack branching using a finite element continu
computer code, where the continuum is characterized b
material constitutive law relating stress and strain throu
the tractions and displacement jumps across a specified s
cohesive surfaces at various angles.

The earliest molecular-dynamics~MD! simulations of
fracture were carried out some 20 years ago by Ashurst
Hoover@W. T. Ashurst and W. G. Hoover, Phys. Rev. B14,
1465 ~1976!#. Many of the features of crack propagation
the atomistic level were described therein, including the
servation of a steady crack velocity that was 64% of
long-wavelength Rayleigh-wave speed. Their interaction
tentials were all harmonic in nature, with varying ranges,
anharmonic effects were not considered except for fin
strain effects. Most importantly, the system sizes stud
were exceedingly small~32 atoms wide by 16 high in the
3445 © 1997 The American Physical Society
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direction of propagation, with initial crack lengths of only 1
atoms!. As a result, boundary effects were severe, so t
reflected sound waves bathed the crack tip in the short t
available for steady propagation, due to fixed-grip bound
conditions transverse to the crack advancement direct
Moreover, such short crack lengths require excessive loa
to initiate crack motion~so-called lattice trapping!. In spite
of these severe computational limitations, a veritable go
mine of information was obtained.

With the advance of computer power and efficient M
numerical techniques, the full dynamical and atomistic
ture of this problem can be revealed. To understand the c
plicated processes at the onset of instability, molecu
dynamics simulations need to be both brute force~large
scale! and delicate~i.e., carefully initialized for a gently
overloaded sharp crack!. However, there are two major limi
tations in investigating dynamic fracture with MD: sma
computational system sizes and short time scales. The s
fields associated with a crack are long range in character,
the stress waves generated by a propagating crack need
cial treatment to prevent them from reflecting from free s
faces and returning to disturb the behavior of the crack.
efficient atomistic boundary treatment using ramped visc
damping has been developed to significantly absorb so
waves generated at crack tips.14 But the time scale is still
limited to nanoseconds even with powerful parallel comp
ers, which now allow MD simulations with millions o
atoms.14–16We have attempted to overcome these constra
by carefully selecting appropriate boundary conditio
which must be mechanically well defined. We have cho
two model geometries which fulfill these requirements. T
first method is to embed an atomically sharp equilibriu
crack of finite length, which is loaded at the Griffith value
a displacement field according to the continuum elastic
solution for this geometry. By applying a small overstrain w
can then gently drive the crack. This method is termed
‘‘stadium boundary condition’’ since the active atomistic r
gion surrounding the crack has the shape of a football
dium. The principal goal of the stadium treatment is to stu
early-time dynamic behavior of a crack in a pristine bu
sample in a well-controlled way. The second method is
artificially constrain a long crack in a thin strip such that t
energy release rate does not depend on crack length and
therefore be controlled during crack propagation.1,17,18In this
case, the study of steady-state long-time behavior is the
mary objective.

The purpose of this paper is to determine the energy
sipating processes during the propagation of a perfe
brittle crack as well as at the instability. We aim at identif
ing certain generic mechanisms at the simplest level ra
than providing results at the highest possible level of ac
racy for one particular material. We expect that the res
obtained here will also be useful for analyzing experimen
data. Dynamic fracture experiments are very difficult to p
form; to date, no truly atomistic, time-resolved measu
ments have been made. Our intention is to fill in this parti
lar gap, in lieu of such experimental information. Atomis
computer experiments can, indeed, provide such unavail
information, both to those who might design future lab e
periments and to engineers who might design constitu
models of dynamic fracture.
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II. COMPUTATIONAL METHODS

We have chosen to study different crystal structures@the
two-dimensional ~2D! triangular lattice and the face
centered-cubic~fcc! crystal structure# and two different load-
ing conditions~the ‘‘stadium boundary conditions’’ and th
‘‘strip geometry’’! in order to vary the observable mech
nisms to the largest possible extent. We then extract the
ferences and the common features from the different mod
It turns out that the comparison of different models can
tually reveal the important processes necessary for the un
standing of the complex fracture phenomena which oc
during dynamic crack propagation.

A. Stadium boundary conditions

In the work reported here, the stadium boundary con
tions were only used in 2D~though extension to 3D is
straightforward!. The computational cell with a sharp equ
librium crack and viscous damping boundaries is depicted
Fig. 1. The system consists of rectangular samples with
aspect ratio of about 5 or 6. Ensembles of more than 400
atoms (;240r 031440r 0, where r 0 is the nearest-neighbo
distance of the 2D triangular lattice!, are sufficiently large to
take care of the long-range character of crack strain fie
The shortest half-length of the crack is 240r 0, which is long
enough that the waves generated at one crack tip ca
reach the other crack tip before an instability event has
curred. If stress waves generated by a propagating c
bounce back from free surfaces, they can severely disturb
behavior of the crack, including causing crack arrest,
shown by Holian and Ravelo.14 Consequently, we absor
waves and mobile dislocations in a smooth way by ramp
up viscous damping in a region surrounding the central
liptical sample~wherein standard Newtonian mechanics a
plies!. The elliptical stadium functionf is zero inside and
0, f,1 outside:

f ~x,y!5minF1,maxS 0,~x/Lx!21~y/Ly!
22~a/Lx!

2

1/42~a/Lx!
2 D G ,

~1!

whereLx andLy are the width of the entire computation
cell anda andb are thex and y axes of the inner sample
region, such thata/Lx5b/Ly . The maximum damping coef
ficient, which at zero thermal bath temperature (T050),
critically damps sound waves at the root-mean-square E
stein frequencyvE , is given by

FIG. 1. Schematic of the ‘‘stadium’’ computational cell.
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55 3447MOLECULAR DYNAMICS INVESTIGATION OF DYNAMIC . . .
z52vE~12T0 /T! f . ~2!

The temperatureT in the reservoir region is measured as

kT5( m~u21v2! fY S 2( f D ,
where the sum is taken over allN atoms. If the viscous
damping coefficientz is properly tuned to the vibrationa
spectrum of the model as described by Eq.~2!, the ramped
viscous damping has been shown14 to effectively absorb out-
going elastic waves~phonons! of almost all wavelengths. By
surrounding the central elliptical sample with this dampi
reservoir, the vibrational properties of our computational c
are effectively those of an infinitely large system. An atom
cally sharp crack is embedded in the center of the comp
tional cell, with relaxed atomic displacements, given by
linear elastic solution for such a crack of finite length in
infinite body under uniaxial tension. The whole system
initially displaced such that the elastic solution gives an
ergy release rate per unit length of crack extensionG equal
to the surface energy 2g of the two crack surfaces, i.e., at th
Griffith load G52g. During the simulation the system i
further expanded adiabatically and homogeneously norma
the crack plane at a strain rate given by

«̇~ t !5
«̇~0!

11 «̇~0!t
. ~3!

This allows us to drive a crack with very gentle overloadi
and without the complication of strong loading waves ge
erated when strain or stress is applied only at boundarie

The interatomic interaction is modeled with vario
Morse potentials of the form

f~r !5e~e22a~r /r021!22e2a~r /r021!!, ~4!

where r 0 is the minimum of the potential,e is the bond
strength, anda characterizes the anharmonicity of the pote
tial, which is, for example, reflected in the lineara depen-
dence of the Gru¨neisen constant or the pressure derivative
the bulk modulus. To make both the potential energy and
force decay smoothly to zero atr5rmax52.5r 0, we multiply
the Morse potential@Eq. ~4!# with a cutoff function

f cut~r !5F12S r2r 0
rmax2r 0

D 3G2 for r 0,r,rmax. ~5!

Three sound speeds—longitudinalcL , transversect , and
RayleighcR—are given in Table I; the computational tim
step in the centered-difference integration of the MD eq

TABLE I. Sound speeds in units of (e/m)1/2 for the Morse
potentials@see Eq.~4!# and in nm/ps for the Ni-EAM and the har
monic potential.

Potential cL ct cR

Morse (a57) 10.5 6.1 5.6
Morse (a56) 9.0 5.2 4.8

Ni-EAM ^100& 5.1 3.8 2.6
Harmonic^100& 7.6 5.3 4.1
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tions of motion was chosen to beDt50.02t0, where t0 is
defined asr 0Am/e. To compare with the results from stri
geometry, we choose the unit of time to ber 0 /cL rather than
t0. In this paper, we will concentrate on exploring mecha
cal aspects of dynamic fracture without thermal fluctuatio
so we set the initial temperature to nearly zero (1026e/k).

The Hamiltonian equations of motion for allN coordi-
natesr and thermal velocitiesv are given by

ṙ5v1 «̇xx̂, ~6!

v̇5
F

m
2 «̇vxx̂2zv, ~7!

where«̇ is taken from Eq.~3! andz is the viscous damping
coefficient@Eq. ~2!# for the ‘‘stadium.’’ It seems worth em-
phasizing again that the center of the stadium is free of
viscous damping, and Newtonian mechanics applies aro
the crack.

From the Griffith fracture relationKIc52A«m(11n),
wherem is the shear modulus andn is Poisson’s ratio, the
critical strain«c required to propagate the crack is 0.005 f
a57 and initial crack lengthl c5240. For crack growth and
dislocation nucleation, we can simulate similar physical p
cesses to those in conventional experiments, provided
the overloading strain changes much slower than the pro
of crack motion and dislocation emission. For example, w
«̇50.0001, a pair of atoms separated by one lattice spa
r 0 will increase its separation by 0.0001r 0 in the time period
of t0, as compared to the much larger distance that the cr
tip runs ~about 2r 0 under a typical maximum crack-tip ve
locity!.

By the use of large computational systems and with
application of the linear elastic solution as initial and boun
ary conditions, we can study dynamic crack-tip processe
‘‘realistic’’ ~i.e., macroscopic! stress and strain fields. In
these studies, we are naturally limited to rather short sim
lation times since the running crack will eventually feel a
~sometime later! hit the border of the stadium.

B. Strip geometry

A different route is followed with the thin strip geometry
Here the crack field is constrained within a thin strip
height 2h which is clamped on the top and the bottom
fixed ~uniform! displacement boundary conditions~see Fig.

FIG. 2. Schematic outline of the strip geometry in which t
central crack can be studied under the condition of constant en
release rateG.
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2!. By making the strip very long, the dynamically runnin
crack can be followed for rather long times. Furthermore
strip geometry permits us to investigate dynamic cra
propagation under the condition of constant energy rele
rateG ~see Refs. 1, 17, and 18!. Consequently, long-time
steady-state crack propagation may be achieved.

The half-height of the model is chosen to beh>25 lattice
parameters; the lengthL of the strip is alwaysL.8h, with
the crack initially placed atL/4. Ramped viscous damping
similar to the method described for the stadium, is applied
the regions adjacent to the upper and lower boundarie
well as at the free surfaces to the right and the left of
model in Fig. 2. The viscous ramp is applied over a dista
of 5–10 lattice parameters. Consequently, the vibratio
properties of the system are essentially those of an infini
large system, although the crack field is that of a very t
strip.

Crack propagation in the strip geometry is studied exc
sively on the$100% plane of the fcc crystal lattice. Periodi
boundary conditions of minimal periodic length are appli
along the crack front to model plane strain boundary con
tions. The restrictions imposed through the application
periodic boundary conditions are probably of less importa
for the analysis of brittle crack propagation but will severe
curtail the possibility of dislocation generation. Whereas d
locations could be generated in the form of dislocation loo
in a real crystal, here they must be infinitely long a
straight. Additional restraints to dislocation emission m
result from the geometry of the crack system in relation
the slip systems: Depending on the orientation of the cr
front, the natural Burgers vectors can be completely s
pressed. Using these features of the periodic boundary
ditions, one can therefore study brittle crack propagation
an otherwise ductile material. In this study, the crack fron
oriented either along â001& direction or alonĝ 011&. The
crack systems, specified by the crack plane and the c
front direction, are therefore denoted as~100!@001# and
~100!@01̄1#. In the ~100!@001# crack system, the natural glid
planes of the fcc crystal, the$111% planes, are all inclined
against the crack front and dislocation emission on th
planes is therefore suppressed. Dislocations which co
possibly be generated are either of the Lomer type, wit
^001& Burgers vector, or must have larger Burgers vecto
The second crack system provides two sets of$111% glide
planes at 54° to the crack plane. The orientation of
1/6̂ 211& partial dislocations, which could be emitted o
these glide planes is such that the edge partial is leadin
backward orientation and the 30° partial is leading in
forward direction~see also Ref. 19!.

Both these crack systems have already been studied
extensively in molecular statics simulations of brittle fractu
processes and dislocation nucleation.19,20 The static calcula-
tions showed that brittle crack propagation on the origi
~100! crack plane is expected for both crack systems un
opening~mode I! loading conditions for EAM-Ni.19

The interatomic interaction is modeled either by an e
bedded atom~EAM! potential which is fitted to the cohesiv
energy, the lattice parameter, and the elastic constants o
~Ref. 21! or by a fully harmonic nearest-neighbor~snapping-
spring! force law. The pairwise harmonic interaction is al
fitted to the lattice parameter and the cohesive energy o
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and goes to zero exactly halfway between first and sec
nearest neighbors. The sound speeds of these models ar
given in Table I.

The MD technique employed here is again a centr
difference integration scheme. However, alocal temperature
control,22 which resembles an electronic heat bath for t
ions, is employed to quickly establish steady-state conditi
for the running crack. The equation of motion is given by

r̈ i5
Fi
mi

2z i ṙ i ~8!

with

z i5z0S 12T0 /Ti
@11~dT/Ti !

2#1/2D ,
wherez i is a local version of Eq.~2!, T0 is the temperature
of the electronic heat bath, andTi is the kinetic temperature
of particle i . The small termd50.1 K is introduced to keep
z i finite for atoms at rest. The viscous damping coefficie
z0 here is usually chosen to mimic the electron-phonon c
pling of Ni.22 To study the influence of the local damping o
the behavior of the crack, the damping coefficient is som
times also decreased to 1/30 of this value. In the ram
viscous damping regions at the outer borders of the mo
z0 is gradually increased andT0 is decreased to produce
phonon-absorbing reservoir.

The models are first relaxed at boundary displaceme
which correspond to the Griffith load,G0, i.e., at boundary
displacements which~in front of the crack tip! lead to a
homogeneous strain energy per unit length large enoug
balance the surface energy of the two crack surfaces. At
load the model is then equilibrated for 20 ps at a tempera
of T0510 K. This temperature is also kept as the tempe
ture of the electronic heat bath during subsequent cr
propagation. The models are then loaded to a higher st
level by scaling all atomicdisplacementsrelative to the ideal
crystal positions. This scaling is applied instantaneously
tween two MD steps. Such scaling of the atomic displa
ments does not change the overall shape of the elastic s
field. The scaling therefore instantaneously changes the
level without creating any shock waves or otherwise distu
ing the crack field. Such rescaling of the displacements
in principle be used any time during a MD run to eith
increase or decrease the load level.

C. Crack-tip position and velocity

Crack-tip position is determined by inspecting the atom
coordinates or potential energies of the atoms above and
low the crack plane. Coming from the intact material, w
search for the first pair of atoms which either exceeds a c
cal opening displacement or which has a potential ene
above a certain level. Both the displacement and the po
tial energy criterion can be tuned such that the ‘‘standar
pair of crack-tip atoms just fulfills this criterion. Both criteri
work equally well and the crack-tip position can usually
determined to within less than one nearest-neighbor dista
If the crack-tip position is determined in this way at eve
MD time step it remains virtually constant for a certain p
riod of time after which it suddenly jumps to the next pair
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55 3449MOLECULAR DYNAMICS INVESTIGATION OF DYNAMIC . . .
atoms. However, the atomic coordinates are usually not
spected at every time step but in larger time intervalsDtout of
the order of 10 vibrational periodstE52p/vE . Conse-
quently, the crack-tip velocityv tip , determined as the chang
in crack-tip position divided by the output time interva
v tip5Dxtip /Dtout, is slightly oscillating due to the discretiza
tion in time and space, even for perfect steady-state cr
propagation~see, for example, Fig. 3!. To make the different
crack systems comparable, all measured velocities are
malized with respect to the appropriate Rayleigh wave
locities given in Table I.

III. RESULTS AND DISCUSSION

We divide the presentation of our results and discuss
in two parts. In the first part we investigate the perfec
brittle crack propagation, and the second part concentrate
crack tip instabilities which occur for cracks which are su
ficiently overloaded.

FIG. 3. Crack-tip velocity~in units of Rayleigh wave spee
cR) vs time ~in units of nearest neighbor distancer 052.49 Å di-
vided by longitudinal velocitycL) for the EAM-Ni ~100!@001# ~a!
and ~100!@011# ~b! fcc crack systems at different load levels~in
units of Griffith load G), as indicated in the legend. For th
~100!@001# crack system, the damping coefficient for Ni~heavy
lines! as well as a damping coefficient reduced by a factor of
~light lines! is used.
-

ck

or-
-

n

on

A. Brittle dynamic fracture

The propagation of perfectly brittle atomically sha
cracks is mainly studied in the thin strip geometry. The d
pendence of the crack tip velocity on the overload is d
played in Fig. 3 for different load levels and the two differe
damping coefficients. For both crack systems, the plot of
crack tip velocity versus time@Figs. 3~a! and 3~b!# shows
that the crack tip accelerates to a terminal steady-state ve
ity. The acceleration implies a very small but finite inertia
the crack in the given geometry. If the energy release r
above the Griffith load is interpreted as the driving force
the crack, the inertia does not depend on the load level or
damping coefficient.

The terminal velocity reached at the different load lev
shows some interesting aspects. At small overloads, betw
1.00G0 and 1.02G0 the crack is stationary due to lattice tra
ping in both crack systems. At 1.04G0 the crack starts to
move and accelerates up to a terminal velocity which alre
is a sizable fraction of the Rayleigh wave speed. With onl
very small local viscous damping@light curve in Fig. 3~a!#
the lowest steady-state crack-tip velocity is already as h
as approximately 0.3cR . This suggests that the steady-sta
propagation of a perfectly brittle crack at very low tempe
tures is limited to velocities above a certain lower critic
value, which has previously been found5 in experiments and
has been discussed11,12in simple analytical 2D crack models
Our MD study, at least on time scales accessible to us, se
to be consistent with these. The precise physical interpr
tion of the origin of this forbidden band of low velocities
however, still remains unclear.

Studies with the stadium boundary conditions can g
some additional information as far as this ‘‘forbidden’’ ban
of lower velocities is concerned. We have performed cal
lations with various initial crack lengthsl c(t50), strain rates
«̇, and Morse potential parametersa. We emphasize two
principal observations:~1! decreasinga tends to make dis-
location emission easier and~2! increasing«̇ causes a crack
to branch sooner and makes its branching paths more
otic. Table II gives the maximum crack-tip velocities fo
various strain rates and ratiosh of crack size to sample are
S: h52p l c

2(t50)/S.
We find that the maximum velocities increase with d

creasing ratios of crack size to sample area. It is interes
to note that no branching is observed below;0.35cR .

0

TABLE II. Maximum crack-tip velocity vmax (cR5Rayleigh
wave speed!, for various Morse potential parametersa, ratios of

crack size to sample areah, and strain rates«̇.

l c /r 0 (t50) «0 a h «̇r 0 /cL vmax/cR

No branching
A 480 0.0035 7 5.02 531027 0.180
B 480 0.0035 7 4.19 131026 0.261
C 240 0.005 7 1.05 131025 0.342

Branching
D 240 0.005 7 1.05 531025 0.360
E 240 0.0058 6 1.05 531025 0.356
F 240 0.0058 6 1.05 131025 0.356
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3450 55P. GUMBSCH, S. J. ZHOU, AND B. L. HOLIAN
We would like to point out that our viscous dampin
boundary is able to effectively absorb the outgoing wav
generated from the dynamic crack-tip but not to prevent i
coming waves from fixed displacement boundaries. The
fore a new dynamic crack stress field is established cor
sponding to the clamped boundary condition. The farther t
crack tip propagates, the more the actual~instantaneous or
transient! crack-tip stress field deviates from the initial crac
stress field of the infinite solid. It is known that the stres
intensity factor decreases as the crack propagates in a ‘‘fix
grip’’ boundary condition. If the loading rate is high enough
however, the resulting stress intensity factor can stay alm
constant or increase. We are thus able to fine-tune the
namical crack behavior through the specimen geometry f
tor h and loading rate«̇. Our simulation results follow the
above predictions. In Fig. 4, we present some of our resu
for crack-tip velocities as a function of time. Figure 4~a!
shows cases where no crack branching was observed.
caseA in Table II, the crack starts to run, reaches the max
mum velocity, goes to zero velocity att5180, then starts to
retreat, and att5255, moves forward again. With twice the
loading rate~caseB), we see similar features except that th
maximum crack-tip velocity increases from 0.18cR to
0.26cR and the crack runs farther. Crack arrest appears to

FIG. 4. The crack-tip speed~in units of Rayleigh wave speed
cR) as a function of time~in units of nearest-neighbor distancer 0
divided by sound speedcL) for the stadium geometry. Strain rate
~bold label! is in units of cL /r 0. ~a! without crack branching,~b!
with crack branching.
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caused by our ‘‘fixed grip’’ loading. With the appropriat
combination of short initial crack length and high loadin
rate~caseC), we can realize relatively stable crack propag
tion at almost constant velocity~around 0.34cR) for a fairly
long time. The terminal velocity is similar in magnitude
that seen in the strip geometry discussed above. It is, h
ever, significantly lower than the Rayleigh wave speed wh
is the terminal velocity according to continuum analysi1

This aspect will be discussed in more detail below.
Now we will discuss the effect of viscous damping o

dynamic cracks. As shown in Fig. 3, the terminal stead
state velocities decrease with increasing viscous damping
particular at small overloads. The damping coefficient a
locally and most strongly on the atoms with the highest
locities. In this sense the local damping could be interpre
as reducing the amplitude of the shear waves carrying
information that the crack is propagating. The dampi
would thereby essentially reduce the apparent overload
therefore reduce the steady-state crack-tip velocity. The
fect of viscous damping on crack-tip velocity is, howeve
not fully clarified yet.

Upon increasing the load to a value of 1.10G0, the crack
reaches a terminal velocity of about 0.4cR . Further increas-
ing the load up to 1.50G0 for the ~100!@001# crack system
~see Fig. 3! or to 1.30G0 for the ~100!@011# crack system
~see Fig. 3! does not significantly change the terminal velo
ity. Furthermore, the crack-tip velocity is almost independ
of the damping coefficient in this loading regime. Averag
over longer times the steady-state crack-tip velocity is e
somewhat lower for the lower damping coefficient
1.50G0, which may be seen as an indication of the approa
to the critical overload of this system. This issue will b
discussed further in the second part of this section.

Here, however, one should ask how the crack manage
travel at almost identical velocity but to dissipate such d
ferent amounts of energy. An answer may be found by a
lyzing the velocity fields around the crack tips moving at t
same steady-state velocity at overloads of 0.10G0 and
0.50G0. For the~100!@001# crack system these velocity field
are displayed in Fig. 5. At small overloads the velocity fie
around the crack is smooth and continuous as expected
continuum theory. At increasing overloads, however,
crack creates a ‘‘shock wave’’ at the breaking of every sin
atomic bond. This acoustic emission is mainly of longitud
nal compressive character in the direction perpendicula
the crack plane with a significant transverse component a
angle of 45° to the crack propagation direction. No su
acoustic waves are visible in the angular section betw
about245° and 45° around the crack propagation directio

To better understand the origin of these acoustic wa
one can investigate the instantaneous crack-tip config
tions, one of which is shown in Fig. 6~a! halfway between
the breaking of the last and the next bond at the crack
during steady-state propagation. It is clearly seen that
atoms above and below the actual crack-tip have b
pushed far away from the two crack tip atoms. Such beha
can be rationalized as a consequence of the nonlinearit
the interatomic interaction, which strengthens in compr
sion and weakens in tension. The last broken bond obviou
caused the atoms, which are now just behind the crack tip
impact into the surface, thereby pushing their neighbors w
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FIG. 5. Velocity distribution of individual atoms around two~100!@001# cracks moving at the same steady-state velocity but subjecte
different overloads:~a! DG50.1G0, ~b! DG50.5G0.
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strong compressive forces into the crystal. The interato
interaction of the impacting atoms and their neighbors w
the crack-tip atoms thereby weakens due to the nonlinea
of the interatomic potential. The reduced coupling strength
turn reduces the velocity at which information is transferr
along the crack surface. Thus, nonlinearity is shown to
responsible for the rather low terminal steady-state velo
as compared to continuum analysis.1 This result can also be
reproduced by a simple one-particle model for cra
propagation.23

The hypothesis that the nonlinearity of the interatom
interaction is responsible for the rather low terminal crack-
velocity of the moving brittle crack can be tested by repe
ing the dynamic calculations with the simple harmonic pa
wise snapping spring force law. These simulations are ra
difficult since the short-range snapping spring force law
sults in a rather large lattice trapping ofDG.1.0G0. Fur-
thermore second neighbors may come within interact
range and make the effective interaction nonlinear. To
cumvent these difficulties, the neighbor list of the atoms
frozen in the initial configuration and not updated duri
crack propagation. To start the crack, it was loaded bey
the lattice trapping range for only 1 ps and then instan
neously unloaded to much smaller overloads, whereb
could then reach the steady state. One then finds that
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possible to drive the perfectly brittle crack up to 0.85 of t
Rayleigh wave speed at very moderate overloads of o
0.40G0. The resulting velocity distribution around the run
ning crack tip is shown in Fig. 7. It clearly reveals the pe
fectly continuous velocity distribution expected from co
tinuum theory and shows no signs of any acoustic emiss
from bond breaking~although one might have guessed th
the extremely nonlinear snapping of the bonds could h
caused such behavior!.

B. Dynamic instability

Driving the crack at higher loads results in crack-tip i
stabilities. The loads necessary to create an instability
pend quite strongly on the actual crystallographic orientat
and on the viscous damping. For the strip geometry and
~100!@001# crack system studied above, the critical load
approximately 1.9G0 ~if the damping coefficient for Ni is
used! and only about 1.7G0 for the reduced damping. Th
~100!@01̄1# crack becomes unstable already at a load
1.4G0.

Upon increasing overload, the instability event for t
~100!@001# crack of Fig. 6 beyond the steady-state regime
mainly transverse shearing of the$110% planes at 45° into
^1̄10& directions. Despite the large shear on these planes~see
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Fig. 5!, dislocations of such largê1̄10& Burgers vectors a
first cannot successfully be created. Similarly, dislocatio
with @100# Burgers vectors normal to the crack plane are
observed and the overload is not large enough to allow
bifurcations. As a consequence, the crack tip which is
going unstable at a load of 2.0G0 has only two possibilities:
it can either create a Lomer dislocation with a Burgers vec
parallel to the crack propagation direction~as is occasionally
observed!, or it can attempt to branch. Such branching
tempts are seen most often. They eventually lead to on
two atomic steps on the fracture surface.

At higher overloads the instability events become ev
richer. For the same crack-tip orientation larger deflectio
of the crack are observed in connection with the emission
^1̄10& dislocations and even climb processes can be obse
near the crack tip. However, since such behavior occurs
der less well-controlled circumstances, we restrict ourse
to the study of the first instabilities encountered after stea
state propagation.

More comprehensive studies of dynamic crack instabi
can be carried out in the stadium-boundary system. In su
system, we observed the first instability~branching! when
the terminal velocity is larger than 0.35cR as shown in Fig.
4~b!, where data are plotted up to the initiation of the fi
branching. It is interesting to note that those speeds w
branching are very close to experimental values reported
Sharonet al.7

As an example we describe in detail caseF in Table II,
which is plotted as the full line in Fig. 4~b!. Here the atoms
first readjust their initial positions given by elastic theory.
t520, the crack starts to propagate and quickly reaches
terminal velocity of about 0.356cR at a time oft560. The

FIG. 6. Snapshot of the atomic configurations at the tip o
‘‘shock-wave’’ emitting~100!@001# crack atG51.5G0 halfway be-
tween the breaking of the last atomic bond and the next~a! and at
G52.0G0 after the generation of a cleavage step~b!.
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dynamic crack has been unsuccessfully attempting to bran
which causes the small oscillation of the crack-tip velocity
As it opens up, the dynamic crack tip gets more rounded
shape than the initial static one; the tendency for the crack
branch increases with time. Att5220, the crack loses the
stability and branches. Figure 4~b! clearly shows that the
branching is a cumulative process, since the crack veloc
has reached a relatively steady value aftert'60. Similar
observations have also been made in the strip-geometry s
tem, although high overloading imposed at the beginning
crack propagation shortens the cumulative time for instab
ity.

This finding of a dynamic buildup is different from tradi-
tional theories which assume that the crack-tip veloci
uniquelydetermines the behavior of a dynamic crack. Fu
thermore, the crack branching occurs at a significantly r
duced velocity than the maximum value. Clearly, the crac
tip velocity isnot a necessary condition to trigger the crack
branching instability. Instead, we find that the gradua
accumulation of energy around the dynamical crack tip is a
essential feature for the ultimate emission of dislocations a
crack branching.

We find that local potential energy is the most useful wa
to show defect configurations such as crack surfaces and d
location cores. As seen in Fig. 8, local potential energ
clearly indicates the future growth paths of cracks or dislo
cations. In Figs. 8~a!–8~d!, we see clearly the buildup of the

a

FIG. 7. Velocity distribution around a~100!@001# crack modeled
with a harmonic snapping spring force law. The crack is loaded
G51.4G0, where it reaches a steady-state velocity of 0.85cR .
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FIG. 8. ~Color! Crack configurations following brittle phase of propagation where atoms are colored according to their potential e
by a rainbow ranging from deep blue for a minimum value of23.0 ~bulk! to bright red for a maximum value of22.0 ~free surface!,
indicated by the color bar.~a!–~d! are for casesF, E, andD ~see Table II!: ~a! A dislocation has nucleated at the crack tip on the260° slip
plane (t5215) for caseF; ~b! the 260° branching crack closely follows the dislocation and grows att5380; and similarly another
branching crack is created after a dislocation is emitted along160° ~for caseF); ~c! t5440 for caseE; ~d! t5305 for caseD.
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potential energy associated with the phonon field, and we
that dislocations can be emitted from a ‘‘brittle’’ crack t
~defined here as a static crack tip that cannot emit a dislo
tion! when the crack runs sufficiently fast. Therefore, cra
motion promotes dislocation emission. The energy build
around the dynamic crack and the causes of dynamic d
cation emission are discussed in detail in Refs. 24 and 2

We find that crack branching is closely tied to dislocati
nucleation and emission. In Fig. 8~a!, one dislocation has
nucleated at the right side of the crack tip~at t5215). Then
it is ejected 2r 0 away from the crack tip along the260° slip
plane. At t5250, the crack tip starts to branch along t
same slip plane as the emitted dislocation, and the bra
closely follows the dislocation motion. A similiar process
dislocation emission and crack branching also happens a
the160° slip plane a little bit later~aroundt5265) @see Fig.
8~b!#. These general features were observed by Holian
Ravelo14 though admittedly under much cruder loading co
ditions than ours. Ohr and his co-workers26 have observed
this same phenomenon in their TEM experiments.

As seen in Fig. 8~b!, asymmetric branching can occu
This is understandable: the 2D triangular lattice is mac
scopically isotropic, but not locally. The160° and260°
slip planes are not symmetric relative to a crack tip, so i
impossible for a crack to branch completely symmetrica
— the choice of path is made randomly. Once the crack
has begun to branch along one of the two slip planes,
accumulated energy at the crack tip has been partially
leased, so that the possibility of growing immediately alo
the other slip plane is suppressed.

To see the effect of loading rate on branching, we
creased«̇ from 1025 to 531025. Although the branching
pattern has changed significantly@see Fig. 8~c!#, the mecha-
nism is still the same. The crack achieves the instabi
sooner~about t5150) because of the increased flux of e
ternal energy into the system. The dislocation emission al
160° triggers crack branching in that direction. Howev
the crack changes its path to 0° again, and then switc
back to 60°. It repeats this zigzag, emitting dislocations
time goes on. It is clear that one dislocation is ahead of
branching crack. The other two emitted dislocations s
about 20r 0 in front of the main crack, nucleating a vacan
as well as a new crack. This new crack first propagates in
0° direction, then branches along260° following the dislo-
cation it emits, and finally turns its path to 0° again.
changes path right at the core of an incipient dislocation
the tip of this branching crack. Similar results are also o
served by changing the Morse parametera from 6 to 7@see
Fig. 8~d!#. It is also noted that fora56 @see Fig. 8~b!# the
branching crack closely follows the emitted dislocation wh
for a57 @see Fig. 8~d!# the branching crack tip and th
emitted dislocation are separated by a few lattice spacing
all these cases, the crack branching is triggered by dislo
tion emission, following the motion of the emitted disloc
tion.

Based on our results, we can now discuss what cau
dynamic crack branching. The driving force for dislocati
nucleation in a crystal increases with increasing speed.
mode I loading in a 2D triangular lattice, dislocation nuc
ation occurs preferably along660° ~see Ref. 1!. Dislocation
nucleation distorts the arrangement of the atoms near the
ee

a-
k
p
o-
.

ch

ng

d
-

-

s

p
e
e-
g

-

y

g
,
es
s
is
y

e

at
-

In
a-

es

or
-

lip

plane at the crack tip and creates a weak path for the crac
follow, by analogy with the fact that two blocks of crysta
are easier to pull apart after they are sheared. Figure 8 cle
shows that dislocation nucleation and mobility determine
initial crack branching path and branching angle, since d
location nucleation and motion is easier fora56 than for
a57 ~see Refs. 27 and 28!. This argument is also consisten
with the observations in the ‘‘strip geometry.’’ For thos
system with690° slip planes, the driving force for disloca
tion emission in those slip planes are small. So it is hard
nucleate and emit dislocations. Thus the crack branch o
extends one or two lattice spacings before turning back to
0° plane, leaving a cleavage step~see Fig. 6!.

Once the crack branches and grows a few lattice spac
along the slip planes, the branching cracks gradually cha
their paths so that the average paths have small angles
tive to the original crack path. The distortions of the stre
field caused by dynamic cracks gradually fade away; the
fore, the stress field approaches the static one, which requ
crack growth in the 0° plane. The smaller angles of cra
branching observed in the experiments are very possibly
average over the whole branching path, rather than the
branching angle, due to the limitation of experimental re
lution. This is illustrated by Figs. 8~b!–8~d!, where the aver-
age angles for the branching crack on the left side of
cracks are 60°,;40°, and;25°, respectively. For compari
son, in the work of Xu and Needleman,13 the average branch
ing angles are about 29°.

As a last example, the~100!@01̄1# crack represents a cas
where the first dislocation emission completely stops
crack. At the first instability, at a load of 1.4G0, the crack
emits a full 1/2̂110& dislocation in the forward direction to
one side and a microtwin in the forward direction to the oth
side. Further increase of the applied load only increases
width of the microtwin and eventually leads to the emissi
of backward-oriented dislocations but will not allow britt
crack propagation again. The behavior of this crack on
macroscopic length and time scale would be interpreted
ductile response, although the crack initially~or under
smaller overload! is able to propagate in a perfectly brittl
manner. For the 2D triangular lattice with 3.5,a,5, we
also observed that dislocations are emitted after the crack
propagated a few lattice spacings and then the dynamic c
stops. Holian and Ravelo14 have reported that for Lennard
Jones~LJ! 6-12 ~similar to the Morse potential witha56),
dislocation emission did stop the crack, but only mome
tarily. The crack resumes its propagation when it is un
sufficiently high loading. Dislocation emission and cra
propagation repeats until branching finally occurs. This o
servation could be due to the strong overloading condition
their simulation. Understanding whether the crack will
stopped by dislocation emission or whether it will furth
grow ~as in the case displayed in Fig. 8! is of course one of
the major goals of MD modeling of fracture processes, to
studied in future work.

IV. SUMMARY

In general, two different simulation systems, stadiu
boundary and strip geometry, give very similar results. T
study of the propagation of brittle cracks shows very clo
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similarities to experimental observations,6,7 where the maxi-
mum steady-state velocity of such cracks is found to be l
ited to between 34%~for a 2D triangular lattice and a Mors
potential! and 40% of the Rayleigh wave speed~for the
~100!@001# crack in EAM-Ni!. Cracks release the surplus o
mechanical energy by emitting strong acoustic waves at
breaking of every atomic bond, which are caused by
nonlinearity in the interatomic interaction. The nonlinear
of the interatomic interaction is also responsible for t
‘‘low’’ terminal velocity, which can be reached by the mov
ing brittle crack.

Our simulations indicate that reaching the terminal cra
velocity is not sufficient to cause crack branching. This
different from existing continuum and lattice theories, whe
a critical crack velocity is used as the only indicator for cra
branching.1,12 As shown in Fig. 4 and Table II, a dynami
crack cannot branch when its maximum velocity is belo
hy

.L

.

.

-

e
e

k

e

0.35cR . On the other hand, for those cracks with hi
enough maximum velocity, they do not branch right at
maximum velocity. Instead, branching occurs after the cr
passes the maximum velocity and has propagated f
while. Our simulation results suggest that the energy ass
ated with the dynamic crack rather than crack-tip veloc
provides a good criterion for describing the crack branch
instability.
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