PHYSICAL REVIEW B VOLUME 55, NUMBER 6 1 FEBRUARY 1997-1I

Molecular dynamics investigation of dynamic crack stability
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A series of molecular-dynamics simulations has been performed in order to evaluate the effects of several
physical factors on dynamic crack stability. These factors are the crystalline structure and the interatomic
interaction modeled by various empirical potentials. For brittle crack propagation at low temperature we find
that steady-state crack velocities are limited to a band of accessible values. Increasing the overload beyond
K., the crack can propagate with a steady-state velocity, which quickly reaches the terminal velocity of about
0.4 of the Rayleigh wave speed. The magnitude of the terminal velocity can be related to the nonlinearity of the
interatomic interaction. Further increasing the overload does not change the steady-state velocity dramatically,
but significantly increases the amplitude of acoustic emission from the crack tip. Loading the crack even
further leads to instabilities which take the form of cleavage steps, dislocation emission, or branching. The
instability is closely related to the buildup of a localized coherent, phononlike field generated by the bond-
breaking events. The form of the instability depends critically on crystal structure and on the crystallographic
orientation of the crack system but can also be correlated with the relative ease of dislocation getardtion
motion). [S0163-182€07)08305-1

I. INTRODUCTION cause the crack to branch at sufficiently high speeds. This
phenomenon has received much attention, following recent
Fracture of materials is essentially a dynamic process, atxperimental studiek.’ Langeret al® have introduced dis-
least in the final stagkAlthough this last stage of fracture sipation into continuum dynamic theory. Lately Chiegal®
might at first seem rather irrelevant, closer consideratiohave studied a two-dimensional cohesive-zone model of
shows that dynamic fracture is also one of the underlyingracture dynamics and found that moving cracks are strongly
physical processes in the so-called semibrittle fracturainstable against deflection in essentially all conventional
regimé& where materials toughness is governed by the comeohesive-zone models. They also concluded that quasistatic
petition of the dynamic atomic bond breaking and disloca-instability analyse¥ are inherently incapable of detecting
tion mobility. Semibrittle fracture is usually observed in ma- dynamic instabilities, even in the quasistatic limit. The fail-
terials which undergo a brittle-to-ductile transitighelow  ure of continuum instability analyses is not very surprising
the transition temperaturend consequently we need to de- since lattice features and realistic nonlinearity at the dynamic
velop deeper insight into the dynamic fracture process ircrack tip are not included. The work of Marder and
order to eventually understand the brittle-to-ductile transi-co-workers$'2is a lattice theory. Beyond the instability they
tion. find crack branching at a critical velocity. However, the
Dynamic fracture has been stimulating interest not onlyatomic interactions in their model are extremely simplified,
because of its fundamental importance in understanding fracso that they cannot realistically treat crack branching and
ture processes and because of practical applications such dislocation emission. Xu and Needlenfahave also inves-
engineering design and earthquake prediction, but also beigated crack branching using a finite element continuum
cause of the challenges to mathematical analyses and expetemputer code, where the continuum is characterized by a
mental techniques. A number of points remain unclear in thenaterial constitutive law relating stress and strain through
description of this dynamic process, especially at the atomthe tractions and displacement jumps across a specified set of
istic scale. A very important one is how to understand thecohesive surfaces at various angles.
consequence of a mechanical overload of the crack, which The earliest molecular-dynamic§vD) simulations of
eventually leads to an instability of the perfectly brittle, fracture were carried out some 20 years ago by Ashurst and
atomically sharp crack. In this paper, we will show that un-Hoover[W. T. Ashurst and W. G. Hoover, Phys. Rev1B,
derstanding complex processes such as crack branching ahd65(1976]. Many of the features of crack propagation at
dislocation emission from a dynamic crack requires realistiche atomistic level were described therein, including the ob-
treatment of the truly atomistic dynamics, and that differentservation of a steady crack velocity that was 64% of the
interatomic potentials have a profound effect on the behaviong-wavelength Rayleigh-wave speed. Their interaction po-
ior. tentials were all harmonic in nature, with varying ranges, but
Dynamic instability has not been seriously explored dueanharmonic effects were not considered except for finite-
to its highly nonlinear charactdsee Ref. 1 although Yof- strain effects. Most importantly, the system sizes studied
fe’'s analysid implies that the stresses at the crack tip maywere exceedingly small32 atoms wide by 16 high in the
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direction of propagation, with initial crack lengths of only 10 Viscous damping zone
atoms. As a result, boundary effects were severe, so that
reflected sound waves bathed the crack tip in the short time
available for steady propagation, due to fixed-grip boundary
conditions transverse to the crack advancement direction.
Moreover, such short crack lengths require excessive loading

to initiate crack motion(so-called lattice trapping In spite Newtonian mechanics region

of these severe computational limitations, a veritable gold-

mine of information was obtained. FIG. 1. Schematic of the “stadium” computational cell.
With the advance of computer power and efficient MD

numerical techniques, the full dynamical and atomistic na- Il. COMPUTATIONAL METHODS

ture of this problem can be revealed. To understand the com- )
plicated processes at the onset of instability, molecular- W& have chosen to study different crystal structitee
dynamics simulations need to be both brute fottarge two-dimensional (2D) triangular lattice and the face-
Sca|e and de”cate(i_e_, Carefu”y initialized for a gent|y Centered-cubinCC) CI’ySta| StrUCtur},‘and two different load-
overloaded sharp cragkHowever, there are two major limi- ing conditions(the “stadium boundary conditions” and the
tations in investigating dynamic fracture with MD: small “strip geometry”) in order to vary the observable mecha-
computational system sizes and short time scales. The straiisms to the largest possible extent. We then extract the dif-
fields associated with a crack are long range in character, arfdrences and the common features from the different models.
the stress waves generated by a propagating crack need speturns out that the comparison of different models can ac-
cial treatment to prevent them from reflecting from free sur-tually reveal the important processes necessary for the under-
faces and returning to disturb the behavior of the crack. Arstanding of the complex fracture phenomena which occur
efficient atomistic boundary treatment using ramped viscougluring dynamic crack propagation.
damping has been developed to significantly absorb sound
waves generated at crack tifsBut the time scale is still
limited to nanoseconds even with powerful parallel comput- A. Stadium boundary conditions
ers, which now allow MD simulations with millions of . .
atoms'*~®We have attempted to overcome these constraints In the work reported here, the stadium boundary condi-
by carefully selecting appropriate boundary conditions,1oNS Were only used in 20though extension to 3D is
which must be mechanically well defined. We have chosergiraightforward. The computational cell with a sharp equi-
two model geometries which fulfill these requirements. ThelPrium crack and viscous damping boundaries is depicted in
first method is to embed an atomically sharp equilibriumF'g- 1. The system consists of rectangular samples with an
crack of finite length, which is loaded at the Griffith value in @spect ratio of about 5 or 6. Ensembles of more than 400 000
a displacement field according to the continuum elasticity@toms ¢-240r(x 1440, wherer, is the nearest-neighbor
solution for this geometry. By applying a small overstrain wedistance of the 2D triangular latticeare sufficiently large to
can then gently drive the crack. This method is termed théake care of the long-range character of crack strain fields.
“stadium boundary condition” since the active atomistic re- The shortest half-length of the crack is 240which is long
gion surrounding the crack has the shape of a football steénough that the waves generated at one crack tip cannot
dium. The principal goal of the stadium treatment is to studyreach the other crack tip before an instability event has oc-
early-time dynamic behavior of a crack in a pristine bulk curred. If stress waves generated by a propagating crack
sample in a well-controlled way. The second method is tdounce back from free surfaces, they can severely disturb the
artificially constrain a long crack in a thin strip such that thebehavior of the crack, including causing crack arrest, as
energy release rate does not depend on crack length and caliown by Holian and Raveld. Consequently, we absorb
therefore be controlled during crack propagatidn’®in this ~ waves and mobile dislocations in a smooth way by ramping
case, the study of steady-state long-time behavior is the prMp viscous damping in a region surrounding the central el-
mary objective. liptical sample(wherein standard Newtonian mechanics ap-
The purpose of this paper is to determine the energy displies). The elliptical stadium functiorf is zero inside and
sipating processes during the propagation of a perfectp<f<1 outside:
brittle crack as well as at the instability. We aim at identify-
ing certain generic mechanisms at the simplest level rather
than providing results at the highest possible level of accu- ) (x/Lx)2+(y/Ly)Z—(a/LX)2
racy for one particular material. We expect that the results f(X,y)=min 1, max 0; 14— (alL,)? '
obtained here will also be useful for analyzing experimental X )
data. Dynamic fracture experiments are very difficult to per-
form; to date, no truly atomistic, time-resolved measure-
ments have been made. Our intention is to fill in this particuwhereL, andL, are the width of the entire computational
lar gap, in lieu of such experimental information. Atomistic cell anda andb are thex andy axes of the inner sample
computer experiments can, indeed, provide such unavailabkegion, such thaa/L,=b/L,. The maximum damping coef-
information, both to those who might design future lab ex-ficient, which at zero thermal bath temperatug,€0),
periments and to engineers who might design constitutiveritically damps sound waves at the root-mean-square Ein-
models of dynamic fracture. stein frequencywg, is given by
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TABLE I. Sound speeds in units ofe{m)*? for the Morse
potentials[see Eq.(4)] and in nm/ps for the Ni-EAM and the har-

u

monic potential. !7/////// Y A A!
] 1
Potential cL C Cr P
r 1
Morse (@=7) 105 6.1 5.6 ! !
_ Y e A A A
Morse (@=6) 9.0 5.2 4.8
u
Ni-EAM (100 5.1 3.8 2.6
Harmonic(100) 76 53 4.1 FIG. 2. Schematic outline of the strip geometry in which the
central crack can be studied under the condition of constant energy
release ratés.

The temperaturd in the reservoir region is measured as tions of motion was chosen to hkt=0.02,, wheretg is
defined agyym/e. To compare with the results from strip

szz m(u2+v2)f/ 22 f) geometry, we choose the unit of time to g c, rather than
where the sum is taken over d atoms. If the viscous

to. In this paper, we will concentrate on exploring mechani-
cal aspects of dynamic fracture without thermal fluctuations,
damping coefficient{ is properly tuned to the vibrational so we set th_e |n|_t|al tempe_rature to ne_arly zeroﬁﬂk)._
spectrum of the model as described by E), the ramped The Hamiltonian equations of motion for &N coordi-
viscous damping has been shdto effectively absorb out- natesr and thermal velocities are given by
going elastic wavefphonon$ of almost all wavelengths. By
surrounding the central elliptical sample with this damping F=V+exX, (6)
reservoir, the vibrational properties of our computational cell
are effectively those of an infinitely large system. An atomi-
. ; O F .
cally sharp crack is embedded in the center of the computa- V= ——ev,X— {V, (7)
tional cell, with relaxed atomic displacements, given by the m
linear elastic solution for such a crack of finite length in an _
infinite body under uniaxial tension. The whole system iswheree is taken from Eq(3) and{ is the viscous damping
initially displaced such that the elastic solution gives an en<coefficient[Eqg. (2)] for the “stadium.” It seems worth em-
ergy release rate per unit length of crack extengborqual  phasizing again that the center of the stadium is free of any
to the surface energy,2of the two crack surfaces, i.e., at the viscous damping, and Newtonian mechanics applies around
Griffith load G=2v. During the simulation the system is the crack.
further expanded adiabatically and homogeneously normal to From the Griffith fracture relatiork,;=2veu(1+v),

the crack plane at a strain rate given by where u is the shear modulus andis Poisson’s ratio, the
. critical straine required to propagate the crack is 0.005 for

e(0) =7 and initial crack length.=240. For crack growth and
()= 1+e(0)t (3 gislocation nucleation, we can simulate similar physical pro-

_ _ . ~ cesses to those in conventional experiments, provided that
This allows us to drive a crack with very gentle overloadingthe overloading strain changes much slower than the process
and without the complication of strong loading waves gen-of crack motion and dislocation emission. For example, with

erated V\_/hen strai_n or stress is a_pplied only at b_oundar_ies. £=0.0001, a pair of atoms separated by one lattice spacing
The mteratomlc interaction is modeled with various ro will increase its separation by 0.00Qlin the time period

Morse potentials of the form of ty, as compared to the much larger distance that the crack

d(r)=e(e 2o~ _pg=alr/ro=1)y @) Itip .;u)ns (about 2, under a typical maximum crack-tip ve-

ocity).
wherer, is the minimum of the potentiale is the bond By the use of large computational systems and with the
strength, andr characterizes the anharmonicity of the poten-application of the linear elastic solution as initial and bound-
tial, which is, for example, reflected in the lineardepen- ary c_on_ditior_ws, we can study dynamic Crack-tip processes in
dence of the Gioeisen constant or the pressure derivative of Tealistic” (i.e., macroscopicstress and strain fields. In
the bulk modulus. To make both the potential energy and théhese studies, we are naturally limited to rather short simu-
force decay smoothly to zero Btr .= 2.5, we multiply  lation times since the running crack will eventually feel and
the Morse potentialEq. (4)] with a cutoff function (sometime latgrhit the border of the stadium.
for ro<r<rma. (5 B. Strip geometry

1 ( r—ro )3

fmax™fo A different route is followed with the thin strip geometry.
Three sound speeds—Ilongitudingl , transversec;, and Here the crack field is constrained within a thin strip of
Rayleighcg—are given in Table |; the computational time height Zh which is clamped on the top and the bottom by
step in the centered-difference integration of the MD equafixed (uniform) displacement boundary conditiofsee Fig.

2
feudr)=
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2). By making the strip very long, the dynamically running and goes to zero exactly halfway between first and second

crack can be followed for rather long times. Furthermore thenearest neighbors. The sound speeds of these models are also

strip geometry permits us to investigate dynamic crackgiven in Table I.

propagation under the condition of constant energy release The MD technique employed here is again a central-

rate G (see Refs. 1, 17, and L8Consequently, long-time difference integration scheme. Howevelpeal temperature

steady-state crack propagation may be achieved. control?? which resembles an electronic heat bath for the
The half-height of the model is chosen to vz 25 lattice  10NS, is employed to quickly establish steady-state conditions

parameters; the length of the strip is alwayd >8h, with for the running crack. The equation of motion is given by

the crack initially placed at/4. Ramped viscous damping,

similar to the method described for the stadium, is applied in P, :i —ya (8)
the regions adjacent to the upper and lower boundaries as m;
well as at the free surfaces to the right and the left of tth-
L . . . . ith
model in Fig. 2. The viscous ramp is applied over a distance
of 5-10 lattice parameters. Consequently, the vibrational 1—To/T,
properties of the system are essentially those of an infinitely L= T/T'Q—m)
large system, although the crack field is that of a very thin [1+( )°]

strip. o ] ) . where(; is a local version of Eq(2), T, is the temperature

_ Crack propagation in the strip geometry is studied excluf the electronic heat bath, aid is the kinetic temperature
sively on the{100 plane of the fcc crystal lattice. Periodic f particlei. The small terms=0.1 K is introduced to keep
boundary conditions of minimal periodic length are appliedgi finite for atoms at rest. The viscous damping coefficient
along the crack front to model plane strain boundary condit—g0 here is usually chosen to mimic the electron-phonon cou-
tions. The restrictions imposed through the application ofhling of Ni.22 To study the influence of the local damping on
periodic boundary conditions are probably of less importancgne henhavior of the crack, the damping coefficient is some-
for the analysis of brittle crack propagation but will severelyimes also decreased to 1/30 of this value. In the ramped
curtail the possibility of dislocation generation. Whereas dis+iscous damping regions at the outer borders of the model,

locations could be generated in the form of dislocation IoopsgO is gradually increased arifl, is decreased to produce a
in a real crystal, here they must be infinitely long andphonon-absorbing reservoir.

straight. Additional restraints to dislocation emission may The models are first relaxed at boundary displacements

result from the geometry of the crack system in relation to, hich correspond to the Griffith loa@,, i.e., at boundary
the slip systems: Depending on the orientation of the Cracﬁisplacements whictfin front of the crack tip lead to a
front, the natural Burgers vectors can be completely Supp,mogeneous strain energy per unit length large enough to
pressed. Using these features of the periodic boundary coy ance the surface energy of the two crack surfaces. At this

ditions, one can therefore study brittle crack propagation iNgaq the model is then equilibrated for 20 ps at a temperature
an otherwise ductile material. In this study, the crack front is

: ) L of To=10 K. This temperature is also kept as the tempera-
oriented either along €001) direction or along(011). The e of the electronic heat bath during subsequent crack
crack systems, specified by the crack plane and the cragkonagation. The models are then loaded to a higher strain
front direction, are therefore denoted &B00[001] and  |eyel by scaling all atomidisplacementselative to the ideal
(100[011]. In the (100[001] crack system, the natural glide crystal positions. This scaling is applied instantaneously be-

planes of the fcc crystal, thil11} planes, are all inclined  yyeen two MD steps. Such scaling of the atomic dispiace-
against the crack front and dislocation emission on thesg,ants does not change the overall shape of the elastic strain
planes is therefore suppressed. Dislocations which coulge|y The scaling therefore instantaneously changes the load
possibly be generated are either of the Lomer type, with §e,e| without creating any shock waves or otherwise disturb-
(001) Burgers vector, or must have larger Burgers vectorsjng the crack field. Such rescaling of the displacements can
The second crack system provides two set41dfl} glide i, principle be used any time during a MD run to either
planes at 54° to the crack plane. The orientation of the,.rease or decrease the load level.
1/6(211) partial dislocations, which could be emitted on
these glide planes is such that the edge partial is leading in
backward orientation and the 30° partial is leading in the
forward direction(see also Ref. 19 Crack-tip position is determined by inspecting the atomic
Both these crack systems have already been studied quit®ordinates or potential energies of the atoms above and be-
extensively in molecular statics simulations of brittle fracturelow the crack plane. Coming from the intact material, we
processes and dislocation nucleattdr® The static calcula- search for the first pair of atoms which either exceeds a criti-
tions showed that brittle crack propagation on the originalcal opening displacement or which has a potential energy
(100 crack plane is expected for both crack systems undeabove a certain level. Both the displacement and the poten-
opening(mode ) loading conditions for EAM-NF° tial energy criterion can be tuned such that the “standard”
The interatomic interaction is modeled either by an em-pair of crack-tip atoms just fulfills this criterion. Both criteria
bedded atondEAM) potential which is fitted to the cohesive work equally well and the crack-tip position can usually be
energy, the lattice parameter, and the elastic constants of Mietermined to within less than one nearest-neighbor distance.
(Ref. 2 or by a fully harmonic nearest-neighb@napping-  If the crack-tip position is determined in this way at every
spring force law. The pairwise harmonic interaction is also MD time step it remains virtually constant for a certain pe-
fitted to the lattice parameter and the cohesive energy of Niiod of time after which it suddenly jumps to the next pair of

C. Crack-tip position and velocity



0.5

MOLECULAR DYNAMICS INVESTIGATION OF DYNAMIC ...

(a) Ni EAM (100)[001]

3449

TABLE 1l. Maximum crack-tip velocity v o« (CR=Rayleigh
wave speey] for various Morse potential paramete#s ratios of
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A. Brittle dynamic fracture

0.5

The propagation of perfectly brittle atomically sharp
cracks is mainly studied in the thin strip geometry. The de-
pendence of the crack tip velocity on the overload is dis-
played in Fig. 3 for different load levels and the two different
damping coefficients. For both crack systems, the plot of the
crack tip velocity versus timéFigs. 3a) and 3b)] shows
that the crack tip accelerates to a terminal steady-state veloc-
ity. The acceleration implies a very small but finite inertia of
the crack in the given geometry. If the energy release rate
above the Griffith load is interpreted as the driving force for
the crack, the inertia does not depend on the load level or the
damping coefficient.

The terminal velocity reached at the different load levels
shows some interesting aspects. At small overloads, between
1.00G, and 1.0%5, the crack is stationary due to lattice trap-
ping in both crack systems. At 1.34 the crack starts to

vided by longitudinal velocityc,) for the EAM-Ni (100[001] (a) move and accelerates uptoa termlnal velocity wh|gh already
and (100[011] (b) fcc crack systems at different load leveis is a sizable fractlo_n of the Raylglg_h wave spe_ed. _W'th only a
units of Griffith load G), as indicated in the legend. For the Very small local viscous dampinidight curve in Fig. 3a)]
(100[001] crack system, the damping coefficient for Kieavy the lowest steady-state crack-tip velocity is already as high
lines) as well as a damping coefficient reduced by a factor of 302S approximately 0ck. This suggests that the steady-state
(light lines) is used. propagation of a perfectly brittle crack at very low tempera-
tures is limited to velocities above a certain lower critical
value, which has previously been fodrid experiments and
has been discussEd?in simple analytical 2D crack models.

crack velocity (cR)

PR Y S T T N T S T 0 T T S T T T T A ¢

0 100 200 300

time (ro/cL)

400 500 600

FIG. 3. Crack-tip velocity(in units of Rayleigh wave speed
cr) Vs time (in units of nearest neighbor distancg=2.49 A di-

atoms. However, the atomic coordinates are usually not in

spected at every time step butin larger time interelig, of 5, MD study, at least on time scales accessible to us, seems

the order of 10 vibrational periodsg=2m/we. CONse- {5 pe consistent with these. The precise physical interpreta-
quently, the crack-tip velocity,, determined as the change jon of the origin of this forbidden band of low velocities,
in crack-tip position divided by the output time interval, however, still remains unclear.

vip= AXiip/ Aoy, is slightly oscillating due to the discretiza-  Stydies with the stadium boundary conditions can give
tion in time and space, even for perfect steady-state crackome additional information as far as this “forbidden” band
propagatior(see, for example, Fig.)3To make the different  of |ower velocities is concerned. We have performed calcu-

crack systems comparable, all measured velocities are nofations with various initial crack lengtis(t=0), strain rates

ma_h_zed \.N'th respect to the appropriate Rayleigh wave V€%, and Morse potential parametess We emphasize two
locities given in Table 1.

principal observations(l) decreasingx tends to make dis-

location emission easier arid) increasingé causes a crack

to branch sooner and makes its branching paths more cha-

otic. Table Il gives the maximum crack-tip velocities for
We divide the presentation of our results and discussioiyarious strain rates and ratiosof crack size to sample area

in two parts. In the first part we investigate the perfectlyS: n=2m2(t=0)/S.

brittle crack propagation, and the second part concentrates on We find that the maximum velocities increase with de-

crack tip instabilities which occur for cracks which are suf-creasing ratios of crack size to sample area. It is interesting

ficiently overloaded. to note that no branching is observed belevd.35%k.

Ill. RESULTS AND DISCUSSION
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(@) No branching (o = 7) caused by our “fixed grip” loading. With the appropriate

04 T T T T T T T T T combination of short initial crack length and high loading
1 rate(caseC), we can realize relatively stable crack propaga-

tion at almost constant velociyaround 0.34dg) for a fairly
long time. The terminal velocity is similar in magnitude to
that seen in the strip geometry discussed above. It is, how-
ever, significantly lower than the Rayleigh wave speed which
is the terminal velocity according to continuum analysis.
This aspect will be discussed in more detail below.

Now we will discuss the effect of viscous damping on
dynamic cracks. As shown in Fig. 3, the terminal steady-
state velocities decrease with increasing viscous damping, in
particular at small overloads. The damping coefficient acts
locally and most strongly on the atoms with the highest ve-
locities. In this sense the local damping could be interpreted

(b) Branching (I = 240r ) as reducing the amplitude of the shear waves carrying the
0.4 ————T T T T T information that the crack is propagating. The damping
would thereby essentially reduce the apparent overload and
therefore reduce the steady-state crack-tip velocity. The ef-
fect of viscous damping on crack-tip velocity is, however,
not fully clarified yet.

Upon increasing the load to a value of 13{) the crack
reaches a terminal velocity of about 64 Further increas-

_ ing the load up to 1.58, for the (100[001] crack system
(see Fig. 3 or to 1.30@3, for the (100[011] crack system
(see Fig. 3does not significantly change the terminal veloc-
ity. Furthermore, the crack-tip velocity is almost independent
T R of the damping coefficient in this loading regime. Averaged
0 50 100 150 200 over longer times the steady-state crack-tip velocity is even
time (r /c,) somewhat lower for the lower damping coefficient at
1.50G,, which may be seen as an indication of the approach

FIG. 4. The crack-tip speetin units of Rayleigh wave speed to_ the critical ove'rload of this system. T_his is;ue will be
cp) as a function of timein units of nearest-neighbor distancg ~ discussed further in the second part of this section.
divided by sound speed,) for the stadium geometry. Strain rate  Here, however, one should ask how the crack manages to
(bold labe) is in units ofc_/r,. (a) without crack branching(p) ~ travel at almost identical velocity but to dissipate such dif-
with crack branching. ferent amounts of energy. An answer may be found by ana-

lyzing the velocity fields around the crack tips moving at the

We would like to point out that our viscous damping same steady-state velocity at overloads of GgOand
boundary is able to effectively absorb the outgoing wave$) 50G,. For the(100[001] crack system these velocity fields
generated from the dynamic crack-tip but not to prevent ingre displayed in Fig. 5. At small overloads the velocity field
coming waves from fixed displacement boundaries. Therezround the crack is smooth and continuous as expected from
fore a new dynamic crack stress field is established corresontinuum theory. At increasing overloads, however, the
crack tip propagates, the more the actliabtantaneous or  atomic bond. This acoustic emission is mainly of longitudi-
transient crack-tip stress field deviates from the initial crack na compressive character in the direction perpendicular to
stress field of the infinite solid. It is known that the stressihe crack plane with a significant transverse component at an
intensity factor decreases as the crack propagates in a “fixegng|e of 45° to the crack propagation direction. No such
grip” boundary condition. If the loading rate is high enough, acoustic waves are visible in the angular section between
however, theT resulting stress intensity factor can stay almostyout— 45° and 45° around the crack propagation direction.
constant or increase. We are thus able to fine-tune the dy- Tq petter understand the origin of these acoustic waves
namical crack behavior through the specimen geometry faGne can investigate the instantaneous crack-tip configura-
tor » and loading rates. Our simulation results follow the tions, one of which is shown in Fig.(® halfway between
above predictions. In Fig. 4, we present some of our resultthe breaking of the last and the next bond at the crack tip
for crack-tip velocities as a function of time. Figuréa$ during steady-state propagation. It is clearly seen that the
shows cases where no crack branching was observed. Fatoms above and below the actual crack-tip have been
caseA in Table Il, the crack starts to run, reaches the maxipushed far away from the two crack tip atoms. Such behavior
mum velocity, goes to zero velocity &t 180, then starts to can be rationalized as a consequence of the nonlinearity of
retreat, and at= 255, moves forward again. With twice the the interatomic interaction, which strengthens in compres-
loading rate(caseB), we see similar features except that thesion and weakens in tension. The last broken bond obviously
maximum crack-tip velocity increases from Ock8to  caused the atoms, which are now just behind the crack tip, to
0.26ck and the crack runs farther. Crack arrest appears to benpact into the surface, thereby pushing their neighbors with

crack velocity (cR)
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FIG. 5. Velocity distribution of individual atoms around twb00)[001] cracks moving at the same steady-state velocity but subjected to
different overloads(a) AG=0.1G,, (b) AG=0.5G.

strong compressive forces into the crystal. The interatomigossible to drive the perfectly brittle crack up to 0.85 of the
interaction of the impacting atoms and their neighbors withRayleigh wave speed at very moderate overloads of only
the crack-tip atoms thereby weakens due to the nonlinearit.40G,. The resulting velocity distribution around the run-
of the interatomic potential. The reduced coupling strength iming crack tip is shown in Fig. 7. It clearly reveals the per-
turn reduces the velocity at which information is transferredfectly continuous velocity distribution expected from con-
along the crack surface. Thus, nonlinearity is shown to beinuum theory and shows no signs of any acoustic emission
responsible for the rather low terminal steady-state velocitfrom bond breakingalthough one might have guessed that
as compared to continuum analysiShis result can also be the extremely nonlinear snapping of the bonds could have
reproduced by a simple one-particle model for crackcaused such behavior

propagatiorf

The hypothesis that the nonlinearity of the interatomic
interaction is responsible for the rather low terminal crack-tip

velocity of the moving brittle crack can be tested by repeat-

B. Dynamic instability

Driving the crack at higher loads results in crack-tip in-

ing the dynamic calculations with the simple harmonic pair-stabilities. The loads necessary to create an instability de-
wise snapping spring force law. These simulations are rathgrend quite strongly on the actual crystallographic orientation
difficult since the short-range snapping spring force law re-and on the viscous damping. For the strip geometry and the

sults in a rather large lattice trapping AfG>1.0G,. Fur-

(100[001] crack system studied above, the critical load is

thermore second neighbors may come within interactiorapproximately 1.6, (if the damping coefficient for Ni is
range and make the effective interaction nonlinear. To cirused and only about 1@, for the reduced damping. The
cumvent these difficulties, the neighbor list of the atoms is(100[011] crack becomes unstable already at a load of
frozen in the initial configuration and not updated during1.4Gy.
crack propagation. To start the crack, it was loaded beyond Upon increasing overload, the instability event for the
the lattice trapping range for only 1 ps and then instanta{100[001] crack of Fig. 6 beyond the steady-state regime is
neously unloaded to much smaller overloads, whereby itmainly transverse shearing of tH&10 planes at 45° into
could then reach the steady state. One then finds that it i110) directions. Despite the large shear on these pléses
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Fig. 5), dislocations of such largél10) Burgers vectors at ~ \ 47 24022 10 i 0 PO LM AN A R s

first cannot successfully be created. Similarly, dislocations

with [100] Burgers vectors n(_)rmal to the crack plane are not FIG. 7. Velocity distribution around &00[001] crack modeled
observed and the overload is not large enough to allow fofih a harmonic snapping spring force law. The crack is loaded at
bifurcations. As a consequence, the crack tip which is Jusk = 1.4G,, where it reaches a steady-state velocity of 6,85

going unstable at a load of Z33 has only two possibilities:

it can either create a Lomer dislocation with a Burgers vectoflynamic crack has been unsuccessfully attempting to branch,
parallel to the crack propagation directitas is occasionally Whl_ch causes the small os_czlllatlon o_f the crack-tip velocny_.
observedl or it can attempt to branch. Such branching at-AS it opens up, the dynamic crack tip gets more rounded in

tempts are seen most often. They eventually lead to one gihape than the initial static one; the tendency for the crack to
two atomic steps on the fracture surface. branch increases with time. At=220, the crack loses the

At higher overloads the instability events become eve tabili';]y an_d branchelzsil Figure( clea_lrly SI?IOWS thl?t tTe it
richer. For the same crack-tip orientation larger deflection ranching 1S a cumulative process, since the crack velocity

of the crack are observed in connection with the emission of@S reached a relatively steady value aftter60. Similar
ogbservanons have also been made in the strip-geometry sys

(110 dislocations and even climb processes can be observei m, although high overloading imposed at the beginning of

near the crack tip. However, since such behawqr OCCUTS Uk 40k propagation shortens the cumulative time for instabil-
der less well-controlled circumstances, we restrict ourselve

to the study of the first instabilities encountered after steady- .This finding of a dynamic buildup is different from tradi-
state propagation. _ . _ __tional theories which assume that the crack-tip velocity

More comprehensive studies of dynamic crack instabilityniquely determines the behavior of a dynamic crack. Fur-
can be carried out in the Stadium'bouﬂdary system. In such mermore’ the crack branching occurs at a signiﬁcanﬂy re-
system, we observed the first instabilifgranching when  duced velocity than the maximum value. Clearly, the crack-
the terminal velocity is larger than 0.8%as shown in Fig. tip velocity isnota necessary condition to trigger the crack-
4(b), where data are plotted up to the initiation of the firstbranching instability. Instead, we find that the gradual
branching. It is interesting to note that those speeds wittaccumulation of energy around the dynamical crack tip is an
branching are very close to experimental values reported bgssential feature for the ultimate emission of dislocations and
Sharonet al.’ crack branching.

As an example we describe in detail cdsen Table Il, We find that local potential energy is the most useful way
which is plotted as the full line in Fig.(8). Here the atoms to show defect configurations such as crack surfaces and dis-
first readjust their initial positions given by elastic theory. At location cores. As seen in Fig. 8, local potential energy
t=20, the crack starts to propagate and quickly reaches thelearly indicates the future growth paths of cracks or dislo-
terminal velocity of about 0.3%% at a time oft=60. The cations. In Figs. &)—8(d), we see clearly the buildup of the
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FIG. 8. (Color) Crack configurations following brittle phase of propagation where atoms are colored according to their potential energies
by a rainbow ranging from deep blue for a minimum value-63.0 (bulk) to bright red for a maximum value of 2.0 (free surfacg
indicated by the color bafa)—(d) are for case§&, E, andD (see Table I} (a) A dislocation has nucleated at the crack tip on th&0° slip
plane ¢=215) for caseF; (b) the —60° branching crack closely follows the dislocation and grow$=a880; and similarly another
branching crack is created after a dislocation is emitted aleB6§° (for caseF); (c) t=440 for caseE; (d) t=305 for caseD.
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potential energy associated with the phonon field, and we sg@ane at the crack tip and creates a weak path for the crack to
that dislocations can be emitted from a “brittle” crack tip follow, by analogy with the fact that two blocks of crystal
(defined here as a static crack tip that cannot emit a dislocaare easier to pull apart after they are sheared. Figure 8 clearly
tion) when the crack runs sufficiently fast. Therefore, crackshows that dislocation nucleation and mobility determine the
motion promotes dislocation emission. The energy buildughitial crack branching path and branching angle, since dis-
around the dynamic crack and the causes of dynamic disldocation nucleation and motion is easier f@r=6 than for
cation emission are discussed in detail in Refs. 24 and 25.a=7 (see Refs. 27 and 28This argument is also consistent

We find that crack branching is closely tied to dislocationwith the observations in the “strip geometry.” For those
nucleation and emission. In Fig(a, one dislocation has System with=90° slip planes, the driving force for disloca-
nucleated at the right side of the crack tgit=215). Then tion emission in those slip planes are small. So it is hard to
it is ejected 2, away from the crack tip along the60° slip  nucleate and emit dislocations. Thus the crack branch only
plane. Att=250, the crack tip starts to branch along the€Xxtends one or two lattice spacings before turning back to the
same slip plane as the emitted dislocation, and the branch’ plane, leaving a cleavage stégee Fig. 6.
closely follows the dislocation motion. A similiar process of ~ Once the crack branches and grows a few lattice spacings
dislocation emission and crack branching also happens alor@jong the slip planes, the branching cracks gradually change
the + 60° slip plane a little bit latefaroundt=265) [see Fig. their paths so that the average paths have small angles rela-
8(b)]. These general features were observed by Holian antive to the original crack path. The distortions of the stress
Raveld* though admittedly under much cruder loading con-field caused by dynamic cracks gradually fade away; there-
ditions than ours. Ohr and his co-work&save observed fore, the stress field approaches the static one, which requires
this same phenomenon in their TEM experiments. crack growth in the 0° plane. The smaller angles of crack

As seen in Fig. &), asymmetric branching can occur. branching observed in the experiments are very possibly the
This is understandable: the 2D triangular lattice is macroaverage over the whole branching path, rather than the first
scopically isotropic, but not locally. The- 60° and—60°  branching angle, due to the limitation of experimental reso-
slip planes are not symmetric relative to a crack tip, so it idution. This is illustrated by Figs.(8)—8(d), where the aver-
impossible for a crack to branch completely symmetricallyage angles for the branching crack on the left side of the
— the choice of path is made randomly. Once the crack tipcracks are 60°;-40°, and~ 25°, respectively. For compari-
has begun to branch along one of the two slip planes, theon, in the work of Xu and Needlemahthe average branch-
accumulated energy at the crack tip has been partially reéng angles are about 29°. _
leased, so that the possibility of growing immediately along As a last example, th€l00)[011] crack represents a case
the other slip plane is suppressed. where the first dislocation emission completely stops the

To see the effect of loading rate on branching, we in-crack. At the first instability, at a load of 1@&,, the crack
creaseds from 10°° to 5x107°. Although the branching emits a full 1/2110 dislocation in the forward direction to
pattern has changed significanfsee Fig. &)], the mecha- one side and a microtwin in the forward direction to the other
nism is still the same. The crack achieves the instabilityside. Further increase of the applied load only increases the
sooner(aboutt=150) because of the increased flux of ex-width of the microtwin and eventually leads to the emission
ternal energy into the system. The dislocation emission alongf backward-oriented dislocations but will not allow brittle
+60° triggers crack branching in that direction. However,crack propagation again. The behavior of this crack on a
the crack changes its path to 0° again, and then switchg¥acroscopic length and time scale would be interpreted as
back to 60°. It repeats this zigzag, emitting dislocations agluctile response, although the crack initialipr under
time goes on. It is clear that one dislocation is ahead of thismaller overloaflis able to propagate in a perfectly brittle
branching crack. The other two emitted dislocations staynanner. For the 2D triangular lattice with %<5, we
about 20, in front of the main crack, nucleating a vacancy also observed that dislocations are emitted after the crack has
as well as a new crack. This new crack first propagates in theropagated a few lattice spacings and then the dynamic crack
0° direction, then branches alorg60° following the dislo- ~ Stops. Holian and Ravefbhave reported that for Lennard-
cation it emits, and finally turns its path to 0° again. It Jones(LJ) 6-12 (similar to the Morse potential witlx=6),
changes path right at the core of an incipient dislocation aglislocation emission did stop the crack, but only momen-
the tip of this branching crack. Similar results are also obfarily. The crack resumes its propagation when it is under
served by changing the Morse parametefrom 6 to 7[see sufﬂment!y high Ioadlng.. DIS|OC§IIOI’1. emission and (;rack
Fig. 8d)]. It is also noted that for=6 [see Fig. &)] the ~ Propagation repeats until branching finally occurs. Th|§ op-
branching crack closely follows the emitted dislocation whileServation could be due to the strong overloading condition in
for =7 [see Fig. &l)] the branching crack tip and the their S|mulat|qn. Un_derstan_dmg whether the _cra(?k will be
emitted dislocation are separated by a few lattice spacings. [foPped by dislocation emission or whether it will further
all these cases, the crack branching is triggered by disloc&fow (as in the case displayed in Fig). 8 of course one of
tion emission, following the motion of the emitted disloca- the major goals of MD modeling of fracture processes, to be
tion. studied in future work.

Based on our results, we can now discuss what causes
dynamic crack branching. The driving force for dislocation
nucleation in a crystal increases with increasing speed. For
mode | loading in a 2D triangular lattice, dislocation nucle- In general, two different simulation systems, stadium
ation occurs preferably alontj60° (see Ref. L Dislocation  boundary and strip geometry, give very similar results. The
nucleation distorts the arrangement of the atoms near the slgtudy of the propagation of brittle cracks shows very close

IV. SUMMARY
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similarities to experimental observatioh§where the maxi- 0.35%g. On the other hand, for those cracks with high
mum steady-state velocity of such cracks is found to be limenough maximum velocity, they do not branch right at the
ited to between 34%for a 2D triangular lattice and a Morse maximum velocity. Instead, branching occurs after the crack
potentia) and 40% of the Rayleigh wave speéfbr the  passes the maximum velocity and has propagated for a
(100[001] crack in EAM-Ni). Cracks release the surplus of while. Our simulation results suggest that the energy associ-
mechanical energy by emitting strong acoustic waves at thated with the dynamic crack rather than crack-tip velocity
breaking of every atomic bond, which are caused by therovides a good criterion for describing the crack branching
nonlinearity in the interatomic interaction. The nonlinearity instability.
of the interatomic interaction is also responsible for the

“low” terminal velocity, which can be reached by the mov-

ing brittle crack.

Our simulations indicate that reaching the terminal crack Computations were performed on the CM-5 at the
velocity is not sufficient to cause crack branching. This is Advanced Computing Laboratory at Los Alamos. We also
different from existing continuum and lattice theories, whereacknowledge helpful discussions with R. Thomson, A.
a critical crack velocity is used as the only indicator for crackNeedleman, R. Ravelo, J. Langer, M. Marder, and R. Blu-
branching''? As shown in Fig. 4 and Table I, a dynamic menfeld. P.G. gratefully acknowledges partial financial sup-
crack cannot branch when its maximum velocity is belowport by the KSB-Stiftung, Stuttgart.
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