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Ultrashort x-ray pulse propagation through resonant attenuating media
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The propagation of ultrashort x-ray pulses through a resonant attenuating two-level atom medium is inves-
tigated on the basis of the temporal point-souttee Green-functionformalism. A general case of the
small-area puls€SAP) approximation of a traveling coherent wave is considered. The patterns of the SAP
envelopeE(t,z) and energyJ(z) evolution within the medium are calculated in the cases of incident Lorent-
zian and exponential pulses and their dependence on the terbpodidthr,,,qin comparison with the total
dissipative relaxation timélifetime) T,. It is shown that if7,,,qiS the same order or smaller thdy, the
reshaping(oscillations of the pulse envelope and/or low energy-loss effects occur in accord with the general
conclusions pointed out by Crig?hys. Rev. Al, 1604 (1970] in the case of the SAP for coherent light
traveling through a resonant medium. The experimental conditions for the observation of penetration effects of
the SAP of x rays are discussed. Based on the theoretical study, it is found that an ultrashort x-ray pulse
emitted by an ultrashort laser-produced plasma propagates through thin resonant medium foils with low energy
loss.[S0163-182807)05005-4

. INTRODUCTION Newell’® treated the general case, when the incident pulse
decomposes into solitons, which interact with the medium
Subpicosecond high-intensitl0°~10"® W/cn?) lasers  without energy loss, and also yields radiation, which is ab-
are capable of producing plasmas on solid targets, resultingorbed by the medium. As pointed out by McCall and
in high intensity x-ray lines and/or continuum emissiofi. Hahn® solitons arise in the case of the so-called large-area
The time durationr, of such x-ray pulses depends on the pulse (LAP) approximation, whereas there is only an effect
experimental conditions and ranges from subpicosecond tof the envelope reshaping for small-area pul6®aP), for
several tens of picosecontis. which the radiation energy is irreversibly transferred to the
The time-dependent investigations using a laser-produceahediunt® and as a result, the pulse energy is not necessarily
plasma as a prolific source of x rays are of high interest foconserved.
time-resolved photoelectron spectrosc8pgrobing of the Recall that the pulse are#(z) is defined aséf(z)
dynamics of chemical reactior(see, e.g., Refs. 1 and,7 =[7.dt E(t,z2) and E(t,z)=2mp&(t,z)expli¢(t,z))/h,
time-resolved x-ray diffraction, and in particular, measure-where the pulse has the form of the circular polarized wave
ments of lattice parameters of laser-shocked singldield packet E.(t,z2)=Rd(i+ij)&(t,z)exp(—id(t,2))],
crystals®® These methods are adapted to the study of theb(t,z)=wt—kz— ¢(t,2z), traveling through a medium in the
mechanisms involved in shock-induced crystal surface phasanit vector directiork of increasing distance (the unit vec-
transitions on sub-nanosecond timescales. Recently, the d®rsi andj are orthogonal tk, k= w/c=2m/\,; where ,
lay effects of a crystalline medium response to the time-\, is the carrier frequency and wavelength of the radiation in
dependent x-ray propagation were reported in Refs. 10 andacuum, respectivel\; is the speed of lightp is the dipole
11. moment corresponding to the two-level atom transition, and
The phenomenon of time-dependent x-ray interactior) is Planck’s constait Hence, the SAP approximation cor-
with a medium is of special interest by itself, if one bears inresponds t@#(z) <1 for the pulse propagation through a reso-
mind the well-known effects of self-induced transparencynant attenuating medium.
(SIT) in the coherent light optics discovered by McCall and One example of an x-ray SAP is an x-ray line, which is
Hahn!?*3The SIT study was further developed in many sub-emitted from an ultrashort laser-produced plagtdaPpP).!*
sequent papersee, e.g., Refs. 14-18 For typical experimental parameters, the magnitude of the
The SIT problem can be analyzed with the use of theelectric wave amplitudé€(t,0)|~50-100 V cm* (the inten-
inverse scattering methatSM) developed by Zakharov and sity of the line at the sample position ig~10 W/cnt on
Shabat® Using the ISM method, Lanth obtained and de- average, the tempor&landwidth 7,4 corresponding to the
scribed a whole class of special solutions to the SIT problenspectral width of the line is equal te2 fs) and the input
in terms of solitongkinks and breatheyswhich undergo no pulse area¥(0) can be estimated as 19<1.
energy loss during propagation in a resonant medium. In This article describes the analysis of the SAP x-ray propa-
other words, the medium is completely transparent for thegation through a resonant attenuating medium. The physical
input pulse(decaying into solitons Ablowitz, Kaup, and and mathematical basis for the study is similar to the classi-
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cal dispersion theorysee, e.g., Ref. 3Gand the main results U=[y—¢(t,2)Jv—ulT}, (2.3
follow Crisp’s approact? applied to the study of the SAP
propagation of coherent light through matter. According to
Ref. 14 as the SAP travels through a resonant medium, it
excites a macroscopic polarization with a phase ghift the
input pulse for a total dissipative relaxation tirtliéetime) T,
after the pulse has passed.7if,,qdrops off faster, namely:
Toand<T > (the lifetime T, being the decay time of the mac-
roscopic polarization then the SAP envelopE(t,z) will

v=—[y—d(t,2)Ju+Ew—v/T}, (2.4
w=—Ev—[w—wg]/T;. (2.5

Here the wave-field envelope per'sE=2#pé&lh and the
relaxation effects are taken into account phenomenologically

change sign and become negativéth respect to the input by means of a Iong|tud|[1al relaxation t|.nT§ and by a trans-
pulsé owing to the response of the medium. verse relaxation timel,. The description of the x-ray

In Sec. II, the problem is formulated on the basis of thePUlS€ propagation can be obtained by solving the Maxwell
reduced Maxwell equation and the explicit analytical solu-8duation(2.1) and Eqs(2.2), (2.3, (2.4), and(2.5) simulta-
tion of the boundary problem is derived based on the Greerf?€0USly.
function formalism. In Sec. lIl, the SAP shajgt,z) and Assuming that the envelofi#(t,z) and phase(t,z) vary
energyU(z) =1/8x[ = .dt| Ez(t,z)| evolution are considered sIO\_/va during an optical period or over the distance of an
within a resonant medium and the deviation of thdepen-  OPtical wavelength|9E(¢)/dat|<w|E(4)| and[9E(¢)/d7]
dence of the SAP energy loss from the exponential law=|E(#)/\,], one can reduce E¢2.D) to the scalar equation
(Beer's law is discussed. Some plots of the numerical evaluthe reduced Maxwell equatipn
ations of the shape and energy of the SAP propagatin
through resonant media are presented for the cases of Lorerft-_ te i) E(t,2)
zian and exponential input pulses. Finally, in Sec. IV, the\dt d ’
physics aspects and numerical estimates for the observation

of the propagation peculiarities of ultrashort x-ray pulses 201 2 * . .
from ULPP through resonant attenuating megialid foils) =27°INp “’/lewdyg(V)(“_'v)eXp(' ¢(1.2)).
are discussed.
(2.9
Il. REDUCED MAXWELL EQUATION: The boundary condition

SOLUTION OF BOUNDARY PROBLEM

, _ E(t)=E(t,2)[ =0 2.7
An x-ray pulse traveling through a resonant atom medium o
satisfies the wave equation derived from Maxwell's equa-2nd the initial ones

tions
u(te,z,y)=v(tg,z,)=0, w(tp,z,7)=w(0), (2.9

PPEL(t,2) 2(92E+(t,z)+ P (1,2)

2 c 2 - =0. (2. when the timet, (e.g.,tp=—=) is chosen to be immediately

at* before the entrance of the pulse into the medium, complete
the problem.

Here the resonance-induced electric dipole polarization In the case of the SAP the pseudopolarization component
P.(t,z) can be represented as a continuum corresponding t@(t,z,y) of the individual atoms inside a medium does not
the resultant inhomogeneously broadened two-level atomicchange essentially and it can be fixedva®) in Egs.(2.3),
resonance liné**’ (2.4), and(2.5). As a result, the SAP propagation through a
medium can be described by a single linearized equ¥tion

P.(L2)=N(D2) | dygiyRA(i+il)(u-iv)

E—H:E E(t,Z)=—af:dt'G(t')E(t—t’,Z), (2.9

Xexp(—id(t,z2))]. (2.2
where the kernel functio®(t) and the constant coefficient
The functiong(y) describes the distribution of the reso- are defined as
nant frequenciesw,, at the field-carrier frequencyw,

9(y)=g(w;—w) with [Z.dyg(y)=1 and y=w;,;— o indi- vty [ .

cates how far an individual atomic transition frequenay G(t)=exp(—t/T;) | dy g(y)exp(—ity), (2.10
is detuned from the field-carrier frequeney N is the num-

ber of the radiating dipoles per unit volume. Notice that the a=—(2m2Np2wlh)w(0) .11

relevant volume to be used for averaging must contain a
large number of radiating dipoléatoms so that the induced (a>0 for resonant attenuating meglia
polarizationP, (t,z) can be represented by a continuum ac- If one introduces the inverse Fourier transform
cording to Eq.(2.2).

The termsu andv, together with a pseudopolarization
are identified as the electric dipole dispersion and absorption
components, respectively, in accord with the following
damped Bloch equatiorsf. Ref. 1%: Eq. (2.9 takes the form

E(t,z)=(l/27r)£o dv E(v,2)expity), (2.12
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E(v,2)=0, (2.13

J
iv+c—+
(IV Caz a(v)

where the terma(v) in the left-hand side of Eq(2.13 is
defined as

a(v)zaf:dt G(t)exd —ivt]

Zaficdy g(p/li(v+y)+11,].  (2.19

Equation(2.13 can then be readily integrated
E(v,z)=E(v,00exd —ivz/ic—a(v)z/c] (2.15

and the SAP solution for the complex pulse envel@héd?2)
is given by the Fourier transform

E('[,z)=(l/27r)J7oc dv E(v,0)exdiv(t—2z/c)—a(v)z/c].
(2.19

Furthermore, the distribution of the atomic frequencies is
assumed to be Lorentzian around the resonant frequency d

viation vy,

g =(Tz/m{1+[(y=y) T3 15" (217

For this particular case from Eq&.14 and (2.17) one
obtains

i v

a(v)= T =1 (2.18
where the total transverse relaxation tiffigis defined as
UT,=1UT,+1/T5 . (2.19
Finally, Eq.(2.16) reduces to
E(t,z)=(1/27-r)f dv E(v,0)
. | 1oz
Xexpiv(t—2z/c)— 5= .

F{ 4 ) 2li—(v+vy1)T2]

(2.20

From EQ.(2.20 a pulse area theorem is easily deduced

ﬁ(z)EJ:dt E(t,z)

_ 1A Y12)Z
2

=6(0)ex;{ (1-iyoTo) |, (2.2)

. 20[T2/C o —0 22
Mlz(ylz)—m[,“u:ﬂlz(hz— )], (2.22

Equations(2.20 and (2.21) immediately reduce to the

corresponding expressions obtained by Cfigpith the ex-
ception that the effect of the resonant frequency detusing

3421

plex pulse envelop&(t,z) in terms of the input pulse Fou-
rier transformE(»,0), when y;,#0. It may be seen that the
complex pulse area is exponentially damped with a decay
constantu,»(y12)/2 and has a linear-dependent phase factor
with a coefficient x(y10) = w15 y12) ¥12To/2. Notice that the
traveling pulse does not necessarily lose energy exponen-
tially (as one will see below

Solution(2.20), which describes the evolution of the SAP
traveling through the resonant medium, can be cast into the
relatively simple formula in such a way that it can be inter-
preted as the convolution of the time-dependent complex en-
velope E(t,0) of the input pulse and the temporal point-
source functionthe Green functiong[t]:

E(t,z)=f dt'E(t',00g[t—2z/c—t'], (2.23
where the temporal point-source functigifit] is given by
the following expression:

J
G(t)y=exd —iyt—t/T,] e {J0[2( 122t12T,) V21O (1)}
(2.29

8]'0[~--] is the Bessel function of the zero ord€¥(t) is the
well-known step function

Furthermore, Eq92.21) and(2.23 will be used to study
the SAP evolution in several cases for typical input pulses
E(t,0) with the temporal bandwidth,,,s namely:

(i) delta-function pulsée 4o(t,0)= EgTpana(t),

(i) Lorentzian pulsSeE e (t,0)=Eq(m) {1+ (t/Tyand’] L
and

(ii ) exponential pulséq,(t,0)=Eexd —t/7,and O(t).

Basically, the most important point is the behavior of the
traveling pulse energy (z)=1/8x=f *..dt|E3(t,z)|. In par-
ticular, we pose the question whether the reduction of the
pulse energy does occur in accord with the usual exponential
law (i.e., Beer's law or if there are effects of the pulse
interaction with the resonant medium, thus leading to an
anomalous deviation from Beer’s law.

Ill. CERTAIN PECULIARITIES OF THE SOLUTIONS

In the case of the &function input pulse
Egen(t,0)=E(7and(t), One readily notices from Eq$2.23
and (2.24 that the evolution of the traveling pulse is de-
scribed by

(i)

Edei(1,2) = Eger(1,0) — Eq Toan®X — i (y12— i/ T2)t ]
12

PI2) 3 [ 2(pas202T) Y0 (T), (3.0

X

2

where the second term on the right-hand side of @Gdl)
yields the medium response related to the temporal point-
source pulsgt=t—2z/c is the retarded time for the pulse
propagation in vacuuml,[---] is the Bessel function of the
first ordey.

Correspondingly, one can obtain the solutions for Lorent-
zian and exponential input pulses. Equatioi@s2l) and

is taken into accouhptand describe the evolution of the com- (2.23 directly yield the following expressions:



F. N. CHUKHOVSKII, U. TEUBNER, AND E. FORSTER

3422

0

s V' "
g 7Y 9,
o8\ /2 a4y 7))o Sy -

Vi 7 2 . .
4 W2
depth /////////////////%;//// depth
4

)
Vi

I
i

////;;j;/;//////////;
7
7 4
/////////////////,/////;///////////l

W

1 .
pulse o\ . jﬁw%,%}ff/// pulseo'% // W
UL e /M
" // depth -8 4 7
7/ / depth

%

7
Y
////f//%%

4,
///’Z?////////M
/

.
-/

\
Y. /
T

&

pulseg 5 /;////%///////// ),
2, . o7 sy )y
8 //////////5///////////////;//////////%{///////// depth pulse o /////////ff/f///fj////////////////ﬁ////////////
time 4 87 4]/ / deptn
8 4 /////////47// A
° time
8

FIG. 1. Time-depth plots of the pulgdimensionless i.e., the
electric-field envelope of an SAP that propagates through a resonant
attenuating medium. The input pulse shape is a Lorentzian@nd FIG. 2. Same as Fig. 1, however for an exponential input pulse.
Toand=1/3T2, (B) Thand™= T2, (©) Than=3T2. The time,t=t—z/c,
and depthz, are measured in units a@f, and the double absorption (iii)

length 2u15, respectively. _ _ _
Eexf(t,2) =Eex(t,0)— Eo(p122/2T,) 20 (1)
t ~
XJ—dt' ex —t"/ Tpana— i (y12—1/To)(1—1")]
0

(3.3

(i)

Eiorer( £,2) = Ejgrer 1,0) — Eqm ™ 1(111,2/2T ) Y2 ~ ~
oo X (T-t)) Y232 paz(T-t')/2T,] 1.

The evolution of Lorentzian and exponential pulses

t ’ ’ 271-1
x Jimdt (14t Thand ] E(t,z) which travel through a resonant medium attenuator
(i.e., a>0) are shown in Figs. 1 and 2 for different temporal
. . i bandwidths m,,,q- FOr simplicity it is assumed that the reso-
XX~ (v 1T (1= 1)] nant frequency detuning,,=0. It is seen that such pulses, in
- - general, oscillate due to the behavior of the temporal point-
X (t=t") Y2 {2[ popz(t—1')12T,143, source functionsee Eq.(2.23] and these oscillations are
explicitly stronger when,,,<T,. In the limit as7,,,q00€es

(3.2 to zero the input pulse becomessdunction and Eqs(3.2)
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FIG. 3. Logarithm of the energy, Ih{(2)], for Lorentzian input FIG. 4. Same as Fig. 3, however for an exponential input pulse.
pulses versus the deptifor the same values of the tempolkand-
width 7,40 @nd the case$a)—(c) as for Fig. 1. The deptlz is -
measured in units of the absorption length. The straigh{solid) X f dv exp{— wi v)ZH(1+ VZTgand)'

line corresponds to Beer’s law.
(3.8

and (3.3 transforms into Eq(3.1). Notice that the general
feature of all solutiongi)—(iii ) is the first term on the right- In the case of large valuég.,,z>1) and a temporal band-
hand sides of Eqg3.1), (3.2), and(3.3), which is the same Wwidth 7,,,40f the same order as the medium lifetiffig, the
as the input pulse shapg(t,0) and evolves in time by a asymptotic energy behavior of the traveling pulses follows
simple translation—t=t—z/c. directly from Eqgs.(3.7) and(3.8) and thus

With  the definition of the pulse energy
U(z)=1/8x[ “ .dt|E2(t,z)| and Egs.(2.20 and(2.22 one

directly obtains (if)
- U orer( z)~U Iorer{o)2Tband/T2K0[4(MlzszanJZT2) 1/2]
V(@)= (4”)_2f _AVEA Olexp = v+ 712)2) = Ulored O)(712) Y Ty T2) (112 Tpand2T2)
(3.4 X exf — 4( 12 7hand2T2) V2, (3.9

in terms of the product of the Fourier transform of the input . -~ _
envelopeE(r,0) and the factor exp- u,»(v+ 7,5} integrated ~ (Ko[-+-] is the modified Bessel function of zero orgler

over an entirey region.
Correspondingly, the integrand&?(»,0)| in Eq. (3.4 (ii)
have the following form: _ 1 -1 —2.-2
(i) for the Lorentzian input pulse, Vel 2)~Uaxd O “ToTbangt122 * (3.10
) - The energy of Lorentzian and exponential input pulses in
| Ejorer ¥:0)| = E 7hana €XH — 2| | Tpand, (3.5  a resonant medium decreases with respect to €@. and
(3.10. The attenuation is relatively loffor example, in the
(iii) for the exponential input pulse, case of the exponential input pulse the eneltdiy,(z) is
decreasing ag;2z 2] and strongly differs from Beer’s law,
|E2f .0 = Ed mhand (1+ 1275500 (3.6  according to whichJ(2) is decreasing as ekpu,;2), i.e.,
for the absorption of a quasimonochromatic x-ray radiation
Then, from Eq.(3.4) it follows (for simplicity v;,=0) with wavelengthi,,.
The effect of the low attenuation of the traveling pulse
(ii) can be understood on the basis of Crisp’s argunitintiefly,
during the SAP propagation the resonant medium “eats” the
Ujorern 2) = Uorer 0) Thand central frequenciepy|<1/T, of the input pulse spectrumiy
confined by 1#,.,q The spectrum of the traveling x-ray
* _ pulse begins to resemble the superposition of two quasimo-
X f_mdv expt = 2{ | Toana— p12( )2}, nochromatic beams far off resonance, and, thus, they are

weakly absorbed and provide temporal bdate Figs. 1, 2
(37 \which become more rapid when the pulse enters into a reso-
nant medium.
(iii) Plots of the logarithm of the pulse energy, Un(z)], ver-
sus the medium depthand for comparison, the correspond-
Uexg2)=Uexd 0) () ™ Thang ing values for Beer’s law are displayed in Figs. 3 and 4. The
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temporal bandwidthr,,.4 (in units T,) is given in the same 0.2 —t . : . —
values as in Figs. 1 and 2. It is seen that in the case when the AlIX
temporal bandwidthy,,,4is smaller than the medium lifetime ~ }p----"""73 410
T,, there are large deviations from the Beer's law and the L AlX 1
pulse does not vanish over many “resonant” absorption
lengthsui4.

2p2-2pad

IV. CONCLUSIONS AND DISCUSSION

U(@®) [arb.units]

So far special attention has been paid to illustrate the
theoretical approach which allows one to construct a general
solution for an arbitrary x-ray input pulse in the SAP ap-
proximation and reveal some features of its propagation

through a resonant attenuating medium. Once this is done, A [A]
everything else follows from Eq$2.21), (2.23), and(3.4) to
describe the shape and depth structure of the envélfipe) FIG. 5. Al x-ray line spectrumsolid ling in the soft x-ray

and energyJ(z) for the ultrashort x-ray SAP, respectively. region produced by a 500 fs laser puldaser intensity 18

For the rest of this section the relevance of the previousyv/cn?). The Bremsstrahlungcontinuum (backgroundl is sub-

calculations to experiments will be discussed. tracted. The number of photons in the x-ray lines is of the order of
In the following the ultrashort x-ray radiation from an 10'°-10" photons per line per shot inm2srad. The carbon absorp-

ULPP can be regarded as the SAP. If such an x-ray pulston coefficient(broken ling is taken from Ref. 22.

propagates through the resonant medi(arsolid foil), the

effect of the reduced energy loss is expected to be obsenGorrespondingly, the input pulse ar&0) is of order of

able, when the temporal bandwidt,,qis smaller than the 1073<1.

medium lifetimeT,. It is worth noting that in the discussed case, the partial
A possible experimental scheme may be the following.“resonant” absorption length.;+=0.090 um [equal to the

The ULPP emits a broadband x-ray spectrum and the desidifference between above and below the edgg of(\,) in

able x-ray line is imaged onto a sample by means of a pinFig. 5], whereas the rest is “nonresonant” absorption length

hole transmission grating spectromet@GS) or a grazing  u,e.=2.4 um, which is much larger thap,;. Thus, under

incidence spectrometésee, e.g., Refs. 4 and Riwhereas the given conditions for a carbon solid foil with a thickness

all other parts of the spectrum are blocked. The detectoup to 2um, the effect of the reduced energy loss of the x-ray

(e.g., a CCD camejdor the observation of the transmitted pulse is expected to be observable.

x-ray line is placed directly behind the sample. The wave- Notice that if there is a detuning between the wavelength

length of interesi, has to be chosen so that it matches the\, (source and the resonant wavelengify, (the medium

two-level transition for the sample atorttee resonant wave- transition ling, calculations can be performed easily with the

length;,), in other wordsA,~\;,. An experimentally mea- above equations and with the substitutjefi Eq. (2.21)]

sured spectrum is presented in Fig. 5, namely the emission

from an ULPP using a solid aluminum target. The absorption

coefficientu(\,) (broken ling for aéé:arbon solid foil as the 12N 12) = 12 Ny)

sample is shown in Fig. 5 as wéfl.Some spectrum lines _

from specific ionization stages of an ULPP are indicated and = 1M1 [1+T5(27C) (N M1 *A 53]

particularly the ?—2p4d line from AlX (i.e., an AP* ion,

A=4.355 nm can be chosen exactly to match the wave- It is also interesting that the x-ray continuum spectrum

length of the carborK, line, for which the experimentally can be used as a SAP. In this case the spectral region of

measured value of,, is 4.355 nnt? The spectral width of interestA\, has to be chosen by a slit in front of the sample,

the 2p?—2p4d line is of the order ofAN,~0.02 nm(see  which is located at a position corresponding to the wave-

Fig. 5 and thus the temporal bandwidty,,y may be esti- length\, of the sample.

mated asq, .\ 2/ (AN c)~3 fs, much shorter than the typi- Another example concerning the effect of the reduced en-

cal value of the x-ray pulse duration timg, which is of the ergy loss is an x-ray SAP from an ULPP with theKa|

order of 5—-40 ps:® Furthermore n,,4is shorter tharil, of  emission line as sourtand a solid Al foil as the sample. In

the C K, line being estimated as T,=(r,; this case the A{, line emitted and the A, absorption line

+ Tadged = Tauger=10 TS (Tiaq, Tauger IS the timewidth due to  have, of course, exactly the same wavelengths,

the radiation and Auger electron emission, respectydly =\;,=0.8339 nm, and estimates, like those above, show that

i.e., To=37yang- the effect of the reduced energy loss should be observable as
The intensity of the input pulse, i.e., th@2-2p4d line  well.

(and the corresponding amplitude of the electric field at the As shown in Sec. Il the effect of envelope reshaping

sample positio)y evidently depends on the experimental when the x-ray SAP propagates through the resonant attenu-

scheme. In the discussed case and a typical experimentating medium occurs as weltf. Figs. 1, 2. However, at the

geometry (e.g., typical target-TGS and TGS-sample dis-present time its observation with a time resolution on the

tances are about 0.5)rthe electric field at the sample posi- femtosecond scale appears evidently to be rather compli-

tion may be estimated to be of the order of 50—100 V/cmcated, because time-resolved x-ray pulse measurements pos-
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sess a temporal resolution not better than 1-2 ps. On thBremsstrahlungadiation with 7~ 7,,,4,2° and the condition
other hand, the envelope reshaping effect may be hidden<T, possibly may be realized.

since the pulse duration timg is much larger than the tem-
poral bandwidthr,ng.

However, this obstacle can be removed, if, for instance,

suprathermal electrons generated by an ULREf. 25 are
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