
PHYSICAL REVIEW B 1 FEBRUARY 1997-IVOLUME 55, NUMBER 5
Flux noise in high-temperature superconductors
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Spontaneously created vortex-antivortex pairs are the predominant source of flux noise in high-temperature
superconductors. In principle, flux noise measurements allow to check theoretical predictions for both the
distribution of vortex-pair sizes and for the vortex diffusivity. In this paper the flux-noise power spectrum is
calculated for the highly anisotropic high-temperature superconductor Bi2Sr2CaCu2O81d , both for bulk crys-
tals and for ultrathin films. The spectrum is basically given by the Fourier transform of the temporal magnetic-
field correlation function. We start from a Berezinskii-Kosterlitz-Thouless-type theory and incorporate vortex
diffusion, intrapair vortex interaction, and annihilation of pairs by means of a Fokker-Planck equation to
determine the noise spectrum below and above the superconducting transition temperature. We find white noise
at low frequenciesv and a spectrum proportional to 1/v3/2 at high frequencies. The crossover frequency
between these regimes strongly depends on temperature. The results are compared with earlier results of
computer simulations.@S0163-1829~97!07705-9#
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I. INTRODUCTION

It is well known that the layered structure of cuprate hig
temperature superconductors~HTSC’s! leads to enhanced
two-dimensional fluctuations. These fluctuations are pa
due to spontaneously created pancake vortex pairs in the
perconducting CuO2 layers. There are several attempts1 to
describe these vortices starting from the Berezins
Kosterlitz-Thouless~BKT! renormalization group theory.2

These approaches differ in their predictions so that exp
ments are needed to decide between them.

Most experiments designed to test the predictions
BKT-type theories indirectly measure the temperature
pendence of the renormalized interaction. This quantity
be obtained from the exponenta of the nonlinear current-
voltage characteristicsV}I a.3,4 A second approach is to
measure the linear resistivity aboveTc , which is related to
the superconducting correlation length. It has been sho
however, that the derivation of the resistivity within th
framework of BKT theory is at best only valid in a narro
temperature range, which is probably inaccessi
experimentally.5 Thus, most of our experimental knowledg
about vortex pair fluctuations is based on measurement
the temperature dependence of just one quantity. Alterna
approaches would be very welcome.

Apart from the renormalized interaction and the corre
tion length, BKT-type theories also predict the temperatu
and size-dependent fugacity of pairs and, consequently,
distribution of pair sizes and the total pair density—at le
below the transition temperature. A generalized approa6

yields quantitative results even aboveTc . It takes care of the
correct counting of overlapping vortex-antivortex pairs a
takes local-field effects in the screened interaction into
count. In this way terms of higher order in the vortex fuga
ity y are introduced into the Kosterlitz recursion relation2

facilitating a description of the vortex system even abo
Tc .

Only few experiments sensitive to the pair density ha
been performed, most of them on magnetic-flux noise. In
550163-1829/97/55~5!/3241~8!/$10.00
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absence of an external magnetic field, the flux at the surf
of an HTSC sample is due to the vortices in the bulk. T
flux is noisy since these vortices perform a diffusive motio
carrying their magnetic field with them. Only few of thes
experiments have been done on HTSC’s, mostly on b
YBa2Cu3O61d ~Y-123!.7 However, BKT-type theories and
hence the approach presented here are probably not a
cable to Y-123 since its anisotropy is too small. There
also noise measurements on Josephson-junction arr8

These arrays are discrete systems with a relatively large
tice constant, for which the continuum approach presen
below is not suitable.

Rogerset al.9 perform experiments on very thin films o
Bi-2212 in the absence of an external magnetic field.~Ap-
parently experiments on bulk single crystals of Bi-2212 ha
not been performed yet.! The authors find a flux-noise spec
trum following av23/2 law for frequenciesv*vc , where
the characteristic frequencyvc strongly increases with tem
perature.

In this paper we determine the effect of vortex-pair flu
tuations in both bulk HTSC’s and ultrathin films~containing
one CuO2 layer! on flux noise. To be specific, we consid
the highly anisotropic compound Bi2Sr2CaCu2O81d ~Bi-
2212! in a vanishing external magnetic field under the a
sumption that the superconducting layers are coupled o
weakly so that the dynamics of the vortices in one layer
independent of that in the other layers. We further assum
large density of similar pinning centers. We will find that th
spectral density of flux noise is governed by the tempo
magnetic-field correlation function. Interestingly, the sam
correlation function also governs the contribution of vorte
pair fluctuations to nuclear-spin relaxation,10,11 albeit at
much higher frequencies.

Ambegaokaret al.12 employ a Fokker-Planck equation t
obtain the linear response of a superfluid film to substr
oscillations. In this equation the authors include the inter
tion between vortices within the same pair. Similarly, w
also start from a Fokker-Planck equation. However, we so
this equation to obtain the full space- and time-depend
3241 © 1997 The American Physical Society
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3242 55CARSTEN TIMM
vortex correlations needed for the calculation of t
magnetic-field correlation function.

A similar vortex system is studied by Houlriket al.13

They derive a relation between the flux-noise power sp
trum and the dissipation due to the vortices described b
dielectric constante. This relation is valid in the limiting
case of alarge pick-up coil, i.e., for the flux through a larg
area. Houlrik et al.13 perform computer simulations on
generalized two-dimensional, discreteXYmodel14 to obtain
e. The mentioned relation is employed to get the noise sp
trum. It falls off as 1/v2 at very high frequenciesv and
shows a 1/v3/2 dependence for smallerv. Thev23/2 power
law is in agreement with Minnhagen’s phenomenologi
approach.15 In the present paper results for a continuous tw
dimensional Coulomb gas model are obtained by direct
culation as opposed to simulations. Furthermore, we cons
the opposite limiting case of asmallpick-up coil.

The present paper is organized as follows: In Sec. II
define the flux noise power spectrum and express it in te
of a magnetic-field correlation function. In Sec. III w
present a model which enables us to calculate this func
and in Sec. IV we discuss our results.

II. THE FLUX NOISE POWER SPECTRUM

We have the following setup in mind: The small pick-u
coil of a superconducting quantum interference dev
~SQUID! magnetometer is placed at the surface of a la
HTSC single crystal or of an extended one-unit-cell-th
film. For epitactically grown samples, the most natural w
to mount the input coil is on a$001% (ab) plane, sensitive to
the field perpendicular to the layers. In the following w
restrict ourselves to this case. The flux signal is measure
the absence of any external field or driving force. The sp
trum is then obtained by Fourier transformation.

The flux-noise power spectrumSf is given by the
Wiener-Khinchin theorem,16

Sf~v!5
2

pE0
`

dtf~ t !f~0!cosvt. ~1!

Here,f(t) is the flux through the effective areaAeff of the
input coil. If the diameter of the effective area is smaller th
the typical length scale of magnetic field changes,lab , the
field is approximately uniform over the areaAeff , and we can
write

Sf~v!5
2

p
Aeff
2 E

0

`

dtk̃zz~ t !cosvt[A2

p
Aeff
2 k̃zz~v!. ~2!

We have thus reduced the problem to the determination
the Fourier transform of the magnetic-field correlation fun
tion

k̃zz~ t !5h0,z~r ,t !h0,z~r ,0!, ~3!

wherehn,z(r ,t) is thez component of the total magnetic fiel
at the pointr in layern at the timet.
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III. MODEL

A. General considerations

In this section we present a model for the time-depend
local magnetic field in a layered superconductor in the
sence of an external field. Results for a single layer are t
obtained by means of a straightforward generalization.
assume that the Josephson coupling between the supe
ducting layers can be neglected as far as the dynamic
pancake vortices is concerned. Then the local field is du
spontaneously created pancake vortices in the layers. We
sume that there areN vortices andN antivortices in each
layer at any time, thus neglecting fluctuations of the vor
number. This is justified since we are only interested in
thermodynamic limit.

We decompose the vortex system into the smallest p
sible vortex-antivortex pairs, using the enumeration alg
rithm given by Halperin,17 i.e., we count the vortex and th
antivortex with the smallest separation as a pair and t
repeat this step for the remaining vortices and antivortic
Let Hn(r ) be the magnetic field of a single vortex situated
the origin in layer zero measured at the pointr in the nth
layer. Here, we only need thez component of the field. It is
given by18

Hn,z~r !5
f0s

4plab
2 Ar 21n2s2

expS 2
Ar 21n2s2

lab
D , ~4!

wheref0 is the superconducting flux quantum ands is the
interlayer spacing. This expression holds for an infinite sta
of superconducting layers. The field differs from this res
outside the crystal, where it is not screened. However, if
pick-up coil is placed close to the surface the differen
should be negligible. The two-dimensional symmetric Fo
rier transform of Eq.~4! is

Hn,z~k!5
f0s

4plab
2

1

Ak21lab
22

exp~2unusAk21lab
22! ~5!

For now we only utilize the fact that the field of an antivo
tex is just the negative ofHn(r ). The fields of the vortices
and antivortices are superposed to obtain the total magn
field hn(r ,t), which depends on time only through the pos
tions of the vortices and antivortices.

We are interested in the correlation functionk̃zz(t) as
given by Eq.~3!. The total magnetic field in layer zero is

h0~r ,t !5 (
n51

`

(
n51

N

~Hn@r2r2n,n1~ t !#2Hn@r2r2n,n2~ t !# !,

~6!

wherern,n1(t) @rn,n2(t)# is the position of the vortex~anti-
vortex! of the nth pair in layern at the timet. We now
assume that interpair correlations are negligible as comp
with intrapair correlations. We keep the correlations betwe
the fields of the vortex and the antivortex of the same p
however. This approximation is justified if the typical pa
size is small as compared with the average distance betw
neighboring pairs. Under the same condition the~extended!



e
he

ir

1

h
e-

nd
th
on

t-
di-
w
n

nt
an
t
tio
re
s

th

n-

e
y of
for
ly

ap-
ry

t

t

ve

t
rm
f-
tion

n

x-

tral
al
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BKT theory6 is applicable. If we further assume diffusiv
dynamics we can write down the following ansatz for t
correlation function:10

k̃zz~ t !5
2N

F (
n51

` E d2r18 d
2r28 d

2r1d
2r2

3@Hn,z~r2r18 !Hn,z~r2r1!2Hn,z~r2r18 !

3Hn,z~r2r2!#P~r18 ,r28 ;r1 ,r2 ;t ! f ~r12r2!.

~7!

Here, f (r ) is the normalized distribution function of the pa
separation vectorr5r12r2 . We obtain this function nu-
merically from the extended BKT theory of Refs. 6 and 1
For our calculations we use an approximate form off (r ),
which incorporates the essential physics, cf. Sec. III C. T
diffusive motion of the pairs is described by the tim
evolution kernel or diffusion function P:
P(r18 ,r28 ;r1 ,r2 ;t)d2r18 d

2r28 is the probability of finding
the vortex of a given pair in the area elementd2r18 about
r18 and the antivortex of the same pair ind2r28 aboutr28 at
the time t provided that the vortex was atr1 and the anti-
vortex at r2 at the time zero. The indicesn and n of the
vortex positions have been omitted in Eq.~7! since we are
dealing with one representative pair.

B. The diffusion function

It may be instructive to turn briefly to the case of unbou
pairs. In this case the vortices diffuse independently and
diffusion function separates into a product of free diffusi
functions for the two partners of the pair,

P~r18 ,r28 ;r1 ,r2 ;t !5
1

4pDt
expS 2

ur18 2r1u2

4Dt D
3

1

4pDt
expS 2

ur28 2r2u2

4Dt D , ~8!

whereD is the diffusion constant of a free vortex. By rewri
ing Eq. ~8! in terms of center-of-mass and relative coor
nates, we can see that the center of mass diffuses freely
the diffusion constantDCM5D/2, whereas the separatio
vector diffuses withD rel52D.

Now we wish to take two important effects into accou
namely the interaction between the two partners of a pair
the recombination of pairs. The latter effect is expected
destroy the correlation on the time scale of the recombina
time. The center of mass of the pair should perform a f
diffusion. The time-evolution kernel can then be written a

PSR81
r 8
2
,R82

r 8
2
;R1

r

2
,R2

r

2
;t D

5
1

2pDt
expS 2

uR82Ru2

2Dt DPrel~r 8,r ;t !. ~9!

The task at hand is to determine the time evolution of
separation vector,Prel(r 8,r ;t).
.
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To obtainPrel we solve a Fokker-Planck equation contai
ing the intrapair interactionV.12 The vortex-antivortex inter-
action is given by2

V~r !5E
r0

r

dr8
q2

e~r 8!r 8
. ~10!

For most pairs the dielectric constante(r ) is close to unity6

so that we may replaceq2/e by q2 and write
V(r )'q2ln(r/r0). The error thereby incurred turns out to b
small as compared with errors due to, e.g., the uncertaint
the diffusion constant. Our approximation is best justified
small pairs, for which the interaction is screened on
weakly. For temperatures significantly aboveTc many large
pairs with strongly screened interaction exist and the
proximation breaks down, while the extended BKT theo
also becomes invalid.

If the mobility and diffusivity are isotropic and constan
in space and time, the diffusion~Fokker-Planck! equation in
the presence of a potentialV reads16

]Prel

]t
5m relPrelDV1m rel~“V!•“Prel1D relDPrel , ~11!

where the mobilitym rel is related to the diffusion constan
through the Einstein relationm rel5D rel /kBT. The initial con-
dition is Prel(r ,r0 ;0)5d(r2r0). Inserting the logarithmic
potential we find

]Prel

]t
52pm relq

2d~r !Prel1m relq
2
r

r 2
•“Prel1D relDPrel .

~12!

The first term on the right-hand side contains ad function.
This term yields a positive contribution to the time derivati
only atr50. Therefore, it causes ad-function term to appear
in P at r50. Such a contribution does not affectP for r
Þ0. Since ‘‘pairs’’ with r50 are recombined and do no
contribute to the magnetic field, we may omit the first te
in Eq. ~12!. After introduction of polar coordinates, the di
fusion equation can be solved by means of a separa
ansatz,11

Prel~r 8,r ;t !5
1

4pD relt
S r 8r D g

expS 2
r 821r 2

4D relt
D

3 (
m52`

`

eim~w82w!IAg21m2S rr 8

2D relt
D , ~13!

where

g5
kBT2q2

2kBT
~14!

andI a is a modified Bessel function. The full time-evolutio
kernel is obtained by inserting the solution forPrel into Eq.
~9!.

For t50 the diffusion functionPrel is normalized to unity
by construction. At later times more and more weight is e
pected to accumulate in thed term atr50 while the overall
norm remains constant. The weight outside of the cen
singularity is obtained by integration over two-dimension
space,
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uuPreluu5
g̃S 2g,

r 2

4D relt
D

G~2g!
, ~15!

where

g̃~a,x![E
0

x

dte2tta21 ~16!

is the incompleteg function.19

The expression~15! indeed approaches unity fort→0,
but decreases monotonically with time and goes to z
for t→`. In particular, it behaves asuuPreluu}tg for large t
~note thatg<23/2). In Fig. 1 the weightuuPreluu is depicted
as a function of time for various temperatures. The ti
is given in units of r 2/4m relq

2 so that the curves ar
invariant under change ofm rel . The mobility m rel is kept
constant.

As shown in Fig. 1, there is a plateau inuuPreluu for small
times and a sharp drop in the vicinity of anannihilation time
ta5r 2/4m relq

2. This is the typical time the separation vect
needs to diffuse from its initial valuer to zero. The curve
uuPreluu(t) is smeared out at higher temperatures. If the se
ration vector assumes the valuer 850, the pair is trapped by
the singularity. Then the magnetic fields cancel exactly a
the pair has annihilated. For low temperatures the pairs t
to creep ‘‘downhill’’ into the potential well until they anni
hilate after a time of the order ofta . At higher temperatures
the diffusive motion is generally faster so that thefirst pairs
recombine earlier, but many pairs first start to grow and
combine later.

Note that pairs are created at the same rate as they
destroyed. However, newly created pairs do not contribut
the correlation function since their positions are not cor
lated with the pairs still existing or already destroyed.

FIG. 1. The weightuuPreluu of the diffusion function outside the
central singularity as a function of time for temperatur
kBT/q

250.05,0.1,0.15,0.2,0.25~the steepest curve corresponds
kBT/q

250.05). Time is measured in units ofr 2/4m relq
2.
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C. Distribution of pair sizes

Apart from the diffusion function, we also need to kno
the distribution function of the separation vector,f (r ), to
calculate the correlation function. Unfortunately the pair s
distribution is known only numerically.

In the direction parallel to the layers the magnetic field
a vortex changes on a length scale given by the penetra
depthlab . Thus, the fields of a vortex and an antivortex wi
a separation much smaller thanlab almost cancel each othe
These small pairs do not contribute significantly to the c
relation function. We utilize this observation by approxima
ing the pair size distribution by an analytical expressi
which becomes exact for large pairs. The pair size distri
tion is intimately related to the pair fugacityy2 of BKT
theory,f (r )5y2(r )/r 4. The modified Kosterlitz recursion re
lations of the extended BKT theory6,11predict thaty2 and the
renormalized interaction described by the stiffness cons
K approach a finite, temperature-dependent fixed po
y2(`), K(`) for large length scales. Hence, we can solve
recursion relations close to the appropriate fixed point
obtain the leading behavior of the fugacity, and thus of
pair size distributionf (r ), at large length scales. We find th
f (r )}1/r 2z14 with

z5221pK~`!12p2y2~`!. ~17!

From Ref. 6 we see that the exponentz vanishes forT>Tc
and is positive and, to leading order, proportional
ATc2T belowTc . Details may be found in Ref. 11.

A reasonable approximation for the pair size distributi
function is

f ~r !}
12~r /r 0!

2

12~r /r 0!
2z16 . ~18!

This function shows the correct behavior for larger and does
not introduce irrelevant problems at smallr . Since BKT
theory neglects pairs of sizer,r 0, they are not counted in
the total densityN/F. The correct normalized distribution
then reads

f ~r !5
2z16

2pr 0
2

1

C@122/~2z16!#2C@124/~2z16!#

3
12~r /r 0!

2

12~r /r 0!
2z16 , ~19!

whereC(x)5G8(x)/G(x) is the digamma function.19

D. Correlation functions

Now we have all ingredients to calculate the correlati
function k̃zz. Equation~7! can be rewritten as
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k̃zz~ t !5
2N

F (
n51

` E d2R8d2r 8d2Rd2r FHn,zSR81
r 8
2 DHn,zSR1

r

2D2Hn,zSR81
r 8
2 DHn,zSR2

r

2D G
3PCM

~0! ~R82R;t !Prel~r 8,r ;t ! f ~r !, ~20!

wherePCM
(0) is the free diffusion function of the center of mass. To make this expression tractable numerically, we h

analytically evaluate as many integrals as possible. As noted above we need the temporal Fourier transform of the c
function. WithPrel from Eq. ~13! we get, as shown in Ref. 11,

k̃zz~v!5
2N

F

8A2p

D rel
E d2k(

n51

`

uHn,z~k!u2E
0

`

drr 12g f ~r ! (
m51,m odd

`

JmS kr2 D E
0

`

dr8r 811gJmS kr82 D
3ReIAg21m2SAk2

4
1 i

v

D rel
r,DKAg21m2SAk2

4
1 i

v

D rel
r.D , ~21!

wherer,5min(r,r8) andr.5max(r,r8). Taking into account the special form of the vortex field as given by Eq.~5!, summing
uHn,zu2 over the layers, and performing the integral over the polar angle ofk we get

k̃zz~v!5
2N

F

8A2p

D rel

f0
2s2

8plab
4 E

0

` dkk

k21lab
22

1

exp~2sAk21lab
22!21

E
0

`

drr 12g f ~r ! (
m51,m odd

`

JmS kr2 D E
0

`

dr8r 811gJmS kr82 D
3ReIAg21m2SAk2

4
1 i

v

D rel
r,DKAg21m2SAk2

4
1 i

v

D rel
r.D . ~22!
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To describe a single layer we just have to replace the s
over n by one term, say forn51. This simply leads to the
replacement of 1/„exp@2s(k21lab

22)1/2#21… by 1/exp@2s(k2

1lab
22)1/2# in Eq. ~22!.
Equation~22! suggests thatvc;D rel/4lab

2 is a character-
istic frequency of the correlation function sincev only ap-
pears in the expressionk2/41 iv/D rel and the characteristic
value ofk is 1/lab because of the exponential. In factlab is
the largest length scale in the problem so thatD rel/4lab

2 is the
smallest frequency where we expect the spectrum to s
any feature.

Of the parameters appearing in the rates the nume
value of the diffusion constantD rel52D is least well known.
Here, we briefly discuss vortex diffusion and its relation
pinning. In the absence of pinning the friction coefficienth
of a vortex can be obtained from Bardeen-Stephen theo20

h5f0
2/2pc2j2rn . To take the anisotropy into account, on

replacesj by the coherence length within the layers,jab .
We thus have21 hab5f0

2/2pc2jab
2 rn5eh with the effective

mass ratioe25m/M,1. The mobilitym of a vortex is then
m51/habd, whered is the thickness of the superconductin
layers. The diffusion constant is obtained using the Eins
relation,

D05mkBT5
2pc2jab

2 ~T!rnkBT

f0
2d

. ~23!

If one employs the Bardeen-Stephen formula the diffus
constant in Bi-2212 turns out to be of the order of 1cm2/s,
which seems rather large. However, since Bardeen-Step
theory neither takes into account the discreteness of the
siparticle spectrum in the vortex cores nor the appar
d-wave symmetry of the energy gap, it may well give inco
rect results for HTSC’s. Measurements ofD for HTSC’s do
m
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,
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n
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not present a consistent picture.22 Diffusivities from
1024cm2/s to 102cm2/s have been reported.

A large density of similar pinning centers leads to a th
mally activated behavior of the diffusion constant,23

D5D0expS 2
Ep

kBT
D , ~24!

whereEp is the typical depinning energy. Matters are com
plicated by the observation that the depinning energy
pends on temperature. Rogerset al.9 find the following em-
pirical relation for Bi-2212 films:

Ep~T!'Ep
0S 12

T

Tc0
D ~25!

with Ep
0/kB'1200K. Other experiments also support a lar

value of the activation energy.24 These results only hold on
time scales longer than the typical depinning time. F
shorter times the description by means of a diffusion eq
tion breaks down and has to be replaced by a model exp
itly incorporating discrete hopping.

IV. RESULTS AND DISCUSSION

From Eq. ~2! and the correlation function given by Eq
~22! we immediately obtain the noise spectru
Sf5A2/pAeff

2 k̃zz(v). For the numerical evaluation ofSf we
employ Monte Carlo integration. For each set of parame
and each value of the sum indexm51,3, . . . , wehave per-
formed 3 to 40 Monte Carlo runs with 5000 sample poin
each. We use the distribution of the results of the individ
runs to estimate the numerical error. We find that the su
mands fall off quickly for increasingm so that the term for
m55 is smaller than the error of them51 term. Hence,
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terms form57,9, . . . , areneglected.
We first consider bulk Bi-2212. For the Ginzburg-Land

coherence length and the magnetic penetration depth w
jab(T50)'21.5Å andlab(T50)'2000 Å. To obtain the
lengths at a temperatureT we employ the Ginzburg-Landa
formula lab(T)/lab(0)5jab(T)/jab(0)5ATc0 /(Tc02T),
whereTc0 is the mean-field transition temperature. The de
sity of vortices and the parameterz are determined from the
extended two-dimensional BKT theory of Ref. 6. This
consistent since we have neglected interlayer vortex corr
tions throughout this paper. As noted above, the exten
BKT theory6,11 should be applicable even in a temperatu
interval aboveTc . For higher temperatures, however, a
description in terms of vortex pairs fails and a picture of fr
vortices is more appropriate. In this case we expect the s
trum to fall off as 1/v2. The parameterg is given by Eq.
~14!. For the coupling constantq2 we make the standar
linear approximation25 q25q0

2kB(Tc02T), whereq0
2 can be

obtained from the known values ofkBTc /q
2(Tc)'0.2053,

Tc'84.7K, andTc0'86.8K.26

Since the diffusivity is not well known, we first displa
Sf in arbitrary units at six different temperatures in the
cinity of Tc as a function ofv/D rel in Fig. 2. Exemplary
error bars from Monte-Carlo integration are also shown. D
played in this way the curves do not depend onD rel . The
units of Sf are chosen in such a way thatSf51 for
v/D rel5103 cm22. The absolute value of the noise power
thus not comparable for different temperatures. Becaus
this choice of units, the pair density, which is a simple fac
in Sf , does not enter the calculation. The calculation th
becomes independent ofD rel andN/F, which are the two
most uncertain quantities.

The spectra show a crossover from white noise at
frequencies to a drop at higher frequencies. The drop
found to approach the power lawSf}v23/2 ~the dashed line
in the figure!. The same behavior is found by Houlriket al.13

in their simulations, except at very high frequencies.
v22 drop in that regime, as seen by Houlriket al., is not

FIG. 2. Double-logarithmic plot of the flux-noise power spe
trum for a c-axis oriented Bi-2212 bulk single crystal a
T584.2,84.5,84.6,84.7,85.2,85.7 K~from top to bottom!. The
critical temperature isTc584.7 K. The dashed line corresponds
the power lawSf}v23/2. Exemplary error bars are also shown.
set
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found. However, we cannot investigate higher frequenc
since the numerical errors start to increase rapidly. Si
higher frequencies correspond to shorter probed length sc
the vortices should eventually act as free particles, leadin
a v22 power law.

The two frequency regimes of white noise and av23/2

power law are separated by a characteristic value
v/D rel . Just belowTc , this characteristic value strongly de
creases with increasing temperature, whereas the temper
dependence is weaker forT>Tc . Since the only quantity in
our calculations that shows a similar behavior is the ex
nentz of the distribution functionf , the main source of the
temperature dependence ofvc has to bez. A more rapid
drop of f (r ), corresponding to smaller average pair siz
leads to shorter recombination times and thus to higher c
acteristic frequencies. In this way measurements ofSf(v)
probe the distribution of pair sizes. ForT*Tc the character-
istic frequency is of the order of 107 cm223D rel , corre-
sponding to a characteristic length 331024 cm, which is
indeed of the order oflab(Tc). ~Note thatlab diverges at
Tc0.Tc .)

To be able to compare the flux noise at different tempe
tures, we have to take the temperature dependence of
the prefactor ofSf and the diffusion constantD rel into ac-
count. As a result we show the absolute noise power for b
Bi-2212 at constant frequency as a function of temperatur
Fig. 3. For any temperature, the value ofv/D rel is fixed by
the requirement thatv/D rel5107 cm22 at T5Tc , together
with the known temperature dependence ofD rel , cf. Eqs.
~24! and~25!. The noise strongly increases with temperatu
which we mainly attribute to the temperature-dependence
the vortex density 2N/F. The density increases approx
mately exponentially as more and more pairs are therm
excited.6 Additionally, there is a kink atTc , which should be
the result of the kink in the exponentz. Since flux noise is
dominated by large pairs, the increasing exponentz below
Tc leads to an additional reduction of the noise. The char
teristic form ofSf(T) shown in Fig. 3 can serve as an ind
cation of a BKT-type transition.

With the diffusion constantD determined from Bardeen

FIG. 3. The flux noise power for ac-axis oriented Bi-2212
crystal as a function of temperature at fixed frequency. The e
bars from Monte Carlo integration are also shown.
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Stephen theory,20 the characteristic frequency lies outside th
experimentally accessible frequency range.7 We have argued
above, however, that Bardeen-Stephen theory may be un
plicable to HTSC’s. Turning the argument around, one cou
determineD rel from experimental spectra. Hence, exper
ments on bulk samples close toTc are called for. Voss and
Clarke27 argue that a spectrum withSf}1/v3/2 is expected
for v*2D/Aeff due to diffusion of vortices out of the
sampled area. Since we consider the case of a very sm
pick-up coil, the crossover to 1/v3/2 is expected to take place
at rather high frequencies. Thus the high crossover frequ
cies may be the result of our assumption of a small coil.

We now turn to ultrathin films of Bi-2212. We use th
same parameters as for bulk Bi-2212 with the exception
the BKT temperature, which we choose asTc'31K to allow
comparison with the experiments by Rogerset al.9 Figure 4
shows the flux noise spectrum of a film at three differe
temperatures. The units are chosen as before. Again,
spectra show white noise at low frequencies and a drop
higher frequencies. The spectrum does not follow av23/2

power law in the frequency range considered here. We
convergence of Monte Carlo data precludes calculations
higher frequencies. However, we have no reason to do
that v23/2 behavior is eventually reached. The qualitativ
shape of the spectra agrees with Ref. 9.

The crossover frequency is again found to decrease w
temperature, consistent with our picture of larger and larg
pairs with increasing temperature, which take longer to
combine. This result is in contradiction to the experiments
Rogerset al.9 and the simulations of Houlriket al.,13 who
find an increasing crossover frequency. These are results
the opposite limiting case of a large pick-up loop, howeve
The origin of the discrepancy is not yet clear. Note that t
simulations suggest avanishing crossover frequency at
T5Tc , which does not seem to be consistent with expe
ment.

To conclude, we have used a model which is based on
in
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th
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.
e
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assumption of diffusing vortex-antivortex pairs and incorp
rates intrapair interaction and pair annihilation to obtain flu
noise spectra for Bi-2212 single crystals and films. The sp
tra show white noise up to a strongly temperature-depend
crossover frequency and 1/v3/2 noise above. As a function o
temperature, the noise shows a distinct kink at the BKT te
peratureTc . We have shown that flux noise measureme
can yield information about the size distribution of vorte
antivortex pairs and on vortex dynamics, and can be use
an additional probe for a BKT transition.
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FIG. 4. Log-log plot of the flux-noise power spectrum for
ultrathin Bi-2212 film atT528,31,34 K~from top to bottom!. The
critical temperature ifTc531 K. The dashed line corresponds t
Sf}v23/2. Exemplary error bars are shown.
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