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Flux noise in high-temperature superconductors
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Spontaneously created vortex-antivortex pairs are the predominant source of flux noise in high-temperature
superconductors. In principle, flux noise measurements allow to check theoretical predictions for both the
distribution of vortex-pair sizes and for the vortex diffusivity. In this paper the flux-noise power spectrum is
calculated for the highly anisotropic high-temperature superconduct@rgaCu,Og. 5, both for bulk crys-
tals and for ultrathin films. The spectrum is basically given by the Fourier transform of the temporal magnetic-
field correlation function. We start from a Berezinskii-Kosterlitz-Thouless-type theory and incorporate vortex
diffusion, intrapair vortex interaction, and annihilation of pairs by means of a Fokker-Planck equation to
determine the noise spectrum below and above the superconducting transition temperature. We find white noise
at low frequenciess and a spectrum proportional to«d¥? at high frequencies. The crossover frequency
between these regimes strongly depends on temperature. The results are compared with earlier results of
computer simulationd.S0163-18207)07705-9

[. INTRODUCTION absence of an external magnetic field, the flux at the surface
of an HTSC sample is due to the vortices in the bulk. This
It is well known that the layered structure of cuprate high-flux is noisy since these vortices perform a diffusive motion,
temperature superconducto(slTSC’s) leads to enhanced carrying their magnetic field with them. Only few of these
two-dimensional fluctuations. These fluctuations are partlyexperiments have been done on HTSC'’s, mostly on bulk
due to spontaneously created pancake vortex pairs in the s¥Ba,Cu;04. 5 (Y-123).” However, BKT-type theories and
perconducting Cu@ layers. There are several attenlpts  hence the approach presented here are probably not appli-
describe these vortices starting from the Berezinskii-cable to Y-123 since its anisotropy is too small. There are
Kosterlitz-Thouless(BKT) renormalization group theofy. also noise measurements on Josephson-junction &rrays.
These approaches differ in their predictions so that experiThese arrays are discrete systems with a relatively large lat-
ments are needed to decide between them. tice constant, for which the continuum approach presented
Most experiments designed to test the predictions obelow is not suitable.
BKT-type theories indirectly measure the temperature de- Rogerset al® perform experiments on very thin films of
pendence of the renormalized interaction. This quantity cami-2212 in the absence of an external magnetic fiéfh-
be obtained from the exponent of the nonlinear current- parently experiments on bulk single crystals of Bi-2212 have
voltage characteristic¥/<1*.3>* A second approach is to not been performed y¢tThe authors find a flux-noise spec-
measure the linear resistivity aboWe, which is related to  trum following a w™%? law for frequenciesn=w., where
the superconducting correlation length. It has been showrthe characteristic frequenay, strongly increases with tem-
however, that the derivation of the resistivity within the perature.
framework of BKT theory is at best only valid in a narrow  In this paper we determine the effect of vortex-pair fluc-
temperature range, which is probably inaccessibldguations in both bulk HTSC’s and ultrathin filnisontaining
experimentally’> Thus, most of our experimental knowledge one CuQ, layen on flux noise. To be specific, we consider
about vortex pair fluctuations is based on measurements difie highly anisotropic compound B$r,CaCu,Og, s (Bi-
the temperature dependence of just one quantity. Alternative212 in a vanishing external magnetic field under the as-
approaches would be very welcome. sumption that the superconducting layers are coupled only
Apart from the renormalized interaction and the correla-weakly so that the dynamics of the vortices in one layer is
tion length, BKT-type theories also predict the temperatureindependent of that in the other layers. We further assume a
and size-dependent fugacity of pairs and, consequently, tHarge density of similar pinning centers. We will find that the
distribution of pair sizes and the total pair density—at leasspectral density of flux noise is governed by the temporal
below the transition temperature. A generalized apprdachmagnetic-field correlation function. Interestingly, the same
yields quantitative results even abolg. It takes care of the correlation function also governs the contribution of vortex-
correct counting of overlapping vortex-antivortex pairs andpair fluctuations to nuclear-spin relaxatith'! albeit at
takes local-field effects in the screened interaction into acmuch higher frequencies.
count. In this way terms of higher order in the vortex fugac- Ambegaokaret all? employ a Fokker-Planck equation to
ity y are introduced into the Kosterlitz recursion relatiéns, obtain the linear response of a superfluid film to substrate
facilitating a description of the vortex system even aboveoscillations. In this equation the authors include the interac-
Te. tion between vortices within the same pair. Similarly, we
Only few experiments sensitive to the pair density havealso start from a Fokker-Planck equation. However, we solve
been performed, most of them on magnetic-flux noise. In théhis equation to obtain the full space- and time-dependent

0163-1829/97/5%)/3241(8)/$10.00 55 3241 © 1997 The American Physical Society



3242 CARSTEN TIMM 55

vortex correlations needed for the calculation of the . MODEL
magnetic-field correlation function.

A similar vortex system is studied by Houlrikt a
They derive a relation between the flux-noise power spec- In this section we present a model for the time-dependent
trum and the dissipation due to the vortices described by #cal magnetic field in a layered superconductor in the ab-
dielectric constant. This relation is valid in the limiting sence of an external field. Results for a single layer are then
case of darge pick-up coil, i.e., for the flux through a large obtained by means of a straightforward generalization. We
area. Houlrik et al®® perform computer simulations on a assume that the Josephson coupling between the supercon-
generalized two-dimensional, discreX& modef* to obtain ~ ducting layers can be neglected as far as the dynamics of

€. The mentioned relation is employed to get the noise sped?ancake vortices is concerned. Then the local field is due to
trum. It falls off as 1b? at very high frequencies and spontaneously created pancake vortices in the layers. We as-

shows a 1b%? dependence for smalles. The w %2 power ~ sume that there ardl vortices andN antivortices in each
law is in agreement with Minnhagen’s phenomenologicalldyer at any time, thus neglecting fluctuations of the vortex
approacH-_5 In the present paper results for a continuous tWO.number. This is justified since we are onIy interested in the
dimensional Coulomb gas model are obtained by direct calthermodynamic limit.
culation as opposed to simulations. Furthermore, we consider We decompose the vortex system into the smallest pos-
the opposite limiting case of small pick-up coil. sible vortex-antivortex pairs, using the enumeration algo-
The present paper is organized as follows: In Sec. Il wdithm given by Halperirt! i.e., we count the vortex and the
define the flux noise power spectrum and express it in termantivortex with the smallest separation as a pair and then

|13 A. General considerations

of a magnetic-field correlation function. In Sec. Il we repeat this step for the remaining vortices and antivortices.
present a model which enables us to calculate this functiohet Hn(r) be the magnetic field of a single vortex situated at
and in Sec. IV we discuss our results. the origin in layer zero measured at the painin the nth
layer. Here, we only need ttecomponent of the field. It is
given by®
Il. THE FLUX NOISE POWER SPECTRUM
We have the following setup in mind: The small pick-up He (1) oS 4 Jre+ n252> @
. . . - r=———eX -,
coil of a superconducting quantum interference device n,z 4W?\§bm Nab

(SQUID) magnetometer is placed at the surface of a large

TS shle s or of an extended one el ik unere g i he superconcucting fu quantu ass the
; : ttr? Ut y.?. 0 p b | itive t yinterlayer spacing. This expression holds for an infinite stack
0 mount the input coil is on {0} (ab) plane, sensitive to of superconducting layers. The field differs from this result

the f_|e|d perpendlcula_r to the layers. In_ the _foIIowmg WE sutside the crystal, where it is not screened. However, if the
restrict ourselves to this case. The flux signal is measured 'Bick-up coil is placed close to the surface the difference

:he aps?r?ce Ot‘;taf‘y gxéerr;:al f|¢|dtor drflvmg I;QFCG. The SP€Cshould be negligible. The two-dimensional symmetric Fou-
rum is then obtained by Fourier transformation. rier transform of Eq(4) is

The flux-noise power spectrun$, is given by the
Wiener-Khinchin theorem®

$oS 1 -
H, (k)= ————= — JK2+ N2
n,z( ) 471_)\;) ,—k2+)\a_bzexq |n|S )\ab) (5)

For now we only utilize the fact that the field of an antivor-
tex is just the negative dfi,(r). The fields of the vortices
Here, ¢(t) is the flux through the effective aré®y of the  and antivortices are superposed to obtain the total magnetic
input coil. If the diameter of the effective area is smaller thangje|d h,(r,t), which depends on time only through the posi-
the typical length scale of magnetic field changes,, the  tions of the vortices and antivortices.

field is approximately uniform over the arég, and we can We are interested in the correlation functiéip(t) as

write given by Eq.(3). The total magnetic field in layer zero is

2 (oo
Sylw)= ;fo dte(t) ¢(0)coswt. (1)

2 . 2 .~ N
S¢(w)=;A§ﬁf0 dtk,(t)cosut= \[;Aiﬁkzz(w). 7 ho(r,t)=21 S (HAlr =T s (OT=H[r =1, (D),

=1
(6)
We have thus reduced the problem to the determination of

the Fourier transform of the magnetic-field correlation func-Wherery ,.(t) [rn,,—(t)] is the position of the vortexanti-
tion vortex of the vth pair in layern at the timet. We now

assume that interpair correlations are negligible as compared
— - with intrapair correlations. We keep the correlations between
KzA1) =ho(r,t)ho,(r,0), (3 the fields of the vortex and the antivortex of the same pair,
however. This approximation is justified if the typical pair
whereh,, ,(r,t) is thez component of the total magnetic field size is small as compared with the average distance between
at the pointr in layern at the timet. neighboring pairs. Under the same condition (Betended
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BKT theory’ is applicable. If we further assume diffusive  To obtainP, we solve a Fokker-Planck equation contain-
dynamics we can write down the following ansatz for theing the intrapair interactioW.'? The vortex-antivortex inter-

correlation function action is given by
~ 2N < V(r)=frdr’q—2. (10)
K,At)= ?21 f d2r’ d?r’ d?r ,d? _ o €rr’
, , For most pairs the dielectric constasitr) is close to unit§
X[Hn T =1 )Hn(r=ry) —Hp(r—ry) so that we may replaceq’/e by q? and write
XHuo(r=r ) IP(E, riry ro O (ra—r_). V(r)~g2In(r/ro). The error thereby incurred turns out to be

small as compared with errors due to, e.g., the uncertainty of
(7) the diffusion constant. Our approximation is best justified for
_ _ o ) ~ small pairs, for which the interaction is screened only
Here, f(r) is the normalized distribution function of the pair \eakly. For temperatures significantly abdlgmany large
separation vector=r,—r_. We obtain this function nu- pairs with strongly screened interaction exist and the ap-
merically from the extended BKT theory of Refs. 6 and 11-proximation breaks down, while the extended BKT theory
For our calculations we use an approximate formf@f),  31so becomes invalid.
which incorporates the essential physics, cf. Sec. lll C. The f the mobility and diffusivity are isotropic and constant

diffusive motion of the pairs is described by the time- i, space and time, the diffusidifokker-Planck equation in

evolution kernel or diffusion function P: the presence of a potentisll reads®
P(r v’ ;ro,r_;t)d?r’.d?r” is the probability of finding

the vortex of a given pair in the area elemetit’ about IPrey

r'. and the antivortex of the same pairdAr’ aboutr’ at ot~ MrePreVH Lee(VV) - VPrort Drei Prer, (1)
the timet provided that the vortex was at and the anti-
vortex atr_ at the time zero. The indices and v of the
vortex positions have been omitted in E@) since we are

dealing with one representative pair.

where the mobilityu, is related to the diffusion constant
through the Einstein relation, o= D, /kgT. The initial con-
dition is P(r,rg;0)=8(r—rg). Inserting the logarithmic
potential we find

B. The diffusion function IPql

r
— 2 2
It may be instructive to turn briefly to the case of unbound 9t 2 el O() Prert tred r2 VPrert Dreth Pre-
pairs. In this case the vortices diffuse independently and the (12
diffusion function separates into a product of free diffusionThe first term on the right-hand side containg &unction.
functions for the two partners of the pair, This term yields a positive contribution to the time derivative
only atr=0. Therefore, it causes&function term to appear
o, Irf—r.|? in P at r=0. Such a contribution does not affet for r
P(ri riire roit)=—rexp — — #0. Since “pairs” with r=0 are recombined and do not
contribute to the magnetic field, we may omit the first term
1 l{ |f'_—f—|2) @ in Eq. (12). After introduction of polar coordinates, the dif-

><477[)tex 4Dt fusion equation can be solved by means of a separation
ansatz!
whereD is the diffusion constant of a free vortex. By rewrit-
- - - - 1 r\ r'2+r?
ing Eq. (8) in terms of center-of-mass and relative coordi- p (r',rit)= (_) F{— )
nates, we can see that the center of mass diffuses freely with®" "'~ 4aDt | r 4D et
the diffusion constanDy,=D/2, whereas the separation w0 ,
vector diffuses withD o= 2D. im(e’ — ) _( r )
i . . X e'me —el —, 13
Now we wish to take two important effects into account, m;_m Wy m? 2D ot (13

namely the interaction between the two partners of a pair and h
the recombination of pairs. The latter effect is expected tdV€®
destroy the correlation on the time scale of the recombination keT — a2
. . Bl —0
time. The center of mass of the pair should perform a free y=———
diffusion. The time-evolution kernel can then be written as 2kgT

andl , is a modified Bessel function. The full time-evolution

R’ & r R R+ r R— r t kernel is obtained by inserting the solution fey,, into Eq.
2’ 2 20 2 9).

(14

! !

P

5 Fort=0 the diffusion functiorP, is normalized to unity
1 _|IR'=RI B (1 g by construction. At later times more and more weight is ex-
- 27Dt ex 2Dt rel( 1515 1). ©) pected to accumulate in thterm atr =0 while the overall
norm remains constant. The weight outside of the central
The task at hand is to determine the time evolution of thesingularity is obtained by integration over two-dimensional
separation vectoR ¢ (r',r;t). space,
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. . C. Distribution of pair sizes

Apart from the diffusion function, we also need to know
the distribution function of the separation vectd(r), to
calculate the correlation function. Unfortunately the pair size
distribution is known only numerically.

In the direction parallel to the layers the magnetic field of
a vortex changes on a length scale given by the penetration
depthA . Thus, the fields of a vortex and an antivortex with
a separation much smaller thag, almost cancel each other.
These small pairs do not contribute significantly to the cor-
relation function. We utilize this observation by approximat-
ing the pair size distribution by an analytical expression
which becomes exact for large pairs. The pair size distribu-
} ‘ tion is intimately related to the pair fugacity? of BKT
700 20 40 6.0 theory,f(r)=y?(r)/r*. The modified Kosterlitz recursion re-

H/(F ) lations of the extended BKT thedy! predict thaty? and the
renormalized interaction described by the stiffness constant
K approach a finite, temperature-dependent fixed point
y?(=), K() for large length scales. Hence, we can solve the
recursion relations close to the appropriate fixed point to
obtain the leading behavior of the fugacity, and thus of the
pair size distributiorf(r), at large length scales. We find that

FIG. 1. The weight|P,¢|| of the diffusion function outside the
central singularity as a function of time for temperatures
kBT/q2=0.05,0.1,0.15,0.2,0.26he steepest curve corresponds to
kgT/q%=0.05). Time is measured in units of/4u,e0>.

~ r’ £(r)e1/r2+4 with
AN T
Prel| = et 15
|| rel||_ 1‘*(_,}/) ' ( )
{=—2+ mK(%)+2m2y?(). (17)
where
From Ref. 6 we see that the exponénvanishes folT=T,
and is positive and, to leading order, proportional to
_ X e VT.—T belowT;. Details may be found in Ref. 11.
y(a,x)= Jo dte™'t (16) A reasonable approximation for the pair size distribution
function is
is the incompletey function!®
The expressior(15) indeed approaches unity far—0, 5
but decreases monotonically with time and goes to zero Hrye 1—(r/ro) 19
for t—oe. In particular, it behaves d$Po||>t? for larget 1—(r/rg)%+®:

(note thaty= —3/2). In Fig. 1 the weight|P|| is depicted

as a function of time for various temperatures. The time_ ) )

is given in units of r¥4u,,q? so that the curves are Th|s.funct|on shows the correct behavior for Iargand does

invariant under change Of,q. The mobility s, is kept not introduce |rrelt_evant problems at small Since BKT_

constant. theory neglects pairs of size<r,, they are not counted in
As shown in Fig. 1, there is a plateauliP,| for small ~ the total densityN/F. The correct normalized distribution

times and a sharp drop in the vicinity of annihilation time ~ then reads
Ta="r?l4u.0°. This is the typical time the separation vector

needs to diffuse from its initial value to zero. The curve

[|Pel|(t) is smeared out at higher temperatures. If the sepa- f(r)= 2{+6 1

ration vector assumes the value=0, the pair is trapped by 2mrg W[1-2(2{+6)]-V[1-4/(2{+6)]
the singularity. Then the magnetic fields cancel exactly and

_ 2
the pair has annihilated. For low temperatures the pairs tend % 1=(r/ro) (19
. . . K . A _/v/y \2.16
to creep “downhill” into the potential well until they anni- 1—(rlrg)*

hilate after a time of the order of,. At higher temperatures

the diffusive motion is generally faster so that first pairs o . . .
recombine earlier, but many pairs first start to grow and reyvhere‘lf(x)—l“ (x)/T(x) is the digamma functioff
combine later.

Note that pairs are created at the same rate as they are
destroyed. However, newly created pairs do not contribute to
the correlation function since their positions are not corre- Now we have all ingredients to calculate the correlation
lated with the pairs still existing or already destroyed. functionk,,. Equation(7) can be rewritten as

D. Correlation functions



55 FLUX NOISE IN HIGH-TEMPERATURE SUPERCONDUCTORS 3245

—~ 2N - r’ r ’ r
kzz(t):?nzl f dZR'er’dZRer[Hn,Z R'+§)HM R+ —Hn,Z(R'+§ Hn,Z(R— 5”
X PR =Ry Pre(r', 1,0 f(1), 20)

where P(O) is the free diffusion function of the center of mass. To make this expression tractable numerically, we have to
analyt|cally evaluate as many integrals as possible. As noted above we need the temporal Fourier transform of the correlation
function. With P, from Eg. (13) we get, as shown in Ref. 11,

- 2N 842 . kr) [~ kr’
koA @)= ”f deE |ank>|2f drr=7(r) X Jm(—H dr'r'“%(—)
F Drel m=1,m odd 2 0 2
Rel k o K ke o 21
XRel 2rm2 Z+|Ee|r< JyZrm? Z+I_Drelr> , (21

wherer _=min(r,r') andr . =max(,r’). Taking into account the special form of the vortex field as given by(Bgsumming
|an2|2 over the layers, and performing the integral over the polar anglevoé get

o0

ZZ(w)—ZFN 8[\)/_ il Jx dkk ! J‘drr1 "y > J (g)f dr'r’1t7g (kzr)

rel 87T)\ab k? +)\ab equS\/kz—i-)\ab) 1 m=1m odd
Rel ik e 22
X Rel yzrm vy |Dre|r< i 7 |D—re|r> . (22

To describe a single layer we just have to replace the sumot present a consistent pictuffe. Diffusivities from
overn by one term, say fon=1. This simply leads to the 10 “cm?/s to 1Fcn?/s have been reported.

replacement of 1exd2s(k>+1;2)Y?]—1) by 1/expg2s(k? A large density of similar pinning centers leads to a ther-

+2;9)Y2 in Eq. (22). mally activated behavior of the diffusion constéht,
Equation(22) suggests tha:bc~Dre,/4)\§b is a character- E

istic frequency of the correlation function sinaeonly ap- D=Doex;{ - _P) (24)

pears in the expressickf/4+iw/D,e and the characteristic kgT

value ofk is 1/ 4y because of the exponential. '”Zfagb is whereE, is the typical depinning energy. Matters are com-
the largest length scale in the problem so Day4h;,is the  pjicated by the observation that the depinning energy de-
smallest frequency where we expect the spectrum to ShOWends on temperature. Rogeatsal® find the following em-

any feature. _ pirical relation for Bi-2212 films:
Of the parameters appearing in the rates the numerical

value of the diffusion constam .= 2D is least well known.

Here, we briefly discuss vortex diffusion and its relation to Ep(T)~E8( 1- T_) (25)
pinning. In the absence of pinning the friction coefficient c0

of a vortex can be obtained from Bardeen-Stephen th&ory, with E°/kB~1200K Other experiments also support a large
n= ¢0/2W02§2pn To take the anisotropy into account, one value of the activation enerdy. These results only hold on
replaces¢ by the coherence length within the layegs,, . time scales longer than the typical depinning time. For
We thus hav@ 7,,= ¢3/2mc?£2,p,= en with the effective  shorter times the description by means of a diffusion equa-
mass ratioe?=m/M < 1. The mobility x of a vortex is then tion breaks down and has to be replaced by a model explic-
w=1/7,,d, whered is the thickness of the superconducting itly incorporating discrete hopping.

layers. The diffusion constant is obtained using the Einstein

relation, IV. RESULTS AND DISCUSSION
222 (T) poka T From Eq.(2) and the correlation function given by Eqg.
Do=ukgT= #2d . (23 (22 we immediately obtain the noise spectrum
0

Sy=2ImAZk,{ ). For the numerical evaluation &, we
If one employs the Bardeen-Stephen formula the diffusioremploy Monte Carlo integration. For each set of parameters
constant in Bi-2212 turns out to be of the order of £tsn  and each value of the sum index=1,3,. .., wehave per-
which seems rather large. However, since Bardeen-Stephdarmed 3 to 40 Monte Carlo runs with 5000 sample points
theory neither takes into account the discreteness of the quaach. We use the distribution of the results of the individual
siparticle spectrum in the vortex cores nor the apparentuns to estimate the numerical error. We find that the sum-
d-wave symmetry of the energy gap, it may well give incor-mands fall off quickly for increasingn so that the term for
rect results for HTSC's. Measurementsffor HTSC's do  m=5 is smaller than the error of thea=1 term. Hence,
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FIG. 2. Double-logarithmic plot of the flux-noise power spec-
trum for a c-axis oriented Bi-2212 bulk single crystal at
T=84.2,84.5,84.6,84.7,85.2,85.7 Krom top to bottom. The
critical temperature i¥.=84.7 K. The dashed line corresponds to
the power lawsS,,« %2 Exemplary error bars are also shown.

FIG. 3. The flux noise power for &-axis oriented Bi-2212
crystal as a function of temperature at fixed frequency. The error
bars from Monte Carlo integration are also shown.

found. However, we cannot investigate higher frequencies
since the numerical errors start to increase rapidly. Since
terms form=7,9,. .., areneglected. higher frequencies correspond to shorter probed length scales
We first consider bulk Bi-2212. For the Ginzburg-Landauthe vortices should eventually act as free particles, leading to
coherence length and the magnetic penetration depth we sgtw 2 power law.
£an(T=0)~21.5A and\,,(T=0)~2000 A. To obtain the The two frequency regimes of white noise andva®?
lengths at a temperatuiewe employ the Ginzburg-Landau power law are separated by a characteristic value of
formula A ap(T)/Nap(0)=Eap(T)/ éap(0)= VT o/ (Teo—T), /D, . Just belowT .., this characteristic value strongly de-
whereT, is the mean-field transition temperature. The den-creases with increasing temperature, whereas the temperature
sity of vortices and the parametérare determined from the dependence is weaker fé=T.. Since the only quantity in
extended two-dimensional BKT theory of Ref. 6. This is our calculations that shows a similar behavior is the expo-
consistent since we have neglected interlayer vortex correlarent{ of the distribution functiorf, the main source of the
tions throughout this paper. As noted above, the extendettmperature dependence @f has to bel. A more rapid
BKT theory”! should be applicable even in a temperaturedrop of f(r), corresponding to smaller average pair size,
interval aboveT.. For higher temperatures, however, anyleads to shorter recombination times and thus to higher char-
description in terms of vortex pairs fails and a picture of freeacteristic frequencies. In this way measurementSg(fo)
vortices is more appropriate. In this case we expect the spegrobe the distribution of pair sizes. Fé& T, the character-
trum to fall off as 1b?. The parameter is given by Eq. istic frequency is of the order of 10cm 2xD,, corre-
(14). For the coupling constarg? we make the standard sponding to a characteristic lengthx3a0 # cm, which is
linear approximatiof? qzzqng(Tco—T), wherqu can be indeed of the order ok ,,(T.). (Note that\,, diverges at
obtained from the known values ¢&T./q%(To)~0.2053, T o>T..)
T.~84.7K, andT ,,~86.8K2® To be able to compare the flux noise at different tempera-
Since the diffusivity is not well known, we first display tures, we have to take the temperature dependence of both
S, in arbitrary units at six different temperatures in the vi- the prefactor ofS, and the diffusion constarid into ac-
cinity of T, as a function ofw/D, in Fig. 2. Exemplary count. As a result we show the absolute noise power for bulk
error bars from Monte-Carlo integration are also shown. DisBi-2212 at constant frequency as a function of temperature in
played in this way the curves do not depend®p,. The Fig. 3. For any temperature, the value @fD, is fixed by
units of S, are chosen in such a way th&,=1 for the requirement thab/D=10" cm ? at T=T,, together
w/D,g=10° cm 2. The absolute value of the noise power is with the known temperature dependencelyf,, cf. Egs.
thus not comparable for different temperatures. Because d24) and(25). The noise strongly increases with temperature,
this choice of units, the pair density, which is a simple factorwhich we mainly attribute to the temperature-dependence of
in S,, does not enter the calculation. The calculation thughe vortex density R/F. The density increases approxi-
becomes independent @f, and N/F, which are the two mately exponentially as more and more pairs are thermally
most uncertain quantities. excited® Additionally, there is a kink aT ., which should be
The spectra show a crossover from white noise at lowthe result of the kink in the exponeit Since flux noise is
frequencies to a drop at higher frequencies. The drop islominated by large pairs, the increasing expongtielow
found to approach the power IaS%ocw‘yZ (the dashed line T, leads to an additional reduction of the noise. The charac-
in the figure. The same behavior is found by Houlgk al'®  teristic form ofS,(T) shown in Fig. 3 can serve as an indi-
in their simulations, except at very high frequencies. Acation of a BKT-type transition.
™2 drop in that regime, as seen by Houlsé al, is not With the diffusion constanD determined from Bardeen-
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Stephen theor$? the characteristic frequency lies outside the
experimentally accessible frequency radge have argued
above, however, that Bardeen-Stephen theory may be unap-
plicable to HTSC’s. Turning the argument around, one could
determineD, from experimental spectra. Hence, experi-
ments on bulk samples close Tq are called for. Voss and
Clark€” argue that a spectrum witB, 1/w*? is expected
for w=2D/A.; due to diffusion of vortices out of the
sampled area. Since we consider the case of a very small
pick-up coil, the crossover to @72 is expected to take place
at rather high frequencies. Thus the high crossover frequen-
cies may be the result of our assumption of a small coil. 10
We now turn to ultrathin films of Bi-2212. We use the

same parameters as for bulk Bi-2212 with the exception of ‘ ‘ ,
the BKT temperature, which we chooseTas= 31K to allow 10 10° 10°
comparison with the experiments by Rogetsal® Figure 4 /Dy [em ]
shows the flux noise spectrum of a film at three different .

FIG. 4. Log-log plot of the flux-noise power spectrum for a

tempteratuhres. T;]_(ta unl'_[S arteIChO?en as l_Jefore.dAggln, trlﬁtrathin Bi-2212 film afT=28,31,34 K(from top to bottom. The
Spectra show white noise at low Irequencies and a drop actritical temperature ifT,.=31 K. The dashed line corresponds to

H H —3/2
higher frequencies. The spectrum does not follow & S, w32 Exemplary error bars are shown.

power law in the frequency range considered here. Weak

convergence of Monte Carlo data precludes calculations fogssumption of diffusing vortex-antivortex pairs and incorpo-
higher frequencies. However, we have no reason to doulites intrapair interaction and pair annihilation to obtain flux-
that ™2 behavior is eventually reached. The qualitativengise spectra for Bi-2212 single crystals and films. The spec-
shape of the spectra agrees with Ref. 9. tra show white noise up to a strongly temperature-dependent
The crossover frequency is again found to decrease withrossover frequency andai?? noise above. As a function of
temperature, consistent with our picture of larger and largefemperature, the noise shows a distinct kink at the BKT tem-
pairs with increasing temperature, which take longer to re eratureT,. We have shown that flux noise measurements
combine. This result is in contradiction to the experiments otIc)an yield information about the size distribution of vortex-

9 : : ; 13 : ; .
Rogerset al.” and the simulations of Houlrilet al,™ who  antivortex pairs and on vortex dynamics, and can be used as
find an increasing crossover frequency. These are results f@f, additional probe for a BKT transition.

the opposite limiting case of a large pick-up loop, however.
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