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Interband effects in the c-axis optical conductivity in YBa2Cu3O72d

W. A. Atkinson* and J. P. Carbotte
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 27 August 1996!

The normal state optical conductivity is calculated for a layered metal with two layers per unit cell coupled
through a transverse hopping matrix elementt' . The optical response involves an interband term in addition
to the more familiar intraband term which leads to the usual Drude form. The interband term is only weakly
temperature dependent, even for an inelastic scattering rate which is linear inT. It gives ac-axis response
which extends in frequency over the entire bandwidth, although there can be structure on this energy scale
which reflects details of the electronic structure. In particular, at low energy, thec-axis response can develop
a gap or pseudogap as the temperature is lowered. At high temperature, a Drude response will be seen only if
the intraband transitions, which are of ordert'

4 , become important compared with the interband transitions
which are of ordert'
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I. INTRODUCTION

Models of the high-Tc oxides often start with a single
isolated CuO2 layer. Other structural elements within th
unit cell are usually labeled as charge reservoirs or bar
layers and are ignored. Yet it is precisely the nature of
coupling between the different layers that determinesc-axis
transport properties, which are found to display a rich vari
of behaviors and are often anomalous.1,2 The anomalous na
ture of thec-axis conductivity has been variously interpret
as suggesting that interlayer coupling is an essential piec
the superconducting mechanism,3 that the interlayer coupling
is incoherent due to impurity or phononic scattering4–7 or
thermal fluctuations,8 or that the CuO2 layers are in a non-
Fermi-liquid state.9 In this work, we suggest that thec-axis
optical conductivity in YBa2Cu3O72d ~YBCO72d) can be
explained by proper consideration of the multilayered str
ture of the unit cell.

In consideringc-axis properties, it is important to distin
guish between the coupling between various conducting
ers within a unit cell~which can contain several planes! and
the intercell coupling which could involve some barri
layer. It is this latter coupling that probably governs the s
of the anisotropy observed betweenc-axis1,2,10–12 and
ab-plane properties. On the other hand, the large in-pl
anisotropy betweena andb directions13–17 ~along the CuO
chains! observed in YBCO is related more closely to t
properties within a unit cell. The actual situation is clea
quite complex. For example, the unit cell in YBCO consi
of a bilayer of two CuO2 planes separated by a CuO cha
layer. In addition, the chains are only completed
YBa2Cu3O7 and the effect of oxygen doping on the cha
Fermi surface is not well understood and neither is the p
tition of holes between planes and chains. Because of t
uncertainties, it is necessary, at this stage, to use a simpl
model and to set specific but limited aims.

Having recognized that several distinct transverse h
ping matrix elements come into a complete description of
c-axis properties of the oxides, we will, nevertheless, lim
ourselves here to a model of two layers per unit cell coup
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through a single transverse matrix elementt' . With YBCO
in mind, one of the two layers will be assumed to have
tragonal symmetry and model a CuO2 plane, while the other
will be taken to have orthorhombic symmetry and represe
CuO chain. While this model is admittedly crude, it do
allow us to examine the role of interband transitions on
optical conductivity. We are interested in addressing t
questions: What is the magnitude of the interband contri
tion to the conductivity compared to the intraband~or Drude!
contribtuion, and how different is the frequency depende
of the interband contribution from that of the Drude cont
bution?

Not surprisingly, we find that the interband contributio
are of ordert'

2 and are therefore relatively unimportant fo
the a- andb-axis optical conductivities. On the other han
the results are reversed for thec-axis conductivity: The in-
terband contributions are of ordert'

2 and dominate the intra
band contributions—which are of ordert'

4—for weak inter-
layer couplings. It is not surprising, then, that thec-axis
conductivity should have a non-Drude frequency dep
dence. In the work which follows, we will examine this fre
quency dependence and compare it with experiment.

The paper is structured as follows. In Sec. II, gene
expressions for the optical conductivity of a system with tw
layers per unit cell are derived. In Sec. III a specific mod
~the plane-chain model! which is suitable for YBCO is intro-
duced. Numerical results are given for the conductiv
which we present separately fora, b ~along the chains!, and
c ~perpendicular to the planes! directions. In Sec. IV, the
expression for the conductivity derived in the previous s
tion is reduced analytically, with the intention of highlightin
the two types of contribution~interband and intraband! to the
conductivity. One of the important results of this section is
show how the different contributions to the conductivity d
pend on the chain-plane couplingt' . In Sec. V, expressions
for the conductivity in the case of a bilayer—consisting
two identical but unevenly spaced planes in each unit ce
are derived. The calculation is interesting because YBCO
well as many other cuprate superconductors, contain
CuO2 bilayer in the unit cell. One of our main conclusions
3230 © 1997 The American Physical Society
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55 3231INTERBAND EFFECTS IN THEc-AXIS OPTICAL . . .
this section is that the coupling between the CuO2 planes is
not as likely to be the source of the broad background see
thec-axis optical conductivity as is the coupling between t
CuO2 planes and the chains. Section VI consists of a sh
discussion of sum rules. A long conclusion, which includ
some further discussion and a summary, is to be found in
final section.

II. CONDUCTIVITY IN A LAYERED SYSTEM

The purpose of this section is to derive the equatio
needed for our numerical calculations of the optical cond
tivity. In linear response theory, the real part of the cond
tivity tensor smn is related to the imaginary part of th
current-current correlation functionPmn by

18

Re@smn~v!#5
2

v
Im@Pmn~v!#, ~1!

where the Greek subscripts refer to spatial components
v is the frequency. The factor of 2 is to account for electr
spins, which will otherwise be ignored for the rest of th
article. In the superconducting state, the spins are dealt
explicitly in the calculation ofP(v). In a previous article we
evaluatedP for a two-layered tight binding system.19 The
intention of our earlier calculations was to find the penet
tion depth, so thatP was evaluated at zero frequenc
(v50) and in the superconducting state. Here we w
evaluateP(v) at finite frequency and in the normal state. A
before, the model is a two-layer tight binding model, so t
the calculation is very similar to our earlier one. For th
reason, the reader is referred to our earlier work for detail
the calculation which are not shown here.

In previous work, we showed that19

Pmn~ inn!5e2
1

b(
m

1

V(
k
Tr@G~k; ivm2 inn!

3gm~k,k!G~k; ivm!gn~k,k!#, ~2!

wherenn andvm are the boson and fermion Matsubara fr
quencies, respectively,G(k; ivm) are the thermal Green’
functions, andgm are the electromagnetic vertex function
This result is essentially the standard result,18 with the ex-
ception that here the Green’s functions and vertex functi
are 232 matrices whose diagonal elements~e.g., G11) de-
scribe properties of a single layer and whose off-diago
elements describe the interlayer coupling. The trace in
~2! is over the matrix product contained in the square bra
ets. In order to find the optical conductivity, we need to fi
explicit forms forG andgm , and we begin by introducing
our model for the two layer system.

The model we are going to present describes a met
system with two types of layer stacked along thec axis ~or,
equivalently, thez axis!. In Sec. III one of the layers is a
two-dimensional plane layer, while the other is a on
dimensional chain layer. In Sec. V both layers are plane
ers. We define the operatorsc1k andc2k to be the annihila-
tion operators for the two types of layer. The wave vect
k are three dimensional. The Hamiltonian19–21for our model
is
in
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@c1k
† c2k

†
#h~k!Fc1kc2k

G , ~3!

with

h~k!5F j1 t

t* j2
G , ~4!

and wherej1(k) andj2(k) are the energy dispersions for th
two types of layer, andt(k) connects the layers throug
single electron hopping. The specific forms ofj1, j2, and t
will be given in Secs. III and V.

The Hamiltonian matrixh(k) is diagonalized by the uni-
tary matricesU(k), so that

F e1~k! 0

0 e2~k!
G5U†~k!h~k!U~k!, ~5!

where

U~k!5
1

Ae12e2
F 2

t

utu
Aj12e2 2

t

utu
Ae12j1

2Ae12j1 Aj12e2

G ,
~6!

and wheree6(k) are the eigenvalues ofh(k) @i.e.,e6(k) are
the band energies#,

e65
j11j2
2

6AS j12j2
2 D 21t2. ~7!

The Fermi surfaces are the solutions of the equati
e6(k)50. As an example, one possible Fermi surface
the chain-plane system—which is discussed in more deta
Sec. III—is shown in Fig. 1.

FIG. 1. Fermi surface for the chain-plane model. The Fer
surface is shown forkz50 ~solid curve! and kz5p/d ~dashed
curve!. When kz5p/d, the chain-plane couplingt(k) vanishes
and the Fermi surface is that of the isolated chain and pl
layers. The dotted curves are lines of the constant ene
differencev5e12e2 . The band structure parameters chosen
this case are$t1 ,t2 ,m1 ,m2 ,t'%5$70,100,265,2175,20% meV and
B50.45.
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3232 55W. A. ATKINSON AND J. P. CARBOTTE
The single-particle Green’s function is determined fro
the Hamiltonian:

G~k; ivn!
215F ivn2j1 2t

2t* ivn2j2
G . ~8!

If we wish to include impurity scattering, then the simple
approach is to introduce a scattering rateG:

G~k; ivn!
21

5F ivn2j11 iGsgn~vn! 2t

2t* ivn2j21 iGsgn~vn!
G . ~9!

We will assume thatG is independent of frequency and m
mentum, but that it varies linearly with temperature as
observed in the copper oxides for the in-plane conductiv
At T50, the system is in the clean limit (G50), and at
T5100 K, G510 meV. The scattering rate is related to t
quasiparticle lifetime byG5\/2t.

Finally, we need to find the vertex functiongm(k,k). In
previous work19,22 it has been shown that in the tight bindin
model,gm(k,k) is just the gradient of the Hamiltonian ma
trix in k space:

gm~k,k!5
1

\

]

]km
F j1 t

t* j2
G . ~10!

Equations~2!, ~9!, and~10! are sufficient to calculate th
optical conductivity. In their current form, however, they a
not very revealing and it is difficult to understand the resu
of our numerical calculations without some further work. W
will make two manipulations in order to make the formu
for the conductivity more transparent. The first is to write t
conductivity in terms of spectral functions, instead
Green’s functions:

Re@smn~v!#5
e2\

2pV(
k
E

2`

`

dxTr@A~k;x!gm~k,k!

3A~k;x1\v!gn~k,k!#
f ~x!2 f ~x1\v!

\v
,

~11!

where the spectral functionA(k;v) is defined by analytically
continuingG(k,ivn) to the real axis,

A~k;v!5 i @G~k;v1 i0!2G~k;v2 i0!#,

and wheref (x) is the Fermi function.
The second manipulation is to make a change of basis

that the eigenstates of the Hamiltonian, rather than the eig
states of the isolated layers, are used as the basis state
other words, we will evaluate

Re@smn~v!#5
e2\

2pV(
k
E

2`

`

dxTr@Â~k;x!ĝm~k,k!

3Â~k;x1\v!ĝn~k,k!#
f ~x!2 f ~x1\v!

\v
,

~12!
t

s
.

s

f

so
n-
. In

where we introduce the notation, throughout this wo
Ô(k)[U†(k)O(k)U(k), with O(k) a 232 matrix.

Equation~12! is more useful than Eq.~2! for two reasons.
The first is that the spectral function has a simple interpre
tion as the density of states. The second is thatÂ has a
particularly simple form. The price we pay is that the vert
function ĝm is more complicated to evaluate thangm .

The vertex functionĝm can be found by explicitly per-
forming the matrix multiplicationU†(k)gmU(k), and we
will explore it in detail in the following sections. The spec
tral function can be evaluated easily here. In the new ba

Ĝ~k; ivn!
21

5F ivn2e11 iGsgn~vn! 0

0 ivn2e21 iGsgn~vn!
G ~13!

and

Â~k;v!5F 2G

~v2e1!21G2 0

0
2G

~v2e2!21G2 .
G ~14!

The diagonal elements of the spectral function can be in
preted as the density of electronic states in the bands.

III. PLANE-CHAIN MODEL

In this section we describe a simple model containing
plane layer and a chain layer. The model is meant to inc
porate the most important features of the chain-plane c
pling in YBCO72d . In the discussion which follows, it will
be made clear that the interband terms in the optical cond
tivity ~which are important forszz) are sensitive to the spe
cifics of the band structure, which we cannot hope to
scribe correctly with our model. However, we will still b
able to draw a number of general conclusions which sho
apply to models with a more accurate description of the u
cell.

For this work we will take the dispersion in the plan
layer to be

j1522t1@cos~kxa!1cos~kya!22Bcos~kxa!cos~kya!#

2m1 , ~15a!

and the dispersion in the chain layer to be

j2522t2cos~kya!2m2 , ~15b!

wherea is the lattice constant in thea ~or equivalentlyx)
and b ~or y) directions. There have been a number of
tempts to fit the Fermi surface of the plane layer either
band structure calculations23–25 or to angle-resolved photo
emission experiments;26 however, we are unaware of an
work that attempts to find a phenomenological chain Fe
surface. In any case, a more accurate Fermi surface will
affect our basic~qualitative! conclusions, although the quan
titative results of our calculations are quite sensitive to
band structure.

The simplest model of interlayer coupling is

t522t'cos~kzd/2!, ~15c!
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55 3233INTERBAND EFFECTS IN THEc-AXIS OPTICAL . . .
whered is the lattice constant in thec ~or z) direction. The
form of Eq.~15c! makes the assumption that we havecoher-
ent single electron transport along thec axis.

There have been many models of incoherent transport
tween layers.4–9 A review of some of the models has bee
provided by Cooper and Gray.1 As these models are not d
rectly relevant to our present work, it will be sufficient he
to provide a few highlights. In the work of Grafet al.,4 no
contribution from coherent transport is envisaged~i.e.,
t'50) and thec-axis transport proceeds entirely throug
incoherent elastic scattering. In this case, the resistivity al
c is inversely proportional to that in theab plane. On the
other hand, Kumar and Jayannavar7 envisage tunneling be
tween layers but in the limit that the tunneling time is larg
than the in-plane scattering time. The effective transve
tunneling matrix element is modulated and reduced by
in-plane scattering and thec-axis conductivity becomes pro
portional to thea-b plane scattering time. Leggett8 envisages
thermal depairing between layers for the caset',kBT while
Anderson and Zou9 consider the possibility that the CuO2
planes cannot be described in Fermi liquid theory and
volve spin and charge separation. This implies blocking
c-axis transport. Finally, Rojo and Levin6 consider the pos-
sibility that c-axis transport proceeds through the combin
tion of t' and incoherent transport due to elastic~impurity!
and inelastic~phonon! assisted processes.

Here only the coherent contribution is included. It shou
also be remembered that we have oversimplified the inte
structure of the unit cell in YBCO, particularly since we ha
only included one type of hopping mechanism which is pa
matrized byt' . In reality, there could be several types
hopping process occurring. For example, the coupling
tween planes and chains could be coherent while the inte
coupling could be incoherent. These issues are not tre
here and go beyond the scope of our work. They are m
tioned, however, so that the reader understands clearly
limitations of our work. We do feel, however, that near o
timal doping YBCO is one of the few materials to displa
coherent transport between layers, and that our descriptio
the interlayer coupling is reasonable.

The vertex functions are

gx~k,k!5Fv1x 0

0 0G , ~16a!

gy~k,k!5Fv1y 0

0 v2y
G , ~16b!

and

gz~k,k!5F 0 v'

v' 0 G , ~16c!

wherev im5\21]j i /]km andv'5\21]t/]kz .
The change of basis is simple to perform and

ĝx~k,k!5
v1x

e12e2
F j12e2 t

t e12j1
G , ~17a!
e-
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ĝy~k,k!5
v1y

e12e2
F j12e2 t

t e12j1
G

1
v2y

e12e2
F j22e2 t

t e12j2
G , ~17b!

and

ĝz~k,k!5
v'

e12e2
F 2t j22j1

j22j1 2t G . ~17c!

In the derivation of Eqs.~17!, use was made of the fact tha
t(k)>0. We are now able to evaluate the real part of t
conductivity tensor@Eq. ~12!# using Eqs.~14! and ~17!.

In Fig. 2 the conductivity is plotted as a function of fre
quency for a number of different temperatures. The stren
of the interlayer coupling is relatively weak (t'55 meV!
and this is reflected in the small magnitude of thec-axis
conductivity. We point out that the case presented in Fig
provides a qualitative description of what is observed in u
derdoped YBCO6.7.

11,12 To begin with, the conductivity in
the a direction has a traditional Drude-like structure. Sin
the scattering rate scales linearly with temperature, the w
of the Drude-peak also scales linearly with temperature,
at T50, the conductivity is ad function atv50. The con-
ductivity in theb direction also has a predominantly Drud
like structure but its magnitude is roughly twice that
sxx . This is because there are two current-carrying chann
in theb direction~the chains and the planes! and only one in
the a direction ~the planes!. At low temperatures there is
small non-Drude contribution due to interband transitio

FIG. 2. Normal state optical conductivity in the~a! x, ~b! y, and
~c! z directions for the plane-chain model. The conductivity
shown for temperatures 200 K~solid curve!, 100 K ~dot-dashed
curve!, 10 K ~dashed curve!, and 0 K~dotted curve!. The scattering
rate is 1/t520 meV at 100 K and it scales linearly with temper
ture. The conductivity in thez direction is dominated by interban
processes and has a non-Drude appearance, while the conduc
in the x andy directions has a predominantly Drude-like behavio
although there is a small interband contribution tosyy . The band
structure parameters are the same as in Fig. 1, except thatt'55
meV.
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3234 55W. A. ATKINSON AND J. P. CARBOTTE
which becomes visible, and atT50, the interband transition
are the only mechanism for conductivity at finite frequen

In contrast withsxx(v) andsyy(v), the conductivity in
the c direction has a decidedly non-Drude behavior and,
stead, appears as a broad background. As we shall see, t
entirely due to interband transitions between the plane
chain layers. A further, interesting feature inszz(v) is that at
high temperatures there is very little structure as a func
of frequencyv, but that structure appears at low tempe
tures. This can be attributed to the linear decrease in
scattering rate with temperature assumed in our work; at h
temperature the large scattering rate smears out the stru
in szz(v). Perhaps the most striking feature inszz is the
development of a gap as the temperature is lowered. This

FIG. 3. The normal state conductivity is shown for the~a! x, ~b!
y, and~c! z directions at 100 K~solid curve! and 0 K~dotted curve!.
The band structure differs from that of Fig. 2 by the magnitude
the chain-plane coupling, which ist'510 meV here.

FIG. 4. The normal state conductivity is shown, as in Fig. 3,
with t'520 meV. The conductivity in thez direction has a signifi-
cant Drude part, while the conductivity in they direction has a
significant interband part.
.

-
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n
-
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is just the gap between the two bandse1 and e2 , and at
high temperatures it is filled in by the large scattering r
G.

In Figs. 3 and 4, the optical conductivity is plotted fo
larger values of the chain-plane couplingt' . The larger cou-

f

t

FIG. 5. The Fermi surface is shown for the chain-plane mo
for a case where the chain and plane Fermi surfaces~dashed curves!
cross. This case is qualitatively different from the case shown
Fig. 1 because there is no band gap. As a result, a pseudogap
expected in thec-axis optical conductivity. The band structur
parameters chosen for this case are$t1 ,t2 ,m1 ,m2 ,t'%
5$70,100,265,2130,20% meV andB50.45.

FIG. 6. The optical conductivity is shown along the~a! x, ~b!
y, and ~c! z directions atT5100 K and atT50 K. The T50 K
optical conductivity is entirely due to interband transitions at fin
frequencies. Insxx there is only a very small interband contribu
tion, while insyy andszz, the interband contributions are substa
tial. At T5100 K, however, it is difficult to distinguish the inter
band contribution from the Drude contribution because of the la
scattering rate. There is also a large Drude contribution toszz and
there is no pseudogap, although the interband conductivity still f
to zero linearly withv. The band parameters are the same as in F
5, except thatt'510 meV.
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55 3235INTERBAND EFFECTS IN THEc-AXIS OPTICAL . . .
pling has almost no effect onsxx . On the other hand, the
larger coupling enhances the role of interband transition
syy , and also increases the Drude~or intraband! contribution
to szz. Note that the Drude peak at lowv is not seen in
szz in Fig. 2 wheret' is small, while in Fig. 4, wheret' is
much larger, the Drude peak is seen as a sharp turn upw
at low v.

The conductivities shown in Figs. 3 and 4 are not qu
appropriate to describe optimally doped YBCO even thou
the magnitudes of the conductivities are approximately rig
This is because there is still a gap in the conductivity at l
temperatures. However, by shifting the chain Fermi surf
slightly, as shown in Fig. 5, we are able to eliminate the ba
gap. It is very plausible that a change in doping will chan
the structure of the chain and plane Fermi surfaces so
they cross. In Figs. 6 and 7 the conductivity is shown
T5100 K and atT50 K for t'510 meV and 20 meV,
respectively. In Fig. 6, the conductivity has a Drude-like a
pearance in both thea andb directions, even though there
a large interband contribution tosyy . The interband contri-
bution can be resolved insyy if the temperature~and there-
fore the scattering rate! is reduced. Unfortunately, this is dif
ficult to do experimentally because of the onset
ic
o

in

rd

e
h
t.

e
d
e
at
t

-

f

superconductivity near 100 K. In both Figs. 6 and 7, t
c-axis response shows a Drude-like peak at lowv and high
temperature~solid curve!. On closer examination, the re
sponse is a combination of a Drude and flat interband c
tribution. As the temperature is lowered, this second con
bution remains~dotted curve! and a pseudogap at lowv is
resolved~i.e., the conductivity is depressed but goes stric
to zero only atv50!.

IV. CLEAN LIMIT

The purpose of this section is to understand the role
interband transitions a little better. We will examine why it
that the interband transitions are most important in
c-axis conductivity for small interlayer coupling, while the
are most important for theb-axis conductivity for large in-
terlayer coupling, and are never important for thea-axis con-
ductivity. Finally, we shall derive expressions for the intr
band and interband conductivities in the clean (G50) limit
and show howszz(v) can be interpreted as a probe of th
band structure.

Let us start by writing out Eq.~12!, the formula for the
conductivity, explicitly:
clear
Re@smm~v!#5
e2\

2pV(
k
E

2`

`

dx$Â11~k;x!Â11~k;x1\v!@ĝ11#m
21Â22~k;x!Â22~k;x1\v!@ĝ22#m

21@Â11~k;x!Â22~k;x1\v!

1Â22~k;x!Â11~k;x1\v!#@ĝ12#m@ĝ21#m%
f ~x!2 f ~x1\v!

\v
. ~18!

The first two terms in the integrand describeintrabandprocesses and yield Drude-like behavior. This fact can be made
if we remark that

@ ĝ i j #m5
d i j
\

]e i
]km

1
1

\
@e i2e j #FU†~k!

]U~k!

]km
G
i j

~19!

~where we use the notatione1[e1 ande2[e2), so that the first two terms in the conductivity are

sDrude~v!5
e2\

2pV(
6

(
k
E

2`

`

dxF1\ ]e6

]km
G2 2G

~x2e6!21G2

2G

~\v1x2e6!21G2

f ~x!2 f ~x1\v!

\v
. ~20!
of
f

In the simple case of a single-band system with a spher
Fermi surface, this becomes the usual expression for the
tical conductivity,

s~v!52e2N~0!
vF
2

3

t

11v2t2
,

whereG5\/2t.
In the clean limit (G→0),

G

x21G2→pd~x!.

and the intraband conductivity becomes
al
p- sDrude~v!52

2pe2\

V (
6

(
k

F1\ ]e6

]km
G2] f ~e6!

]e6
d~\v!.

~21!

The Drude peak in the conductivity is now ad function
centered atv50.

The remaining terms in Eq.~18! are theinterbandterms.
In the clean limit the interband contribution is~for v.0)

s Inter~v!5
2pe2\

V (
k

@ ĝ12#m
2 f ~e2!2 f ~e1!

e12e2

3d~\v2e11e2!. ~22!

In order to get some sense of the relative magnitudes
sDrude(v) and s Inter(v) we compare the magnitudes o
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@\21]e6 /]km#2 and @g12#m
2 In the analysis which follows,

we will compare these two quantities forsxx , syy and
szz.

In the x direction,

F1\ ]e6

]kx
G25Fv1x j12e7

e12e2
G2

and

@ ĝ12#x
25Fv1x t

e12e2
G2.

Throughout most of the Brillouin zone,uj12j2u@2utu and

e1;max~j1 ,j2!1
t2

~j12j2!
2 ,

e2;min~j1 ,j2!2
t2

~j12j2!
2 ,

from which it follows that the largest contribution t
sDrude(v) will be of the order v1x

2 @11O„t2/(j12j2)
2
…#,

where the correction term is of the order 1/25 through
most of the Brillouin zone. In the same way, we can imm
diately see that throughout most of the Brillouin zone, t
interband contribution tosxx will be v1x

2 @O„t2/(j12j2)
2
…#.

Of course, in the region of the Brillouin zone where t
chain and plane Fermi surfaces are close together, the a
argument does not hold. However, the value ofv1x is small
in this region of the Brillouin zone and we conclude th
interband processes do not make a significant contributio
sxx .

Much of the above argument holds forsyy as well, and
we can conclude that throughout most of the Brillouin zo
interband processes are unimportant. Unlike the case
sxx , however,v1y and v2y are not small in regions of the
Brillouin zone where interband transitions are significa

FIG. 7. The optical conductivity is shown, as in Fig. 6, but wi
t'520 meV.
t
-
e

ve

t
to

,
of

,

and there will therefore be small but noticeable non-Dru
contribution to theb-axis conductivity.

The situation is somewhat reversed for thec-axis conduc-
tivity, where we can show that interband processes pla
dominant role. In thez direction,

F1\ ]e6

]kz
G25Fv'

2t

e12e2
G2

and

@ ĝ12#z
25Fv'

j12j2
e12e2

G2.
Inspection of these two equations shows that while the in
band contribution still scales ast'

2 ~through the factor of
v'), the Drude component now scales ast'

4 . In other words,
Drude contribution to the conductivity is smaller than t
interband contribution by a factort2/(j12j2)

2.
In summary, then, the conductivities scale witht' as fol-

lows: Forsxx andsyy , we find that the Drude part scales a
(t')

0 and the interband part scales ast'
2 while for szz the

interband part scales ast'
2 and the Drude part ast'

4 .
We will finish this section with a brief mention of th

usefulness ofszz as a probe of the band structure. The fac
d(\v2e11e2) in Eq. ~22! means that the interband con
ductivity is a probe of thejoint density of statesof the two
bands. The sum in Eq.~22! is weighted by the thermal facto
f (e2)2 f (e1), which restricts the transitions to be betwe
filled and empty states. At zero temperature, this term
stricts the sum to lie in regions of the Brillouin zone whe
e1e2,0 @i.e., e2(k) is a filled state ande1(k) is an empty
state#. In Fig. 1, this means that the interband transitio
occur in the area contained by the two Fermi surface curv
The constant energy-difference contours are also show
Fig. 1 as the dotted lines.

When we compare the chain-plane system with the
layer model in the next section, we will see that the cha
plane system is somewhat special in that the joint density
states is spread over a broad range of energies. In sim
terms, the interband contribution to thec-axis conductivity
exists over an energy scale of 1 eV because the chain
plane bands have such different structure, and the en
differencee1(k)2e2(k) takes on all different values on th
energy scale of 1 eV in the Brillouin zone. In the bilay
system, however, where the two layers are identical, the
ergy difference is restricted to a narrow range of values,
the interband contribution to the optical conductivity w
result in a narrow peak.

V. BILAYER MODEL

In this model, we have two planes per unit cell. T
planes have equivalent band structures, but are made
equivalent by their spacing. In other words, the planes
alternately spaced by distancesd1 andd2 along thec axis,
whered11d25d is the unit cell length. In the special cas
d15d2, the model reduces to a single-band model as
shall show below.

The energy dispersion in the planes isj15j25j. For our
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numerical calculations, we will take

j522t1@cos~kxa!1cos~kya!22Bcos~kxa!cos~kya!#

2m1 . ~23a!

In this section, we will also calculate the conductivity an
lytically using the simpler band structure

j5
\2

2m
~ki

22kF
2 ! ~23b!

wherevF is the Fermi velocity at the~circular! Fermi sur-
face, ki5Akx21ky

2, and kF is the value ofki at the Fermi
surface.

The interlayer coupling term takes the form19

t~k!5t'1e
ikzd11t'2e

2 ikzd2, ~23c!

where we expect that ifd1,d2, thent'1.t'2. If d15d2 and
t15t2 , thent(k) reduces to Eq.~15c!. The band energies ar

e65j~k!6ut~k!u, ~24!

and the Fermi surface is shown in Fig. 8 for the case wh
j is given by Eq.~23a!. In the biplanar model, the bands a
split by 2ut(k)u so that the maximum band energy differen
is 2ut'11t'2u and the minimum band energy difference
2ut'12t'2u. Since t'1 and t'2 are typically much smaller
than the bandwidths, this means that the interband contr
tion toszzwill be over a small range of energies. As we w
see from our numerical work, the bilayer is not a like
source for the broad, experimentally observed,c-axis re-
sponse.

The unitary matrix which diagonalizes the Hamiltonian
now

FIG. 8. The Fermi surface is shown for the bilayer system.
this model, there are two plane layers per unit cell. The dispers
in the layers are the same, but they are spaced distancesd1 and
d2 apart in alternating fashion. The Fermi surfaces are shown
kz50 ~solid line! and kz5p/d ~dashed line!. The minimum and
maximum coupling strengths are 2ut'12t'2u and 2ut'11t'2u,
respectively. The model parameters are$t1 ,m1 ,t'1 ,t'2%
5$70,265,20,10%meV, d150.3d, andB50.45.
-

re

u-

U~k!5
1

A2utu
F 2t 2t

2utu utu G . ~25!

The vertex function for the in-plane conductivitysxx is

ĝx~k,k!5gx~k,k!5Fvx 0

0 vx
G , ~26!

where vx5\21]j/]kx . We can see that there will be n
interband contribution tosxx(v) since ĝx has no off-
diagonal matrix elements. In fact, Eq.~12! becomes

Re@sxx~v!#5
e2\

2pV(
6

(
k
E

2`

`

dxvx
2 f ~x!2 f ~x1\v!

\v

3
2G

~x2e6!21G2

2G

~x1\v2e6!21G2 .

~27!

If we takej from Eq. ~23b!, then we get, in the usual way
the Drude conductivity

Re@sxx#5
4e2\Ni

d

vF
2

2

t

v2t211
, ~28!

whereNi is the two dimensional density of states for a sing
layer. In three dimensions, with a cylindrical Fermi surfac
the density of states for the bilayer isN52Ni /d. Numerical
calculations of the optical conductivity, shown in Fig. 9, a
in qualitative agreement with Eq.~28!.

The vertex function for the conductivity along thec axis
is

ns

r

FIG. 9. The optical conductivity is shown for the bilayer syste
~a! in thea andb directions and~b! in thec direction. The conduc-
tivity is shown atT5100 K ~solid curve! and atT50 K ~dotted
curve!. The in-plane conductivity has a Drude shape, while thec
axis conductivity has a large interband contribution. AtT50 K, the
in-plane conductivity vanishes at finite frequency. Along thec axis,
however, the interband contribution remains for frequenc
2ut'12t'2u<\v<2ut'11t'2u. The model parameters are the sam
as those in Fig. 8.
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ĝz~k,k!5U†~k!F 0 v'

v'
* 0 GU~k!

5
1

utu F Re~vzt* ! 2 i Im~vzt* !

i Im~vzt* ! 2Re~vzt* !
G , ~29!

wherevz5\21]t/]kz . The diagonal elements inĝz are

Re~vzt* !

utu
5
1

\

]utu
]kz

5
1

\

t'1t'2

utu
dsin~kzd!

<
1

\
min~ t'1 ,t'2!dsin~kzd!,

so that the intraband~or Drude! conductivity is limited by
the lessor oft'1 andt'2. In other words the Drude current i
y
Th
n
t
t

ein

he

a-
rs

hi
limited by the weak link along thec axis. The off-diagonal
elements inĝz are

Im~vzt* !

utu
5
1

\
@ t'1
2 d12t'2

2 d21t'1t'2~d12d2!cos~kzd!#/utu,

~30!

which vanishes whent15t2 and d15d2. Unlike the intra-
band conductivity, the interband conductivity does not b
come small as eithert'1 or t'2 vanishes. In other words, th
interband contribution toszz persists even in the limit tha
the bilayers become isolated from their neighbors.

The conductivity along thec axis is
We can
Re@szz~v!#5
e2\

2pV(
k
E

2`

`

dx
f ~x!2 f ~x1\v!

\v H(
6

2G

~x2e6!21G2

2G

~x1\v2e6!21G2 FRe@vzt* #

utu G2
1(

6

2G

~x2e6!21G2

2G

~x1\v2e7!21G2 F Im@vzt* #

utu G2J . ~31!

The first term in the curly brackets gives the intraband conductivity while the second gives the interband conductivity.
proceed further if we takej to be of the form given in Eq.~23b!. Then we find that

Re@szz~v!#5
2e2Ni

d H 2 t

v2t211 K FRe@vzt* #

utu G 2L
kz

1(
6 K t

t2~v62utu/\!211 F Im@vzt* #

utu G 2L
kz

J , ~32!
ns
-
fre-

for
where^•••&kz denotes an average overkz .
The first term in Eq.~32! has the usual Drude frequenc

dependence, weighted by an average Fermi velocity.
second term is the interband term. Its frequency depende
is an average overkz of Lorentzians centered a
\v52ut(kz)u. This is what is seen in Fig. 9. In the limit tha
we have a single bilayer (t'2→0), ut(kz)u→t'1 and

Re@szz~v!#→
2e2Nit'1

2 d1
2

\2d

t

t2~v22t'1 /\!211
. ~33!

The c-axis response becomes a Lorentzian centered
\v52t'1. This case has been studied in detail by Gartst
Rice, and van der Marel.27

VI. SUM RULES

In this section we will discuss the partial sum rule for t
conductivity within our model. The full sum rule

pne2

2m
5E

0

`

dvs~v!, ~34!

wheren is the electron density andm is the bare mass, is
well known. Equation~34! is often used as a means of me
suring the electron density in the cuprate superconducto

In any practical evaluation of Eq.~34!, it is necessary to
impose a cutoff in the frequency integration, and often t
e
ce

at
,

.

s

cutoff is taken to be below the onset of interband transitio
in the a and b directions, so that only the Drude-like re
sponse is counted. If we define, therefore, a plasma
quency tensor by

vp
2

8
5E

0

`

dvsDrude~v! ~35!

and considerG→0 for simplicity, then, from Eq.~21!,

vpmn
2

8
52

pe2

V (
6

(
k

F 1\2

]e6

]km

]e6

]kn
G] f ~e6!

]e6
. ~36!

Integrating by parts inkm gives

vpmn
2

8
5

pe2

V (
6

(
k

F 1\2

]2e6

]km]kn
G f ~e6!. ~37!

Now, we can define an average effective mass tensor
each of the bands by

M6mn
21 5

1

n6
3
2

V(
k

F 1\2

]2e6

]km]kn
G f ~e6!, ~38!

where

n65
2

V(
k

f ~e6!, ~39!
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so that

vpmn
2 54pe2(

6
n6M6mn

21 . ~40!

We emphasize here thatM6mn
21 is an average of the effective

mass tensorover all filled states, and is not just the effective
mass tensor at the Fermi surface. As a result of this,M6mn

21

depends on the filling of the bands. For this reason, we s
gest that it may actually be difficult to determine changes
the electron density with doping in the high-Tc materials.

VII. CONCLUSION AND DISCUSSION

We have calculated the optical conductivity for a simp
layered model of YBCO72d , in which each unit cell consists
of a two-dimensional plane layer and a one-dimension
chain layer. The model contains two important pieces
physics. First, we assumed that the layers are cohere
coupled and measured the strength of the coupling with
parametert' . As we mentioned earlier, this is different from
the more usual point of view which ascribes the broad bac
ground and absence of a Drude peak in thec-axis conduc-
tivity to incoherentc-axis transport. The second importan
piece of physics is the scattering rateG, which was assumed
to vary linearly withT.

In a multilayer system, we found that there are two co
tributions to the optical conductivity: intraband and inte
band. For the in-plane conductivity (sxx andsyy) we found
that the intraband conductivity dominates the response,
sulting in Drude-like conductivities. In fact, we showed tha
the intraband terms scale as (t')

0, while the interband terms
scale ast'

2 for smallt' . On the other hand, we found that th
c-axis response is dominated by the interband contribut
~which still scales ast'

2 ) since the intraband contribution
scales ast'

4 . For this reason, we found that thec-axis optical
conductivity has a non-Drude appearance.

In the plane-chain model, theszz consists of a broad fea-
tureless response at high temperatures. As the temperatu
lowered, structure develops in the conductivity. In som
cases, we found that a pseudogaplike structure appeared.
broad range of frequencies spanned byszz is the result of the
plane and chain bands having different geometries so t
transitions between the two bands span a wide range of
ergies. In contrast, we showed that a bilayer system in wh
the two layers have identical band structures results in
c-axis conductivity which is finite only over a narrow rang
of frequencies.

The other feature ofszz—that structure appears asT is
it
g-
n

l
f
tly
e

-

-

e-
t

n

e is
e
he

at
n-
h
a

lowered—is the result of having a temperature-depend
scattering rate. AtT5100 K, for example, structure inszz is
smeared out over 20 meV, while atT510 K, structure can
be resolved on a scale of 2 meV.

Finally, with this model, we have been able to comm
on changes inszz with doping over the range YBCO6.7 to
YBCO7. We have suggested that in slightly underdop
YBCO, there is a band gap between the plane and c
layers, which is reflected in a gap in the interband cond
tivity. Above a certain temperature, however, the band ga
hidden by the large scattering rate which smears out qu
particle energies by more than the band gap. As the temp
ture is reduced, the quasiparticle energies become bette
fined and the band gap appears in the conductivity. The
is similar in its appearance to the pseudogap observe
YBCO6.7. At optimal doping, we have suggested that tw
changes must be made to the model. The first is that
strength of the chain-plane coupling must be increased—
increasing the importance of the Drude contribution toszz.
The second is that the chain and plane Fermi surfaces
be made to cross, eliminating the pseudogap.

We point out that the exact shape of the interband con
bution as a function of energy was found to be quite sensi
to details of the Fermi surfaces involved. This means t
c-axis conductivity measurements could, in principle,
used to get information on the energy bands as well as on
filling factors for chains and planes and on their chan
with oxygen doping.

While the sensitivity of the frequency dependence
sc(v) to band structure could, in principle, be used to
spectroscopic information on electronic structure, it sho
be emphasized that the band structure used in our wor
grossly oversimplified and so some of our detailed pred
tions cannot be applied directly to YBa2Cu3Ox . The quali-
tative features obtained and emphasized in this conclu
are, however, expected to be robust and remain in more c
plex models. Such calculations will need to employ mo
realistic band structures and, perhaps more importantly,
sider the issue of intercell coupling which could be incoh
ent and quite different from the chain-plane hopping. Nev
theless, our model does exhibit many of the featu
observed in experiments on YBCO at optimum doping
well as underdoped and overdoped cases.
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