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Interband effects in the c-axis optical conductivity in YBa,Cu;O,_4
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The normal state optical conductivity is calculated for a layered metal with two layers per unit cell coupled
through a transverse hopping matrix elemgnt The optical response involves an interband term in addition
to the more familiar intraband term which leads to the usual Drude form. The interband term is only weakly
temperature dependent, even for an inelastic scattering rate which is lin@adtigives ac-axis response
which extends in frequency over the entire bandwidth, although there can be structure on this energy scale
which reflects details of the electronic structure. In particular, at low energy-thés response can develop
a gap or pseudogap as the temperature is lowered. At high temperature, a Drude response will be seen only if
the intraband transitions, which are of ordér, become important compared with the interband transitions
which are of ordelf [S0163-18207)00905-3

[. INTRODUCTION through a single transverse matrix element With YBCO
in mind, one of the two layers will be assumed to have te-

Models of the high¥, oxides often start with a single tragonal symmetry and model a Cy@lane, while the other
isolated CuQ layer. Other structural elements within the will be taken to have orthorhombic symmetry and represent a
unit cell are usually labeled as charge reservoirs or barrie€uO chain. While this model is admittedly crude, it does
layers and are ignored. Yet it is precisely the nature of thallow us to examine the role of interband transitions on the
coupling between the different layers that determioesis  optical conductivity. We are interested in addressing two
transport properties, which are found to display a rich varietyquestions: What is the magnitude of the interband contribu-
of behaviors and are often anomaldisThe anomalous na- tion to the conductivity compared to the intrabaod Drude
ture of thec-axis conductivity has been variously interpreted contribtuion, and how different is the frequency dependence
as suggesting that interlayer coupling is an essential piece @f the interband contribution from that of the Drude contri-
the superconducting mechanisrthat the interlayer coupling bution?
is incoherent due to impurity or phononic scattefirgor Not surprisingly, we find that the interband contributions
thermal fluctuation§,or that the CuQ layers are in a non- are of ordert? and are therefore relatively unimportant for
Fermi-liquid stat€. In this work, we suggest that theaxis  the a- and b-axis optical conductivities. On the other hand,
optical conductivity in YBaCu3O,_s (YBCO,_;) can be the results are reversed for theaxis conductivity: The in-
explained by proper consideration of the multilayered structerband contributions are of ordgr and dominate the intra-
ture of the unit cell. band contributions—which are of ordet—for weak inter-

In consideringc-axis properties, it is important to distin- |ayer couplings. It is not surprising, then, that theaxis
guish between the coupling between various conducting layeonductivity should have a non-Drude frequency depen-
ers within a unit cel{which can contain several planend  dence. In the work which follows, we will examine this fre-
the intercell coupling which could involve some barrier quency dependence and compare it with experiment.
layer. It is this latter coupling that probably governs the size The paper is structured as follows. In Sec. Il, general
of the anisotropy observed betweenraxist®'°~12 and expressions for the optical conductivity of a system with two
ab-plane properties. On the other hand, the large in-planéayers per unit cell are derived. In Sec. Ill a specific model
anisotropy betweem andb direction$3~7 (along the CuO  (the plane-chain modewhich is suitable for YBCO is intro-
chaing observed in YBCO is related more closely to theduced. Numerical results are given for the conductivity
properties within a unit cell. The actual situation is clearly which we present separately far b (along the chains and
quite complex. For example, the unit cell in YBCO consistsc (perpendicular to the planeslirections. In Sec. IV, the
of a bilayer of two CuQ planes separated by a CuO chain expression for the conductivity derived in the previous sec-
layer. In addition, the chains are only completed intion is reduced analytically, with the intention of highlighting
YBa,Cu;0; and the effect of oxygen doping on the chain the two types of contributiofinterband and intrabando the
Fermi surface is not well understood and neither is the pareonductivity. One of the important results of this section is to
tition of holes between planes and chains. Because of thestow how the different contributions to the conductivity de-
uncertainties, it is necessary, at this stage, to use a simplifiggend on the chain-plane couplimg. In Sec. V, expressions
model and to set specific but limited aims. for the conductivity in the case of a bilayer—consisting of

Having recognized that several distinct transverse hoptwo identical but unevenly spaced planes in each unit cell—
ping matrix elements come into a complete description of there derived. The calculation is interesting because YBCO, as
c-axis properties of the oxides, we will, nevertheless, limitwell as many other cuprate superconductors, contains a
ourselves here to a model of two layers per unit cell coupledCuG; bilayer in the unit cell. One of our main conclusions in
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this section is that the coupling between the Gutlanes is /
not as likely to be the source of the broad background seen in n/a
the c-axis optical conductivity as is the coupling between the

CuO, planes and the chains. Section VI consists of a short
discussion of sum rules. A long conclusion, which includes

some further discussion and a summary, is to be found in the

final section.

II. CONDUCTIVITY IN A LAYERED SYSTEM

The purpose of this section is to derive the equations
needed for our numerical calculations of the optical conduc-
tivity. In linear response theory, the real part of the conduc-
tivity tensor o, is related to the imaginary part of the
current-current correlation functiof ,, by'® 0

2
RE0,(@)]=—IM[T1,,(w)], (1)
FIG. 1. Fermi surface for the chain-plane model. The Fermi
where the Greek subscripts refer to spatial components arf#irface is shown foik,=0 (solid curve and k,=/d (dashed
w is the frequency. The factor of 2 is to account for electroncurve- When k,=w/d, the chain-plane coupling(k) vanishes
spins, which will otherwise be ignored for the rest of this and the Fermi surface is that of _the isolated chain and plane
article. In the superconducting state, the spins are dealt witlfye's- The dotted curves are lines of the constant energy
explicitly in the calculation ofI(w). In a previous article we 0'ffeTéncew=e, —e_. The band structure parameters chosen for
evaluatedII for a two-layered tight binding systefi.The th_s(;:jze gty tp, .2, } ={70,100-65,-175,2 meV and
intention of our earlier calculations was to find the penetra-~ = .
tion depth, so thatll was evaluated at zero frequency _ T T 1k
(w=0) and in the superconducting state. Here we will H_; [Cax CZk]h(k)[czj’ ®
evaluatdI(w) at finite frequency and in the normal state. As
before, the model is a two-layer tight binding model, so thatwith
the calculation is very similar to our earlier one. For this
reason, the reader is referred to our earlier work for details of
the calculation which are not shown here.
In previous work, we showed tHat

&

t* &
and wheret, (k) andé,(k) are the energy dispersions for the
two types of layer, and(k) connects the layers through

h(k)= , 4

IT,,(i vn)=e232 éz TGk iwom—ivy) single electron hopping. The specific formsé&f &,, andt
Brm % will be given in Secs. Ill and V.
o The Hamiltonian matrixh(k) is diagonalized by the uni-
*VulkKIGiTom) v (K KO1, @ tary matricesU (k), so that
wherev, and w,, are the boson and fermion Matsubara fre-
guencies, respectivel\G(K;iw,,) are the thermal Green’s €. (k) — UK h(K U (K 5
functions, andy, are the electromagnetic vertex functions. 0 e_(k) =U(kh(ku(k), (5
This result is essentially the standard resifyith the ex-
ception that here the Green’s functions and vertex functionghere
are 2x2 matrices whose diagonal elemefésg., G4;) de- ) .
scribe properties of a single layer and whose off-diagonal N N S
elements describe the interlayer coupling. The trace in Eq. y(k)= ! |t] G1me- [ty er &1
(2) is over the matrix product contained in the square brack- ver—e_| Jei—& JE—e
ets. In order to find the optical conductivity, we need to find €+~ & G- e ®)
explicit forms forG and y,,, and we begin by introducing
our model for the two layer system. and wheree.. (k) are the eigenvalues ofk) [i.e., e (k) are
The model we are going to present describes a metallithe band energigs

system with two types of layer stacked along thexis (or,
equivalently, thez axig). In Sec. lll one of the layers is a &+ & E1—&6,\° )
two-dimensional plane layer, while the other is a one- €775 x ( 2 o ()

dimensional chain layer. In Sec. V both layers are plane lay-

ers. We define the operatotg, andc,, to be the annihila- The Fermi surfaces are the solutions of the equations
tion operators for the two types of layer. The wave vectorse. (k) =0. As an example, one possible Fermi surface for
k are three dimensional. The Hamiltontarf*for our model  the chain-plane system—which is discussed in more detail in
is Sec. lll—is shown in Fig. 1.
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The single-particle Green’s function is determined fromwhere we introduce the notation, throughout this work,

the Hamiltonian: O(k)=UT(k)O(k)U(k), with O(k) a 2X 2 matrix.
) Equation(12) is more useful than Eq2) for two reasons.
G(kiiw,) 1= [ lon= &1 -t } ®) The first is that the spectral function has a simple interpreta-
N —t* io,— & tion as the density of states. The second is thahas a

particularly simple form. The price we pay is that the vertex
function S/M is more complicated to evaluate thau) .
The vertex functionﬁfﬂ can be found by explicitly per-
Gooy-1 forming the matrix multiplicationU™(k)y,U(k), and we
G(k;iwp) : L . . n=
will explore it in detail in the following sections. The spec-
tral function can be evaluated easily here. In the new basis

If we wish to include impurity scattering, then the simplest
approach is to introduce a scattering rhte

iw,— & +iT'sgn wy) —t
—t* iwp— &+ iTsgnwp)

. 9

G(k;iw,) !
We will assume that’ is independent of frequency and mo-
mentum, but that it varies linearly with temperature as is =
observed in the copper oxides for the in-plane conductivity.
At T=0, the system is in the clean limii’'&0), and at and
T=100 K, I'=10 meV. The scattering rate is related to the
quasiparticle lifetime byl =7/27. 2r 0

Finally, we need to find the vertex functiop,(k,k). In . (w—€,)?+T?
previous work®??it has been shown that in the tight binding Ak w)= oT (14
model, y,,(k,k) is just the gradient of the Hamiltonian ma- 0
trix in k space:

iw,— €, +il'sgnwy)

0 iw,—e_+il'sgn w,) 3

(w—e_)°+T%

The diagonal elements of the spectral function can be inter-

19 preted as the density of electronic states in the bands.

&t
Tk =g 5
o

t* &

Equations(2), (9), and(10) are sufficient to calculate the . ] ) ] o
optical conductivity. In their current form, however, they are  In this section we describe a simple model containing a
not very revealing and it is difficult to understand the resultsPlane layer and a chain layer. The model is meant to incor-
of our numerical calculations without some further work. WePorate the most important features of the chain-plane cou-
will make two manipulations in order to make the formula Pling in YBCO7_ ;. In the discussion which follows, it will
for the conductivity more transparent. The first is to write thebe made clear that the interband terms in the optical conduc-

conductivity in terms of spectral functions, instead oftivity (which are important for,,) are sensitive to the spe-
Green’s functions: cifics of the band structure, which we cannot hope to de-

scribe correctly with our model. However, we will still be

(10

Ill. PLANE-CHAIN MODEL

e % able to draw a number of general conclusions which should
Re o, (w)]= m; f dXTITA(K;X) 7y, (K,K) apply to models with a more accurate description of the unit
o cell.
f(x)—f(x+hw) For this work we will take the dispersion in the plane
XAk x+hw) y, (K K) ] —————, layer to be
(12) &1=—2ty[ cogk,a) + cogkya) — 2Bcogk,a)cogkya) |
where the spectral functiol(k; w) is defined by analytically — M1, (159
continuingG(k,i wy) to the real axis, and the dispersion in the chain layer to be
Ak;w)=i[G(k;w+i0)—G(k;w—i0)], &o=— 2t,c09Kya) — o, (15b)
and wheref(x) is the Fermi function. wherea is the lattice constant in tha (or equivalentlyx)

The second manipulation is to make a change of basis, sand b (or y) directions. There have been a number of at-
that the eigenstates of the Hamiltonian, rather than the eigenmempts to fit the Fermi surface of the plane layer either to
states of the isolated layers, are used as the basis states.dand structure calculatiofi§?° or to angle-resolved photo-
other words, we will evaluate emission experiment$; however, we are unaware of any
work that attempts to find a phenomenological chain Fermi
surface. In any case, a more accurate Fermi surface will not
affect our basi¢qualitative conclusions, although the quan-
titative results of our calculations are quite sensitive to the
f(x) = f(x+hw) band structure.

how ' The simplest model of interlayer coupling is

(12 t=—2t, cogk,d/2), (150

e’f, % R R
RG[U,W(w)FZW—Q; JideTf[A(k;X)m(k,k)

XAK:X+Aw) (kK]
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whered is the lattice constant in the (or z) direction. The

-1
form of Eq.(15¢) makes the assumption that we haaher- (em™)
entsingle electron transport along tleeaxis. Ol 5?0 : 10‘00
There have been many models of incoherent transport be- Ly i
tween layeré=° A review of some of the models has been 4000 H® (a)

provided by Cooper and GrayAs these models are not di- T y
rectly relevant to our present work, it will be sufficient here ;
to provide a few highlights. In the work of Graf al.* no
contribution from coherent transport is envisagéck.,
t,=0) and thec-axis transport proceeds entirely through
incoherent elastic scattering. In this case, the resistivity along
c is inversely proportional to that in thab plane. On the
other hand, Kumar and Jayannavenvisage tunneling be-
tween layers but in the limit that the tunneling time is larger
than the in-plane scattering time. The effective transverse
tunneling matrix element is modulated and reduced by the
in-plane scattering and theaxis conductivity becomes pro-
portional to thea-b plane scattering time. Legg®tnvisages
thermal depairing between layers for the case€ kg T while FIG. 2. Normal state optical conductivity in tia) x, (b) y, and
Anderson and Zoliconsider the possibility that the CyO  (c) z directions for the plane-chain model. The conductivity is
planes cannot be described in Fermi liquid theory and inshown for temperatures 200 tsolid curve, 100 K (dot-dashed
volve spin and charge separation. This implies blocking ofcurve, 10 K (dashed curve and 0 K(dotted curvg The scattering
c-axis transport. Finally, Rojo and LeVirconsider the pos- rate is 1/=20 meV at 100 K and it scales linearly with tempera-
S|b|||ty that c-axis transport proceeds through the Combina_ture. The COﬂdUCtiVity in the direction is dominated by interband
tion of t, and incoherent transport due to elagfinpurity) ~ Processes and has a non-Drude appearance, while the conductivity
and inelastiophonon assisted processes. in thex andy dl_rectlons he_ls a predomlnantly_Drude-Ilke behavior,
Here only the coherent contribution is included. It should@/though there is a small interband contributionetgy . The band
also be remembered that we have oversimplified the interngfrUCturé parameters are the same as in Fig. 1, except the
structure of the unit cell in YBCO, particularly since we have MeV.
only included one type of hopping mechanism which is para-

104 (b)

matrized byt, . In reality, there could be several types of - Uy §1-€- t
hopping process occurring. For example, the coupling be- 'yy(k,k)—€+_€_ t €.— &
tween planes and chains could be coherent while the intercell
coupling could be incoherent. These issues are not treated vay |27 € t
here and go beyond the scope of our work. They are men- * €,—€_ t €. — &) (70
tioned, however, so that the reader understands clearly the
limitations of our work. We do feel, however, that near op-and
timal doping YBCO is one of the few materials to display
coherent transport between layers, and that our description of . v, 2t &H—&
the interlayer coupling is reasonable. V2K, K)= €€ |E—¢ 2t 179
. + - 2 1
The vertex functions are
In the derivation of Eqs(17), use was made of the fact that
vy, O t(k)=0. We are now able to evaluate the real part of the
yx(k,k)=[ } (169 conductivity tensofEq. (12)] using Egs(14) and (17).
0 0 In Fig. 2 the conductivity is plotted as a function of fre-
quency for a number of different temperatures. The strength
vy O of the interlayer coupling is relatively weak (=5 meV)
Yy(k,K)= 0 vl (16b  and this is reflected in the small magnitude of thexis
2 conductivity. We point out that the case presented in Fig. 2
and provides a qualitative description of what is observed in un-
derdoped YBCQ-.*2 To begin with, the conductivity in
the a direction has a traditional Drude-like structure. Since
(k.k)= Vi (160 the scattering rate scales linearly with temperature, the width
LEaS v, 0] of the Drude-peak also scales linearly with temperature, and
at T=0, the conductivity is & function ato=0. The con-
Wherevw:ﬁ*lggi 1K, andv, =%~ 1ot/ ok,. ductivity in theb direction also has a predominantly Drude-
The change of basis is simple to perform and like structure but its magnitude is roughly twice that of
oy - This is because there are two current-carrying channels
£ e in theb direction(the chains and the planesnd only one in
V(K. K)= Vix v r (179  thea direction(the planes At low temperatures there is a
€€ t €:— &1 small non-Drude contribution due to interband transitions
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FIG. 3. The normal state conductivity is shown for tagx, (b) FIG. 5. The Fermi surface is shown for the chain-plane model
y, and(c) z directions at 100 Ksolid curve and 0 K(dotted curvg  for a case where the chain and plane Fermi surfedeshed curves

The band structure differs from that of Fig. 2 by the magnitude ofcr0ss. This case is qualitatively different from the case shown in
the chain-plane coupling, which ts =10 meV here. Fig. 1 because there is no band gap. As a result, a pseudogap is not
expected in thec-axis optical conductivity. The band structure
) n ] » parameters chosen for this case arft;,ty,pq,u0,t,}
which becomes visible, and &t=0, the interband transitions —{70,100-65,—130,2¢ meV andB=0.45.

are the only mechanism for conductivity at finite frequency.

In contrast witho,,(w) and oy, (w), the conductivity in is just the gap between the two banes and e_, and at

the ¢ direction has a decidedly non-Drude behavior and, inyigh temperatures it is filled in by the large scattering rate
stead, appears as a broad background. As we shall see, thi g P y g g

entirely due to interband transitions between the plane and’ In Figs. 3 and 4, the optical conductivity is plotted for
chain layers. A further, interesting featuredn(w) isthatat  |arger values of the chain-plane coupling The larger cou-
high temperatures there is very little structure as a function

of frequencyw, but that structure appears at low tempera-

tures. This can be attributed to the linear decrease in the (em-1)
scattering rate with temperature assumed in our work; at high 0 1000 2000
temperature the large scattering rate smears out the structure , —
in o,{w). Perhaps the most striking feature in, is the
development of a gap as the temperature is lowered. This gap

(cm™)
0 1000 2000
T T ‘ T T ‘ T
4000 (@) |
L 0 1 L | L
E 104 I i e
= 0 100 200 300
5000
3 w(meV)
Y 0
600 FIG. 6. The optical conductivity is shown along tf@ x, (b)
400 y, and(c) z directions atT=100 K and afT=0 K. The T=0 K
200 optical conductivity is entirely due to interband transitions at finite
0 - frequencies. Ino,, there is only a very small interband contribu-
0 100 200 300 tion, while in o,y ando,,, the interband contributions are substan-

tial. At T=100 K, however, it is difficult to distinguish the inter-
band contribution from the Drude contribution because of the large

FIG. 4. The normal state conductivity is shown, as in Fig. 3, butscattering rate. There is also a large Drude contributioartoand
with t, =20 meV. The conductivity in the direction has a signifi- there is no pseudogap, although the interband conductivity still falls
cant Drude part, while the conductivity in the direction has a to zero linearly withw. The band parameters are the same as in Fig.
significant interband part. 5, except that, =10 meV.

w(meV)
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pling has almost no effect oar,,. On the other hand, the superconductivity near 100 K. In both Figs. 6 and 7, the

larger coupling enhances the role of interband transitions ir-axis response shows a Drude-like peak at lovand high

ayy, and also increases the Dru@e intraband contribution temperature(solid curvg. On closer examination, the re-

to o,,. Note that the Drude peak at low is not seen in sponse is a combination of a Drude and flat interband con-

o, in Fig. 2 wheret, is small, while in Fig. 4, wher¢, is  tribution. As the temperature is lowered, this second contri-

much larger, the Drude peak is seen as a sharp turn upwaldition remaingdotted curve and a pseudogap at low is

at low w. resolved(i.e., the conductivity is depressed but goes strictly
The conductivities shown in Figs. 3 and 4 are not quiteto zero only atw=0).

appropriate to describe optimally doped YBCO even though

the_ magnitudes of the ponductivitie; are approxim_a_tely right. V. CLEAN LIMIT

This is because there is still a gap in the conductivity at low

temperatures. However, by shifting the chain Fermi surface The purpose of this section is to understand the role of

slightly, as shown in Fig. 5, we are able to eliminate the bandnterband transitions a little better. We will examine why it is

gap. It is very plausible that a change in doping will changethat the interband transitions are most important in the

the structure of the chain and plane Fermi surfaces so tha&taxis conductivity for small interlayer coupling, while they

they cross. In Figs. 6 and 7 the conductivity is shown atare most important for thb-axis conductivity for large in-

T=100 K and atT=0 K for t;, =10 meV and 20 meV, terlayer coupling, and are never important for #zaxis con-

respectively. In Fig. 6, the conductivity has a Drude-like ap-ductivity. Finally, we shall derive expressions for the intra-

pearance in both tha andb directions, even though there is band and interband conductivities in the cledh=0) limit

a large interband contribution t@,, . The interband contri- and show howr,{w) can be interpreted as a probe of the

bution can be resolved imr, if the temperaturéand there-  band structure.

fore the scattering rates reduced. Unfortunately, this is dif- Let us start by writing out Eq(12), the formula for the

ficult to do experimentally because of the onset ofconductivity, explicitly:

e’ . - . . . R . .
Rq:O'MM(w)]:ZqTQ; f_de{All(k,X)All(k,X'f'ﬁw)[ylﬂi'f‘Azz(k,X)Azz(k,X'f'ﬁw)[’yzz]i'f‘[All(k,X)Azz(k,X'f‘ﬁw)

L 0 —f(x+hw)
A ki) A(kix-+ o) T3l Yol b= ——— (19

The first two terms in the integrand describérabandprocesses and yield Drude-like behavior. This fact can be made clear
if we remark that

~ _5” afi 1 UT K 8U(k) 9
[')’ij],u‘?%"‘%[ei_fj] (k) k| (19
ij
(where we use the notation=e¢, ande,=¢_), so that the first two terms in the conductivity are
2 2
e“h % 1 e 2r 2r f(x)—f(x+hw)
"Df“de(“’)_zwnz ; Lcdx hook,| (x—€.)2+T2 (ho+x—€.)2+T?2 hw ' (20
|
In the simple case of a single-band system with a spherical 2m7e%h 1 de. |%of(€x)
Fermi surface, this becomes the usual expression for the op- Tpuad @)=~ —q Z > 7| e d(hw).
tical conductivity, =K ® - (21)

The Drude peak in the conductivity is now & function

5, centered ato=0.

1+ o7 The remaining terms in Eq18) are theinterbandterms.
In the clean limit the interband contribution {®r »>0)

2
U T
o-(w)=2€2N(0)—3F

wherel'=#/27.
In the clean limit { —0), 2mwe’h L fes)—f(ey)
Tinted @) =—q ; [71z]iT+

€_

r

W—wﬁ(x). Xo(hw—e,+e_). (22)

In order to get some sense of the relative magnitudes of
and the intraband conductivity becomes oprugd @) and o e(w) we compare the magnitudes of
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and there will therefore be small but noticeable non-Drude
contribution to theb-axis conductivity.

The situation is somewhat reversed for thaxis conduc-
tivity, where we can show that interband processes play a
dominant role. In the direction,

1 de. |? 2t ]2
hook,| vL €,—€_
and
R E-617
2_
['le-lz_ Uy c —e_

Inspection of these two equations shows that while the inter-
band contribution still scales a§ (through the factor of
v, ), the Drude component now scalestés In other words,

FIG. 7. The optical conductivity is shown, as in Fig. 6, but with Drude contribution to the conductivity is smaller than the

t, =20 meV.

[~ t9e. 10k,]? and[y1,]5 In the analysis which follows,

we will compare these two quantities far,,, oy, and
Ozz.
In the x direction,

and

2

[Y12li= -

v
1X6+—

Throughout most of the Brillouin zonéé, — &|>2|t| and

tz
e,~max ¢, &)+ m,
_ t?
e_~min(§,,6,)— G672

from which it follows that the largest contribution to

opnad @) Will be of the orderv? [1+O(t%/(&1—&,)?)],

interband contribution by a factaf/ (&, — &,)>.

In summary, then, the conductivities scale withas fol-
lows: Foro,, andoyy, we find that the Drude part scales as
(t,)° and the interband part scales téswhile for o,, the
interband part scales &$ and the Drude part af .

We will finish this section with a brief mention of the
usefulness ofr,, as a probe of the band structure. The factor
S(hw—e€,.+e€_) in EQ. (22) means that the interband con-
ductivity is a probe of thgoint density of statesf the two
bands. The sum in Eq22) is weighted by the thermal factor
f(e_)—1f(e.), which restricts the transitions to be between
filed and empty states. At zero temperature, this term re-
stricts the sum to lie in regions of the Brillouin zone where
€,e_<O0/i.e., e_(k) is afilled state and , (k) is an empty
statd. In Fig. 1, this means that the interband transitions
occur in the area contained by the two Fermi surface curves.
The constant energy-difference contours are also shown in
Fig. 1 as the dotted lines.

When we compare the chain-plane system with the bi-
layer model in the next section, we will see that the chain-
plane system is somewhat special in that the joint density of
states is spread over a broad range of energies. In simple
terms, the interband contribution to tleeaxis conductivity
exists over an energy scale of 1 eV because the chain and
plane bands have such different structure, and the energy
differencee, (k) — e_(k) takes on all different values on the
energy scale of 1 eV in the Brillouin zone. In the bilayer

where the correction term is of the order 1/25 throughouisystem, however, where the two layers are identical, the en-
most of the Brillouin zone. In the same way, we can imme-ergy difference is restricted to a narrow range of values, and
diately see that throughout most of the Brillouin zone, thethe interband contribution to the optical conductivity will

interband contribution tar,, will be v2 [O(t?/(&,— &,)?)].

Of course, in the region of the Brillouin zone where the
chain and plane Fermi surfaces are close together, the above

argument does not hold. However, the value gf is small

in this region of the Brillouin zone and we conclude that

result in a narrow peak.

V. BILAYER MODEL

In this model, we have two planes per unit cell. The

interband processes do not make a significant contribution tplanes have equivalent band structures, but are made in-

Oyx-

Much of the above argument holds fot, as well, and

equivalent by their spacing. In other words, the planes are
alternately spaced by distancés andd, along thec axis,

we can conclude that throughout most of the Brillouin zonewhered;+d,=d is the unit cell length. In the special case
interband processes are unimportant. Unlike the case af,=d,, the model reduces to a single-band model as we
oxx, however,v,, andv,, are not small in regions of the shall show below.

Brillouin zone where interband transitions are significant,

The energy dispersion in the planestis= £&,= &. For our
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FIG. 8. The Fermi surface is shown for the bilayer system. In FIG. 9. The optical conductivity is shown for the bilayer system

t[hls model, there are two plane layers per unit cell The d'SperS'On?a) in thea andb directions andb) in the ¢ direction. The conduc-
in the layers are the same, but they are spaced distahcasd A - - -

4 X ; . tivity is shown atT=100 K (solid curve and atT=0 K (dotted
d, apart in alternating fashion. The Fermi surfaces are shown fo{:urve) The in-olane conductivity has a Drude shape. while ¢he
k,=0 (solid line) and k,= 7/d (dashed ling The minimum and ; P y pe,

maximum coupling strengths are[t2;—t, 5| and at, ,+1,,] gxis conductivity_h_as a Ia.rge intert_)a_nd contributionTAt 0 K, the

respectively. The model parameltersu artt, Ltl tﬁ}’ in-plane conduc_tlwty vanishes at_ fml_te frequen_cy. Along thexis, _

(7065 2'0 10meV, d,—0.3d. andB—0.45 110102 however, the interband contribution remains for frequencies
T PRI e 2t 11—t o] shos2|t, +1,,|. The model parameters are the same

. . . as those in Fig. 8.
numerical calculations, we will take

&= —2t,[ cogka) +cogkya) — 2Bcog ksa)cog kya)] U(k)= 1
. (239 Va2

—t —t}
SN (@9

In this section, we will also calculate the conductivity ana- The vertex function for the in-plane conductivityy is
lytically using the simpler band structure

Ux
5 &X<k,k>=yx<k,k>=[ .

: (26
£= 5 (kf—kg) (23

X

wherev,=%"19¢/9k,. We can see that there will be no
wherev is the Fermi velocity at thécirculan Fermi sur- interband contribution too,(w) since y, has no off-
face, k= \/kX2+ kyz, andkg is the value ofk; at the Fermi  diagonal matrix elements. In fact, Eq.2) becomes
surface.

The interlayer coupling term takes the fdfin e’h > f(x)—f(Xx+hw)
ReTu(0)l =302 % | 05,
t(k)=t, e+, e kL2, (230 -
h t that d,<d,, thent, ;>t,,. If d;=d, and X 2t 2
where we expect that d,<d,, thent, ;>t,,. If d;=d, an ——> > ———> 3.
t,;=t,, thent(k) reduces to Eq150). The band energies are (X= €)™ (x+fio—e)"+T
(27)

€+ =&(K)=[t(k)], (24) .
If we take ¢ from Eq. (23b), then we get, in the usual way,

and the Fermi surface is shown in Fig. 8 for the case wherghe Drude conductivity
& is given by Eq.(239. In the biplanar model, the bands are
split by 2|t(k)| so that the maximum band energy difference 4e*hN| v 1
is 2|t, 1+t,,| and the minimum band energy difference is R 0 = d 2 022+1’ (28)
2|t,1—t,5|. Sincet,; andt,, are typically much smaller
than the bandwidths, this means that the interband contribuwhereN is the two dimensional density of states for a single
tion to o, will be over a small range of energies. As we will layer. In three dimensions, with a cylindrical Fermi surface,
see from our numerical work, the bilayer is not a likely the density of states for the bilayerNé=2N;/d. Numerical
source for the broad, experimentally observeeaxis re- calculations of the optical conductivity, shown in Fig. 9, are
sponse. in qualitative agreement with E@28).

The unitary matrix which diagonalizes the Hamiltonian is  The vertex function for the conductivity along tleeaxis
now is
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A 0 v, limited by the weak link along the axis. The off-diagonal
Y,(k,k)=UT(k) ot 0 U(k) elements iny, are
1 [ Re(vt*) —ilm(vzt*)} - .
=i ) Im(v,t 1
tl[iIm(v,t*) —Rev,t*) ﬂfr)z%[tfldl—tf2d2+tutu(d1—dz)cos(kzd)]/|t|,
wherev,=#%"1gt/9k,. The diagonal elements i, are (30)

Rev,t*) 1 ‘9|t| ltat,

[ hok, & | dsin(kd) which vanishes whem,=t, and d;=d,. Unlike the intra-
band conductivity, the interband conductivity does not be-
come small as eithdr ; ort, , vanishes. In other words, the

interband contribution taer,, persists even in the limit that

so that the intrabandor Drude conductivity is limited by e bilayers become isolated from their neighbors.
the lessor of , ; andt, ,. In other words the Drude currentis "€ conductivity along the axis is

1
< Zmin(t, 1.t p)dsin(k,d),

e%h = f(x)—f(x+ho) 2T 2T Rev,t*]]2
RG[GZZ(w)]ZZW_Q; j_mdx ho ; (x—€.)°+T? (x+hw—€.)>+T? It] }
2r 2r Im[vt*]]?
+2 (X— e )24 T2 (xtho—e)2+T2| 1| } } (3Y)

The first term in the curly brackets gives the intraband conductivity while the second gives the interband conductivity. We can
proceed further if we také to be of the form given in Eq223h). Then we find that

2e°N; T R v,t*]]? T Im[v,t*1]?
Rdozdw) = =4 Zzzg | | T Y2 Zozamrr| T ' (32
k, k,
|
where(- - ‘>kz denotes an average oJey. cutoff is taken to be below the onset of interband transitions

The first term in Eq(32) has the usual Drude frequency in the a _and b directions, so that only the Drude-like re-
dependence, weighted by an average Fermi velocity. Theponse is counted. If we define, therefore, a plasma fre-
second term is the interband term. Its frequency dependenégiency tensor by
is an average overk, of Lorentzians centered at

2 <)
hw:2|t(kz)|_. This i_s what is seen in Fig. 9. In the limit that ﬁ:f dwopruad ©) (35)
we have a single bilayett (,—0), |t(k,)|—t, 1 and 0
ZeZNHtfldi r and considef”—0 for simplicity, then, from Eq(21),
. . ) YD - e i ™)
The c-axis response becomes a Lorentzian centered at 8 O < T |h* ok, dK,| de.
hw=2t, 4. This case has been studied in detail by Gartstein, ) ) )
Rice, and van der Marél. Integrating by parts ik, gives
2 2 2
w me 1 J €
VI. SUM RULES L =
g~ a2 Kok, &) G

In this section we will discuss the partial sum rule for the . _
conductivity within our model. The full sum rule Now, we can define an average effective mass tensor for

each of the bands by
me? (=
—f doo(w), (34
0

1 241 e

71 =
|V+ :—X— _——
= sz [ﬁz K K,

2m f(ex), (38

wheren is the electron density anah is the bare mass, is
well known. Equation(34) is often used as a means of mea- Where
suring the electron density in the cuprate superconductors. 5
In any practical evaluation of E{34), it is necessary to _<
. ; : . . n.=52 flew), (39
impose a cutoff in the frequency integration, and often this Q%



55 INTERBAND EFFECTS IN THEc-AXIS OPTICAL . .. 3239

so that lowered—is the result of having a temperature-dependent
scattering rate. AT=100 K, for example, structure i, is
2 2 -1 smeared out over 20 meV, while &t=10 K, structure can
= 4 e n-+ M + . 40 : ’
Cpur = 2T ; et (40 be resolved on a scale of 2 meV.

) — i Finally, with this model, we have been able to comment
We emphasize here. thit. ,, is an average of the effec’qve on changes inr,, with doping over the range YBCE, to
mass tensoover all filled statesand is not just the effective ygco,. we have suggested that in slightly underdoped
mass tensor at the Fermi surface. As a result of Mig,}w YBCO, there is a band gap between the plane and chain
depends on the filling of the bands. For this reason, we sudayers, which is reflected in a gap in the interband conduc-
gest that it may actually be difficult to determine changes intivity. Above a certain temperature, however, the band gap is

the electron density with doping in the high-materials. hidden by the large scattering rate which smears out quasi-
particle energies by more than the band gap. As the tempera-
VIl. CONCLUSION AND DISCUSSION ture is reduced, the quasiparticle energies become better de-

) . ) fined and the band gap appears in the conductivity. The gap
We have calculated the optical conductivity for a simpleis cimilar in its appearance to the pseudogap observed in
layered model of'YBCQ,{;, in which each unit ceII'consis'ts YBCOg,. At optimal doping, we have suggested that two
of a two-dimensional plane layer and a one-dimensionalhanges must be made to the model. The first is that the
chain layer. The model contains two important pieces Olyrength of the chain-plane coupling must be increased—thus
physics. First, we assumed that the layers are coherently,reasing the importance of the Drude contributionstg.

coupled and measured the strength of the coupling with thée second is that the chain and plane Fermi surfaces must
parametet, . As we mentioned earlier, this is different from 1,0 ade to cross eliminating the pseudogap.

the more usual point of view which ascribes the broad back- \ye point out that the exact shape of the interband contri-

ground and absence of a Drude peak in ¢haxis conduc-  piion as a function of energy was found to be quite sensitive
tivity to incoherentc-axis transport. The second important v, getails of the Fermi surfaces involved. This means that
piece of physics is the scattering rdtewhich was assumed ¢ _a4is conductivity measurements could, in principle, be
to vary linearly withT. used to get information on the energy bands as well as on the
_In a multilayer system, we found that there are two CON<jjling factors for chains and planes and on their changes
tributions to the optical conductivity: intraband and inter- it oxygen doping.
band. For the in-plane conductivity{, anda,,) we found While the sensitivity of the frequency dependence of
that_ the_ mtrabanq conduct|v!ty .domlnates the response, r€5.(w) to band structure could, in principle, be used to get
sulting in Drude-like conductivities. In fact, we showed that gpectroscopic information on electronic structure, it should
the intraband terms scale as (°, while the interband terms  pe emphasized that the band structure used in our work is
scale as? for smallt, . On the other hand, we found that the grossly oversimplified and so some of our detailed predic-
c-axis response is dominated by the interband contributiogions cannot be applied directly to YB&u50,. The quali-
(which still scales ag?) since the intraband contribution tative features obtained and emphasized in this conclusion
scales a$j . For this reason, we found that theaxis optical  are, however, expected to be robust and remain in more com-
conductivity has a non-Drude appearance. plex models. Such calculations will nheed to employ more
In the plane-chain model, the,, consists of a broad fea- realistic band structures and, perhaps more importantly, con-
tureless response at high temperatures. As the temperaturesisler the issue of intercell coupling which could be incoher-
lowered, structure develops in the conductivity. In someent and quite different from the chain-plane hopping. Never-
cases, we found that a pseudogaplike structure appeared. Ttieeless, our model does exhibit many of the features
broad range of frequencies spannedyis the result of the observed in experiments on YBCO at optimum doping as
plane and chain bands having different geometries so thatell as underdoped and overdoped cases.
transitions between the two bands span a wide range of en-
ergies. In contrast, we showed that a bilayer system in which
the two layers have identical band structures results in a
c-axis conductivity which is finite only over a narrow range  This work was supported by a Natural Sciences and En-
of frequencies. gineering Research Council of Cana@dSERQ grant, and
The other feature ofr,—that structure appears dsis by the Canadian Institute for Advanced ResealCHAR).

ACKNOWLEDGMENTS

“Present address: Department of Physics, Indiana University*M.J. Graf, D. Rainer, and J.A. Sauls, Phys. Rev4B 12 089

Swain Hall W 117, Bloomington, Indiana 47405. (1993.

1sS.L. Cooper and K.E. Gray, iRhysical Properties of High Tem- 3y, zZha, S.L. Cooper, and D. Pines, Phys. Re\a38253(1996.
perature Superconductorsdited by D.M. GinsbergWorld Sci- SA.G. Rojo and K. Levin, Phys. Rev. B8, 16 861(1993.
entific, Singapore, 1994Vol. IV, p. 62. ’N. Kumar and A.M. Jayannavar, Phys. Rev48 5001(1992.

2Y. lye, in Physical Properties of High Temperature Supercon- 8p 3. Leggett, Braz. J. Phy&2, 129(1992.
ductors,edited by D.M. GinsburgWorld Scientific, Singapore,  9p \v. Anderson and Z. Zou, Phys. Rev. L&®, 132 (1988; 60,
33.M. Wheatley, T.C. Hsu, and P.W. Anderson, Phys. Re87B 10T A, Friedmannet al, Phys. Rev. B42, 6217(1990.
5897(1988.



3240 W. A. ATKINSON AND J. P. CARBOTTE 55

1c.c. Homes, T. Timusk, D.A. Bonn, R. Liang, and W.N. Hardy, 80, 161(1990; M. Tachiki, T. Koyama, and S. Takahashi, Prog.

Physica C254, 265 (1995. Theor. Phys. Suppll08 297 (1992; S. Takahashi and M. Ta-
2¢.C. Homes, T. Timusk, R. Liang, D.A. Bonn, and W.N. Hardy,  chiki, Physica C170, 505 (1990.

Phys. Rev. Lett71, 1645(1993. 21A.Yu. Simonov, Physica @11, 455 (1993.
1¥p.A. Bonn, S. Kamal, K. Zhang, R. Liang, and W.N. Hardy, J. 22J.E. Hirsch and F. Marsiglio, Phys. Rev.48, 4807(1992.

Phys. Chem. Solid56, 1941(1995. 230.K. Andersen, O. Jepsen, A.l. Liechtenstein, and I.l. Mazin,
14J.L. Tallonet al, Phys. Rev. Lett74, 1008(1995. Phys. Rev. B49, 4145(1995.
15D.N. Basovet al, Phys. Rev. Lett74, 598 (1995. 24W.E. Pickett, H. Krakauer, R.E. Cohen, and D.J. Singh, Science
18R, Gagnon, C. Lupien, and L. Taillefer, Phys. Rev58 3458 255 46 (1992; W. E. Pickett, R.E. Cohen, and H. Krakauer,

(19949. Phys. Rev. B42, 8764(1990.
7K. Zhanget al, Phys. Rev. Lett73, 2484(1994. 253.Yu, S. Massida, A.J. Freeman, and D.D. Koelling, Phys. Lett.
8G.D. Mahan,Many-Particle PhysicgPlenum Press, New York, A 122 203(1987.

1986, p. 695 ff. 26G. Blumberg, Branko P. Stojkoviand M.V. Klein, Phys. Rev. B
W.A. Atkinson and J.P. Carbotte, Phys. Rev. 32, 10601 52, R15 741(1995.

(1995. 27Yu.N. Gartstein, M.J. Rice, and D. van der Marel, Phys. Rev. B

20\ Tachiki, S. Takahashi, F. Steglich, and H. Adrian, Z. Phys. B 49, 6360(1994.



