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Parquet solution for a flat Fermi surface
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We study instabilities occurring in the electron system whose Fermi surface has flat regions on its opposite
sides. Such a Fermi surface resembles Fermi surfaces of some high-Tc superconductors. In the framework of
the parquet approximation, we classify possible instabilities and derive renormalization-group equations that
determine the evolution of corresponding susceptibilities with decreasing temperature. Numerical solutions of
the parquet equations are found to be in qualitative agreement with a ladder approximation. For the repulsive
Hubbard interaction, the antiferromagnetic~spin-density-wave! instability dominates, but when the Fermi
surface is not perfectly flat, thed-wave superconducting instability takes over.@S0163-1829~97!04605-5#
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I. INTRODUCTION

An interacting electron gas in one dimension has ma
unusual properties, such as the spin-charge separation
power law of correlation functions, and the linear depe
dence of the electron relaxation rate on temperature and
quency ~see Ref. 1 for a review!. These one-dimensiona
~1D! results are well established, in many cases exactly
applying a variety of mathematical methods including t
Bethe ansatz, the bosonization, and the parquet, or the re
malization group. To distinguish the exotic behavior of t
1D electron gas from a conventional Fermi-liquid behavi
Haldane introduced a concept of the so-called Luttin
liquid.2

The discovery of high-Tc superconductivity renewed in
terest in the Luttinger-liquid concept. Anderson sugges
that a two-dimensional~2D! electron gas behaves like the 1
Luttinger liquid, rather than a conventional Fermi liquid.3 It
is difficult to verify this claim rigorously, because the met
ods that prove the existence of the Luttinger liquid in 1
cannot be applied directly to higher dimensions. The Be
ansatz construction does not work in higher dimensions.
bosonization in higher dimensions4–11 converts a system o
interacting electrons into a set of harmonic oscillators rep
senting the electron density modes. This procedure repl
the exactW` commutation relations6 with approximate bo-
son commutators, which is a questionable, uncontrolled
proximation. On the other hand, the parquet method,
though not being as exact as the two other methods, has
advantage of being formulated as a certain selection
within a standard many-body diagram technique; thus, it
be applied to higher dimensions rather straightforward
The parquet method has much in common with
renormalization-group treatment of Fermi liquids.12

The 1D electron gas has two types of potential instab
ties: the superconducting and the density-wave, which m
fest themselves through logarithmic divergences of the c
responding one-loop susceptibilities with decreas
temperature. Within the parquet approach, a sum of an
nite series of diagrams, obtained by adding and inserting
550163-1829/97/55~5!/3200~16!/$10.00
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two basic one-loop diagrams into each other, is calculated
solving a system of nonlinear differential equations, whi
are nothing but the renormalization-group equations.13 This
procedure was developed for meson scattering14 and later
was successfully applied to the 1D electron gas,15,16 as well
as to the Kondo problem17 and the x-ray absorption edg
problem.18 By considering both the superconducting and t
density-wave instabilities on equal footing and adequat
treating their competition, the parquet approximation diffe
from a conventional ladder~or mean-field! approximation,
commonly applied in higher dimensions, where only one
stability is taken into account. Under certain conditions
the 1D case, the superconducting and density-wave insta
ties may cancel each other, giving rise to a nontrivial me
lic ground state at zero temperature, namely the Luttin
liquid. In this case, the parquet derivation shows that
electron correlation functions have a power-law structu
which is one of the characteristic properties of the Lutting
liquid.16,19 One may conclude that the competition betwe
the superconducting and density-wave instabilities is an
portant ingredient of the Luttinger liquid theory.

In a generic higher-dimensional case, where density-w
instability does not exist or does not couple to supercond
ing instability because of corrugation of the Fermi surfa
the parquet approach is not relevant. Nevertheless, there
a number of higher-dimensional models where the parque
applicable and produces nontrivial results. These include
models of multiple chains without single-electron hopping20

and with single-electron hopping but in a magnetic field,21 as
well as the model of an isotropic electron gas in a stro
magnetic field.22,23 In all of these models, the electron dis
persion law is 1D, which permits to apply the parqu
method; at the same time, the interaction between elect
is higher-dimensional, which makes a nontrivial differen
from the purely 1D case. The particular version of the p
quet method used in these cases is sometimes called
‘‘fast’’ parquet, because, in addition to a ‘‘slow,’
renormalization-group variable, the parquet equations
quire supplementary, ‘‘fast’’ variables, which label multip
electron states of the same energy.
3200 © 1997 The American Physical Society
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55 3201PARQUET SOLUTION FOR A FLAT FERMI SURFACE
Taking into account these considerations, it seems nat
to start exploring a possibility of the Luttinger liquid beha
ior in higher dimensions by considering a model that co
bines 1D and higher-dimensional features. This is the mo
of an electron gas whose Fermi surface has flat regions o
opposite sides. The flatness means that within these reg
the electron dispersion law is 1D: The electron energy
pends only on the one component of momentum that is n
mal to the flat section. On the other hand, the size of the
regions is finite, and that property differentiates the mo
from a purely 1D model, where the size is infinite, sin
nothing depends on the momenta perpendicular to the d
tion of a 1D chain. A particular case of the considered mo
is one where the 2D Fermi surface has a square shape.
model describes 2D electrons on a square lattice with
nearest-neighbor hopping at the half filling. It is a simple
model of the high-Tc superconductors.

The model has already attracted the attention of theor
Virosztek and Ruvalds studied the ‘‘nested Fermi liquid
problem within a ladder or mean-field approximation.24,25

Taking into account the 1D experience, this approach ma
considered questionable, because it does not treat prop
the competition between the superconducting and
density-wave channels. Houghton and Marston7 mapped the
flat parts of the Fermi surface onto discrete points. Such
oversimplification makes all scattering processes within
flat portion equivalent and artificially enhances the elect
interaction. Mattis26 and Hlubina27 used the bosonization t
treat the interaction between the electron density modes
claimed to solve the model exactly. However, mapping
the flat Fermi surface onto quantum chains and subseq
bosonization by Luther28 indicated that the treatment of Ma
tis and Hlubina is insufficient, because the operators of ba
ward and umklapp scattering on different quantum cha
require a consistent renormalization-group treatment. Lu
did not give solution to this problems, as well as he miss
the interaction between the electrons located on four dif
ent quantum chains.

In the present paper, we solve the model consisten
using the fast parquet approach, where all possible insta
ties occurring in the electron system with the flat regions
the Fermi surface are treated simultaneously. This appro
was applied to the problem earlier29 in order to explain the
antiferromagnetism of chromium. In the present paper,
advance the study further by including the order parame
of the odd symmetry, missed in Ref. 29, performing detai
numerical calculations, and investigating the effect of a c
vature of the Fermi surface. To simplify numerical calcu
tions and to relate to the high-Tc superconductors, we con
sider the 2D case, although the method can
straightforwardly generalized to higher dimensions as we

We find that the presence of the boundaries of the
portions of the Fermi surface has a dramatic effect on
solutions of the parquet equations. Even if the initial ver
of interaction between electrons does not depend on the
menta along the Fermi surface~which are the ‘‘fast’’ vari-
ables!, the vertex acquires a strong dependence on these
ables upon renormalization, which greatly reduces
feedback coupling between the superconducting and den
wave channels relative to the 1D case. Instead of the
channels canceling each other, the leading channel, whic
ral
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the spin-density-wave~SDW! in the case of the repulsive
Hubbard interaction, develops its own phase transition,
ducing on the way a considerable growth of the superc
ducting d-wave susceptibility. At the same time, the fee
back from the superconducting to the SDW channel, v
essential in the 1D case, is found negligible in the 2D ca
These results are in qualitative agreement with the pictur
the antiferromagnetically-inducedd-wave superconductivity,
which was developed within a ladder approximation for t
flat Fermi surface in Ref. 25 and for a generic nested H
bard model in Ref. 30. Recent experiments strongly sugg
that the high-Tc superconductivity is indeed of thed-wave
type.31 On the other hand, our results disagree with Refs.
and 27. The origin of the discrepancy is that the bosoniza
arbitrarily replaces the exactW` commutation relations6 by
approximate boson commutators; thus the renormalizatio
the electron-electron interaction, which is an important p
of the problem, becomes neglected.

In addition to having the flat sides, the square Fermi s
face also has sharp corners, where the saddle points o
electron dispersion law, which produce the van Hove sin
larity in the density of states, are located. The presence of
van Hove singularity at the Fermi level enhances the div
gence of the superconducting and density-wave loops to
square of the temperature logarithm. The fast parquet p
lem was formulated in this case in Ref. 32, where the c
tribution from the flat sides, being less divergent than
contribution from the saddle points, was neglected. T
present paper completes the study by considering a Fe
surface with the flat sides and rounded corners, that is, w
out saddle points at the Fermi level. Our physical conc
sions for both models are in qualitative agreement.

As photoemission experiments33 demonstrate~see also
Ref. 25!, many of the high-Tc superconductors indeed hav
flat regions on their Fermi surfaces. Hence, some of the
sults of this paper may be applicable to these materi
However, the primary goal of our study is to elucidate ge
eral theoretical concepts rather than to achieve detailed
scription of real materials.

In order to distinguish the new features brought into t
problems by introducing higher dimensions, we present m
terial in an inductive manner. In Sec. II, we recall the de
vation of the parquet equations in the simplest case of
spinless electrons. In Sec. III, we generalize the procedur
the case of 1D electrons with spin.15,16 Then, we derive the
parquet equations in the 2D case in Sec. IV and solve th
numerically in Sec. V. The paper ends with conclusions
Sec. VI.

II. PARQUET EQUATIONS FOR ONE-DIMENSIONAL
SPINLESS FERMIONS

Let us consider a 1D electron gas with a Fermi ene
m and a generic dispersion law«(kx), where« is the energy
andkx is the momentum of the electrons. As shown in Fig.
the Fermi surface of this system consists of two points
cated atkx56kF , wherekF is the Fermi momentum. As
suming that the two points are well separated, let us treat
electrons whose momenta are close to6kF as two indepen-
dent species and label them with the index6. In the vicinity
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3202 55ZHELEZNYAK, YAKOVENKO, AND DZYALOSHINSKII
of the Fermi energy, the dispersion laws of these electr
can be linearized:

«6~kx!56vFkx , ~2.1!

where the momentakx are counted from the respective Ferm
points6kF for the two species of the electrons,6vF are the
corresponding Fermi velocities, and the energy« is counted
from the chemical potentialm.

First, let us consider the simplest case of electrons with
spin. The bare Hamiltonian of the interaction between
6 electrons,Ĥ int , can be written as

Ĥ int5gE dkx
~1!

2p

dkx
~2!

2p

dkx
~3!

2p
ĉ1

1~kx
~1!1kx

~2!2kx
~3!!ĉ2

1~kx
~3!!

3ĉ2~kx
~2!!ĉ1~kx

~1!!, ~2.2!

whereg is the bare vertex of interaction, and the operat
ĉ6

1 and ĉ6 create and destroy the6 electrons.
The tendencies toward the superconducting or dens

wave (2kF) instabilities in the system are reflected by t
logarithmic divergences of the two one-loop diagrams sho
in Fig. 2, where the solid and dashed lines represent
Green functionsG1 and G2 of the 1 and 2 electrons,
respectively. The two diagrams in Fig. 2 differ in the mutu
orientation of the arrows in the loops. In the Matsubara te
nique, the integration of the Green functions over the inter
momentumkx and energyvn produces the following expres
sions for the two diagrams:

FIG. 1. Dispersion law of 1D electrons. The states in the sha
range of the momentumkx are occupied by electrons.

FIG. 2. Bare superconducting and density-wave susceptibilit
The solid and dashed lines represent the Green functions of th1
and 2 electrons. The wavy lines represent incoming moment
and energy.
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Edkx2p

G2~7vn ,7kx!G1~vn1Vn ,kx1qx!

52T(
n
Edkx2p

1

~ivn1vFkx!„ivn1 iVm2vF~kx1qx!…

'
1

2pvF
lnS m

max$T,uvFqxu,uVmu%D[j, ~2.3!

where the upper sign corresponds to the superconducting
the lower to the density-wave susceptibility. In Eq.~2.3!, T is
the temperature,Vm is the external energy passing throug
the loop, andqx is the external momentum for the superco
ducting loop and the deviation from 2kF for the density-
wave loop. With logarithmic accuracy, the value of the in
gral ~2.3! is determined by the upper and lower cutoffs of t
logarithmic divergence. In Eq.~2.3!, the upper and lower
cutoffs are written approximately, up to numerical coef
cients of the order of unity, whose logarithms are small co
pared toj@1. The variablej, introduced by Eq.~2.3!, plays
a very important role in the paper. Sincej is the logarithm of
the infrared cutoff, the increase ofj represents renormaliza
tion toward low temperature and energy.

The two primary diagrams of Fig. 2 generate higher-ord
corrections to the vertex of interaction between electro
g, as illustrated in Fig. 3. In this figure, the dots represent
bare interaction vertexg, whereas the renormalized verte
g is shown as a circle. The one-loop diagrams in Fig. 3
the same as in Fig. 2. The first two two-loop diagrams in F
3 are obtained by repeating the same loop twice in a lad
manner. The last two diagrams are obtained by inserting
loop into the other and represent coupling between the
channels. The diagrams obtained by repeatedly adding
inserting the two basic diagrams of Fig. 2 in all possib
ways are called the parquet diagrams. The ladder diagra
where only the addition, but not the insertion of the loops
allowed, represent a subset of the more general set of
parquet diagrams. Selection of the parquet diagrams is ju
fied, because, as one can check calculating the diagram
Fig. 3, they form a series with the expansion parametergj:

d

s.

FIG. 3. Some parquet corrections to the vertex of interact
between electrons,g, which is shown as a circle. The dots represe
the bare interaction vertexg. The expressions beneath the diagra
represent the values of the corresponding diagrams.
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55 3203PARQUET SOLUTION FOR A FLAT FERMI SURFACE
g5g(n50
` an(gj)n. If the bare interaction vertexg is small

and the temperature is sufficiently low, so thatj(T) is big,
one can argue14–16 that nonparquet diagrams may be n
glected, because their expansion parameterg is small com-
pared to the parquet expansion parametergj.

Every diagram in Fig. 3, except the bare vertexg, can be
divided into two disconnected pieces by cutting one so
and one dashed line, the arrows of the cut lines being ei
parallel or antiparallel. The sum of those diagrams where
arrows of the cut lines are parallel~antiparallel! is called the
superconducting~density-wave! ‘‘brick.’’ Thus the vertexg
can be decomposed into the bare vertexg, the superconduct
ing brick C, and the density-wave brickZ:

g5g1C1Z. ~2.4!

Equation ~2.4! is illustrated in Fig. 4, where the bricks ar
represented as rectangles whose long sides, one being a
and another a dashed line, represent the lines to be cut.

In a general case, the vertices and the bricks depend
the energies and momenta (v1 ,v2 ,v3 ,vFkx

(1) ,vFkx
(2) and

vFkx
(3)) of all incoming and outgoing electrons. Equatio

for the bricks can be found in closed form in the case wh
all their arguments are approximately equal within the lo
rithmic accuracy, that is, the ratios of the arguments and
their linear combinations are of the order of unity.14–16Prac-
tically, this means that all vertices and bricks are conside
to be functions of the single renormalization-group varia
j, defined in Eq.~2.3!. It was proved in Ref. 14 that the tw
pieces obtained by cutting a brick are the full vertices
interaction, as illustrated graphically in Fig. 5. Analyticall
the equations for the bricks are

FIG. 4. Decomposition of the interaction vertexg, shown as a
circle, into superconducting and density-wave bricks, shown
rectangles, in the spinless case.

FIG. 5. Parquet equations for the bricks in the spinless cas
-
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C~j!52E
0

j

dzg~z!g~z!, ~2.5a!

Z~j!5E
0

j

dzg~z!g~z!. ~2.5b!

The two verticesg in the right-hand side of Eqs.~2.5a! and
~2.5b! represent the two pieces obtained from a brick
cutting, whereas the integrals overz represent the two con
necting Green functions being integrated over the inter
momentum and energy of the loop. The value of the ren
malized vertexg(z) changes as the integration overz
progresses in Eqs.~2.5a! and ~2.5b!. In agreement with the
standard rules of the diagram technique,34 a pair of the par-
allel ~antiparallel! lines in Fig. 5 produces a negative~posi-
tive! sign in the right-hand side of Eq.~2.5a! @~2.5b!#.

Equations~2.5a! and ~2.5b! can be rewritten in differen-
tial, renormalization-group form:

dC~j!

dj
52g~j!g~j!, C~j50!50; ~2.6a!

dZ~j!

dj
5g~j!g~j!, Z~j50!50. ~2.6b!

Combining Eqs.~2.6a! and~2.6b! with Eq. ~2.4!, we find the
renormalization equation for the full vertexg:

dg~j!

dj
5g~j!g~j!2g~j!g~j!50, ~2.7a!

g~j50!5g. ~2.7b!

We see that the two terms in the right-hand side~rhs! of Eq.
~2.7a!, representing the tendencies toward density-wave
superconducting instabilities, exactly cancel each other.
ladder approximation, where only one term is kept in the r
the result would be quite different, becauseg(j) would di-
verge at a finitej indicating an instability or generation of
pseudogap in the system.

In order to study possible instabilities in the system,
need to calculate corresponding generalized susceptibili
For that purpose, let us add to the Hamiltonian of the sys
two fictitious infinitesimal external fieldshSC andhDW that
create the electron-electron and electron-hole pairs:

Ĥext5E dqx
2p

dkx
2p FhSC~qx!ĉ2

1S qx2 2kxD ĉ1
1S qx2 1kxD

1h DW~qx!ĉ2
1S kx1 qx

2 D ĉ1S kx2 qx
2 D1H.c.G .

~2.8!

Now we need to introduce triangular verticesTSC and
TDW that represent the response of the system to the fi
hSC andhDW . Following the same procedure as in the de
vation of the parquet equations for the bricks,15,16,22,29we
find the parquet equations for the triangular vertices
graphic form, as shown in Fig. 6. In that figure, the fille
triangles represent the verticesTSC and TDW , whereas the
dots represent the fieldshSC andhDW . The circles, as in the

s
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3204 55ZHELEZNYAK, YAKOVENKO, AND DZYALOSHINSKII
other figures, represent the interaction vertexg. Analytically,
these equations can be written as differential equations
given initial conditions:

dTSC~j!

dj
52g~j!TSC~j!, TSC~0!5hSC; ~2.9a!

dTDW~j!

dj
5g~j!TDW~j!, TDW~0!5hDW . ~2.9b!

We will often refer to the triangular verticesT as the ‘‘order
parameters.’’ Indeed, they are the superconducting
density-wave order parameters induced in the system by
external fieldshSC andhDW . If, for a finite hi ( i5SC, DW!,
a vertexTi(j), which is proportional tohi , diverges when
j→jc , this indicates that aspontaneousorder parameter ap
pears in the system, that is, the order parameter may ha
finite value even when the external fieldhi is zero. The ex-
ternal fields are introduced here only as auxiliary tools a
are equal to zero in real systems. We also note that the
terms in the rhs of Eq.~2.8! are not Hermitially self-
conjugate; thus, the fieldshi are the complex fields. Conse
quently, the order parametersTi(j) are also complex, so
generally speaking,T andT* do not coincide. According to
Eqs. ~2.7a! and ~2.7b!, g(j)5g, so Eqs.~2.9a! and ~2.9b!
have the following solution:

TSC~j!5hSCexp~2gj!, ~2.10a!

TDW~j!5hDWexp~gj!. ~2.10b!

Now we can calculate the susceptibilities. The lowest
der corrections to the free energy of the system due to
introduction of the fieldshSC andhDW , FSC andFDW , obey
the parquet equations shown graphically in Fig. 7 and a
lytically below:

FSC~j!5E
0

j

dzTSC~z!TSC* ~z!, ~2.11a!

FDW~j!5E
0

j

dzTDW~z!TDW* ~z!. ~2.11b!
n
re
he

in
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th

d
he

a

d
o

-
e
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Substituting expressions~2.10a! and ~2.10b! into Eqs.
~2.11a! and ~2.11b! and dropping the squares ofhSC and
hDW , we find the susceptibilities:

xSC~j!52@exp~22gj!21#/2g, ~2.12a!

xDW~j!5@exp~2gj!21#/2g. ~2.12b!

According to Eqs.~2.12a! and ~2.12b!, when the interac-
tion between electrons is repulsive~attractive!, that is,g is
positive ~negative!, the density-wave~superconducting! sus-
ceptibility increases as temperature decreases (T→0 and
j→`):

xDW~SC!~j !}exp~62gj!5S m

max$T,uvFqxu,uVmu% D
62g

.

~2.13!

Susceptibilities~2.13! have power dependence on the te
perature and energy, which is one of the characteristic pr
erties of the Luttinger liquid. The susceptibilities are finite
finite temperatures and diverge only at zero temperature
agreement with the general theorem35 that phase transitions
are impossible at finite temperatures in 1D systems. Ma
ematically, the absence of divergence at finitej is due to the
cancellation of the two terms in the rhs of Eq.~2.7a! and
subsequent nonrenormalization ofg(j). This nontrivial 1D
result can be obtained only within the parquet, but not
ladder approximation.

III. PARQUET EQUATIONS FOR ONE-DIMENSIONAL
FERMIONS WITH SPIN

Now let us consider 1D electrons with spin. In this ca
there are three vertices of interaction, conventionally deno
asg1, g2, andg3, which represent backward, forward, an
umklapp scattering, respectively.15,16 Umklapp scattering
should be considered only when the change of the total
mentum of the electrons in the interaction process, 4kF , is
equal to the crystal lattice wave vector, which may or m
not be the case in a particular model. In this paper, we do
consider the vertexg4, which describes the interaction be
tween the electrons of the same type (1 or 2), because this
vertex does not have logarithmic corrections. The b
Hamiltonian of the interaction,Ĥ int , can be written as
Ĥ int5 (
s,t,r,n5↑↓

E dkx
~1!

2p

dkx
~2!

2p

dkx
~3!

2p
$~2g1drtdsn1g2drndst!ĉn1

1 ~kx
~1!1kx

~2!2kx
~3!!ĉt2

1 ~kx
~3!!ĉs2~kx

~2!!ĉr1~kx
~1!!

1@g3drndstĉn2
1 ~kx

~1!1kx
~2!2kx

~3!!ĉt2
1 ~kx

~3!!ĉs1~kx
~2!!ĉr1~kx

~1!!1H.c.#%, ~3.1!
ian
o
s
-

as
where the coefficientsg123 denote the bare~unrenormal-
ized! values of the interaction verticesg123. The operators
ĉss

1 and ĉss create and destroy electrons of the types56
and the spins5↑↓. The spin structure of the interactio
Hamiltonian is dictated by conservation of spin. We pictu
the interaction vertices in Fig. 8, where the solid and das
lines represent the1 and2 electrons. The thin solid lines
inside the circles indicate how spin is conserved: The sp
of the incoming and outgoing electrons connected by a
d

s
in

line are the same. According to the structure of Hamilton
~3.1!, the umklapp vertexg3 describes the process where tw
1 electrons come in and two2 electrons come out, wherea
the complex conjugate vertexg3* describes the reversed pro
cess.

The three vertices of interaction contain six bricks,
shown schematically in Fig. 9:

g15g11C11Z1 , ~3.2a!
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g25g21C21Z2 , ~3.2b!

g35g31ZI1ZII , ~3.2c!

whereC1 andC2 are the superconducting bricks, andZ1,
Z2, ZI , andZII are the density-wave bricks. In Fig. 9, the th
solid lines inside the bricks represent spin conservation.
umklapp vertex has two density-wave bricksZI and ZII ,
which differ in their spin structure.

Parquet equations for the bricks are derived in the sa
manner as in Sec. II by adding appropriate spin struct
dictated by spin conservation. It is convenient to derive
equations graphically by demanding that the thin spin lin
are continuous, as shown in Fig. 10. Corresponding ana
equations can be written using the following rules. A pair
parallel~antiparallel! lines connecting two vertices in Fig. 1
produces the negative~positive! sign. A closed loop of the
two connecting lines produces an additional factor22 due
to summation over the two spin orientations of the electro

dC1~j!

dj
522g1~j!g2~j!, ~3.3a!

FIG. 6. Parquet equations for the triangular vertices in the s
less case. The filled triangles represent the verticesTSC andTDW ,
whereas the dots represent the auxiliary external fieldshSC and
hDW .

FIG. 7. Parquet equations for the free energy correctionsFSC

andFDW in the spinless case.
e

e
re
e
s
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f
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dC2~j!

dj
52g1

2~j!2g2
2~j!, ~3.3b!

dZ1~j!

dj
52g1~j!g2~j!22g1

2~j!, ~3.3c!

dZ2~j!

dj
5g2

2~j!1g3~j!g3* ~j!, ~3.3d!

dZI~j!

dj
52g3~j!@g2~j!2g1~j!#, ~3.3e!

dZII~j!

dj
52g3~j!g2~j!. ~3.3f!

Combining Eqs.~3.2a!–~3.2c! and ~3.3a!–~3.3f!, we obtain
the well-known closed equations for renormalization of t
vertices:16

dg1~j!

dj
522g1

2~j!, ~3.4a!

dg2~j!

dj
52g1

2~j!1g3~j!g3* ~j!, ~3.4b!

-

FIG. 8. Vertices of interaction between electrons with sp
backward (g1), forward (g2), and umklapp (g3) scattering. The
thin solid lines inside the circles indicate how spin is conserved

FIG. 9. Decomposition of the interaction vertices~shown as
circles! into superconducting and density-wave bricks~shown as
rectangles! for electrons with spin. The thin solid lines inside th
circles and rectangles indicate how spin is conserved. The
represent the bare interaction vertices.
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dg3~j!

dj
52g3~j!@2g2~j!2g1~j!#. ~3.4c!

In the presence of spin, the electron operators in Eq.~2.8!
and, correspondingly, the fieldshi and the triangular vertice
Ti(j) acquire the spin indices. Thus, the superconduc
triangular vertexTSC(j) becomes a vector:

TSC~j!5S TSC↑↑~j!

TSC↑↓~j!

TSC↓↑~j!

TSC↓↓~j!

D . ~3.5!

Parquet equations for the triangular vertices are given by
diagrams shown in Fig. 6, where the spin lines should
added in the same manner as in Fig. 10. The supercondu
vertex obeys the following equation:

dTSC~j!

dj
5GSC~j!TSC~j!, ~3.6!

where the matrixGSC(j) is

GSC~j!5S 2g21g1 0 0 0

0 2g2 g1 0

0 g1 2g2 0

0 0 0 2g21g1

D .
~3.7!

FIG. 10. Parquet equations for the bricks for electrons with sp
The variablesk1 andk2 (k3 andk4) represent momenta of incomin
~outgoing! electrons, whereas the variableskA andkB represent in-
termediate momenta that should be integrated over.
g

e
e
ing

Linear equation~3.6! is diagonalized by introducing the sin
glet, TSSC, and the triplet,TTSC, superconducting triangula
vertices:

TSSC~j!5TSC↑↓~j!2TSC↓↑~j!, ~3.8a!

TTSC~j!5S TSC↑↑~j!

TSC↑↓~j!1TSC↓↑~j!

TSC↓↓~j!
D , ~3.8b!

which obey the following equations:

dTSSC~TSC!~j !

dj
5@7g1~j!2g2~j!#TSSC~TSC!~j !. ~3.9!

In Eq. ~3.9! the sign2 and the index SSC correspond to th
singlet superconductivity, whereas the sign1 and the index
TSC correspond to the triplet one. In the rest of the paper,
use the index SC where discussion applies to both SSC
TSC.

Now let us consider the density-wave triangular vertic
first in the absence of umklapp. They form a vector

TDW~j!5S TDW↑↑ ~j!

TDW↑↓ ~j!

TDW↓↑ ~j!

TDW↓↓ ~j!

D , ~3.10!

which obeys the equation

dTDW~j!

dj
5GDW~j!TDW~j! ~3.11!

with the matrix

GDW~j!5S 2g11g2 0 0 2g1

0 g2 0 0

0 0 g2 0

2g1 0 0 2g11g2

D .
~3.12!

Equation ~3.11! is diagonalized by introducing the
charge-,TCDW, and the spin-,TSDW, density-wave triangular
vertices:

TCDW~j!5TDW↑↑ ~j!1TDW↓↓ ~j!, ~3.13a!

TSDW~j!5S TDW↑↓ ~j!

TDW↓↑ ~j!

TDW↑↑ ~j!2TDW↓↓ ~j!
D , ~3.13b!

which obey the following equations:

dTCDW~j!

dj
5@22g1~j!1g2~j!#TCDW~j!, ~3.14a!

dTSDW~j!

dj
5g2~j!TSDW~j!. ~3.14b!

.
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When the umklapp verticesg3 and g3* are introduced,
they become offdiagonal matrix elements in Eqs.~3.14a! and
~3.14b!, mixing TCDW and TSDW with their complex conju-
gates. Assuming for simplicity thatg3 is real, we find that
the following linear combinations diagonalize the equatio

TCDW~SDW!65TCDW~SDW!6TCDW~SDW!
* , ~3.15!

and the equations become

dTCDW6~j!

dj
5@22g1~j!1g2~j!7g3~j!#TCDW6~j!,

~3.16a!

dTSDW6~j!

dj
5@g2~j!6g3~j!#TSDW6~j!. ~3.16b!

If the external fieldshi are set to unity in the initial con
ditions of the type~2.9a! and~2.9b! for all triangular vertices
i 5 SSC, TSC, CDW6, and SDW6, then the corresponding
susceptibilities are equal numerically to the free energy c
rections of the type~2.11a! and ~2.11b!:

x i~j!5E
0

j

dzTi~z!Ti* ~z!. ~3.17!

Equations~3.4a!–~3.4c!, ~3.9!, ~3.16a!, ~3.16b!, and
~3.17! were solved analytically in Ref. 16, where a comple
phase diagram of the 1D electron gas with spin was obtain

IV. PARQUET EQUATIONS FOR TWO-DIMENSIONAL
ELECTRONS

Now let us consider a 2D electron gas with the Fer
surface shown schematically in Fig. 11. It contains two pa
of flat regions, shown as the thick lines and labeled by
lettersa and b. Such a Fermi surface resembles the Fe
surfaces of some high-Tc superconductors.

33 In our consid-
eration, we restrict the momenta of electrons to the flat s
tions only. In this way, we effectively neglect the round
portions of the Fermi surface, which are not relevant for
parquet consideration, because the density-wave loop is
divergent there. One can check also that the contribution

FIG. 11. Fermi surface of a 2D electron gas. The thick lin
indicate flat regions on the Fermi surface.
:

r-
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the portionsa andb do not mix with each other in the par
quet manner, so they may be treated separately. For this
son, we will consider only the regiona, where the 2D elec-
tron states are labeled by the two momentakx and ky , the
latter momentum being restricted to the interv
@2ky

(0) ,ky
(0)#. In our model, the energy of electrons depen

only on the momentumkx according to Eq.~2.1! and does
not depend on the momentumky . We neglect possible de
pendence of the Fermi velocityvF on ky ; it was argued in
Ref. 28 that this dependence is irrelevant in t
renormalization-group sense.

In the 2D case, each brick or vertex of interactio
between electrons acquires extra variablesky

(1) , ky
(2) , and

ky
(3) in addition to the 1D variablesv1 , v2 , v3 , vFkx

(1) ,
vFkx

(2) , and vFkx
(3). These two sets of variables play ve

different roles. The Green functions, which connect the v
tices and produce the logarithmsj, depend only on the sec
ond set of variables. Thus, following the parquet approa
outlined in the previous sections, we dump all thev and
vFkx variables of a vertex or a brick into a single variab
j. At the same time, theky

(1), ky
(2), andky

(3) variables remain
independent and play the role of indices labeling the vertic
somewhat similar to the spin indices. Thus, each vertex
brick is a function of several variables, which we will alway
write in the following order:g(ky

(1) ,ky
(2) ;ky

(3) ,ky
(4) ;j). It is

implied that the first four variables satisfy the momentu
conservation lawky

(1)1ky
(2)5ky

(3)1ky
(4) and each of them

belongs to the interval@2ky
(0) ,ky

(0)#. The assignment of the
variablesky

(1), ky
(2), ky

(3), andky
(4) to the ends of the vertice

and bricks is shown in Fig. 9, where the labelskj
( j5124) should be considered now as the variablesky

( j ).
To shorten notation, it is convenient to combine these v
able into a single four-component vector

K5~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4!!, ~4.1!

so that the relation between the vertices and the bricks ca
written as

g1~K,j!5g11C1~K,j!1Z1~K,j!, ~4.2a!

g2~K,j!5g21C2~K,j!1Z2~K,j!, ~4.2b!

g3~K,j!5g31ZI~K,j!1ZII~K,j!. ~4.2c!

After this introduction, we are in a position to write th
parquet equations for the bricks. These equations are sh
graphically in Fig. 10, where again the momentakj should be
understood asky

( j ) Analytically, the equations are written
below, with the terms in the same order as in Fig. 10:

]C1~K,j!

]j
52g1~K1 ,j!+g2~K18 ,j!2g2~K1 ,j!+g1~K18 ,j!,

~4.3a!

]C2~K,j!

]j
52g1~K1 ,j!+g1~K18 ,j!2g2~K1 ,j!+g2~K18 ,j!,

~4.3b!

s
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]Z1~K,j!

]j
5g1~K2 ,j!+g2~K28 ,j!1g2~K2 ,j!+g1~K28 ,j!

22g1~K2 ,j!+g1~K28 ,j!

22g̃3~K2 ,j!+ ḡ̃3~K28 ,j!

1g̃3~K2 ,j!+ḡ3~K28 ,j!

1g3~K2 ,j!+ ḡ̃3~K28 ,j!, ~4.3c!

]Z2~K,j!

]j
5g2~K2 ,j!+g2~K28 ,j!1g3~K2 ,j!+ḡ3~K28 ,j!,

~4.3d!

]ZI~K,j!

]j
5g̃3~K3 ,j!+g2~K38 ,j!1g2~K3 ,j!+g̃3~K38 ,j!

1g1~K3 ,j!+g3~K38 ,j!1g3~K3 ,j!+g1~K38 ,j!

22g̃3~K3 ,j!+g1~K38 ,j!

22g1~K3 ,j!+g̃3~K38 ,j!, ~4.3e!

]ZII~K,j!

]j
5g3~K2 ,j!+g2~K29 ,j!1g2~K2 ,j!+g3~K29 ,j!,

~4.3f!
d

ve

i-
where

K15~ky
~1! ,ky

~2! ;ky
~A! ,ky

~B!!, K185~ky
~B! ,ky

~A! ;ky
~3! ,ky

~4!!,
~4.4a!

K25~ky
~1! ,ky

~B! ;ky
~3! ,ky

~A!!, K285~ky
~A! ,ky

~2! ;ky
~B! ,ky

~4!!,

K295~ky
~2! ,ky

~A! ;ky
~4! ,ky

~B!!, ~4.4b!

K35~ky
~1! ,ky

~B! ;ky
~4! ,ky

~A!!, K385~ky
~2! ,ky

~A! ;ky
~3! ,ky

~B!!,
~4.4c!

and the tilde and the bar operations are defined as

g̃ j~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4! ;j![g j~ky
~1! ,ky

~2! ;ky
~4! ,ky

~3! ;j!,
~4.5a!

ḡ3~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4! ;j![g3* ~ky
~4! ,ky

~3! ;ky
~2! ,ky

~1! ;j!.
~4.5b!

In Eqs.~4.3a!–~4.3f!, we introduced the operation+ that rep-
resents the integration over the internal momenta of the lo
in Fig. 10. It denotes the integration over the intermedi
momentumky

(A) with the restriction that bothky
(A) andky

(B),
another intermediate momentum determined by conserva
of momentum, belong to the interval@2ky

(0) ,ky
(0)#. For ex-

ample, the explicit form of the first term in the rhs of E
~4.3a! is
g1~K1 ,j!+g2~K18 ,j!5E
2k

y
~0!<k

y
~A!<k

y
~0! ;2k

y
~0!<k

y
~1!1k

y
~2!2k

y
~A!<k

y
~0!

dky
~A!

2p

3g1~ky
~1! ,ky

~2! ;ky
~A! ,ky

~1!1ky
~2!2ky

~A! ;j!g2~ky
~1!1ky

~2!2ky
~A! ,ky

~A! ;ky
~3! ,ky

~4! ;j!. ~4.6!
As

the

in-
pa-
, the
s
a
of
g-
ally

er-
m-
Equations~4.3a!–~4.3f! and ~4.2a!–~4.2c! with definitions
~4.1!, ~4.4a!–~4.4c!, and~4.5a! and~4.5b! form a closed sys-
tem of integrodifferential equations, which will be solve
numerically in Sec. V. The initial conditions for Eqs.~4.3a!–
~4.3f! and ~4.2a!–~4.2c! are that all theC andZ bricks are
equal to zero atj50.

Parquet equations for the superconducting triangular
tices can be found in the 2D case by adding theky momenta
to the 1D equations~3.9!. The equations are shown graph
cally in Fig. 6, where the momentak andq should be inter-
preted asky andqy :

]TSSC~TSC!~ky ,qy ,j!

]j
5 f SSC~TSC!~KSC,j!

+TSSC~TSC!~ky8 ,qy ,j!, ~4.7!

where

fSSC~TSC!~KSC,j!57g1~KSC,j!2g2~KSC,j!, ~4.8!
r-

KSC5~ky81qy/2,2ky81qy/2;2ky1qy/2,ky1qy/2!,
~4.9!

and the operator+ denotes the integration overky8 with the
restriction that bothky81qy/2 and2ky81qy/2 belong to the
interval@2ky

(0) ,ky
(0)#. The7 signs in front ofg1 in Eq. ~4.8!

correspond to the singlet and triplet superconductivity.
discussed in Sec. II, the triangular vertexTSC(ky ,qy ,j) is the
superconducting order parameter,qy and ky being the
y-components of the total and the relative momenta of
electrons in a Cooper pair. Indeed, the vertexTSC(ky ,qy ,j)
obeys the linear equation shown in Fig. 6, which is the l
earized Gorkov equation for the superconducting order
rameter. As the system approaches a phase transition
vertex TSC(ky ,qy ,j) diverges in overall magnitude, but it
dependence onky for a fixedqy remains the same, up to
singular, j-dependent factor. The dependence
TSC(ky ,qy ,j) on ky describes the distribution of the emer
ing order parameter over the Fermi surface. The numeric
found behavior ofTSC(ky ,qy ,j) is discussed in Sec. V.

Due to the particular shape of the Fermi surface, the v
tices of interaction in our 2D model have two special sy
metries: with respect to the sign change of all momentaky
and with respect to the exchange of the1 and2 electrons:
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g i~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4! ;j!

5g i~2ky
~1! ,2ky

~2! ;2ky
~3! ,2ky

~4! ;j!, i51,2,3; ~4.10a!

g i~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4! ;j!5g i~ky
~2! ,ky

~1! ;ky
~4! ,ky

~3! ;j!,

i51,2,3; ~4.10b!

g3~ky
~1! ,ky

~2! ;ky
~3! ,ky

~4! ;j!5g3~ky
~4! ,ky

~3! ;ky
~2! ,ky

~1! ;j!,
~4.10c!

where in Eq.~4.10c! we assume for simplicity thatg3 is real.
As a consequence of Eqs.~4.10a!–~4.10c!, Eq. ~4.7! is in-
variant with respect to the sign reversal ofky in
TSC(ky ,qy ,j) at a fixedqy . The following combinations of
the triangular vertices form two irreducible representatio
of this symmetry, that is, they are independent and do
mix in Eq. ~4.7!:

TSSC~TSC!
6 ~ky ,qy ,j!5TSSC~TSC!~ky ,qy ,j!

6TSSC~TSC!~2ky ,qy ,j!. ~4.11!

The triangular verticesTSSC(TSC)
6 (ky ,qy ,j) describe the su-

perconducting order parameters that are either symmetr
antisymmetric with respect to the sign change ofky . When
TSSC1 is extended over the whole 2D Fermi surface~see Fig.
11!, it acquires thes-wave symmetry, whereasTSSC2 the
d-wave symmetry. The symmetrized vertic
TSSC(TSC)

6 (ky ,qy ,j) obey the same Eq.~4.7! as the unsym-
metrized ones.

The equations for the density-wave triangular vertices
obtained in a similar manner:

]TCDW6
6 ~ky ,qy ,j!

]j
5 fCDW6~KDW ,j!+TCDW6

6 ~ky8 ,qy ,j!,

~4.12a!

]TSDW6
6 ~ky ,qy ,j!

]j
5 f SDW6~KDW ,j!+TSDW6

6 ~ky8 ,qy ,j!,

~4.12b!

where

fCDW6~KDW ,j!522g1~KDW ,j!72g̃3~KDW ,j!

1g2~KDW ,j!6g3~KDW ,j!, ~4.13!

f SDW6~KDW ,j!5g2~KDW ,j!6g3~K DW ,j!, ~4.14!

KDW5~ky81qy/2,ky2qy/2;ky82qy/2,ky1qy/2!.
~4.15!

The 6 signs in the subscripts ofT in Eqs. ~4.12a! and
~4.12b! and in front ofg3 in Eqs.~4.13! and ~4.14! refer to
the umklapp symmetry discussed in Sec. III, whereas
6 signs in the superscripts ofT refer to the symmetry with
respect to sign reversal ofky , discussed above in the supe
conducting case. Theky-antisymmetric density waves are a
tually the waves of charge current and spin current,36,32 also
known in the so-called flux phases.37
s
ot

or

e

e

Once the triangular verticesTi are found, the correspond
ing susceptibilitiesx i are calculated according to the follow
ing equation, similar to Eq.~3.17!:

x i~qy ,j!5E
0

j

dzE dky
2p
Ti~ky ,qy ,z!Ti* ~ky ,qy ,z!,

~4.16!

where the integration overky is restricted so that both
ky6qy/2 belong to the interval@2ky

(0) ,ky
(0)#.

Using functions~4.8!, ~4.13!, and ~4.14! and symmetries
~4.10a!–~4.10c!, we can rewrite Eqs.~4.3a!–~4.3f! in a more
compact form. For that purpose, we introduce the SSC, T
CDW, and SDW bricks that are the linear combinations
the original bricks:

CSSC~TSC!5C26C1 , ~4.17a!

ZCDW65Z̃222Z̃16~ Z̃II22ZI!, ~4.17b!

ZSDW65Z26ZII , ~4.17c!

where the tilde operation is defined in Eq.~4.5a!. Then, Eqs.
~4.3a!–~4.3f! become

]CSSC~TSC!~K,j!

]j
52 f SSC~TSC!~K1 ,j!+ f SSC~TSC!~K18 ,j!,

~4.18a!

]ZCDW6~K,j!

]j
5 fCDW6~K3 ,j!+ fCDW6~K38 ,j!,

~4.18b!

]ZSDW6~K,j!

]j
5 f SDW6~K2 ,j!+ f SDW6~K28 ,j!.

~4.18c!

The parquet equations in the form~4.18a!–~4.18c! were ob-
tained in Ref. 29.

It is instructive to trace the difference between the parq
equations ~4.18a!–~4.18c! and the corresponding ladde
equations. Suppose that, for some reason, only one brick
CSSC, among the six bricks~4.17a!–~4.17c! is appreciable,
whereas the other bricks may be neglected. Using definiti
~4.2a!–~4.2c! and ~4.8!, we find that Eq.~4.18a! becomes a
closed equation:

] f SSC~K,j!

]j
5 f SSC~K1 ,j!+ f SSC~K18 ,j!, ~4.19!

where

f SSC~K1 ,j!52g12g22CSSC~K,j!. ~4.20!

Equation ~4.19! is the ladder equation for the singlet supe
conductivity. When the initial value2(g11g2) of the vertex
f SSC is positive, Eq. ~4.19! has a singular solution
( f SSC→` at j→jc), which describes a phase transition in
the singlet superconducting state at a finite temperature.
peating this consideration for every channel, we construct
phase diagram of the system in the ladder approximation
list of necessary conditions for the corresponding instab
ties:
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SSC:g11g2,0, ~4.21a!

TSC:2g11g2,0, ~4.21b!

CDW1:22g11g22g3.0, ~4.21c!

CDW2:22g11g21g3.0, ~4.21d!

SDW1:g21g3.0, ~4.21e!

SDW2:g22g3.0. ~4.21f!

The difference between the ladder and the parquet
proximations shows up when there are more than one ap
ciable bricks in the problem. Then, the vertexf SSC contains
not only the brickCSSC, but other bricks as well, so Eqs
~4.18a!–~4.18c! get coupled. This is the case, for examp
for the 1D spinless electrons, where the bricksC andZ are
equally big, so they cancel each other ing ~see Sec. II!.

V. RESULTS OF NUMERICAL CALCULATIONS

The numerical procedure consists of three consecu
steps; each of them involves solving differential equations
the fourth-order Runge–Kutta method. First, we solve p
quet equations~4.2a!–~4.2c! and ~4.3a!–~4.3f! for the inter-
action vertices, which are closed equations. Then, we
the triangular verticesTi , whose equations~4.7! and~4.12a!
and ~4.12b! involve the interaction verticesg i through Eqs.
~4.8!, ~4.13!, and ~4.14!. Finally, we calculate the suscept
bilities x i from Eq. ~4.16!, which depend on the triangula
verticesTi .

We select the initial conditions for the interaction vertic
to be independent of the transverse momentaK:
g i(K,j50)5gi . The momentum-independent interactio
naturally appears in the Hubbard model, where the inte
tion is local in real space. In this section, the results
shown mostly for the repulsive Hubbard model without u
klapp: g15g25g, g350 ~Figs. 12–17!, or with umklapp,
g15g25g35g ~Figs. 18 and 19!, whereg is proportional
the Hubbard interaction constantU. The absolute value o

FIG. 12. Interaction verticesg1(ky
(1) ,ky

(2) ;ky
(3) ,ky

(4) ;j) and
g2(ky

(1) ,ky
(2) ;ky

(3) ,ky
(4) ;j) as functions of the average momentu

py5(ky
(1)1ky

(2))/2 of the incoming electrons atky
(1)5ky

(3),
ky
(2)5ky

(4), andj51.4.
p-
re-

,

e
y
r-

d

c-
e
-

g ~but not the sign ofg) is not essential in our calculations
because it can be removed from the equations by redefi
j to j85uguj. After the redefinition, we effectively have
ugu51 in the initial conditions. The actual value ofugu mat-
ters only when the logarithmic variablej8 is converted into
the temperature according to the formu
T5mexp(22pvFj8/ugu).

The initial independence ofg i(K,j50) on K does not
imply that this property is preserved upon renormalizatio
On the contrary, during renormalization,g i(K,j) develops a
very strong dependence onK and may even change sign i
certain regions of theK space. We illustrate this statement
Fig. 12 by showing typical dependences ofg1(K,j) and
g2(K,j) on the average momentumpy5(ky

(1)1ky
(2))/2 of

the incoming electrons atk15k3 and k25k4 after some
renormalization (j51.4). In Figs. 12–14, the upper an
lower limits on the horizontal axes are the boundar
6ky

(0) of the flat region on the Fermi surface, which are s
to 61 without loss of generality. One can observe in Fig.
that the electron-electron interaction becomes negative~at-
tractive! at largepy , even though initially it was repulsive
everywhere.

Mathematically, the dependence ofg i(K,j) on K arises
because of the finite limits of integration,@2ky

(0) ,ky
(0)#, im-

posed on the variablesky
(A) and ky

(B) in Eqs. ~4.3a!–~4.3f!.
For example, in Eq.~4.3a!, whenpy5(ky

(1)1ky
(2))/2 equals

zero,ky
(A) may change from2ky

(0) to ky
(0) while ky

(B) stays in
the same interval. However, whenpy.0, ky

(A) has to be
confined to a narrower interval@2ky

(0)12py ,ky
(0)# to ensure

that ky
(B)52py2ky

(A) stays within@2ky
(0) ,ky

(0)#. This differ-
ence in the integration range subsequently generates the
pendence ofg i(K,j) on py and, more generally, onK. Since
many channels with different geometrical restrictions co
tribute to ]g i(K,j)/]j in Eqs. ~4.3a!–~4.3f!, the resultant
dependence ofg i(K,j) on the four-dimensional vectorK is
complicated and hard to visualize. Because of the strong
pendence ofg i(K,j) onK, it is not possible to describe th
2D system by only three renormalizing chargesg1(j),
g2(j), andg3(j), as in the 1D case. Instead, it is absolute
necessary to consider an infinite number of the renormaliz
chargesg i(K,j) labeled by the continuous variableK. This
important difference was neglected in Ref. 7, where the c
tinuous variableK was omitted.

Having calculatedg i(K,j), we solve Eqs.~4.7! and
~4.12a! and ~4.12b! for the triangular vertices~the order pa-
rameters! T(ky ,qy ,j), which depend on both the relativ
(ky) and the total (qy) transverse momenta. We find nume
cally that the order parameters withqy50 diverge faster than
those withqyÞ0. This is a natural consequence of the in
gration range restrictions discussed above. For this rea
we discuss below only the order parameters with zero t
momentumqy50. We select the initial conditions for th
symmetric and antisymmetric order parameters in the for

T i
1~ky ,j50!51, T i

2~ky ,j50!5ky . ~5.1!

In Figs. 13 and 14, we present typical dependences of
superconducting and density-wave order parameters on
relative momentumky at the same renormalization ‘‘time’
j51.4 as in Fig. 12. The singlet antisymmetric compone
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(TSSC2 ) dominates among the superconducting order par
eters~Fig. 13!, whereas the symmetric SDW order parame
(TSDW1 ) is the highest in the density-wave channel~Fig. 14!.

Having calculated the triangular verticesT, we find the
susceptibilities from Eq.~4.16!. The results are shown in Fig
15. The symmetric SDW has the fastest growing suscept
ity xSDW

1 which diverges atjSDW51.76. This divergence
indicates that a phase transition from the metallic to the
tiferromagnetic state takes place at the transition tempera
TSDW5mexp(22pvFjSDW/g). A similar result was obtained
in Ref. 29 by analyzing the convergence radius of the p
quet series in powers ofgj. In the ladder approximation, th
SDW instability would take place atjSDW

lad 51/g251, as fol-
lows from Eqs.~4.14! and ~4.18c!. SincejSDW.jSDW

lad , the
transition temperatureTSDW, calculated in the parquet ap
proximation, is lower than the temperatureTSDW

lad , calculated
in the ladder approximation:TSDW,TSDW

lad . The parquet tem-
perature is lower, because competing superconducting
density-wave instabilities partially suppress each other.

Thus far, we considered the model with ideally flat r
gions on the Fermi surface. Suppose now that these reg
are only approximately flat. That is, they can be treated
being flat for the energies higher than a certain va
Ecutoff , but a curvature or a corrugation of the Fermi surfa

FIG. 14. Density-wave order parametersTDW(ky ,qy ,j) as the
functions of relative momentumky at qy50 andj51.4.

FIG. 13. Superconducting order parametersTSC(ky ,qy ,j) as
functions of relative momentumky at qy50 andj51.4.
-
r

il-

-
re

r-

nd

-
ns
s
e
e

becomes appreciable at the smaller energiesE,Ecutoff . Be-
cause of the curvature, the Fermi surface does not have n
ing for E,Ecutoff ; thus the density-wave bricks in the pa
quet equations~4.3a!–~4.3f! stop to renormalize. Formally
this effect can be taken into account by introducing a cut
jcutoff5(1/2pvF)ln(m/Ecutoff), so that the rhs of Eqs.~4.3c!–
~4.3f! for the density-wave bricks are replaced by zeros
j.jcutoff . At the same time, Eqs.~4.3a! and ~4.3b! for the
superconducting bricks remain unchanged, because the
vature of the Fermi surface does not affect the supercond
ing instability withqy50. The change of the renormalizatio
equations atjcutoff is not a completely rigorous way

38 to take
into account the Fermi surface curvature; however, this p
cedure permits obtaining explicit results and has a cer
qualitative appeal. For a more rigorous treatment of the c
rugated Fermi surface problem see Ref. 39.

In Fig. 16, we show the susceptibilities calculated us
the cutoff procedure withjcutoff51.4. The density-wave sus
ceptibilities remain constant atj.jcutoff . At the same time,
xSSC

2 (j) diverges atjSSC
2 52.44 indicating a transition into

the singlet superconducting state of thed-wave type. Thus, if

FIG. 15. Evolution of susceptibilitiesx i(j) in the repulsive
Hubbard model without umklapp. xSDW

1 (j) diverges at
j5jSDW51.76.

FIG. 16. Evolution of the four leading susceptibilities in th
Hubbard model without umklapp, with the cutoff of all densit
wave channels atj.jcutoff51.4. The susceptibility of antisymmet
ric singlet superconductivity,xSSC

2 , diverges atj5jSSC
2 52.44.
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the SDW instability is suppressed, the system is unsta
against formation of thed-wave superconductivity. This re
sult is in agreement with the conclusions of Refs. 25, 30,
32.

From our numerical results, we deduce that the dep
dence of jSSC

2 on jcutoff is linear: jSSC
2 5a2bjcutoff with

b52.06, as shown in the inset to Fig. 17. Convertingj into
energy in this relation, we find a power law dependence

TSSC
2 }

1

Ecutoff
b . ~5.2!

Equation~5.2! demonstrates that increasing the cutoff ene
Ecutoff decreases the temperature of the superconducting
sition,TSSC

2 . Such a relation can be qualitatively understo
in the following way. There is no bare interaction in th
superconductingd-wave channel in the Hubbard model, s
the transition is impossible in the ladder approximation. T
growth of the superconductingd-wave correlations is in-
duced by the growth of the SDW correlations, because
two channels are coupled in the parquet equations~4.18a!–
~4.18c!. If Ecutoff is high, the SDW correlations do not hav
enough renormalization-group ‘‘time’’j to develop them-
selves because of the early cutoff of the density-wave ch
nels; thus,TSSC

2 is low. Hence, decreasingEcutoff increases
TSSC

2 . However, whenEcutoff becomes lower thanTSDW, the
SDW instability overtakes the superconducting one. Co
sponding phase diagram is shown in Fig. 17. Gener
speaking, the phase diagram plotted in the energy variab
as opposed to the logarithmic variablesj, may depend on the
absolute value of the bare interaction constantugu. In Fig. 17,
we placed the points for the several values ofg 5 0.3, 0.4,
and 0.5; the phase boundary does not depend much on
choice ofg. The phase diagram of Fig. 17 qualitatively r
sembles the experimental one for the high-Tc superconduct-
ors, where transitions between the metallic, antiferrom
netic, and superconducting states are observed. The valu
Ecutoff may be related to the doping level, which controls t
shape of the Fermi surface. Taking into account the cru

FIG. 17. Phase diagram of the Hubbard model without umkla
illustrates the dependence of thed-wave superconducting transitio
temperatureTSSC

2 on the cutoff energyEcutoff for different g. The
inset shows the same dependence in the logarithmic varia
jSSC

2 and jcutoff . The solid line in the inset is a fit
jSSC

2 5a2bjcutoff , with a55.33, andb52.06.
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ness of our approximations, detailed agreement with the
periment should not be expected.

We perform the same calculations also for the Hubb
model with umklapp scattering (g15g25g351). As one
can see in Fig. 18, where the susceptibilities are shown,
umklapp process does not modify the qualitative picture. T
leading instability remains the SDW of the symmetric typ
which is now also symmetric with respect to the umkla
scattering, whereas the next leading instability is the sing
d-wave superconductivity. The SDW has a phase transi
at jSDW1

1 50.54, which is close to the ladder resu
jSDW1
lad 51/(g21g3)50.5. Some of the susceptibilities i
Fig. 18 coincide exactly, which is a consequence of a spe
SU~2!3SU~2! symmetry of the Hubbard model at the ha
filling.40 The phase diagram with the energy cutoff~Fig. 19!
is similar to the one without umklapp~Fig. 17!, but the pres-
ence of the umklapp scattering decreases the transition
perature of thed-wave superconductivity.

An important issue in the study of the 1D electron gas
the so-calledg-ology phase diagram, which was construct

p

es

FIG. 18. Evolution of generalized susceptibilitiesx i(j) in the
Hubbard model with umklapp scattering.xSDW1

1 (j) diverges at
j5jSDW1

1 50.54.

FIG. 19. Phase diagram of the Hubbard model with umkla
scattering illustrates the dependence of the critical tempera
TSSC

2 on the cutoff energyEcutoff for differentg. The inset shows the
dependence ofjSSC

2 on jcutoff . The solid line in the inset is a fit:
jSSC

2 5a2bjcutoff , with a54.5, andb57.32.
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by Dzyaloshinskii and Larkin.16 They found that, in some
regions of the (g1 ,g2 ,g3) space, the 1D electron system d
velops a charge or spin gap, which is indicated by diverge
of g i(j) with increasingj. In the region where none of th
gaps develops, the Luttinger liquid exists. It is interest
whether such a region may exist in our 2D model. To stu
the phase diagram of the 2D system, we repeat the calc
tions, systematically changing relative values ofg1, g2, and
g3. From the physical point of view, the relative differen
of g1, g2, andg3 roughly mimics dependence of the intera
tion vertex on the momentum transfer. As an example,
show the susceptibilities in the case whereg152, g251, and
g350 in Fig. 20. In this case, the leading instabilities a
simultaneously the triplet superconductivity of the symm
ric type ~TSC1! and the spin-density wave.

For all studied sets ofgi , we find that the leading insta
bilities calculated in the parquet and the ladder approxim
tions always coincide.~We do not introduce the energy cu
off here.! Thus, the parquet effects do not modify th
g-ology phase diagram of the 2D model derived in the lad
approximation, even though the transition temperatures
the parquet approximation are always lower than those
tained in the ladder approximation. In that sense, the par
corrections are much less important in the 2D case tha
the 1D case. From the mathematical point of view, this h
pens because a leading divergent brick develops a st
dependence on the transverse momentaK and acquires the
so-called mobile pole structure:20,22,29

Z~K,j!}
1

jc~K!2j
. ~5.3!

The name ‘‘mobile pole’’ is given, because the position
the pole inj in Eq. ~5.3!, jc(K), strongly depends on th
momentaK. It was shown in Refs. 22, 20, and 29 that, b
cause of the mobility of the pole, the leading channel
couples from the other channels, and the parquet descrip
effectively reduces to the ladder one, as described at the
of Sec. IV. The phase diagram of the 2D system in the lad
approximation is given by Eqs.~4.21a!–~4.21f!. It follows
from Eqs. ~4.21a!–~4.21f! that every point in the
(g1 ,g2 ,g3) space has some sort of instability. Thus, the L

FIG. 20. Evolution of susceptibilities in the case whereg152,
g251, andg350. xSDW

1 (j) andxTSC
2 (j) diverge atj53.48.
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tinger liquid, defined as a nontrivial metallic ground sta
where different instabilities mutually cancel each other, do
not exist in the 2D model.

Generally speaking, other models may have differ
types of solutions of the fast parquet equations, such as
mobile poles20 or a self-similar solution,23 the latter indeed
describing some sort of a Luttinger liquid. In our study of
2D model with the van Hove singularities,32 we found a
region in theg-space without instabilities, where the Lu
tinger liquid may exist.41 However, we find only the mobile-
pole solutions in the present 2D model.

VI. CONCLUSIONS

In this paper we derive and numerically solve the parq
equations for the 2D electron gas whose Fermi surface c
tains flat regions. The model is a natural generalization of
1D electron gas model, where the Luttinger liquid is know
to exist. We find that, because of the finite size of the
regions, the 2D parquet equations always develop the mo
pole solutions, where the leading instability effectively d
couples from the other channels. Thus, a ladder approxi
tion is qualitatively~but not necessarily quantitatively! cor-
rect for the 2D model, in contrast to the 1D case. Whate
the values of the bare interaction constants are, the 2D
tem always develops some sort of instability. Thus, the L
tinger liquid, defined as a nontrivial metallic ground sta
where different instabilities mutually cancel each other, do
not exist in the 2D model, contrary to the conclusions
Refs. 26 and 27.

In the case of the repulsive Hubbard model, the lead
instability is the SDW, i.e., antiferromagnetism.29 If the nest-
ing of the Fermi surface is not perfect, the SDW correlatio
do not develop into a phase transition, and the singlet su
conductivity of thed-wave type appears in the system i
stead. These results may be relevant for the high-Tc super-
conductors and are in qualitative agreement with the findi
of Refs. 25, 30, and 32.

In the bosonization procedure,4–11 a higher-dimensiona
Fermi surface is treated as a collection of flat patches. S
the results of our paper do not depend qualitatively on
size of the flat regions on the Fermi surface, the results m
be applicable, to some extent, to the patches as well. Pre
relation is hard to establish because of the infinitesimal s
of the patches, their different orientations, and uncertain
of connections between them. On the other hand,
bosonization procedure seems to be even better applicab
a flat Fermi surface, which consists of a few big patch
Mattis26 and Hlubina27 followed that logic and claimed tha
the flat Fermi surface model is exactly solvable by t
bosonization and represents a Luttinger liquid. The discr
ancy between this claim and the results our paper indic
that some conditions must restrict the validity of th
bosonization approximations. Luther gave a more soph
cated treatment to the flat Fermi surface problem by mapp
it onto multiple quantum chains.28 He found that the
bosonization converts the interaction between electrons
the two types of terms, roughly corresponding to the t
terms of the sine-Gordon model: the ‘‘harmonic’’ term
(]w/]x)2 and the ‘‘exponential’’ terms exp(iw), wherew is a
bosonization phase. The harmonic terms can be readily
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agonalized, but the exponential terms require a consist
renormalization-group treatment. If the renormalizatio
group equations were derived in the bosonization scheme
Ref. 28, they would be the same as the parquet equati
written in our paper, because the renormalization-gro
equations do not depend on whether the boson or ferm
representation is used in their derivation.42

Long time ago, Luther bosonized noninteracting electro
on a curved Fermi surface;43 however, the interaction be-
tween the electrons remained intractable because of the
ponential terms. The recent bosonization in high
dimensions4–11 managed to reformulate the problem in th
harmonic terms only. This is certainly sufficient to repro
duces the Landau description of sound excitations in a Fe
liquid;44 however, it may not be sufficient to derive the ele
tron correlation functions. The validity of the harmonic ap
proximation is hard to trace for a curved Fermi surface, b
considerable experience has been accumulated for the
Fermi surface models.

In the model of multiple 1D chains without single
electron tunneling between the chains and with forward sc
tering between different chains, the bosonization produc
nt
-
of
ns
p
n

s

x-
r

i
-

t
flat

t-
s

the harmonic terms only, thus the model can be solv
exactly.19,45However, a slight modification of the model by
introducing backward scattering between different chains20,46

or interaction between four different chains21 adds the expo-
nential terms, which destroy the exact solvability and typ
cally lead to a CDW or SDW instability. Even if no instabil-
ity occurs, as in the model of electrons in a high magne
field,23 the fast parquet method shows that the electron c
relation functions have a complicated, nonpower structu
which is impossible to obtain within the harmonic bosoniza
tion. Further comparison of the fast parquet method and t
bosonization in higher dimensions might help to establish t
conditions of applicability of the two complementary meth
ods.
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