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Parquet solution for a flat Fermi surface
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We study instabilities occurring in the electron system whose Fermi surface has flat regions on its opposite
sides. Such a Fermi surface resembles Fermi surfaces of som& hgperconductors. In the framework of
the parquet approximation, we classify possible instabilities and derive renormalization-group equations that
determine the evolution of corresponding susceptibilities with decreasing temperature. Numerical solutions of
the parquet equations are found to be in qualitative agreement with a ladder approximation. For the repulsive
Hubbard interaction, the antiferromagnet&pin-density-wavk instability dominates, but when the Fermi
surface is not perfectly flat, the-wave superconducting instability takes oVg30163-182€07)04605-5

I. INTRODUCTION two basic one-loop diagrams into each other, is calculated by
solving a system of nonlinear differential equations, which
An interacting electron gas in one dimension has manyare nothing but the renormalization-group equatitrishis
unusual properties, such as the spin-charge separation, theocedure was developed for meson scattéfimmd later
power law of correlation functions, and the linear depen-was successfully applied to the 1D electron fa$,as well
dence of the electron relaxation rate on temperature and fras to the Kondo probleth and the x-ray absorption edge
quency (see Ref. 1 for a review These one-dimensional problem?® By considering both the superconducting and the
(1D) results are well established, in many cases exactly, bgensity-wave instabilities on equal footing and adequately
applying a variety of mathematical methods including thetreating their competition, the parquet approximation differs
Bethe ansatz, the bosonization, and the parquet, or the rendrom a conventional laddefor mean-fielgd approximation,
malization group. To distinguish the exotic behavior of thecommonly applied in higher dimensions, where only one in-
1D electron gas from a conventional Fermi-liquid behavior,stability is taken into account. Under certain conditions in
Haldane introduced a concept of the so-called Luttingethe 1D case, the superconducting and density-wave instabili-
liquid. ties may cancel each other, giving rise to a nontrivial metal-
The discovery of highf. superconductivity renewed in- lic ground state at zero temperature, namely the Luttinger
terest in the Luttinger-liquid concept. Anderson suggestediquid. In this case, the parquet derivation shows that the
that a two-dimensiondRD) electron gas behaves like the 1D electron correlation functions have a power-law structure,
Luttinger liquid, rather than a conventional Fermi ligditt. ~ which is one of the characteristic properties of the Luttinger
is difficult to verify this claim rigorously, because the meth- liquid.’®'° One may conclude that the competition between
ods that prove the existence of the Luttinger liquid in 1Dthe superconducting and density-wave instabilities is an im-
cannot be applied directly to higher dimensions. The Bethgortant ingredient of the Luttinger liquid theory.
ansatz construction does not work in higher dimensions. The In a generic higher-dimensional case, where density-wave
bosonization in higher dimensicdhs! converts a system of instability does not exist or does not couple to superconduct-
interacting electrons into a set of harmonic oscillators repreing instability because of corrugation of the Fermi surface,
senting the electron density modes. This procedure replacdBe parquet approach is not relevant. Nevertheless, there are
the exactW,. commutation relatiorfswith approximate bo- a number of higher-dimensional models where the parquet is
son commutators, which is a questionable, uncontrolled apapplicable and produces nontrivial results. These include the
proximation. On the other hand, the parquet method, almodels of multiple chains without single-electron hopgthg
though not being as exact as the two other methods, has ttad with single-electron hopping but in a magnetic fields
advantage of being formulated as a certain selection rulgvell as the model of an isotropic electron gas in a strong
within a standard many-body diagram technique; thus, it camagnetic field>?®In all of these models, the electron dis-
be applied to higher dimensions rather straightforwardlypersion law is 1D, which permits to apply the parquet
The parquet method has much in common with themethod; at the same time, the interaction between electrons
renormalization-group treatment of Fermi liquitfs. is higher-dimensional, which makes a nontrivial difference
The 1D electron gas has two types of potential instabili-from the purely 1D case. The particular version of the par-
ties: the superconducting and the density-wave, which maniguet method used in these cases is sometimes called the
fest themselves through logarithmic divergences of the cor“fast” parquet, because, in addition to a ‘“slow,”
responding one-loop susceptibilities with decreasingenormalization-group variable, the parquet equations ac-
temperature. Within the parquet approach, a sum of an infiguire supplementary, “fast” variables, which label multiple
nite series of diagrams, obtained by adding and inserting thelectron states of the same energy.
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Taking into account these considerations, it seems naturahe spin-density-wavéSDW) in the case of the repulsive
to start exploring a possibility of the Luttinger liquid behav- Hubbard interaction, develops its own phase transition, in-
ior in higher dimensions by considering a model that com-ducing on the way a considerable growth of the supercon-
bines 1D and higher-dimensional features. This is the modeaducting d-wave susceptibility. At the same time, the feed-
of an electron gas whose Fermi surface has flat regions on itsack from the superconducting to the SDW channel, very
opposite sides. The flatness means that within these regiomssential in the 1D case, is found negligible in the 2D case.
the electron dispersion law is 1D: The electron energy deThese results are in qualitative agreement with the picture of

pends only on the one component of momentum that is northe antiferromagnetically-inducettwave superconductivity,
mal to the flat section. On the other hand, the size of the flaivhich was developed within a ladder approximation for the
regions is finite, and that property differentiates the modeflat Fermi surface in Ref. 25 and for a generic nested Hub-
from a purely 1D model, where the size is infinite, sincebard model in Ref. 30. Recent experiments strongly suggest
nothing depends on the momenta perpendicular to the direghat the highT, superconductivity is indeed of thé-wave

tion of a 1D chain. A particular case of the considered modetype 3! On the other hand, our results disagree with Refs. 26
is one where the 2D Fermi surface has a square shape. Thaaid 27. The origin of the discrepancy is that the bosonization
model describes 2D electrons on a square lattice with tharbitrarily replaces the exa®,, commutation relatiorfsby
nearest-neighbor hopping at the half filling. It is a simplestapproximate boson commutators; thus the renormalization of

model of the hight, superconductors. the electron-electron interaction, which is an important part
The model has already attracted the attention of theorist®f the problem, becomes neglected.
Virosztek and Ruvalds studied the “nested Fermi liquid”  |n addition to having the flat sides, the square Fermi sur-

problem within a ladder or mean-field approximatfdri>  face also has sharp corners, where the saddle points of the
Taking into account the 1D experience, this approach may belectron dispersion law, which produce the van Hove singu-
considered questionable, because it does not treat properirity in the density of states, are located. The presence of the
the competition between the superconducting and thgan Hove singularity at the Fermi level enhances the diver-
density-wave channels. Houghton and Marétorapped the  gence of the superconducting and density-wave loops to the
flat parts of the Fermi surface onto discrete points. Such agquare of the temperature logarithm. The fast parquet prob-
oversimplification makes all scattering processes within théem was formulated in this case in Ref. 32, where the con-
flat portion equivalent and artificially enhances the electronribution from the flat sides, being less divergent than the
interaction. Matti$® and Hlubind’ used the bosonization to contribution from the saddle points, was neglected. The
treat the interaction between the electron density modes angtesent paper completes the study by considering a Fermi
claimed to solve the model exactly. However, mapping ofsurface with the flat sides and rounded corners, that is, with-
the flat Fermi surface onto quantum chains and subsequestit saddle points at the Fermi level. Our physical conclu-
bosonization by Luthéf indicated that the treatment of Mat- sions for both models are in qualitative agreement.
tis and Hlubina is insufficient, because the operators of back- As photoemission experimeritsdemonstrate(see also
ward and umklapp scattering on different quantum chainRef. 25, many of the highF, superconductors indeed have
require a consistent renormalization-group treatment. Lutheflat regions on their Fermi surfaces. Hence, some of the re-
did not give solution to this problems, as well as he missedults of this paper may be applicable to these materials.
the interaction between the electrons located on four differHowever, the primary goal of our study is to elucidate gen-
ent quantum chains. eral theoretical concepts rather than to achieve detailed de-
In the present paper, we solve the model consistentlyscription of real materials.
using the fast parquet approach, where all possible instabili- |n order to distinguish the new features brought into the
ties occurring in the electron system with the flat regions orproblems by introducing higher dimensions, we present ma-
the Fermi surface are treated simultaneously. This approadrial in an inductive manner. In Sec. II, we recall the deri-
was applied to the problem earfféin order to explain the vation of the parquet equations in the simplest case of 1D
antiferromagnetism of chromium. In the present paper, wgpinless electrons. In Sec. Ill, we generalize the procedure to
advance the study further by including the order parameterghe case of 1D electrons with spin'® Then, we derive the
of the odd symmetry, missed in Ref. 29, performing detailecharquet equations in the 2D case in Sec. IV and solve them

numerical calculations, and investigating the effect of a curnumerically in Sec. V. The paper ends with conclusions in
vature of the Fermi surface. To simplify numerical calcula-Sec. VI.

tions and to relate to the high: superconductors, we con-
sider the 2D case, although the method can be
straightforwardly generalized to higher dimensions as well. | PARQUET EQUATIONS FOR ONE-DIMENSIONAL

We find that the presence of the bounda}rles of the flat SPINLESS FERMIONS
portions of the Fermi surface has a dramatic effect on the
solutions of the parquet equations. Even if the initial vertex Let us consider a 1D electron gas with a Fermi energy
of interaction between electrons does not depend on the mgs and a generic dispersion lask,), wheree is the energy
menta along the Fermi surfag¢ehich are the “fast” vari-  andk, is the momentum of the electrons. As shown in Fig. 1,
ables, the vertex acquires a strong dependence on these vathe Fermi surface of this system consists of two points lo-
ables upon renormalization, which greatly reduces theated atk,=*kg, wherekg is the Fermi momentum. As-
feedback coupling between the superconducting and densitguming that the two points are well separated, let us treat the
wave channels relative to the 1D case. Instead of the twelectrons whose momenta are closettky: as two indepen-
channels canceling each other, the leading channel, which @ent species and label them with the indexIn the vicinity



3202 ZHELEZNYAK, YAKOVENKO, AND DZYALOSHINSKII 55

FIG. 1. Dispersion law of 1D electrons. The states in the shaded
range of the momenturk, are occupied by electrons.

of the Fermi energy, the dispersion laws of these electrons FIG. 3. Some parquet corrections to the vertex of interaction

can be linearized: between electrongy, which is shown as a circle. The dots represent
the bare interaction vertex The expressions beneath the diagrams
represent the values of the corresponding diagrams.

Si(kx):iUFkxa (21)
dk, . _
where the momenti, are counted from the respective Fermi iTEn: 57 C-(Fon, )G (0 k-0
points = kg for the two species of the electronsp g are the
corresponding Fermi velocities, and the eneggi counted TE fdk,( 1
from the chemical potentigk. . T2 ) 27 (fwptork) (i 0n+1Q m— v (Kt Oy)
First, let us consider the simplest case of electrons without

spin. The bare Hamiltonian of the interaction between the 1 n
+ electronsHj,, can be written as - 27Tl)|:|n maxT,|ve0y,|Qml} =4 23

where the upper sign corresponds to the superconducting and
the lower to the density-wave susceptibility. In E&.3), T is

' dic” dii? dk - (1) 4 12 _ 1 BN+ (13
Hingf 5 2n 2. V(KRR YT the temperature(),, is the external energy passing through
R R the loop, andy, is the external momentum for the supercon-
X (K2, (kD), (2.2 ducting loop and the deviation fromkg for the density-

wave loop. With logarithmic accuracy, the value of the inte-

whereg is the bare vertex of interaction, and the operatorﬁgor a;(riztﬁgr)nlii d deif/zrrmlennecde bﬁ/r:hgigg;ar;;d LOW(Z: C:rfgffﬁ) \?v];trhe
1 and . create and destroy the electrons. 9 9 i e P

The tendencies toward the superconducting or densit c_:gtoﬁs are written approximately, up to numerical coefi-

wave (%) instabilities in the system are reflected by theC|ents of the order of unity, whose logarithms are small com-

NS . ared to¢>1. The variableg, introduced by Eq(2.3), plays
logarithmic drllvergerr: ces ?Ethe ;wg onhe-ldo?p diagrams Shom%very icr)ngportant role in thfpaper Singés ¥he(1£)ga)ritf1myof
in Fig. 2, where the solid and dashed lines represent t : . : .
Green functionsG, and G_ of the + and — electrons, e infrared cutoff, the increase éfrepresents renormaliza-

respectively. The two diagrams in Fig. 2 differ in the mutual t'or_}_:‘%\'\{\?\f ltr)ivr:;?mgizrargjr;es?)?clj:ienezrg)énerate higher-order
orientation of the arrows in the loops. In the Matsubara tech- orrections Ff[O theyvertgex of interg.ctio% betweengelectrons
nique, the integration of the Green functions over the internaf '

momenturrk, and energys,, produces the following expres- v, as illustrated in Fig. 3. In this figure, the dots represent the
sions for thextwo diagram;' bare interaction vertey, whereas the renormalized vertex

v is shown as a circle. The one-loop diagrams in Fig. 3 are

the same as in Fig. 2. The first two two-loop diagrams in Fig.

K +q, ©+Q k +q, 0+Q 3 are obtained by repe_ating the same Ic_Jop twic_e in a ladder
manner. The last two diagrams are obtained by inserting one

g, q, Q2 loop into the other and represent coupling between the two

channels. The diagrams obtained by repeatedly adding and
e e inserting the two basic diagrams of Fig. 2 in all possible

-k,—-m k,n ways are called the parquet diagrams. The ladder diagrams,

where only the addition, but not the insertion of the loops is
FIG. 2. Bare superconducting and density-wave susceptibilitiesallowed, represent a subset of the more general set of the
The solid and dashed lines represent the Green functions of the parquet diagrams. Selection of the parquet diagrams is justi-
and — electrons. The wavy lines represent incoming momentundfied, because, as one can check calculating the diagrams in
and energy. Fig. 3, they form a series with the expansion parameter
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¢
C(§)=—j0d§7(é’)7(§), (2.5

3
2(8)= fodmmm. (25D

The two verticesy in the right-hand side of Eq$2.59 and
(2.5b represent the two pieces obtained from a brick by
cutting, whereas the integrals ovérepresent the two con-

FIG. 4. Decomposition of the interaction vertex shown as a Necting Green functions being integrated over the internal

circle, into superconducting and density-wave bricks, shown agnomentum and energy of the loop. The value of the renor-
rectangles, in the spinless case. malized vertex y({) changes as the integration ovér

progresses in Eq$2.53 and (2.5b). In agreement with the
y=g37_san(g€)". If the bare interaction verteg is small ~ Standard rules of the diagram technidfie pair of the par-
and the temperature is sufficiently low, so tigT) is big,  allel (antiparalle] lines in Fig. 5 produces a negatiyposi-
one can argué~° that nonparquet diagrams may be ne-tive) sign in the right-hand side of E¢2.58 [(2.5b)].

glected, because their expansion parameter small com- Equations(2.5@ and(2.5b can be rewritten in differen-
pared to the parquet expansion paramgter tial, renormalization-group form:

Every diagram in Fig. 3, except the bare vertgxcan be dc(é)
divided into two disconnected pieces by cutting one solid — = (Hy(E), C(£=0)=0; (2.63
and one dashed line, the arrows of the cut lines being either d¢
parallel or antiparallel. The sum of those diagrams where the
arrows of the cut lines are parall@lntiparalle] is called the dZ(¢)

superconductingdensity-wave “brick.” Thus the vertexy dé =7OE), 2(£=0)=0. (2.6

can be decomposed into the bare vedexhe superconduct-

ing brick C, and the density-wave brick: Combining Eqgs(2.63 and(2.6b with Eq. (2.4), we find the

renormalization equation for the full vertex
y=g+C+Z. (2.9

dy(§)
Equation (2.4) is illustrated in Fig. 4, where the bricks are dé =y(&) v(&)— ¥(£) v(£)=0, (2.79
represented as rectangles whose long sides, one being a solid
and another a dashed line, represent the lines to be cut. y(£=0)=g. (2.7b

In a general case, the vertices and the bricks depend on
the energies and momenta)](,mz,wg,quﬁl) ,ka)((z) and We see that the two terms in the right-hand dides) of Eq.
vpkﬁf)) of all incoming and outgoing electrons. Equations (2.79, representing the_t_e_ndenmes toward density-wave and
for the bricks can be found in closed form in the case whergUPerconducting instabilities, exactly cancel each other. in a
all their arguments are approximately equal within the loga.2dder approximation, where only one term is kept in the rhs,
rithmic accuracy, that is, the ratios of the arguments and of'€ result would be quite different, becauggt) would di-
their linear combinations are of the order of urify*® Prac- verge at a f|p|te§ indicating an instability or generation of a
tically, this means that all vertices and bricks are considere@S€udogap in the system.

to be functions of the single renormalization-group variable N order to study possible instabilities in the system, we
¢, defined in Eq(2.3). It was proved in Ref. 14 that the two need to calculate corresponding generalized susceptibilities.

pieces obtained by cutting a brick are the full vertices offor that purpose, let us add to the Hamiltonian of the system

interaction, as illustrated graphically in Fig. 5. Analytically, WO fictitious infinitesimal external fieldesc and hpy, that
the equations for the bricks are create the electron-electron and electron-hole pairs:

N dqg, dk
Hext=f2—;2—;
Qx

+h pw(ay) ;b+( Kyt %) ‘Q/Jr(kx_ ?) +H.c.

o+ %_ O+ %
hSC(qx)l//—<2 kx)‘/’+ 2 +kx

(2.9

Now we need to introduce triangular verticdgc: and
Tow that represent the response of the system to the fields
hgc andhpyy . Following the same procedure as in the deri-
vation of the parquet equations for the bri¢R®222%we
find the parquet equations for the triangular vertices in
graphic form, as shown in Fig. 6. In that figure, the filled
triangles represent the verticsc and 7py, whereas the
FIG. 5. Parquet equations for the bricks in the spinless case. dots represent the fieldsc andhp,, . The circles, as in the




3204 ZHELEZNYAK, YAKOVENKO, AND DZYALOSHINSKII 55

other figures, represent the interaction verieXnalytically, ~ Substituting expressiong2.103 and (2.10h into Egs.
these equations can be written as differential equations witf2.113 and (2.11h and dropping the squares bfc and

given initial conditions: hpw, we find the susceptibilities:
d7sd§) xsd(§) = —[exp(—298)—1]/29, (2.123
de ==Y Tsd§), Tsd0)=hsc; (2.93 ol &) =[exp(208) — 11123, (2128
dTow(é) According to Eqs(2.123 and(2.120, when the interac-

—de Y()Tow(§), Tow(0)=hpw. (2.9D  tion between electrons is repulsivattractive, that is,g is
positive (negative, the density-wavésuperconductingsus-

We will often refer to the triangular verticésas the “order  ceptibility increases as temperature decreases>Q and
parameters.” Indeed, they are the superconducting ang— ):
density-wave order parameters induced in the system by the u +2g
external fieldshgc andhpyy . If, for a finite h; (i=SC, DW), o + —
a vertex7;(&), which is proportional tdh;, diverges when Xow(so( &)= exp( = 298) max{T,|vedyl,|Qml}
&— &, this indicates that apontaneousrder parameter ap-
pears in the system, that is, the order parameter may haveSusceptibilities(2.13 have power dependence on the tem-
finite value even when the external figidis zero. The ex- perature and energy, which is one of the characteristic prop-
ternal fields are introduced here only as auxiliary tools ancerties of the Luttinger liquid. The susceptibilities are finite at
are equal to zero in real systems. We also note that the twinite temperatures and diverge only at zero temperature, in
terms in the rhs of Eq(2.8) are not Hermitially self- agreement with the general theorBrthat phase transitions
Conjugate; thUS, the f|e|d$i are the Comp|ex fields. Conse- are impOSSible at finite temperatures in ]..D_Systems. Math-
quently, the order paramete(&) are also complex, so, emat|cally, the absence of dlve_rgence at figite due to the
generally speakingl and 7* do not coincide. According to cancellation of the two terms in the rhs of EQ.78 and

Eas. (2.7 d(2.7b), =q, Eqs.(2.9 d(2.9b subsequent nonrenormalization #f¢). This nontrivial 1D
hg\fe(the?‘oﬂgwi(ng sLIJEi(g%' 9, so Egs.(2.93 and (2.9 result can be obtained only within the parquet, but not the

ladder approximation.
Tsd ) =hscexp(—g¢), (2.103 ll. PARQUET EQUATIONS FOR ONE-DIMENSIONAL

Tow(€) =hpwexp(gé). (2.100 FERMIONS WITH SPIN
I Now let us consider 1D electrons with spin. In this case,
Now we can calculate the susceptibilities. The lowest 0y or6 are three vertices of interaction, conventionally denoted
der corrections to the free energy of the system due to thgg 1, 5, and ys, which represent backward, forward, and
introduction of the field$isc andhpy , FscandFpy, obey  ymilapp scattering, respectivéfy’® Umklapp scattering
the parquet equations shown graphically in Fig. 7 and anashould be considered only when the change of the total mo-
lytically below: mentum of the electrons in the interaction procesds; ,4is
: equal to the crystal lattice wave vector, which may or may
Fsd &)= f d{Tsd O TELL), (2.11a  nhot b_e the case ina partlcylar mode_l. In this paper, we do not
0 consider the vertex,, which describes the interaction be-
tween the electrons of the same type 6r —), because this
(2.11b vertex does not have logarithmic corrections. The bare

Hamiltonian of the interactiorkl;,;, can be written as

¢
Fow(é)= fo dg%w@)%w(@-

= O A A 116050+ 08,60 (K KD KDY ()T (K)o (KD
im_o’,T,p,VITl 20 2w ?{(_gl prPav J2 pv o—r)wv+( X X Bx )lpr—( X )lﬂof( X )¢p+( X )

+[988,, 8557 (KD +KP =K i (k) thy s (K) P, 4 (KP) +H.C T}, 3.1)

where the coefficientg, _; denote the baréunrenormal- line are the same. According to the structure of Hamiltonian
ized values of the interaction verticeg, 3. The operators (3.1), the umklapp vertex; describes the process where two
¥ and . create and destroy electrons of the tygre = + electrons come in and twe electrons come out, whereas

and the spinc=1|. The spin structure of the interaction the complex conjugate vertey§ describes the reversed pro-

Hamiltonian is dictated by conservation of spin. We picturecess.

the interaction vertices in Fig. 8, where the solid and dashed The three vertices of interaction contain six bricks, as
lines represent the- and — electrons. The thin solid lines shown schematically in Fig. 9:

inside the circles indicate how spin is conserved: The spins

of the incoming and outgoing electrons connected by a thin v1=0:+C1+2Z4, (3.29
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k+q/2 k k k
q V(\ll\/ q
= WW._ +
\ ...\ ~.,_i:_..;2 ’\\
. . -k'+q ) PR “
k+q/2 k+q/2 “k+q/2 (,, p
k+q/2 by K % Y ke % ¥ K
q q q
| = W@ + FIG. 8. Vertices of interaction between electrons with spin:
'~ B 2 - . backward ), forward (y,), and umklapp §3) scattering. The
k-q/2 k-q/2 k'-q/2 K /} thin solid lines inside the circles indicate how spin is conserved.
-q
FIG. 6. Parquet equations for the triangular vertices in the spin- dCa($) - _ ),2(%) _ 72(5), (3.3b
less case. The filled triangles represent the verti&gsand 7py , dé ! 2
whereas the dots represent the auxiliary external fiblgls and
how - dZ,(¢) >
—ag =276 =27, (3.39
’yZ:gz+C2+Zz, (32b)
dZ,(6)
—= + (), 3.3
=gt Zi+ 2y, (3.20 gE = YO (975 (3.3
whereC; and C, are the superconducting bricks, aid, dz,(§)
Z,,Z,, andZ, are the density-wave bricks. In Fig. 9, the thin dé =2y3(O)[72(&) — v1(9)], (3.39
solid lines inside the bricks represent spin conservation. The
umklapp vertex has two density-wave bricks and Z,,, dz,(&)
which differ in their spin structure. _ _ d—§=2'y3(§) v2(€). (3.31)
Parquet equations for the bricks are derived in the same

manner as in Sec. Il by adding.approprie.\te spin SI,rUCtur%:ombining Eqgs(3.28—(3.29 and (3.33—(3.3f), we obtain

) : ; ) V€ N&he well-known closed equations for renormalization of the
equations graphically by demanding that the thin spin Ime%/ertices?e

are continuous, as shown in Fig. 10. Corresponding analytic

equations can be written using the following rules. A pair of dyy(£)

parallel(antiparalle) lines connecting two vertices in Fig. 10 LA LI —275(5), (3.4a
produces the negativ@ositive sign. A closed loop of the d¢

two connecting lines produces an additional facta? due

to summation over the two spin orientations of the electrons. dy,(¢)
P = AOTnOnE©, @

dcC
df) =~ 2y1(8)7é), (339

k+q/2

FIG. 9. Decomposition of the interaction verticéshown as
circles into superconducting and density-wave bridlshown as
rectangles for electrons with spin. The thin solid lines inside the

FIG. 7. Parquet equations for the free energy correctiogs  circles and rectangles indicate how spin is conserved. The dots
andFpyy in the spinless case. represent the bare interaction vertices.
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Linear equatior(3.6) is diagonalized by introducing the sin-
glet, 7ssc, and the triplet,Zrsc, superconducting triangular

vertices:
Tssd €)=T5d &)~ Ts( §), (3.8a
75 )
Trsd &)= T5d+TEHE) |, (3.8
Tsd €)
which obey the following equations:
d7Zssqrsg(é)

g =[+v1(&) — v2() 17ssqrsg(§). (3.9
In Eq. (3.9) the sign— and the index SSC correspond to the
singlet superconductivity, whereas the signand the index
TSC correspond to the triplet one. In the rest of the paper, we
use the index SC where discussion applies to both SSC and
TSC.

Now let us consider the density-wave triangular vertices,
first in the absence of umklapp. They form a vector

Thw(£)
Tow(é)
Tow(é)= ,z,iD;N(g) \ (3.10
FIG. 10. Parquet equations for the bricks for electrons with spin. bw
The variablek; andk, (ks andk,) represent momenta of incoming T%){N( &)
(outgoing electrons, whereas the variables andkg represent in- ) )
termediate momenta that should be integrated over. which obeys the equation
d7pw(§)
dys(§) ZIoWiS)
e 2n(O2vO-n®]. (349 g Lowl&Towl(d) (313
In the presence of spin, the electron operators in(E®) with the matrix
and, correspondingly, the fields and the triangular vertices —yi+y, 0 0O —
7,(&€) acquire the spin indices. Thus, the superconducting
triangular vertexZs £) becomes a vector: T pu(£)= 0 v2 0 0
bw 0 0 v 0
T5(£)
S — 0 0 —y+
! Y1 YiT 72
T €) (3.12
Tsd &)= T ol (3.5
sd Equation (3.11) is diagonalized by introducing the
TE &) charge-Zcpw, and the spin-Zgpy, density-wave triangular
S
. . . : vertices:
Parquet equations for the triangular vertices are given by the
diagrams shown in Fig. 6, where the spin lines should be T =7 + 7t 3.13
added in the same manner as in Fig. 10. The superconducting cow §)=Tow( )+ Towl€). ( ?
vertex obeys the following equation: Tk (&)
DwW
d75d§) T = Tp\ 3.13
=T T ), 36 oW©)=| Toule) . (313
Thw(&) — Toi(é)
where the matrid’s((£) is which obey the following equations:
— ¥+ 0 0 0
72rTn dTeon(é)
Fodd)= ¥ 7 0 d—g—[—271(§)+ ¥2(§)1Tcow(§), (3.143
S 0 Yi T2 0 '
- d7spwl( €)
0 0 0 Y2t 71 _°SDWAS/ _
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K the portionsa andb do not mix with each other in the par-
y quet manner, so they may be treated separately. For this rea-

son, we will consider only the regiom, where the 2D elec-
b tron states are labeled by the two momekgaandk,, the
latter momentum being restricted to the interval
L 0 [—k{P k1. In our model, the energy of electrons depends
-k y k only on the momentunk, according to Eq(2.1) and does
a a F .
not depend on the momentuk). We neglect possible de-
k pendence of the Fermi velocity: on k,; it was argued in

Ref. 28 that this dependence is irrelevant in the

kO
Y renormalization-group sense.
b In the 2D case, each brick or vertex of interaction
e — between electrons acquires extra variathés, k{7, and
k{® in addition to the 1D variables, w,, ws, vk,
vek® | andvek®. These two sets of variables play very
FIG. 11. Fermi surface of a 2D electron gas. The thick IineSqifferent roles. The Green fl_mctions, which connect the ver-
indicate flat regions on the Fermi surface. tices and produce the logarithn§s depend only on the sec-

ond set of variables. Thus, following the parquet approach
When the umklapp vertices; and y% are introduced, outlined _in the previous sections,_ we dump _aII tJaean_d
they become offdiagonal matrix elements in E@s143 and vek, variables of a vertex or a brick into a single variable
(3.14B, mixing Tepy and Tapy With their complex conju- ¢ At the same time, thif”, k{, andk{® variables remain
gates. Assuming for simplicity thag, is real, we find that independent and play the role of indices labeling the vertices,

the following linear combinations diagonalize the equationsSomewhat similar to the spin indices. Thus, each vertex and
brick is a function of several variables, which we will always

Teowsow = = Teowsow = Tepwsow (315 write in the following order:y(k{" k(@ :k{® k{(V;£). It is
implied that the first four variables satisfy the momentum
conservation lawk{Y+k@=k®+k* and each of them
dTepwe (£) belongs to the intervdl—k{® ,k{®’]. The assignment of the
T:[—271(§)+ ¥2(8) F v3(€) 17cpw= (), variablesk{™, k(®, k{®, andk{" to the ends of the vertices
(3.163 and bricks is shown in Fig. 9, where the labeks
(j=1-4) should be considered now as the variatfs
d7Zspw--(£) To shorten notation, it is convenient to combine these vari-
d—§=[72(§)i ¥3(€)1Zspw=(§). (3.16D  aple into a single four-component vector

and the equations become

If the external fieldsh; are set to unity in the initial con- = (kM k2 Kk k), 4.1
ditions of the typg2.93 and(2.9b for all triangular vertices
i = SSC, TSC, CDW-, and SDW-, then the corresponding So that the relation between the vertices and the bricks can be
susceptibilities are equal numerically to the free energy corwritten as
rections of the typd2.11g9 and(2.11b:

Y1(K, &) =01+ C1(K,§) +Z1(K,§), (4.2a

¢
Xi(§)=f d{T(O T ({). (3.17)
0 ¥2(K,8) =92+ Co(K,£) + Z,(K, §), (4.2b

Equations(3.49—(3.49, (3.9, (3.163, (3.16h, and
(3.17) were solved analytically in Ref. 16, where a complete Y3(K. ) =93+ Z(K.6) + 2y (K, §). (4.20
phase diagram of the 1D electron gas with spin was obtained.
After this introduction, we are in a position to write the
IV. PARQUET EQUATIONS FOR TWO-DIMENSIONAL parqugt quatiqns for the bricks._ These equations are shown
ELECTRONS graphically in Fig. 10, where again the momekiahould be
understood a$<§,') Analytically, the equations are written
Now let us consider a 2D electron gas with the Fermibelow, with the terms in the same order as in Fig. 10:
surface shown schematically in Fig. 11. It contains two pairs
of flat regions, shown as the thick lines and labeled by theacl(,c,g)

lettersa andb. Such a Fermi surface resembles the Fermi&—z — 1 (K1,8)0y2(K1,8) — vo( K1, )0y (K1, €),
surfaces of some highi; superconductor In our consid- 3 439
eration, we restrict the momenta of electrons to the flat sec- '

tions only. In this way, we effectively neglect the rounded

portions of the Fermi surface, which are not relevant for thedC2(K.£) c I K !
parquet consideration, because the density-wave loop is not ¢ 71Ky, €)°72(Kq,8) = val Ky, €)ov2(Ke, 6,
divergent there. One can check also that the contributions of (4.3b
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azl(lcag) f ,
(9—5271(IC21§)°72(’C2:§)+72(’C2-§)°71(’C21§)

—2y1(K3,6)°v1(K5,€)

—295(K5,£)0 73Ky, )

+Y3(Kz,€)ey3(Ky,€)

+ 73Kz, £)°y3(Kp. ), (4.39
9Zy(K,8) , -,
a—g—?’z(lczf)%’z(lcz,f)"‘73(’C2:§)°73(’Cza§),

(4.30
9Z(K,&) , -
T—y3(lC3,§)oy2(IC3,§)+yz(K3,§)°y3(lC3,§)

+ 71(K3,8)0v3(K3,8) + v3(K3,6€)0v1(K3,€)

—2y3(K3,6)°v1(K5,6)

—2y1(Ks3,6)°y3(K3,é), (4.3¢
aZ“(’C,g) ” "
5—5273(’C2:§)°72(’C2’§)+72(’C2’§)°73(’C2y§),

(4.3f)

! —
’yl(lclig)o’)’Z(lclyf)_J —KO < k(A < (0). 1 (0) < (1)
y y y 'y y

Equations(4.33—(4.3f) and (4.29—(4.29 with definitions

ZHELEZNYAK, YAKOVENKO, AND DZYALOSHINSKII

where

= (kD k(2) 1 (A) 1 (B) " — (kB L (A) .1 (3) 1 (4)
Ka=(ky™ k™ ky ™o ky ™), K= (ky ™ ky ™ ky ’ky(4)’43

Koo= (KD KB 1K k), K= (kY K2 kB k),

K= (kP kP kD K, (44D
Ka= (KLY KBk K), ep= (k2 KA KE) KBy,
(4.40
and the tilde and the bar operations are defined as

KK 0= KT,

Yalk(P K2 kS KD 6= y5 (kY KD kP k).

(4.5b
In Egs.(4.33—(4.3f), we introduced the operationthat rep-
resents the integration over the internal momenta of the loops
in Fig. 10. It denotes the integration over the intermediate
momentumk{® with the restriction that botk!" andk{®,
another intermediate momentum determined by conservation
of momentum, belong to the intervit-k{® k{”]. For ex-

ample, the explicit form of the first term in the rhs of Eq.
(4.39 is

dkA
K2k <0 27
X 2k K2 kY kDK =K 1 8) yo (kP + kP =k KA KD kP E). (4.6
[
Ksc=(Ky+0y/2,— K} +ay/2;— Ky +0y/2,ky+y/2),
(4.9

(4.1), (4.49—(4.40, and(4.59 and(4.5b form a closed sys-
tem of integrodifferential equations, which will be solved
numerically in Sec. V. The initial conditions for Eq4.33—
(4.3f) and (4.29—(4.2¢ are that all theC andZ bricks are
equal to zero at=0.

Parquet equations for the superconducting triangular ve
tices can be found in the 2D case by addingkhenomenta
to the 1D equation$3.9). The equations are shown graphi-
cally in Fig. 6, where the momentaandq should be inter-
preted ak, andqy:

Tssatso(Ky 0y, )
3

= fSSC(TSC)(’Cscyf)
°Tssarso(Ky,Qy,€),  (4.7)

where

fssatsg(Ksc &) =F v1(Ksc,é) — v2(Ksc, §), (4.8

and the operatos denotes the integration ovk(, with the
restriction that bottkj+q,/2 and —k;+q,/2 belong to the
interval[ —k{® k{®]. The = signs in front ofy; in Eq.(4.8)
r(_:orrespond to the singlet and triplet superconductivity. As
discussed in Sec. II, the triangular vertg(k, ,q, ,£) is the
superconducting order parametey, and k, being the
y-components of the total and the relative momenta of the
electrons in a Cooper pair. Indeed, the verigyk, ,qy,$)
obeys the linear equation shown in Fig. 6, Whic% is the lin-
earized Gorkov equation for the superconducting order pa-
rameter. As the system approaches a phase transition, the
vertex 7s((ky ,dy,§) diverges in overall magnitude, but its
dependence ok, for a fixed g, remains the same, up to a
singular, ¢-dependent factor. The dependence of
Tsdky .0y ,€) onk, describes the distribution of the emerg-
ing order parameter over the Fermi surface. The numerically
found behavior ofZs(k, ,qy,£) is discussed in Sec. V.

Due to the particular shape of the Fermi surface, the ver-
tices of interaction in our 2D model have two special sym-
metries: with respect to the sign change of all momégta
and with respect to the exchange of theand — electrons:
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yi(KD K@ K3 KD g Once the triangular verticeg are found, the correspond-
oy ing susceptibilitiesy; are calculated according to the follow-
_ %(—k§,1) ,—k(yz);—k<y3),—k§,4) £), i=1.2,3; (4.108 ing equation, similar to Eq3.17):
3 dk
yi(kY K2k kY8 = yi(kP kP kY kP 8), xi<qy.§>=JOd£J 52 T(ky 8y )T (ky 0y 0),
i=1,2,3; (4.10h (4.19
where the integration ovek, is restricted so that both
yalk( K2 kP K 8= ya(k K KD KD g), ky=ay/2 belong to the intervel —k{” k{]. '
(4.100 Using functions(4.98), (4.13, and(4.14 and symmetries

) o ) (4.109—(4.1009, we can rewrite Eq94.3a3—(4.3f) in a more
where in Eq(4.100 we assume for simplicity thags is real.  compact form. For that purpose, we introduce the SSC, TSC,

As a consequence of Eq#.103—(4.100, Eq. (4.7) is in-  cpw, and SDW bricks that are the linear combinations of
variant with respect to the sign reversal & in  the original bricks:

Tsdky .0y ,€) at a fixedqy . The following combinations of

the triangular vertices form two irreducible representations Cssatsg=C2+Cy, (4.173

of this symmetry, that is, they are independent and do not L

m|X |n Eq (4n ZCDWt:ZZ_Zzli(Z”_ZZ|)' (417b
Tgsc('rsc)(ky Ay ) =Tssqrso(Ky,dy,§) Zspw+=2Z* 2, (4.179

*7Tssatso( —Ky,0y,é). (4.1)  where the tilde operation is defined in Eg.53. Then, Egs.

. (4.39—(4.3f) become
The triangular verticedggcrscfky,dy,€) describe the su-

perconducting order parameters that are either symmetric or dCssqrsg(K,€) _

antisymmetric with respect to the sign changekpf When 9 fssarso(K1.)°fssarso(K1.6),

Tgsc is extended over the whole 2D Fermi surfdsee Fig. (4.183

11), it acquires thes-wave symmetry, whereaSgg: the

d-wave symmetry. The symmetrized vertices Zcpw=(K,8) ,

TsscrsciKy 0y .€) obey the same Eq4.7) as the unsym- FY = fepw= (K3, €)°fcpw=(K3,6),

metrized ones. (4.18bh

The equations for the density-wave triangular vertices are

obtained in a similar manner: dZspw~(K, &) ,

a—g:fSDWr(’Cer)OfSDWt(’CZ’g)-

57’(}:DWt ( ky vqy vg)
23

(4.189

The parquet equations in the fort#.189—(4.189 were ob-
tained in Ref. 29.
It is instructive to trace the difference between the parquet

_ T / equations (4.189—(4.180 and the corresponding ladder

= Fsows (Kow 1 £)° Tsow--(ky dy . €), equations. Suppose that, for some reason, only one brick, say
(412D Cggc, among the six brick$4.173—(4.179 is appreciable,

whereas the other bricks may be neglected. Using definitions

(4.28—(4.20 and (4.8), we find that Eq.(4.183 becomes a

closed equation:

= fcow= (Kow€)°Tepw= (Ky ,dy . £),
(4.123

a,]g:DWi ( ky !Qy ’ g)
23

where

fcow= (Kow, &) = —2y1(Kpw. &) ¥ 2y3(Kpw , )

+ v2(Kpw, &) * v3(Kow,€), (4.13 afs%;’g):fssdlclyf)"fssd’ciyf)a (4.19
fsows (Kow,§) = v2(Kow, &) £ v3(Kow. &), (414 here
Kow= (ky+ay/2,ky—ay/2;k, —ay/2,ky+ay/2). .15 fssd K1,6)=—01— 02— Cssd £, ). (4.20

Equation (4.19 is the ladder equation for the singlet super-
The * signs in the subscripts of in Egs. (4.123 and  conductivity. When the initial value- (g, +g5) of the vertex
(4.12h and in front of y3 in Egs.(4.13 and(4.14 refer to  fggc is positive, Eg. (4.19 has a singular solution
the umklapp symmetry discussed in Sec. lll, whereas théfgsc— at é— &;), which describes a phase transition into
*+ signs in the superscripts @frefer to the symmetry with the singlet superconducting state at a finite temperature. Re-
respect to sign reversal &f,, discussed above in the super- peating this consideration for every channel, we construct the
conducting case. Thig-antisymmetric density waves are ac- phase diagram of the system in the ladder approximation as a
tually the waves of charge current and spin curférifalso  list of necessary conditions for the corresponding instabili-
known in the so-called flux phas&s. ties:
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Interaction Vertices

~1.0 -0.5 0.0 0.5 1.0

Total Momentum, py

FIG. 12. Interaction verticesy;(k{" k{® k(¥ k{*;£) and
ya(k{M kP k® k(D £) as functions of the average momentum

—(k(1)+k(2y)/2 of the incoming electrons atk{"=k{®,

kg) k“’ andg 1.4.
SSCg;+9,<0,
TSC—g;+9,<0,
CDW+:—-2g,+9,—093>0,
CDW-:—-29g,+0,+03>0,
SDW+:g9,+93>0,

SDW-:g9,—g3>0.

(4.213
(4.21b
(4.219
(4.219
(4.218

(4.219

g (but not the sign ofy) is not essential in our calculations,
because it can be removed from the equations by redefining
£ to & =|g|&. After the redefinition, we effectively have
|g|=1 in the initial conditions. The actual value [@f| mat-
ters only when the logarithmic variab¥g is converted into
the temperature according to the formula
T= pexp(—2meg'l|g).

The initial independence of;(K,£=0) on K does not
imply that this property is preserved upon renormalization.
On the contrary, during renormalizatiop(/C, &) develops a
very strong dependence @& and may even change sign in
certain regions of th&C space. We illustrate this statement in
Fig. 12 by showing typical dependences of(X,&¢) and
2(K.€) on the average momentum, = (k{"+k{®)/2 of
the incoming electrons ak;=k; and k,=k, after some
renormalization £€=1.4). In Figs. 12-14, the upper and
lower limits on the horizontal axes are the boundaries
+k§,°) of the flat region on the Fermi surface, which are set
to =1 without loss of generality. One can observe in Fig. 12
that the electron-electron interaction becomes negdtte
tractive) at largep,, even though initially it was repulsive
everywhere.

Mathematically, the dependence ¢f(XC,£) on K arises
because of the finite limits of integratiof-k{® k{”], im-
posed on the varlabIeIQA) andk{® in Egs. (4 33 (4.3f).

For example, in Eq(4.33, Whenp y= (KD +k{P) 12 equals
zero, k! may change from-k{® to k{® while k(B) stays in
the same interval, However, whep>1/>0 k(A) has to be
confined to a narrower intervakk{®+2p, k§,°)] to ensure
thatk{® =2p, —k{? stays within[ — k(" k(o)] This differ-
ence in the mtegratlon range subsequently generates the de-

The difference between the ladder and the parquet agrendence of;(K,£) onp, and, more generally, oki. Since
proximations shows up when there are more than one appr@ﬂany channels with different geometrlcal restrictions con-

ciable bricks in the problem. Then, the vertby contains

tribute to 9vy,(K,£&)/9¢ in Egs. (4.38—(4.3f), the resultant

not only the brickCssc, but other bricks as well, so Egs. dependence of;(K,£) on the four-dimensional vectdt is
(4.183—(4.180 get coupled. This is the case, for example,complicated and hard to visualize. Because of the strong de-

for the 1D spinless electrons, where the bri€kand Z are

equally big, so they cancel each otheryir(see Sec. )

V. RESULTS OF NUMERICAL CALCULATIONS

pendence ofy;(IC,&) on I, it is not possible to describe the
2D system by only three renormalizing charges(¢),
v2(€), andyz(€), as in the 1D case. Instead, it is absolutely
necessary to consider an infinite number of the renormalizing
chargesy;(K,€) labeled by the continuous variable This

The numerical procedure consists of three consecutivenportant difference was neglected in Ref. 7, where the con-
steps; each of them involves solving differential equations byinuous variableC was omitted.
the fourth-order Runge—Kutta method. First, we solve par- Having calculatedy;(X,£), we solve Egs.(4.7) and

guet equation$4.23—(4.2¢9 and (4.33—(4.3f) for the inter-

(4.123 and(4.12b for the triangular vertice¢the order pa-

action vertices, which are closed equations. Then, we findametery 7(k, ,q,,£), which depend on both the relative

the triangular vertice;, whose equation&t.7) and(4.123
and (4.12h involve the interaction vertices; through Egs.

(ky) and the total g,) transverse momenta. We find numeri-
cally that the order parameters wigh=0 diverge faster than

(4.8), (4.13, and(4.14. Finally, we calculate the suscepti- those withgy# 0. This is a natural consequence of the inte-
bilities x; from Eq. (4.16, which depend on the triangular gration range restrictions discussed above. For this reason,

vertices7; .

we discuss below only the order parameters with zero total

We select the initial conditions for the interaction verticesmomentumg,=0. We select the initial conditions for the

to be independent of the transverse momenta
v (K,£=0)=g;. The momentum-independent interaction

symmetric and antisymmetric order parameters in the form

naturally appears in the Hubbard model, where the interac- Tf“(ky,§=0)=1, T (ky,E=0)=Kk,. (5.2
tion is local in real space. In this section, the results are
shown mostly for the repulsive Hubbard model without um-In Figs. 13 and 14, we present typical dependences of the

klapp: 91—92 g, g3=0 (Figs. 12—17, or with umklapp,
01=0,= g (Figs. 18 and 1B whereg is proportional

superconducting and density-wave order parameters on the
relative momentunk, at the same renormalization “time”

the Hubbard interaction constabt. The absolute value of £=1.4 as in Fig. 12. The singlet antisymmetric component
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4 ! 7
81 7 & 7 g =g =1 + -
¢ 3F L= 2 Yssc
o g, =0 S Xspw =55
L 3 _
“ 2 E=14 u OFf Xrsc
T B 2 - -
b b o % 41 Xepy Xspw
: 7 T S 3 .
S Irgc ? ol < Xrsc
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FIG. 15. Evolution of susceptibilitieg;(£) in the repulsive
Hubbard model without umklapp. yipw(€) diverges at

&€= &spw=1.76.

(7ssQ dominates among the superconducting order param-

eters(Fig. 13, whereas the symmetric SDW order parameteroeécomes appreciable at the smaller energies 1. Be-

(Tépw) is the highest in the density-wave chantigig. 14. ~ cause of the curvature, the Fermi surface does not have nest-
Having calculated the triangular verticds we find the NG for E<Ec,; thus the density-wave bricks in the par-

susceptibilities from Eq4.16. The results are shown in Fig. duet equationg4.33—(4.3f) stop to renormalize. Formally,

15. The symmetric SDW has the fastest growing susceptibilthls effect can be taken into account by introducing a cutoff

ity xiow Which diverges atégpw=1.76. This divergence &cutoi= (1/2mve)IN(14/Ecuror), SO that the rhs of Eq$4.30—

indicates that a phase transition from the metallic to the an(4-3f for the density-wave bricks are replaced by zeros at

tiferromagnetic state takes place at the transition temperatufe™ écutori- At the same time, Eqg4.33 and (4.3b for the

T sow= LeXP(—2mvrésow!g). A similar result was obtained SuPerconducting bricks remain unchanged, because the cur-
in Ref. 29 by analyzing the convergence radius of the paryature of the Fermi surface does not affect the superconduct-

quet series in powers afé. In the ladder approximation, the ing ingtability with.qy:O. The change Qf the renormalization
SDW instability would take place @23,,=1/g,=1, as fol- ~ 9UAlONS Ak IS Not a completely rigorous wajto take
lows from Egs.(4.14 and (4.18. Since spy™ S'SSW, the into account '_che Ferr_m_ surface_ curvature; however, this pro-
transition temperaturd@ oy, calculated in the parquet ap- cedqre.permns obtaining expllqlt results and has a certain
proximation, is lower than the temperatuT@SW, calculated qualitative appeal. For a more rigorous treatment of the cor-

in the ladd imatiofe. < T80  Th tt rugated Fermi surface problem see Ref. 39.
in the ladder approximatioftspw<Tspy. The parquet tem- In Fig. 16, we show the susceptibilities calculated using

perature is lower, because competing superconducting anfle cytoff procedure with o= 1.4. The density-wave sus-
density-wave instabilities partially suppress each other. ceptibilities remain constant &> &.fr. At the same time,

Thus far, we considered the model with ideally flat re- - : - _ P T
. ’ : . sd &) diverges atégs—2.44 indicating a transition into
gions on the Ferm| surface. Supppse now that these regio e singlet superconducting state of thevave type. Thus, if
are only approximately flat. That is, they can be treated as

being flat for the energies higher than a certain value

FIG. 13. Superconducting order paramet@ig(k,,q,,£) as
functions of relative momenturk, at q,=0 and§=1.4.

E.utoff, DUt @ curvature or a corrugation of the Fermi surface 40
g1 = g2 = 1 gS = O X_S_S_g
I = aql gcutoff =14
2 9t U;
> 9
s 8l =
£ = 201
3 °f =
E 4f g
i 2
£ R ”
— 1
S 0
— _1 L % 1 | L ! !
© 0 04 08 13 1.7 21 25
-3 ‘ : : Renormalization Variable, &
-1.0 -05 0.0 0.5 1.0
Relative Momentum, k, FIG. 16. Evolution of the four leading susceptibilities in the

Hubbard model without umklapp, with the cutoff of all density-
FIG. 14. Density-wave order parametefg,(k, ,q,,£) as the  wave channels &> &= 1.4. The susceptibility of antisymmet-
functions of relative momenturk, atq,=0 andé=1.4. ric singlet superconductivityygse, diverges ag= gg= 2.44.
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0.4 = cutoff o % cow+
a - Metal 0 T T
. ag =03 =1 Xspwo X
0ol ? . - 04 2 \ spw— A rsc
S5C— =05 Nt ot
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
Ecutoff/TSDW

Renormalization variable, &

FIG. 17. Phase diagram of the Hubbard model without umklapp
illustrates the dependence of thevave superconducting transition
temperaturel g5 on the cutoff energyE o for differentg. The
inset shows the same dependence in the logarithmic variabl

ssc and . The solid line in the inset is a fit: . . . .
gzch_a_bf‘“:“;ﬂ with a=5.33. andb=2.06 ness of our approximations, detailed agreement with the ex-
cutoftr » . ’ . .

periment should not be expected.

the SDW instability is suppressed, the system is unstable We perform the same calculations also for the Hubbard
against formation of thel-wave superconductivity. This re- Medel with umklapp scatteringgg=g,=gs=1). As one

sult is in agreement with the conclusions of Refs. 25, 30, an§@N See in Fig. 18, where the susceptibilities are shown, the
32. umklapp process does not modify the qualitative picture. The

From our numerical results, we deduce that the depenl-e;‘_dir?g instabili':y remains tthe S[t)r:N of thetstyrr:rrpetric lg/pe,
- oI C o —a : which is now also symmetric with respect to the umklapp
Se:n;_%e?fjssss%é)vcngfﬁtiﬁe:singgﬁg ngzs_cﬂé Cgﬁ;‘g{&vﬁg scattering, whereas the next leading instability is the singlet
energy in this relation, we find a power law dependence: d-waye superconduct_lwty._ The SDW has a phase transition
at &gpw.=0.54, which is close to the ladder result
- R vi=1/(g,+05)=0.5. Some of the susceptibilities in
Tssc* EP - (5.2 Fig. 18 coincide exactly, which is a consequence of a special
cutoff SU((2) X SU(2) symmetry of the Hubbard model at the half
Equation(5.2) demonstrates that increasing the cutoff energyfilling.*° The phase diagram with the energy cuttffg. 19
Eutorf decreases the temperature of the superconducting trais similar to the one without umklapiFig. 17, but the pres-
sition, Tgge. Such a relation can be qualitatively understoodence of the umklapp scattering decreases the transition tem-
in the following way. There is no bare interaction in the perature of thel-wave superconductivity.
superconductingl-wave channel in the Hubbard model, so  An important issue in the study of the 1D electron gas is
the transition is impossible in the ladder approximation. Thethe so-calledy-ology phase diagram, which was constructed
growth of the superconducting-wave correlations is in-
duced by the growth of the SDW correlations, because the {2

FIG. 18. Evolution of generalized susceptibilitigg &) in the
Hubbard model with umklapp scattering<py,. (¢) diverges at

e'%: §;DW+ =0.54.

two channels are coupled in the parquet equat{dn8a— g g e g

(4.180. If Eqyof IS high, the SDW correlations do not have 10 Lol

enough renormalization-group “time’¢ to develop them- o9l £ '

selves because of the early cutoff of the density-wave chan- T | i =S

nels; thus,Tssc is low. Hence, decreasinB. increases Toow t . 08y

Tssc. However, wherk o becomes lower thafgpyy, the 06f . ‘

SDW instability overtakes the superconducting one. Corre- I SDW : 0'6.4 05 0.6
sponding phase diagram is shown in Fig. 17. Generally r - Ecutoff
speaking, the phase diagram plotted in the energy variables, 0.37 " Meta] *£-03

as opposed to the logarithmic variabksnay depend on the I " +g=04
absolute value of the bare interaction constahtin Fig. 17, 0.0 | ‘ Ssc- . +g =05
we placed the points for the several valuegof 0.3, 0.4, 0.0 0.5 1.0 15 20 25 3.0

and 0.5; the phase boundary does not depend much on the
choice ofg. The phase diagram of Fig. 17 qualitatively re-
sembles the experimental one for the hihsuperconduct- FIG. 19. Phase diagram of the Hubbard model with umklapp
ors, where transitions between the metallic, antiferromagscattering illustrates the dependence of the critical temperature
netic, and superconducting states are observed. The value Df,.on the cutoff energ . for differentg. The inset shows the
Ecutorf May be related to the doping level, which controls thedependence ofsgc on £querr- The solid line in the inset is a fit:
shape of the Fermi surface. Taking into account the crudeégg=a—bé&. o, With a=4.5, andb=7.32.

Ecutoff/TSDW
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15 tinger liquid, defined as a nontrivial metallic ground state

gl & = 2 g, =1 oot where.different instabilities mutually cancel each other, does
- B Ksow Krsc not exist in the 2D model.

11 8 =0 - - Generally speaking, other models may have different
g ol %S,DWLXT& types of solutions of the fast parquet equations, such as im-
= mobile pole® or a self-similar solutio®? the latter indeed
8 8y describing some sort of a Luttinger liquid. In our study of a
2 sl - 2D model with the van Hove singularitiéé,we found a
§ \chw’ Lssc region in theg-space without instabilities, where the Lut-
a2 4 7 tinger liquid may exisf! However, we find only the mobile-

20 XC+DW’ X;c pole solutions in the present 2D model.

90 05 10 15 20 25 30 35

Renormalization variable, & VI. CONCLUSIONS

. o In this paper we derive and numerically solve the parquet
FIG. 20. Evolution of susceptibilities in the case wheie=2,  oqyations for the 2D electron gas whose Fermi surface con-
92=1, andgs=0. xspu¢) andxrsd(é) diverge atg=3.48. tains flat regions. The model is a natural generalization of the
1D electron gas model, where the Luttinger liquid is known
by Dzyaloshinskii and Larkin® They found that, in some to exist. We find that, because of the finite size of the flat
regions of the §;,9,,93) space, the 1D electron system de- regions, the 2D parquet equations always develop the mobile
velops a charge or spin gap, which is indicated by divergencgole solutions, where the leading instability effectively de-
of ¥;(€) with increasingé. In the region where none of the couples from the other channels. Thus, a ladder approxima-
gaps develops, the Luttinger liquid exists. It is interestingtion is qualitatively(but not necessarily quantitativelgor-
whether such a region may exist in our 2D model. To studyect for the 2D model, in contrast to the 1D case. Whatever
the phase diagram of the 2D system, we repeat the calculghe values of the bare interaction constants are, the 2D sys-
tions, systematically changing relative valuesgef g,, and  tem always develops some sort of instability. Thus, the Lut-
gs. From the physical point of view, the relative difference tinger liquid, defined as a nontrivial metallic ground state
of g1, 9,, andg; roughly mimics dependence of the interac- where different instabilities mutually cancel each other, does
tion vertex on the momentum transfer. As an example, wenot exist in the 2D model, contrary to the conclusions of
show the susceptibilities in the case whgie=2,g9,=1,and Refs. 26 and 27.
g3=0 in Fig. 20. In this case, the leading instabilities are In the case of the repulsive Hubbard model, the leading
simultaneously the triplet superconductivity of the symmet-instability is the SDW, i.e., antiferromagnetisthif the nest-
ric type (TSC+) and the spin-density wave. ing of the Fermi surface is not perfect, the SDW correlations
For all studied sets aff;, we find that the leading insta- do not develop into a phase transition, and the singlet super-
bilities calculated in the parquet and the ladder approximaeonductivity of thed-wave type appears in the system in-
tions always coincidefWe do not introduce the energy cut- stead. These results may be relevant for the RAiglsuper-
off here) Thus, the parquet effects do not modify the conductors and are in qualitative agreement with the findings
g-ology phase diagram of the 2D model derived in the laddeof Refs. 25, 30, and 32.
approximation, even though the transition temperatures in In the bosonization procedufe!! a higher-dimensional
the parquet approximation are always lower than those obFermi surface is treated as a collection of flat patches. Since
tained in the ladder approximation. In that sense, the parquehe results of our paper do not depend qualitatively on the
corrections are much less important in the 2D case than isize of the flat regions on the Fermi surface, the results may
the 1D case. From the mathematical point of view, this hapbe applicable, to some extent, to the patches as well. Precise
pens because a leading divergent brick develops a stronglation is hard to establish because of the infinitesimal size
dependence on the transverse momeé@tand acquires the of the patches, their different orientations, and uncertainties
so-called mobile pole structuf8222° of connections between them. On the other hand, the
bosonization procedure seems to be even better applicable to
1 a flat Fermi surface, which consists of a few big patches.
Z(K, &) ——. (5.3  Mattis®® and Hlubind’ followed that logic and claimed that
E(K)—¢ the flat Fermi surface model is exactly solvable by the
bosonization and represents a Luttinger liquid. The discrep-
The name “mobile pole” is given, because the position ofancy between this claim and the results our paper indicates
the pole in¢ in Eq. (5.9, &.(K), strongly depends on the that some conditions must restrict the validity of the
momentakC. It was shown in Refs. 22, 20, and 29 that, be-bosonization approximations. Luther gave a more sophisti-
cause of the mobility of the pole, the leading channel de<cated treatment to the flat Fermi surface problem by mapping
couples from the other channels, and the parquet descriptidh onto multiple quantum chairfS. He found that the
effectively reduces to the ladder one, as described at the ermbsonization converts the interaction between electrons into
of Sec. IV. The phase diagram of the 2D system in the laddethe two types of terms, roughly corresponding to the two
approximation is given by Eq€$4.219—(4.211). It follows  terms of the sine-Gordon model: the “harmonic” terms
from Egs. (4.213—(4.21f) that every point in the (d¢/dx)? and the “exponential” terms expf), whereg is a
(91,9,.03) space has some sort of instability. Thus, the Lut-bosonization phase. The harmonic terms can be readily di-
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agonalized, but the exponential terms require a consisterthe harmonic terms only, thus the model can be solved
renormalization-group treatment. If the renormalization-exactly!®4°However, a slight modification of the model by
group equations were derived in the bosonization scheme afitroducing backward scattering between different ctdiffs
Ref. 28, they would be the same as the parquet equationsy interaction between four different chafhsdds the expo-
written in our paper, because the renormalization-groumential terms, which destroy the exact solvability and typi-
equations do not depend on whether the boson or fermiogg|ly lead to a CDW or SDW instability. Even if no instabil-
representation is used in their derivatitn. ity occurs, as in the model of electrons in a high magnetic
Long time ago, Luther bosonized noninteracting electronsje|d 2 the fast parquet method shows that the electron cor-
on a curved Fermi surfacé;however, the interaction be- relation functions have a complicated, nonpower structure,
tween the electrons remained intractable because of the eyich is impossible to obtain within the harmonic bosoniza-
ponential terms. The recent bosonization in highetjon. Further comparison of the fast parquet method and the
dimension$™** managed to reformulate the problem in the hosonization in higher dimensions might help to establish the

harmonic terms only. This is certainly sufficient to repro- conditions of applicability of the two complementary meth-
duces the Landau description of sound excitations in a Fermigs.

liquid;** however, it may not be sufficient to derive the elec-
tron correlation functions. The validity of the harmonic ap-
proximation is hard to trace for a curved Fermi surface, but
considerable experience has been accumulated for the flat
Fermi surface models. The work at Maryland was partially supported by the NSF

In the model of multiple 1D chains without single- under Grant No. DMR-9417451, by the Alfred P. Sloan
electron tunneling between the chains and with forward scatFoundation, and by the David and Lucile Packard Founda-
tering between different chains, the bosonization produceson.
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