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Phase diagram of highT . superconductors: Influence of anisotropy and disorder
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We propose a phase diagram for the vortex structure of high-temperature superconductors which incorpo-
rates the effects of anisotropy and disorder. It is based on numerical simulations using the three-dimensional
Josephson-junction array model. We support the results with an estimation of the internal energy and configu-
rational entropy of the system. Our results give a unified picture of the behavior of the vortex lattice, from the
very anisotropic BjSr,CaCu,Og to the less anisotropic YB&u3;0-, and from the first-order melting ocur-
ring in clean samples to the continuous transitions observed in samples with de&36d83-18207)04505-0

I. INTRODUCTION tions, and discuss the-D phase diagram emerging from
them. In Sec. Ill this phase diagram is qualitatively reob-

The phase diagram of high-temperature superconductotgined using a proposal for the free energy of the system. In
in the mixed state has provided an astonishingly broad fiel®ec. IV we indicate that a change in the external magnetic
to workers in—among other fields—many body problems field can be interpreted as a movement in AP plane, and
polymer physics, low dimensional systems, critical phenoms0 theH-T phase diagram for samples with differebtand
ena, and statistical physics in general. The main reason fov can be obtained from the results of the previous sections.
this situation is the great number of parameters that defin¥/€ also compare our results with those found in experimen-
the behavior of the vortex structure. On the other hand, th&! studies. Finally in Sec. V, we summarize and conclude.
same abundance of parameters defining the system makes it
difficult to find a unified description of all features observed Il. NUMERICAL SIMULATIONS
in experiments. Some of the main parameters that define the
behavior of the vortex structure are the external magnetic
field H, temperatureT, anisotropy », and the disorder Our numerical results are based on simulations performed
(which produces a non-homogeneous pinning potential fopn the three-dimensiona(3D) Josephson-junction array
the vortice$ that at this moment we loosely characterize by a(JJA model on a stacked triangular network. The 3D JJA
parameteD. There are convincing explanations of the mainmodel has been previously used to show the first-order melt-
characteristics of different sectors of this multidimensionaling of the vortex lattice in clean systerhdBoth thermody-
phase diagram, such as the first-order melting of the vorteRamical and transport signatures of this first-order transition
lattice in clean samples, the continuous melting of a glassyvere obtained, in close relation to experimental resuits.
phase in disordered samples, or the existence of two differeddition, using the same model we have shitkat disorder

superconducting transitiongerpendicular and parallel to ¢an destroy_ the first-order transition, as observed in
H) in some casesfor a review see Ref.)1 However, a experiment$:’ The details of the model have been discussed

9 i i
unified description of the problem consistent with experi_elsgwperté. For completeness we present here briefly its
ments, even in a qualitative level, is still lacking. ma_:_r;} ea u:jesl. ist h of J h unci

In this paper we propose a qualitative-T-»-D phase € model consiSts on a mesh of JoSephson Junctions

diagram of high¥, materials, that reproduces most of theformmg a stacked triangular netwoflEach junction is mod-

available experimental results. Our approach is twofold: weeIed by an ideal Josephson junction with critical currnt

use numerical simulation on the three-dimensionaISh!"med by a norma.l resistanBlg and its attached Johnson

Josephson-junction array model to study the behavior of th@olse generator, which accounts for the effects of tempera-

system as a function dd and », and show that the depen- tre. The equations for the 3D JJA model are

dence onH can be deduced from a rescaling @fand .

The obtained phase diagram is then rederived using a phe-_”, i o a(goi—goi') i

nomenological estimation of the free enefgyf the system 1" =IcSin(¢'—¢" —AT )+ 27R,  at " (v,

for different values oD and#. This estimation relies on the (1)

existence of two characteristic lengtl§s and &, parallel

and perpendicular to the applied fidllwhich are supposed

to govern the behavior of the system. The minimizing-of > jii/:jiexti )

with respect tc¢; and&,, allows one to obtain thé.(T) and [

&.0(T) functions, which in turn are used to detect the super- A

conducting transitions. wheree'(t) is the phase of the superconducting order param-
The remainder of the paper is organized as follows. In theeter (vortices form in the system as singularities in the dis-

next section we present the results of the numerical simulatibution of these phasgsand ¢, is the flux quantaum.

A. The model
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Equation(1) gives the current“’ between nearest neighbor transition of the vortex lattice. In some other cases we will
nodesi andi’, Al is the vector potential of the external obtain that resistivities as a function of temperature smoothly

magnetic field, which will be always supposed to point in thedepart from zero. We will refer to this behavior asantinu-

crystallographicc direction (perpendicular to the triangular ous fransition We do not claim at this moment about
y grap Perp 9 whether these continuous transitions are or are not real phase

planes, and "' (t) is an uncorrelated Gaussian noise whichiransitions, they can be crossovers as well. In Sec. V we
incorporates the effects of temperature. present a discussion on this point. In addition, complemen-
Equation (2) ensures the current conservation on eachary results are presented, in which the superconducting co-
node, and,, is the external current applied at nodé€Equa-  herence is characterized by the helicity modyfu® It mea-
tions (1) and(2) are numerically integrated on time using a sures the influence of a twist in the boundary conditions on
Runge-Kutta method suitable for stochastic systems. In th#éhe energy of the system, and has to be different from zero to
simulations we present here, we iterate the equations 2500dicate superconducting coherence. In the limit of infinite
time steps for thermalization and then calculate observablesize, a finite value of (p) is equivalent to the vanishing of
during 10000 time steps at each temperature. The typical (x) in that direction. For finite samples a zone with both
time step used iAt=r17; (7;= ¢o/27Ryl ;). We checked that p and y different from zero may appear due to finite size
reducing the time step by a factor of 10 does not alter theeffects.
results. Boundary condition$BC) deserve a comment. When cal-
We systematically explore the case of anisotropic and diseulating helicity modulus we use a system with periodic BC
ordered samples. Anisotropy is introduced by reducing thén all directions. However, in order to be able to apply a
critical current of thec axis directed junctions by a factor current to calculate resistivities we have to change the BC.
7?, and at the same time increasing thaxis normal resis- To calculate theab plane resistivity we simulate a system
tance by the same factor. Disorder is introduced by randomlyith open BC in the direction of the current, and periodic BC
varying the critical current of the junctions through the lat-in the other two directions. When calculatiogixis resistiv-
tice. As vortices gain energy when close to a low criticality periodic boundary conditions are used in theand b
current region, the effect of randomizing the critical currentsdirections, and for the direction we use an intermediate BC
is to provide a nearly random pinning potential for vortices.that we have called pseudoperiodtc? that allow to calcu-
We characterize the disorder by a param&ewhich is de- late the resistivity and at the same time reduces greatly the
fined asD = (11— ™M/(1M&+ MM wherel "™ andI™ are ~ surface effects. In consequence, note that different magni-
the maximum and minimum value of the critical current of tudes are calculated using different simulations, and a small
the junctions through the sample. The probability distribu-difference in(for example transition temperatures is likely
tion betweer ™ andI™" is taken flat. The results presented t0 occur when comparing the results frgm, pas, andy.
here were obtained for a single realization of disorbe
same for all values ofy andD, up to the global amplitude
We have checked that other realizations do not change ap-
preciably the results. This indicates that the system size used It turns out that the system has three very different kinds
(LyXLpXL,=18%x18x18 junctions, in all casgss large of behavior as a function of temperature depending on which
enough for the system to be self-averaging. value of disorder D) and anisotropy ) we are consider-
We carried out simulations foH=1/6 flux quanta per ing. We will first describe in detail typical points within the
plaquette. This is the value used in Refs. 2 and 3. It producetiree different zones, and then show the compiete phase
a ground statéfor a clean samp)ewhich is commensurate diagram.
with the subjacent triangular lattice, so no frustration effects We start by showing in Fig. 1 the results for a sample
are expected. Although the value 1/6 is rather large and ewith D=0.3 and7*=2 as a function of temperature. Panel
fects of the substrate may be observable, we expect the phy&) shows theab plane andc axis resistivity p, and p,
ics of the problem to be qualitatively well described. In par-panel (b) the corresponding values of the helicity modulus
ticular, we assume that for a clean sample the first-ordexa, andy.. and panelc) the percolation probability? (see
melting observed in simulations is in fact the counterpart ofbelow). The behavior of the system in this case is typical of
the experimental observatiof$°~*2it would be interesting ~ a first-order melting transition of the vortex lattice, as it was
to perform simulations at lowelcommensuraefields, such ~ previously found in other works wittD =0:%3° helicity
as 1/14 or 1/36. However, the sample size needed to minimodulus both parallel and perpendicular to the field jump
mize size effects make the computing time be exceedinglgliscontinuously to zero at the same temperature. The corre-
large. sponding resistivities have also the same behavior. They are
We characterize the superconducting transitions by meeazero below the transition and have a finite value above it.
suring the resistivity of the sample when a small current is The percolation probability shown in pan@) is the prob-
applied along theab or c direction. Typically, an external ability that there exists a vortex path starting from one lateral
current of 0.01 of thd in the corresponding direction is side of the system and ending on the other side. We have
used. This value is small enough so as to test the lineaghown in previous worké*that the existence of these paths
resistivity of the sample. We will observe two well different (i.e., the fact thaP+#0) is a necessary condition to obtain
behaviors of the resistivities as a function of temperature: irfinite ¢ axis resistivity. The quantity also jumps from zero
some cases resistivities have a jump from zero to a finitéo a finite value at the transition, indicating that this transi-
value at a given temperature. This jump in the resistivitytion can be viewed as the passage from a solid crystalline
correspondsgsee the discussions belpto a first-order phase phase(or a Bragg glass pha® for T<T,, to an entangled

B. Results
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FIG. 1. (a) Resistivitiesp,, (full symbolg andp. (hollow sym- FIG. 3. Same as Fig. 2 but for a sample with anisotropy

bols); (b) helicity modulusy, (full symbols and . (hollow sym- 220 andD=0.7. Note thafl, has moved toward§=0.
bols); and(c) percolation probability? as a function of temperature

for »°=2 andD=0.3. Temperature is measured in units of the ) L o
mean Josephson energy of the in-plane junctions. Magnetic field i1€M using resistivities or helicity modulus, and the parallel
H=1/6 quantum fluxes per plaguette. Results of successive coolingnd perpendicular to field transitions occur at different tem-
and heating are shown as indicated by the arrows. The approximaferatures. Note that, within numerical errors, hysteresis has
location of the melting temperatuf@, is indicated. disappeared. Perpendicular to field coherence is lost at a tem-
peratureT;, whereas parallel to field coherence is lost at a
liquid phase forT>T,,. All quantities show hysteresis temperatureT >T; **>7 At this temperatureT, both p.
around the transition typical of the first-order transition. Theand the percolation probabilityP become finite. For
results just presented were obtained using fillteso we T;<T<T, the system is in a dissipative state along &te
conclude that the first-order transition is not restricted to thedirection, but it is still superconducting along tbelirection,
caseD =0, but occurs in a finite region of the-D plane. and the vortex structure is that of a disentangled vortex lig-
When disorder is increased beyond certain limit, the first-uid in this temperature range. At, a percolation phase tran-
order transition disappeaf<:® Two different possibilities ~Sition occurs in the systerf:'This transition is triggered by
may occur. In Fig. 2 we show results similar to those of Fig.the proliferation of vortex loops between plariés.
1 but for D=0.8 and52=0.5. This corresponds to a highly ~ In Fig. 3 we show the results f@= 0.7 and»”=20. This
disordered case, with low anisotropy. Superconducting trancorresponds to a highly disordered, highly anisotropic sys-
sitions become continuous in this case, both when looking de€m. The most important feature of this case is that the per-
colation temperature is zero, i.e., the percolation probability
P is finite even fofT— 0. This indicates that the vortex struc-
- ture is in a highly disordered configuration and does not
freeze into a disentangled lattice. Dissipatitmoth parallel
and perpendicular to the fieldppears only when tempera-
T ture is increased beyond a finite value. We will keep the
notationT; for this value, as the temperature at whigh
plane coherence is lost, and defifigas the percolation tem-
perature(at whichP becomes different from zeygso in this
] casel,=0, i.e, T,<T;. At the temperatur&;, bothab and
. ¢ axis dissipation start to depart from zero in a very similar
] way!® in accordance with recent theoretical estimatiths.
Again no hysteresis is observed in this case either.
From the above discussion on Figs. 1, 2, and 3, the fol-
lowing picture emerges: at low disorder the vortex lattice
I : © melts through a first-order phase transition. When disorder
0.0 i T & increases this transition disappears, and the behavior depends
1.25 1 150 1.75 on the anisotropy of the system. For low anisotropy in-plane
and interplane coherence are lost at different temperatures
FIG. 2. Same as Fig. 1 but for a sample with anisotropy Ti @ndTp>T;, and a disentangled vortex liquid phase exists
7%=0.5 andD=0.8. No detectable hysteresis upon heating andfor T;<T<T,. For highly anisotropic samples the percola-
cooling is observed. The approximate values of transition temperaion temperaturd, (in the sense of the temperature at which
tures are indicated by the vertical lines. P becomes finite moves to lower temperatures, indicating

P, » P (arb. units)

Xab » Xc
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plane can be phenomenologically described by a quantity
&ap, Which is a correlation length: for distances shorter than
&.p the system has superconducting coherence, whereas this
coherence is lost for distances larger thgp. The free en-
ergy functionalF2P of the plane has the form

FEP=E?P(£ap) —~ TS (éap) ()

D (the thermodynamical free ener§yis obtained by minimiz-

ing with respect tc¢,,). For a system of . completely de-
FIG. 4. Disorder-anisotropy phase diagram as obtained from th%oupled planes, we would have

simulations. Stars indicate points where the melting transition is

first order. Full circles are points whefig<<T,, and hollow circles

are points wherd ,<T;. The continuous lines are a sketch of the 3D
frontiers between the different zones. The encircled points are those 7=

analyzed in Figs. 1-3. On the other hand, if the coupling between planes is infinite
the vortices are rigid lines and we get

=L E?P(£ap) ~ TLS?P(£ap).- 4

that the vortex structure freezes in an entangled configura- 3D " - oD
tion. Dissipation(in both directiong occurs for temperatures Foo0= (@ )Let LET(ap) =TS (&ap). (9
higher than a finite valu@; ,** and we haveT ,<T; in this
case.

Having in mind these three qualitatively different behav-

Note that in this case the entropy term does not have the
factor L. because giving the position of the vortices on one

jors, we have systematically searched space of pa plane automatically determines the position of vortices in all
: d o P other planes. The term 2L nts for the ener
rameters, and the results are shown in Fig. 4. Stars |nd|caOt er planes. The term (a/ )L accounts for the energy

. : N . t&ain due to the coupling of the planes,being a numerical
oints where the melting transition is first order. Full circles . '
gre points whereT-<Tg and hollow circles are points constant andy the anisotropy parameter defined before. In
i p

. . . an intermediate situation Q7<) the system can be

et s o e e ot sopeAloUG 25 fomed /. ayes s  pumber that st
. : gure ) isfies 1<¢.<L., see below Within each layer the vortices
discussed above. The continuous lines are a sketch of the

. . . fe almost straight lines, whereas correlation is small be-
frontiers between the different zones. The exact location Of yeen different lavers. In this picture the free eneray of the
the border lines is difficult to determine precisely from the Yers. b ay

. . ; . system is
numerical simulations because different zones transformy

rather smoothly into each other when changipgndD, but
the properties of the system within the different regions are

3D_ __ 2 _ 2D,
physically different so as to guarantee the existence of such a Fr==(aln)(Le=Leléc) + LB (£ap)

frontier. In the next section we show that the main charac- —T(Lo/ &) SP(&qp). (6)
teristics of this phase diagram can be derived from a simpli-
fied description of the vortex structure. In the first termL.—L./&; is the number of sites along the

c direction at which the system gains an enetgyy?. The
length & is roughly given by the mean distance between
lll. A SIMPLIFIED MODEL percolation paths along the direction?® it takes a finite

. . . . _— energy to bend a vortex in distances lower tifanhowever,
We saw in the previous section that a single first orderthis energy drops to zero for distances larger than

transition is observed at_low Q|sor_der, whereas two continu- The previous estimation of the free energy of the system
ous transitions are obtained in disordered samples for low

; ; Is too crude. In particular, in the form given b , it
anisotropies. These features suggest lastleast for l.OW leads to some uFr)1physicaI results. We ?nust m%j(g)@q.
anisotropiesthe system may be described as having in genélightly in order to obtain the correct behavior in some lim-

eral two (_dlfferent tr_ansmons: a depinning of r_ather md.e.pen'iting cases. However, we will keep a fundamental property
dent vortices(ocurring atT;), and a percolation transition

(occurring afT ) driven by the thermally generated loops. In ?f Eq. (6) and make the guess that the entropy can be written

. . , for the real system as
certain cases they can merge onto a single first-order transi-
tion due to some kind of “interaction.” Here we show that

this idea can be formulated more precisely by estimating the

_ 2D
free energy of the system. S=1(£:)S " (£an), 7

i.e., as a product of independent functionsé&fand &,
with f(£.) and S?P(&,,) two yet unknown functions. The
basic assumption contained in E@) is the following: if the

To make this estimation we will consider first a single value of&, is kept fixed, then the system behaves as a two-
clean plane. We suppose that the thermodynamics of thalimensional system with a renormalized temperature. Al-

A. Free energy functional
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though this assumption cannot be fully justifiegbriori, it is

a natural starting point, and gives sensible results as we will 22r
show soon. 20F
We still have to add a term to the free energy which LL1.8 -
accounts for the effect of impurities. Impurities decrease the 16F
energy of the system when vortices pin to them. If pinning is 14k
uncorrelated the energy gain due to pinning becomes lower 2k . . . ]

when the vortex positions are more correlated. So we add a

term to the free energy that increases the energy of the sys- ' ' gL

tem when¢,, and . increase. The most simple term of this LoF— T T T

type is of the formD¢&,,é.. Finally, the free energy func- ‘ | ()1
tional of the systen#(&,p,£.) (dropping an irrelevant con- 08F | )l

stant term is

S50.4 - K—:
FlEap£0) = (al 7L €+ LEEP(£ap) — TH(E)SP£a) ! T ]

0.0 L A L L L
0.0 0.2 0.4 0.6 0.8 1.0
+ Dgabgc . (8)
T
: - 2D 2D
The true expressions for the functiohsE“™, andS™" are FIG. 5. (a) Free energy functional as a function of correlation

difficult to establish. However, it is not our aim to give a jength ¢ for different temperatures with =0, andy=2. (b) Cor-
complete quantitative description of the free energy of thaelation length as a function of temperature obtained as the minima
system but only a qualitative description of the phase diaof the curves ina).

gram. We will only ask the function$, E2°, and S?° to

reproduce some known limiting cases: &gf (£.,) is kept

fixed we expect the value ofap(T) (£c(T)) obtained by We stress again we do not claim expressi@nis a good
minimizing ¥, to be smoothly dependent on temperature detailed description of the free energy of the system, but only
This corresponds to the absence of first-order transitions ig expressiofiwhose main characteristic is given by E@)],

the dynamics of a single plaria single vortex ling* How-  that will help us to understand different sectors of th®
ever, whenF is minimized with respect tboth§; andé,p 2 phase diagram of higii;'s.

discontinuityin £.(T) and &,,(T) can appear, as we show
below.

Just to give an example we use for the functiahe form
f=vIn(L./&)+1. The termyln(L./&) (v is a numerical con-
stan} is proportional to the entropy of a singlgésolated We present now the results obtained by minimizing the
vortex line. The constant added assures that the twodfree energy functional given by expressi@). When doing
dimensional limiting case of rigid sticks is reobtained whenthis minimization we obtain the free enerdy and the
L.=¢&c. In addition, we will take for the functiong2® and  lengthsé,, and &, as a function of temperature. A first-order
S?P the form E2P=L,,/¢&,, and S?P=yIn(Ly/ép)+1 , in transition is identified as a discontinuous jump in the values
such a way that we obtain a form for the free energy func-of the correlation lengthg,, and &, at the same temperature
tional that is (unphysically symmetric (for a/7?=1) be-  from 1 (long range correlatiorto a lower valugfinite range
tweenab andc directions. We have tested other forms of the correlation. If this is not the case, the dependence gf and
functionsf, E2P and S?P (giving the same limiting behavior £, with temperature gives a clue on how the superconducting
discussed aboyeand found results qualitatively similar to coherence is lost when raising temperature. However, in this
those shown here. case the identification of a phase transition is not simple, and

We arrive to our final working expression of the free en-we can only identify temperature ranges where coherence
ergy functional(we will measuref,, and &, in units ofL,,  alongc or ab directions is high or low.
and L., respectively, takex=1 by rescalingn, and also Let us start with the casB=0 and =1 (note that we
rescaleD) are using a renormalized anisotropy parametersd does

not imply necessarily an isotropic systenn this case Eq.
(9) is symmetric in&,, and &, and in fact the minima of

B. Results

Fléap, ) =1UnEc+ U ,—T[yIN(1/E) +1] F are on the linet,,= é.=¢, so in Fig. 5 we plot the func-
tion F(¢,¢) for different values of the temperature. We see
X[yIN(1/gap) + 1]+ D &apée - (9 that whenT—0 the minimum free energy state corresponds

to the maximum possible value éf i.e., the system is in the
The thermodynamical free ener@yis obtained by mini- ordered state. When temperature increastsiaorder tran-
mizing with respect t&,, and &;: sition to a disordered state occurs. This is also seen from the
behavior of¢ as a function of temperature, as depicted in
Fig. 5(b). Thus we see that the coupling of two continuous
F(T)= min  min F(&ap,&c)- (100  transitions[through the entropy term in E¢9)] can merge
0=gap=1 0=gc<1 them onto a single one, which is first order. In fact, such sort
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14 -1

o 12F T, > T b .
: .
< 1.0} First order
08F Tp > Ti .
0.6 L L
0.0 0.2 0.4
D

FIG. 7. Disorder-anisotropy phase diagram as obtained by mini-
mizing the free energy functionésee text for explanation

likely that the optimum value of; for the occurrence of the
first-order transition also decreases with sample thickness.

T IV. MAGNETIC FIELD DEPENDENCE

AND COMPARISON WITH EXPERIMENTS
FIG. 6. Same as Fig. 4 but with=0.7. ] ] ] ]
Having discussed thg-D phase diagram for a fixed mag-

. . . netic field H, we turn now to the discussion of the depen-
of mechanism has been previously proposed to occur in Oth%{ence onH. From the numerical point of view the direct

cases, such as two-dimensional melting, in which the Conépproach would be to do simulations at different fields.

tinuoy§ dislocation-unbindin_g and disclination-_unbinding However, as we discussed above, to reduce the magnetic
transitions of the Kgfterlltsz-Thouless-Halper]n-NeIson-ﬁeld to other commensurate values would require exceed-
Lc()elljt?#g rt?ae:]t'sr;gog]fzg'gﬁ can collapse onto a first-order ingly large computing time. Fortunately, there are arguments
; Co . - that suggest that a changekbfcan be mapped onto a change
If dlsqrder is p'r.esent in }he system it will tend to destroy fD and 7.
th_e melting transition. In Fig. 6 we show results as thos_e of The scaling combination between magnetic field and an-
Fig. 5 but for a value oD =0.7. As we see the jumps n isotropy has been given by Chen and TeifalVe generalize

e e e e TanSion pere the argument 0 ncude the cisorder paran@teour
) Py imensionless temperatufeeasured in units of the mean

from one, then the temperature at whigky, and &. take a Josephson energy of the in-plane junctionan be only a

given Va“.Je would have Pee’? _dlfferent. Although we €annok nction of the other dimensionless parameters of the system.
characterize from our simplified model a phase transition .. o eD H. and 7. These parameters have different
yvhen gab. and§; are cont!nuous functions of temperature, it dependence,s o,n the cc.)herence lergthlf we identify the

|ts temptltng t(t)hsay that 'Ei‘ﬁ (&) drops.to zero tat Io;/vt?]r discretization parameter in theth plane with a distance of
emperature thark; (£,,), then we are in a sector of the the order of the coherence lengif, then the critical current

hase diagram wher&;,<T, (T,<T;).% In this way we o o .
generate tﬁe phase diellgrar?"n (deppicté)d in Fig. 7. As}i/ndicate(,?,]c th? E]os;aphsotrr]]Juncpor:s along mdlr?CtlTlﬁlsg/rzc])%m_
it is qualitatively similar to the one obtained from the nu- tonal to&o, so the anisotropy parameter(~ (I¢) e-

merical simulation, and it gives suppaat posteriorito the ~ haves as 1; On the other hand, our dimensionless mag-
proposal of an entropy of the system of the form given bynetic fieldH is given in terms of t2he real external magnetic
Eq. (7). field Hy by the expressioil =H&y/ ¢o. For the parameter
Some characteristics of this phase diagram can be an&. we note thatD is proportional to the amplitude of the
lyzed in simple terms. For example, when-, the system Pinning potential. A vortex averages this random function on
is a set of decoupled planes, and no first-order transition ign area~&5. Considering the case of randgemcorrelateyi
obtained for any value dd.?2 When »— 0 vortices are rigid  pinning we find thaD depends oré, asD~ &, *. Since we
lines and in fact effectively two-dimensional, so a first-orderare ignoring details of the vortex cores, we expect the prop-
transition is not obtained in this case either. These limitingerties of the system to depend only on thgindependent
cases give some insight on the form of the border betweeguantities7?H andD?H.
first order and continuous transitions in Figs. 4 and 7. There We conclude that we can obtain the behavior of the sys-
is an optimum value of the anisotropy, at which the first-tem as a function of magnetic field from the results of Fig. 4
order transition persists up to a highest value of disorderon lines with constanb/». A sketch of the different possi-
This optimum value depends on the thickness of the samplédailities is shown in Fig. 8. The general prediction from Fig. 4
In fact, as we discussed in a previous wbtkn samples s depicted in Fig. &). The scales on the axis as well as the
with low anisotropy the temperaturg, logaritmically de-  extent of the first-order transition depend on the particular
creaseswhen the thickness of the sample increases. Thivalue ofD/#. This general picture has to be modified at very
means that in Fig. 4 the border between the zones wittow fields. In fact, a minimum crossover fief{given essen-
Ti>T, and T,>T; moves to lower values of. It is thus tially as the field at which the vortex lattice parameter
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point to a first-order phase transition, as for example the
energy histogram of the system, which has two peaks right at
the transition temperature, indicating two coexisting phases
with an energy barrier separating théhf. The continuous
transitions are more difficult to characterize. The transition at
T, for samples with low anisotropis nota phase transition

in our model. In fact, it is a crossover due to thermal depin-
ning of rather independent vorticBsHowever, in a real
sample it may correspond to the vortex glass transition, de-
pending on the strength of the disordéhenT,>T;, we

©) have previously characterized the transitioT gias a perco-
lation phase transition of the vortex structure perpendicularly
to the applied field® In the thermodynamic limit for_,p,
(Lap— ) the system does not have any vortex line running
perpendicularly to the applied field far<T,, whereas for
T>T, these paths extend all over tlad plane with prob-
ability one. In Refs. 14 and 15 we showed numerical evi-
dence suggesting that this transition is a second-order phase
transition and gave its critical exponents as found from simu-
matches the thickness of the sampéists, below which lations.

T; and T, are essentially the saniéhis is because in this

case there are so few vortices in the sample that the transition V. SUMMARY AND CONCLUSIONS

is entirely due to thermally generated vortex lop3iffer-
ent possibilities are depicted in Figs(b and 8c). They
correspond to different ranges of valuesiofy. Figure &b)
corresponds t®/ 7 small, so Fig. 4 predict$,<T; at high
fields, and a first-order zone at intermediate and low fields

This phase diagram corresponds to that experimentally Obt_ransmon for a wide range of anisotropies. When disorder is

tained for B,Sr,CaCu,02 which in fact has the largest included the behavior of the system is strongly dependent of
value of 7 andzeven o ’the case of clean YEzU;0,.2° the anisotropy. For low anisotropies the in-plane coherence
[} 3VY 7

which has a very lowD. Figure 8c) shows the expected is lost at a temperaturg; lower than the temperaturg, at

phase diagram for samples with a high valusty. At low which interplane coherence is lost, and a zone of disen-

. . S tangled vortex lines is observed fof<T<T,. For highly
fieldsT; is '°Wer thanTp_, where_as at h|gh_ fields a crossover anisotropic samples the superconducting coherence as de-
to a zone withT;>T, is possible. No first-order zone is

shown because a curve defined by a high valu®bé in duced from simulations of the resistivity is lost at the same

Fig. 4 does not pass through the first-order zone. The lov;[/emperatureTi within the planes and perpendicularly to the

i ; ) lanes. However, in this case the vortex structure percolates
field part of this phase diagram corresponds to the one ob- .
i ; at a temperaturd, well below T;. In this case the system
tained for YBa,Cu30, samples with defectd. The cross- - " -
over to a case With-<T. has not been observed. presum for T,<T<T; is in an “entangled solid” phase. These fea-
P P tures are also obtained from an estimation of the free energy
ably because of the high fields needed.

o : of the system which is mainly based on a proposal for the
As we indicated above, wheéh <T, superconducting co- )
herence is lost along theb plane at lower temperatures than entropy of the systerfiq. (7)]. We showed that the mag

alona thee axis. ForT.<T<T. finite resistance within the netic field-temperature behavior of the system can be de-

plangs and );er'o resilstance ri)n IttIJedirecltion is ;th)s;rved duced from results obtained from a fixed magnetic field pro-
. .~ vided the anisotropy and disorder present in the system are

WhenT;>T, and in the case that;>T>T, we potentially Py P y

- ; . . . . roperly rescaled.
expect finite resistance in thledirection and zero resistance properly

o ; g : Our results present, in a unified way, different character-
within the planes. Jhis hqs turne_d out to be dn‘ncult.to f'nd’istics of the vortex structure that had been previously found
both experimentalf§} and in our simulations. The resistance

ther t i t th i o all in partial studies. The analysis is in agreement with a variety
3?9”1_5 raszfl_rh.o _god 0 zter;)haf (tetf]a?we ?mpertar’]i;une al  of experiments performed on different materials with a broad
Irections. IS 1S due 1o the fact that vortex paths CrOSS‘mgrange of parameters such as disorder, anisotropy, and mag-
the sample folT>T, are pinned to th@b planes as long as

T<T . hei d thus dissipati netic field. It could prove to be useful to find a more solid
<Ti, preventing their movemer(lan thus |SS|pa_t|Qn base of our proposal for the free energy of the system—that
However, it is worth noting that some other experimental

measurements of coherenéac magnetization indicate’ we s_:howed is_qualitatively good—in order to obtain more
9 detailed analytical results.

that in fact,c-axis coherence is lost at lower temperatures
than in-plane coherence for the case 0f®i,CaCu,0.

The transitions observed in our simulations are of differ-
ent character, and we want to discuss the point a bit further. We acknowledge helpful discussions with D.dez, E. F.
The first-order transition is the easiest to characterize nuRighi, and F. de la Cruz. E.A.J. acknowledges financial sup-
merically. Although we do not show all the results, we ob-port by CONICET. C.A.B. was partially supported by
served that when the resistivity has a jump other indicator€ONICET.

Magnetic Field

Temperature

FIG. 8. Qualitative sketch of thel-T phase diagram for differ-
ent values oD/ 7. (a) General form(b) D/# small.(c) D/ 5 high.

In this paper we present numerical evidence that supports
an anisotropy-disorder phase diagram of the vortex structure
of high-T.'s with the following characteristics: For clean
samples the vortex lattice melts through a first-order phase
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