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Phase diagram of high-Tc superconductors: Influence of anisotropy and disorder

E. A. Jagla and C. A. Balseiro
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~Received 30 July 1996; revised manuscript received 30 September 1996!

We propose a phase diagram for the vortex structure of high-temperature superconductors which incorpo-
rates the effects of anisotropy and disorder. It is based on numerical simulations using the three-dimensional
Josephson-junction array model. We support the results with an estimation of the internal energy and configu-
rational entropy of the system. Our results give a unified picture of the behavior of the vortex lattice, from the
very anisotropic Bi2Sr2CaCu2O8 to the less anisotropic YBa2Cu3O7, and from the first-order melting ocur-
ring in clean samples to the continuous transitions observed in samples with defects.@S0163-1829~97!04505-0#
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I. INTRODUCTION

The phase diagram of high-temperature superconduc
in the mixed state has provided an astonishingly broad fi
to workers in—among other fields—many body problem
polymer physics, low dimensional systems, critical pheno
ena, and statistical physics in general. The main reason
this situation is the great number of parameters that de
the behavior of the vortex structure. On the other hand,
same abundance of parameters defining the system mak
difficult to find a unified description of all features observ
in experiments. Some of the main parameters that define
behavior of the vortex structure are the external magn
field H, temperatureT, anisotropy h, and the disorder
~which produces a non-homogeneous pinning potential
the vortices! that at this moment we loosely characterize b
parameterD. There are convincing explanations of the ma
characteristics of different sectors of this multidimensio
phase diagram, such as the first-order melting of the vo
lattice in clean samples, the continuous melting of a gla
phase in disordered samples, or the existence of two diffe
superconducting transitions~perpendicular and parallel t
H) in some cases~for a review see Ref. 1!. However, a
unified description of the problem consistent with expe
ments, even in a qualitative level, is still lacking.

In this paper we propose a qualitativeH-T-h-D phase
diagram of high-Tc materials, that reproduces most of th
available experimental results. Our approach is twofold:
use numerical simulation on the three-dimensio
Josephson-junction array model to study the behavior of
system as a function ofD andh, and show that the depen
dence onH can be deduced from a rescaling ofD andh.
The obtained phase diagram is then rederived using a
nomenological estimation of the free energyF of the system
for different values ofD andh. This estimation relies on the
existence of two characteristic lengthsjc and jab parallel
and perpendicular to the applied fieldH which are supposed
to govern the behavior of the system. The minimizing ofF
with respect tojc andjab allows one to obtain thejc(T) and
jab(T) functions, which in turn are used to detect the sup
conducting transitions.

The remainder of the paper is organized as follows. In
next section we present the results of the numerical sim
550163-1829/97/55~5!/3192~8!/$10.00
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tions, and discuss theh-D phase diagram emerging from
them. In Sec. III this phase diagram is qualitatively reo
tained using a proposal for the free energy of the system
Sec. IV we indicate that a change in the external magn
field can be interpreted as a movement in theh-D plane, and
so theH-T phase diagram for samples with differentD and
h can be obtained from the results of the previous sectio
We also compare our results with those found in experim
tal studies. Finally in Sec. V, we summarize and conclud

II. NUMERICAL SIMULATIONS

A. The model

Our numerical results are based on simulations perform
on the three-dimensional~3D! Josephson-junction arra
~JJA! model on a stacked triangular network. The 3D J
model has been previously used to show the first-order m
ing of the vortex lattice in clean systems.2,3 Both thermody-
namical and transport signatures of this first-order transit
were obtained, in close relation to experimental results.4 In
addition, using the same model we have shown5 that disorder
can destroy the first-order transition, as observed
experiments.6,7 The details of the model have been discuss
elsewhere.8,9 For completeness we present here briefly
main features.

The model consists on a mesh of Josephson junct
forming a stacked triangular network.2 Each junction is mod-
eled by an ideal Josephson junction with critical currentI c
shunted by a normal resistanceR0 and its attached Johnso
noise generator, which accounts for the effects of tempe
ture. The equations for the 3D JJA model are

j i i 85I csin~w i2w i 82Aii 8!1
f0

2pR0

]~w i2w i 8!

]t
1q i i 8~ t !,

~1!

(
$ i 8%

j i i 85 j ext
i , ~2!

wherew i(t) is the phase of the superconducting order para
eter ~vortices form in the system as singularities in the d
tribution of these phases!, and f0 is the flux quantaum.
3192 © 1997 The American Physical Society
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55 3193PHASE DIAGRAM OF HIGH-Tc SUPERCONDUCTORS: . . .
Equation~1! gives the currentj i i 8 between nearest neighbo

nodesi and i 8, Aii 8 is the vector potential of the externa
magnetic field, which will be always supposed to point in t
crystallographicc direction ~perpendicular to the triangula

planes!, andq i i 8(t) is an uncorrelated Gaussian noise whi
incorporates the effects of temperature.

Equation ~2! ensures the current conservation on ea
node, andj ext

i is the external current applied at nodei . Equa-
tions ~1! and ~2! are numerically integrated on time using
Runge-Kutta method suitable for stochastic systems. In
simulations we present here, we iterate the equations 2
time steps for thermalization and then calculate observa
during 10000 time steps at each temperature. The typ
time step used isDt.tJ (tJ5f0/2pR0I c). We checked that
reducing the time step by a factor of 10 does not alter
results.

We systematically explore the case of anisotropic and
ordered samples. Anisotropy is introduced by reducing
critical current of thec axis directed junctions by a facto
h2, and at the same time increasing thec axis normal resis-
tance by the same factor. Disorder is introduced by rando
varying the critical current of the junctions through the la
tice. As vortices gain energy when close to a low critic
current region, the effect of randomizing the critical curre
is to provide a nearly random pinning potential for vortice
We characterize the disorder by a parameterD which is de-
fined asD[(I c

max2Ic
min)/(Ic

max1Ic
min), whereI c

max and I c
min are

the maximum and minimum value of the critical current
the junctions through the sample. The probability distrib
tion betweenI c

max andI c
min is taken flat. The results presente

here were obtained for a single realization of disorder~the
same for all values ofh andD, up to the global amplitude!.
We have checked that other realizations do not change
preciably the results. This indicates that the system size u
(La3Lb3Lc518318318 junctions, in all cases! is large
enough for the system to be self-averaging.

We carried out simulations forH51/6 flux quanta per
plaquette. This is the value used in Refs. 2 and 3. It produ
a ground state~for a clean sample! which is commensurate
with the subjacent triangular lattice, so no frustration effe
are expected. Although the value 1/6 is rather large and
fects of the substrate may be observable, we expect the p
ics of the problem to be qualitatively well described. In pa
ticular, we assume that for a clean sample the first-or
melting observed in simulations is in fact the counterpart
the experimental observations.4,7,10–12It would be interesting
to perform simulations at lower~commensurate! fields, such
as 1/14 or 1/36. However, the sample size needed to m
mize size effects make the computing time be exceedin
large.

We characterize the superconducting transitions by m
suring the resistivityr of the sample when a small current
applied along theab or c direction. Typically, an externa
current of 0.01 of theI c in the corresponding direction i
used. This value is small enough so as to test the lin
resistivity of the sample. We will observe two well differe
behaviors of the resistivities as a function of temperature
some cases resistivities have a jump from zero to a fi
value at a given temperature. This jump in the resistiv
corresponds~see the discussions below! to a first-order phase
h
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transition of the vortex lattice. In some other cases we w
obtain that resistivities as a function of temperature smoo
depart from zero. We will refer to this behavior as acontinu-
ous transition. We do not claim at this moment abou
whether these continuous transitions are or are not real p
transitions, they can be crossovers as well. In Sec. V
present a discussion on this point. In addition, complem
tary results are presented, in which the superconducting
herence is characterized by the helicity modulusx.13 It mea-
sures the influence of a twist in the boundary conditions
the energy of the system, and has to be different from zer
indicate superconducting coherence. In the limit of infin
size, a finite value ofx (r) is equivalent to the vanishing o
r (x) in that direction. For finite samples a zone with bo
r and x different from zero may appear due to finite si
effects.

Boundary conditions~BC! deserve a comment. When ca
culating helicity modulus we use a system with periodic B
in all directions. However, in order to be able to apply
current to calculate resistivities we have to change the B
To calculate theab plane resistivity we simulate a syste
with open BC in the direction of the current, and periodic B
in the other two directions. When calculatingc axis resistiv-
ity periodic boundary conditions are used in thea and b
directions, and for thec direction we use an intermediate B
that we have called pseudoperiodic,14,15 that allow to calcu-
late the resistivity and at the same time reduces greatly
surface effects. In consequence, note that different ma
tudes are calculated using different simulations, and a sm
difference in~for example! transition temperatures is likely
to occur when comparing the results fromrc , rab , andx.

B. Results

It turns out that the system has three very different kin
of behavior as a function of temperature depending on wh
value of disorder (D) and anisotropy (h) we are consider-
ing. We will first describe in detail typical points within th
three different zones, and then show the completeh-D phase
diagram.

We start by showing in Fig. 1 the results for a samp
with D50.3 andh252 as a function of temperature. Pan
~a! shows theab plane andc axis resistivityrab and rc ,
panel ~b! the corresponding values of the helicity modul
xab andxc , and panel~c! the percolation probabilityP ~see
below!. The behavior of the system in this case is typical
a first-order melting transition of the vortex lattice, as it w
previously found in other works withD50:2,3,5 helicity
modulus both parallel and perpendicular to the field jum
discontinuously to zero at the same temperature. The co
sponding resistivities have also the same behavior. They
zero below the transition and have a finite value above
The percolation probability shown in panel~c! is the prob-
ability that there exists a vortex path starting from one late
side of the system and ending on the other side. We h
shown in previous works14,15that the existence of these path
~i.e., the fact thatPÞ0) is a necessary condition to obta
finite c axis resistivity. The quantityP also jumps from zero
to a finite value at the transition, indicating that this tran
tion can be viewed as the passage from a solid crystal
phase~or a Bragg glass phase16! for T,TM to an entangled
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3194 55E. A. JAGLA AND C. A. BALSEIRO
liquid phase forT.TM . All quantities show hysteresi
around the transition typical of the first-order transition. T
results just presented were obtained using finiteD, so we
conclude that the first-order transition is not restricted to
caseD50, but occurs in a finite region of theh-D plane.

When disorder is increased beyond certain limit, the fir
order transition disappears.6,7,5 Two different possibilities
may occur. In Fig. 2 we show results similar to those of F
1 but forD50.8 andh250.5. This corresponds to a highl
disordered case, with low anisotropy. Superconducting tr
sitions become continuous in this case, both when lookin

FIG. 1. ~a! Resistivitiesrab ~full symbols! andrc ~hollow sym-
bols!; ~b! helicity modulusxab ~full symbols! andxc ~hollow sym-
bols!; and~c! percolation probabilityP as a function of temperatur
for h252 andD50.3. Temperature is measured in units of t
mean Josephson energy of the in-plane junctions. Magnetic fie
H51/6 quantum fluxes per plaquette. Results of successive coo
and heating are shown as indicated by the arrows. The approxi
location of the melting temperatureTM is indicated.

FIG. 2. Same as Fig. 1 but for a sample with anisotro
h250.5 andD50.8. No detectable hysteresis upon heating a
cooling is observed. The approximate values of transition temp
tures are indicated by the vertical lines.
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them using resistivities or helicity modulus, and the para
and perpendicular to field transitions occur at different te
peratures. Note that, within numerical errors, hysteresis
disappeared. Perpendicular to field coherence is lost at a
peratureTi , whereas parallel to field coherence is lost a
temperatureTp.Ti .

14,15,17 At this temperatureTp both rc
and the percolation probabilityP become finite. For
Ti,T,Tp the system is in a dissipative state along theab
direction, but it is still superconducting along thec direction,
and the vortex structure is that of a disentangled vortex
uid in this temperature range. AtTp a percolation phase tran
sition occurs in the system.14,15This transition is triggered by
the proliferation of vortex loops between planes.18

In Fig. 3 we show the results forD50.7 andh2520. This
corresponds to a highly disordered, highly anisotropic s
tem. The most important feature of this case is that the p
colation temperature is zero, i.e., the percolation probab
P is finite even forT→0. This indicates that the vortex struc
ture is in a highly disordered configuration and does
freeze into a disentangled lattice. Dissipation~both parallel
and perpendicular to the field! appears only when tempera
ture is increased beyond a finite value. We will keep t
notationTi for this value, as the temperature at whichab
plane coherence is lost, and defineTp as the percolation tem
perature~at whichP becomes different from zero!, so in this
caseTp50, i.e.,Tp,Ti . At the temperatureTi , bothaband
c axis dissipation start to depart from zero in a very simi
way,19 in accordance with recent theoretical estimations20

Again no hysteresis is observed in this case either.
From the above discussion on Figs. 1, 2, and 3, the

lowing picture emerges: at low disorder the vortex latti
melts through a first-order phase transition. When disor
increases this transition disappears, and the behavior dep
on the anisotropy of the system. For low anisotropy in-pla
and interplane coherence are lost at different temperat
Ti andTp.Ti , and a disentangled vortex liquid phase exi
for Ti,T,Tp . For highly anisotropic samples the percol
tion temperatureTp ~in the sense of the temperature at whi
P becomes finite! moves to lower temperatures, indicatin

is
ng
te

d
a-

FIG. 3. Same as Fig. 2 but for a sample with anisotro
h2520 andD50.7. Note thatTp has moved towardsT50.
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55 3195PHASE DIAGRAM OF HIGH-Tc SUPERCONDUCTORS: . . .
that the vortex structure freezes in an entangled config
tion. Dissipation~in both directions! occurs for temperature
higher than a finite valueTi ,

21 and we haveTp,Ti in this
case.

Having in mind these three qualitatively different beha
iors, we have systematically searched theh-D space of pa-
rameters, and the results are shown in Fig. 4. Stars indi
points where the melting transition is first order. Full circl
are points whereTi,Tp , and hollow circles are points
whereTp,Ti . The points corresponding to Figs. 1–3 a
shown encircled. The figure shows the three different zo
discussed above. The continuous lines are a sketch of
frontiers between the different zones. The exact location
the border lines is difficult to determine precisely from t
numerical simulations because different zones transf
rather smoothly into each other when changingh andD, but
the properties of the system within the different regions
physically different so as to guarantee the existence of su
frontier. In the next section we show that the main char
teristics of this phase diagram can be derived from a sim
fied description of the vortex structure.

III. A SIMPLIFIED MODEL

We saw in the previous section that a single first-or
transition is observed at low disorder, whereas two conti
ous transitions are obtained in disordered samples for
anisotropies. These features suggest that~at least for low
anisotropies! the system may be described as having in g
eral two different transitions: a depinning of rather indepe
dent vortices~ocurring atTi), and a percolation transition
~occurring atTp) driven by the thermally generated loops.
certain cases they can merge onto a single first-order tra
tion due to some kind of ‘‘interaction.’’ Here we show th
this idea can be formulated more precisely by estimating
free energy of the system.

A. Free energy functional

To make this estimation we will consider first a sing
clean plane. We suppose that the thermodynamics of

FIG. 4. Disorder-anisotropy phase diagram as obtained from
simulations. Stars indicate points where the melting transition
first order. Full circles are points whereTi,Tp , and hollow circles
are points whereTp,Ti . The continuous lines are a sketch of th
frontiers between the different zones. The encircled points are t
analyzed in Figs. 1–3.
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plane can be phenomenologically described by a quan
jab , which is a correlation length: for distances shorter th
jab the system has superconducting coherence, whereas
coherence is lost for distances larger thanjab . The free en-
ergy functionalF2D of the plane has the form

F2D5E2D~jab!2TS2D~jab! ~3!

~the thermodynamical free energyF is obtained by minimiz-
ing with respect tojab). For a system ofLc completely de-
coupled planes, we would have

Fh→`
3D 5LcE

2D~jab!2TLcS
2D~jab!. ~4!

On the other hand, if the coupling between planes is infin
the vortices are rigid lines and we get

Fh→0
3D 52~a/h2!Lc1LcE

2D~jab!2TS2D~jab!. ~5!

Note that in this case the entropy term does not have
factor Lc because giving the position of the vortices on o
plane automatically determines the position of vortices in
other planes. The term2(a/h2)Lc accounts for the energy
gain due to the coupling of the planes,a being a numerical
constant andh the anisotropy parameter defined before.
an intermediate situation (0,h,`) the system can be
thought as formed byLc /jc layers (jc is a number that sat
isfies 1,jc,Lc , see below!. Within each layer the vortices
are almost straight lines, whereas correlation is small
tween different layers. In this picture the free energy of t
system is

F3D52~a/h2!~Lc2Lc /jc!1LcE
2D~jab!

2T~Lc /jc!S
2D~jab!. ~6!

In the first term,Lc2Lc /jc is the number of sites along th
c direction at which the system gains an energya/h2. The
length jc is roughly given by the mean distance betwe
percolation paths along thec direction:15 it takes a finite
energy to bend a vortex in distances lower thanjc , however,
this energy drops to zero for distances larger thanjc .

The previous estimation of the free energy of the syst
is too crude. In particular, in the form given by Eq.~6!, it
leads to some unphysical results. We must modify Eq.~6!
slightly in order to obtain the correct behavior in some lim
iting cases. However, we will keep a fundamental prope
of Eq. ~6! and make the guess that the entropy can be wri
for the real system as

S5 f ~jc!S
2D~jab!, ~7!

i.e., as a product of independent functions ofjc and jab ,
with f (jc) and S

2D(jab) two yet unknown functions. The
basic assumption contained in Eq.~7! is the following: if the
value ofjc is kept fixed, then the system behaves as a tw
dimensional system with a renormalized temperature.
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3196 55E. A. JAGLA AND C. A. BALSEIRO
though this assumption cannot be fully justifieda priori, it is
a natural starting point, and gives sensible results as we
show soon.

We still have to add a term to the free energy whi
accounts for the effect of impurities. Impurities decrease
energy of the system when vortices pin to them. If pinning
uncorrelated the energy gain due to pinning becomes lo
when the vortex positions are more correlated. So we ad
term to the free energy that increases the energy of the
tem whenjab andjc increase. The most simple term of th
type is of the formDjabjc . Finally, the free energy func
tional of the systemF(jab ,jc) ~dropping an irrelevant con
stant term! is

F~jab ,jc!5~a/h2!Lc /jc1LcE
2D~jab!2T f~jc!S

2D~jab!

1Djabjc . ~8!

The true expressions for the functionsf , E2D, andS2D are
difficult to establish. However, it is not our aim to give
complete quantitative description of the free energy of
system but only a qualitative description of the phase d
gram. We will only ask the functionsf , E2D, and S2D to
reproduce some known limiting cases: ifjc (jab) is kept
fixed we expect the value ofjab(T) „jc(T)… obtained by
minimizing F, to be smoothly dependent on temperatu
This corresponds to the absence of first-order transition
the dynamics of a single plane~a single vortex line!.22 How-
ever, whenF is minimized with respect tobothjc andjab a
discontinuity in jc(T) and jab(T) can appear, as we sho
below.

Just to give an example we use for the functionf the form
f5g ln(Lc /jc)11. The termg ln(Lc /jc) (g is a numerical con-
stant! is proportional to the entropy of a single~isolated!
vortex line. The constant added assures that the t
dimensional limiting case of rigid sticks is reobtained wh
Lc5jc . In addition, we will take for the functionsE2D and
S2D the form E2D5Lab /jab and S

2D5g ln(Lab/jab)11 , in
such a way that we obtain a form for the free energy fu
tional that is ~unphysically! symmetric ~for a/h251) be-
tweenab andc directions. We have tested other forms of t
functions f , E2D andS2D ~giving the same limiting behavio
discussed above! and found results qualitatively similar t
those shown here.

We arrive to our final working expression of the free e
ergy functional~we will measurejab andjc in units of Lab
and Lc , respectively, takea51 by rescalingh, and also
rescaleD)

F~jab ,jc!51/h2jc11/jab2T@g ln~1/jc!11#

3@g ln~1/jab!11#1Djabjc . ~9!

The thermodynamical free energyF is obtained by mini-
mizing with respect tojab andjc :

F~T!5 min
0<jab<1

min
0<jc<1

F~jab ,jc!. ~10!
ill
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We stress again we do not claim expression~9! is a good
detailed description of the free energy of the system, but o
a expression@whose main characteristic is given by Eq.~7!#,
that will help us to understand different sectors of theh-D
phase diagram of high-Tc’s.

B. Results

We present now the results obtained by minimizing t
free energy functional given by expression~9!. When doing
this minimization we obtain the free energyF and the
lengthsjab andjc as a function of temperature. A first-orde
transition is identified as a discontinuous jump in the valu
of the correlation lengthsjab andjc at the same temperatur
from 1 ~long range correlation! to a lower value~finite range
correlation!. If this is not the case, the dependence ofjab and
jc with temperature gives a clue on how the superconduc
coherence is lost when raising temperature. However, in
case the identification of a phase transition is not simple,
we can only identify temperature ranges where cohere
alongc or ab directions is high or low.

Let us start with the caseD50 andh51 ~note that we
are using a renormalized anisotropy parameter, soh51 does
not imply necessarily an isotropic system!. In this case Eq.
~9! is symmetric injab and jc , and in fact the minima of
F are on the linejab5jc[j, so in Fig. 5 we plot the func-
tion F(j,j) for different values of the temperature. We s
that whenT→0 the minimum free energy state correspon
to the maximum possible value ofj, i.e., the system is in the
ordered state. When temperature increases afirst-order tran-
sition to a disordered state occurs. This is also seen from
behavior ofj as a function of temperature, as depicted
Fig. 5~b!. Thus we see that the coupling of two continuo
transitions@through the entropy term in Eq.~9!# can merge
them onto a single one, which is first order. In fact, such s

FIG. 5. ~a! Free energy functional as a function of correlatio
lengthj for different temperatures withD50, andg52. ~b! Cor-
relation length as a function of temperature obtained as the min
of the curves in~a!.
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55 3197PHASE DIAGRAM OF HIGH-Tc SUPERCONDUCTORS: . . .
of mechanism has been previously proposed to occur in o
cases, such as two-dimensional melting, in which the c
tinuous dislocation-unbinding and disclination-unbindi
transitions of the Kosterlitsz-Thouless-Halperin-Nelso
Young melting theory23,24 can collapse onto a first-orde
melting transition.24,25

If disorder is present in the system it will tend to destr
the melting transition. In Fig. 6 we show results as those
Fig. 5 but for a value ofD50.7. As we see the jumps i
jab andjc have disappeared, indicating that the transition
not first order. If the anisotropy had been chosen differ
from one, then the temperature at whichjab and jc take a
given value would have been different. Although we can
characterize from our simplified model a phase transit
whenjab andjc are continuous functions of temperature,
is tempting to say that ifjab (jc) drops to zero at lower
temperature thanjc (jab), then we are in a sector of th
phase diagram whereTi,Tp (Tp,Ti).

26 In this way we
generate the phase diagram depicted in Fig. 7. As indica
it is qualitatively similar to the one obtained from the n
merical simulation, and it gives supporta posteriori to the
proposal of an entropy of the system of the form given
Eq. ~7!.

Some characteristics of this phase diagram can be
lyzed in simple terms. For example, whenh→`, the system
is a set of decoupled planes, and no first-order transitio
obtained for any value ofD.22Whenh→0 vortices are rigid
lines and in fact effectively two-dimensional, so a first-ord
transition is not obtained in this case either. These limit
cases give some insight on the form of the border betw
first order and continuous transitions in Figs. 4 and 7. Th
is an optimum value of the anisotropy, at which the fir
order transition persists up to a highest value of disord
This optimum value depends on the thickness of the sam
In fact, as we discussed in a previous work,15 in samples
with low anisotropy the temperatureTp logaritmically de-
creaseswhen the thickness of the sample increases. T
means that in Fig. 4 the border between the zones w
Ti.Tp and Tp.Ti moves to lower values ofh. It is thus

FIG. 6. Same as Fig. 4 but withD50.7.
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likely that the optimum value ofh for the occurrence of the
first-order transition also decreases with sample thicknes

IV. MAGNETIC FIELD DEPENDENCE
AND COMPARISON WITH EXPERIMENTS

Having discussed theh-D phase diagram for a fixed mag
netic fieldH, we turn now to the discussion of the depe
dence onH. From the numerical point of view the direc
approach would be to do simulations at different field
However, as we discussed above, to reduce the magn
field to other commensurate values would require exce
ingly large computing time. Fortunately, there are argume
that suggest that a change ofH can be mapped onto a chang
of D andh.

The scaling combination between magnetic field and
isotropy has been given by Chen and Teitel.27 We generalize
here the argument to include the disorder parameterD. Our
dimensionless temperature~measured in units of the mea
Josephson energy of the in-plane junctions! can be only a
function of the other dimensionless parameters of the syst
These areD, H, and h. These parameters have differe
dependences on the coherence lengthj0. If we identify the
discretization parameter in theab plane with a distance o
the order of the coherence lengthj0 , then the critical current
of the Josephson junctions along thec directionI c

' is propor-
tional to j0

2 , so the anisotropy parameterh @;(I c
')21/2# be-

haves asj0
21 . On the other hand, our dimensionless ma

netic fieldH is given in terms of the real external magne
field H0 by the expressionH5H0j0

2/f0 . For the parameter
D, we note thatD is proportional to the amplitude of th
pinning potential. A vortex averages this random function
an area;j0

2 . Considering the case of random~uncorrelated!
pinning we find thatD depends onj0 asD;j0

21. Since we
are ignoring details of the vortex cores, we expect the pr
erties of the system to depend only on thej0-independent
quantitiesh2H andD2H.

We conclude that we can obtain the behavior of the s
tem as a function of magnetic field from the results of Fig
on lines with constantD/h. A sketch of the different possi
bilities is shown in Fig. 8. The general prediction from Fig.
is depicted in Fig. 8~a!. The scales on the axis as well as t
extent of the first-order transition depend on the particu
value ofD/h. This general picture has to be modified at ve
low fields. In fact, a minimum crossover field14 ~given essen-
tially as the field at which the vortex lattice paramet

FIG. 7. Disorder-anisotropy phase diagram as obtained by m
mizing the free energy functional~see text for explanation!.
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matches the thickness of the sample! exists, below which
Ti and Tp are essentially the same~this is because in this
case there are so few vortices in the sample that the trans
is entirely due to thermally generated vortex loops!. Differ-
ent possibilities are depicted in Figs. 8~b! and 8~c!. They
correspond to different ranges of values ofD/h. Figure 8~b!
corresponds toD/h small, so Fig. 4 predictsTp,Ti at high
fields, and a first-order zone at intermediate and low fie
This phase diagram corresponds to that experimentally
tained for Bi2Sr2CaCu2O,

28 which in fact has the larges
value of h, and even to the case of clean YBa2Cu3O7,

29

which has a very lowD. Figure 8~c! shows the expected
phase diagram for samples with a high value ofD/h. At low
fieldsTi is lower thanTp , whereas at high fields a crossov
to a zone withTi.Tp is possible. No first-order zone i
shown because a curve defined by a high value ofD/h in
Fig. 4 does not pass through the first-order zone. The
field part of this phase diagram corresponds to the one
tained for YBa2Cu3O7 samples with defects.30 The cross-
over to a case withTi,Tp has not been observed, presum
ably because of the high fields needed.

As we indicated above, whenTi,Tp superconducting co
herence is lost along theab plane at lower temperatures tha
along thec axis. ForTi,T,Tp finite resistance within the
planes and zero resistance in thec direction is observed
WhenTi.Tp and in the case thatTi.T.Tp we potentially
expect finite resistance in thec direction and zero resistanc
within the planes. This has turned out to be difficult to fin
both experimentally31 and in our simulations. The resistanc
seems rather to go to zero at the same temperatureTi in all
directions.21 This is due to the fact that vortex paths crossi
the sample forT.Tp are pinned to theab planes as long as
T,Ti , preventing their movement~and thus dissipation!.
However, it is worth noting that some other experimen
measurements of coherence~ac magnetization! indicate32

that in fact,c-axis coherence is lost at lower temperatu
than in-plane coherence for the case of Bi2Sr2CaCu2O.

The transitions observed in our simulations are of diff
ent character, and we want to discuss the point a bit furt
The first-order transition is the easiest to characterize
merically. Although we do not show all the results, we o
served that when the resistivity has a jump other indica

FIG. 8. Qualitative sketch of theH-T phase diagram for differ-
ent values ofD/h. ~a! General form.~b! D/h small. ~c! D/h high.
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point to a first-order phase transition, as for example
energy histogram of the system, which has two peaks righ
the transition temperature, indicating two coexisting pha
with an energy barrier separating them.33,2 The continuous
transitions are more difficult to characterize. The transition
Ti for samples with low anisotropyis not a phase transition
in our model. In fact, it is a crossover due to thermal dep
ning of rather independent vortices.9 However, in a real
sample it may correspond to the vortex glass transition,
pending on the strength of the disorder.34 WhenTp.Ti , we
have previously characterized the transition atTp as a perco-
lation phase transition of the vortex structure perpendicula
to the applied field.15 In the thermodynamic limit forLab
(Lab→`) the system does not have any vortex line runn
perpendicularly to the applied field forT,Tp , whereas for
T.Tp these paths extend all over theab plane with prob-
ability one. In Refs. 14 and 15 we showed numerical e
dence suggesting that this transition is a second-order p
transition and gave its critical exponents as found from sim
lations.

V. SUMMARY AND CONCLUSIONS

In this paper we present numerical evidence that supp
an anisotropy-disorder phase diagram of the vortex struc
of high-Tc’s with the following characteristics: For clea
samples the vortex lattice melts through a first-order ph
transition for a wide range of anisotropies. When disorde
included the behavior of the system is strongly dependen
the anisotropy. For low anisotropies the in-plane cohere
is lost at a temperatureTi lower than the temperatureTp at
which interplane coherence is lost, and a zone of dis
tangled vortex lines is observed forTi,T,Tp . For highly
anisotropic samples the superconducting coherence as
duced from simulations of the resistivity is lost at the sa
temperatureTi within the planes and perpendicularly to th
planes. However, in this case the vortex structure percol
at a temperatureTp well below Ti . In this case the system
for Tp,T,Ti is in an ‘‘entangled solid’’ phase. These fea
tures are also obtained from an estimation of the free ene
of the system which is mainly based on a proposal for
entropy of the system@Eq. ~7!#. We showed that the mag
netic field-temperature behavior of the system can be
duced from results obtained from a fixed magnetic field p
vided the anisotropy and disorder present in the system
properly rescaled.

Our results present, in a unified way, different charact
istics of the vortex structure that had been previously fou
in partial studies. The analysis is in agreement with a vari
of experiments performed on different materials with a bro
range of parameters such as disorder, anisotropy, and m
netic field. It could prove to be useful to find a more so
base of our proposal for the free energy of the system—
we showed is qualitatively good—in order to obtain mo
detailed analytical results.
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