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Nonlinearity in normal-metal –superconductor transport: Scattering-matrix approach
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A general formula for the current through a disordered normal-superconducting junction is derived, which is
valid at finite temperature and includes the full voltage dependence. The result depends on a multichannel
scattering matrix, which describes elastic scattering in the normal region, and accounts for the Andreev
scattering at the normal-metal–superconductor interface. The symmetry of the current with respect to sign
reversal in the subgap regime is discussed. The Andreev approximation is used to derive a spectral conductance
formula, which applies to voltages both below and above the gap. In a case study the spectral conductance
formula is applied to the problem of a normal-metal–insulator–normal-metal–insulator–superconductor
double barrier junction.@S0163-1829~97!07505-X#
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I. INTRODUCTION

The study of electronic transport in normal-meta
superconductor ~NS! or semiconductor–superconduct
~SmS! sandwiches has attracted a considerable amoun
interest in the past years. At sufficiently low temperature a
in high-quality mesoscopic samples, the phase-break
length of the electrons is larger than the typical system s
The resulting coherence of the electron wave functions p
duces directly observable quantum effects, which mani
themselves in a typical nonlocal response of the current
the applied fields. Of special interest is the effect of the el
tronic phase coherence in a normal-metal–supercondu
system. In the standard theory of the proximity effect,
influence of the superconductor on the normal metal can
understood in terms of the coherent coupling of electrons
holes in the metal as described by the Bogoliubov-de Gen
~BdG! equations.1 The correlation between electrons a
holes is produced by the process of Andreev reflection2,3 at
the NS interface, which mixes electron and hole states w
quasiparticle current is converted to supercurrent. This
croscopic picture of electron-hole correlation is equivalen
that provided by a condensate wave function in the nor
metal which is induced by the superconductor through
continuity conditions at the NS interface. The scattering m
trix approach makes use of the microscopic single part
picture of coupled electron and hole channels providin
straightforward and powerful tool within a formalism of th
Landauer-Bu¨ttiker type.4–6

The quality of the interface as well as the phase break
processes determine the strength of the proximity effect
naturally have their impact on the current-voltage charac
istics ~CVC!. A few fascinating transport experiments7–9

have been carried out recently, investigating temperature
voltage dependence, as well as the flux modulation, of b
NS and SmS junctions. Interestingly, the relative strength
the interface barrier and the elastic scattering in the nor
region is crucial for the features of the CVC. The ratio of t
two determines whether subgap conductance peaks ari
550163-1829/97/55~5!/3146~9!/$10.00
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zero or finite voltage.10–12 The investigation of these so
called zero and finite bias anomalies in the subgap cond
tance has been the object of recent experiments.13–18 The
present work draws much of its motivation from the ongoi
discussions and experiments in this area. In our case stud
a double barrier normal-metal–insulator–normal-meta
insulator–superconductor~NINIS! junction we observe zero
and finite bias anomalies and shed light on the mechan
producing these structures.

Stoof and Nazarov19 have recently described carrier tran
port in disordered NS junctions in terms of an energ
dependent diffusion constant, successfully explaining the
cent experiments on reentrance in the conductivity at l
temperatures.8,9 Their work uses the quasiclassical Green
functions technique, which allows to describe transport b
close to equilibrium20 and far away from equilibrium10,19and
facilitates the averaging over disorder in diffusive condu
tors. This approach is quite indispensable if phase-break
processes are to be included. An appealing alternative
proach is the scattering matrix technique, which relies on
quasiparticle wavefunctions described by the BdG equatio
While being valid in a general context, it describes the tra
port in mesocopic systems from a ballistic point of vie
suggesting an intuitive, nearly classical picture.5,6 The trans-
port through normal or superconducting leads is expres
through the properties of a multichannel scattering ma
accounting for all elastic-scattering processes, whether t
be due to a geometric constriction, single impurities, or d
order ~inelastic processes are excluded from such a desc
tion!. By these means, the transport problem is reduced
solving a ballistic problem at the interfaces of the normal a
superconducting leads. The current and the conductanc
the system are determined analytically in terms of the tra
mission and reflection amplitudes of the scattering mat
Adhering to this formalism rather than the Green’s functi
technique helps us to improve our understanding of zero
finite bias anomalies.

The study of normal–superconducting junctions go
back to the works of Kulik21 on superconductor–norma
3146 © 1997 The American Physical Society
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55 3147NONLINEARITY IN NORMAL-METAL–SUPERCONDUCTOR . . .
metal–superconductor~SNS! junctions and of Blonderet al.3

on normal-metal–insulator–superconductor~NIS! junctions,
who studied nonlinear transport within the framework of t
BdG equations considering quasi-one-dimensional mod
On the other hand, the scattering matrix technique was
veloped by Landauer and co-workers5,6 in the linear response
regime, resulting in the well-known conductance formula
a normal metal. Lambert22 and Takane and Ebisawa23 ex-
tended the approach to include superconducting segm
on the basis of which Beenakker4 derived a zero-
temperature, linear response conductance formula for
transport through NS junctions. A few studies have be
carried out recently11,24 combining the scattering matrix ap
proach with the finite voltage transport model of Ref.
They have limited themselves to the energy dependenc
the scattering states to extract finite voltage properties of
CVC in the subgap regime. Here, we extend these work
voltages above the gap and additionally take into account
full voltage dependence of the transport problem. This
important within the context of the sign reversal symmetry
the differential conductance which we discuss below. At
same time, we provide a common framework for the abo
studies, tracing them back to a single general formula.

In the present paper, we derive the general expression
the current through a NS junction in the scattering ma
approach, valid for multiple channels, finite voltage, a
nonzero temperature. In Sec. II, we present the derivatio
the current-voltage relation and express it in terms of aspec-
tral conductance formula, thereby accounting for the f
voltage dependence of the transport problem. We discuss
related symmetry of the CVC with respect to the sign rev
sal of the bias, which follows independently of any appro
mations for the BdG equations. In Sec. III, the reflection
the NS interface is made explicit using the Andreev appro
mation and a spectral conductance formula is obtained
pressing the result in terms of the normal, energy- a
voltage-dependent scattering matrix. We illustrate this f
mula in the new regime of voltages above the gap and
pose its connection to previously obtained limits. In Sec.
the conductance formula is used for the analytical as wel
the numerical analysis of a multichannel, double barrier
junction. We describe the existence of resonances du
quasibound Andreev states, and show that they prod
sharp conductance peaks in both the single and multicha
junction. We explain the generic mechanism underlying
appearance of zero and finite bias anomalies in the ball
two barrier system. Furthermore, we interpret our results
connection to experiments and theories of zero and finite
anomalies in disordered NS junctions.

II. CURRENT VOLTAGE RELATION
AND SPECTRAL CONDUCTANCE

We consider a normal-superconducting junction w
quasi-one-dimensional, ballistic normal and superconduc
leads, as shown in Fig. 1. The pair potential vanishes in
normal part, due to the absence of attractive electron-elec
interactions. Between the normal lead and the NS interfa
the electrons traverse a disordered region, the transmis
through and the reflection thereof are described by a sca
ing matrix. The disorder stands for any source of elas
ls.
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scattering processes, including effects of a magnetic fie
Between the scattering region and the NS interface, a sm
ballistic normal region serves to separate the scattering in
normal part, which mixes all electron channels at a give
energy, from the scattering at the NS interface, where ele
tron and hole channels are mixed in the reflection proce
~the evanescent modes in this intermediate ballistic regi
are neglected!. The coherent scattering in the disorder regio
of the normal metal is described by the 4N34N scattering
matrix,

S O1
e

O1
h

O2
e

O2
h

D 5S r 11~e! 0 t12~e! 0

0 r 11* ~2e! 0 t12* ~2e!

t21~e! 0 r 22~e! 0

0 t21* ~2e! 0 r 22* ~2e!

D S I 1eI 1hI 2e
I 2
h

D
5S r̂ 11~e! t̂12~e!

t̂21~e! r̂ 22~e! D S I 1eI 1hI 2e
I 2
h

D , ~1!

which we denote bySN . The matrix connects the incoming
N electron~hole! channelsI i

e (I i
h) on each side to the equal

energy outgoing channelsOi
e (Oi

h) according to Fig. 1
( i51,2). TheN channels represent the different transvers
states at the Fermi surface~we neglect a change of the num-
ber of channels with increasing voltage, which is strictl
valid only in the presence of electron-hole symmetry25!. r ii
and t i j are N3N reflection and transmission matrices fo
electron channels,r̂ i i and t̂ i j the comprehensive 2N32N
matrices including the complex conjugated reflection an
transmission amplitudes for holes.~Here we will denote the
complex conjugate of a matrixm by m* , the transposed
matrix bymÁ and the adjoint bym†.! Following usual con-
vention, we include the propagation in the ballistic regio
N2 in the scattering matrix. For states normalized to car
unit probability current,26 the continuity equation implies the
unitarity of the scattering matrix. Note that the importan
distinction to previous work is, that we allow the scatterin
matrix not only to depend on the energy of the states, b
also intrinsically on the applied voltage~the voltage depen-

FIG. 1. Schematic structure of a disordered NS junction. Balli
tic normal (N1, N2) and superconducting leads~S! are coupled to
reservoirs at chemical potentialm2eV andm, respectively. Scat-
tering is limited to the hatched region between the ballistic lea
N1 andN2.
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dence is not explicit in the notation!. This is necessary to
account for the full voltage dependence of the scatter
problem. We can thus describe the deformation of the st
due to the space dependent potential including, e.g., the
age dependent Schottky barrier at a semiconduc
superconductor~SmS! interface.

We define an analogous unitary scattering matrix for
NS interfaceSI by

S I 2
e

I 2
h

OS
e

OS
h

D 5S r ee~e! r eh~e! tee8 ~e! teh8 ~e!

r he~e! r hh~e! the8 ~e! thh8 ~e!

tee~e! teh~e! r ee8 ~e! r eh8 ~e!

the~e! thh~e! r he8 ~e! r hh8 ~e!

D S O2
e

O2
h

I S
e

I S
h

D
5S r̂ I~e! t̂ I8~e!

t̂ I~e! r̂ I8~e!
D S O2

e

O2
h

I S
e

I S
h

D . ~2!

Incident and outgoing channels are again labeled accor
to Fig. 1. r , r 8, and t, t8 areN3N reflection and transmis
sion matrices between states normalized to unit probab
current in the normal and superconducting lead,27 and are
grouped into the 2N32N matrices r̂ I , r̂ I8 t̂ I , t̂ I8 . In the
evaluation of the current, we will consider the matrix~1! to
be specified by an arbitrary model for the disorder, while
matrix ~2! will be made explicit below using the BdG equ
tions. For the present purpose they are both arbitrary
thus the shape of the pair potential need not be specified.
total effect of all scattering processes in the disorder reg
and at the NS interface can be described by a global sca
ing matrix of the type~2!, which is unitary as well. We
restrict ourselves to its submatrixR̂ describing the reflection
into the normal region,

SO1
e

O1
hD 5R̂~e,V!S I 1e

I 1
hD 5S Ree~e,V! Reh~e,V!

Rhe~e,V! Rhh~e,V!
D S I 1e

I 1
hD .

~3!

Ree, Reh , Rhe , andRhh are againN3N reflection matrices.
R̂(e,V) will be computed below from the given scatterin
matrices~1! and ~2!. We now derive the current-voltage re
lation based on this global reflection matrix~we do not need
the transmission matrix, since we determine the current
the normal lead!.

Applying a voltageV ~denoting the voltage in a two poin
measurement! on the normal side has two consequenc
First, the voltage induces an electrostatic potential drop o
the disorder region in the NS junction, resulting in a def
mation of scattering states. The coupling of incident and o
going channels is thus voltage dependent in general, as
scribed by R̂(e,V). A stationary state incident from th
normal lead~of energye in channeln) consists of the inci-
dent electron and the reflected electron and hole states
carries the current (e5ueu),
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I n~e,V!5
2e\kn

m H 12(
b

uRee~e,V!bnu2

1(
b

uRhe~e,V!bnu2J . ~4!

Second, the applied voltage shifts the chemical potentia
the reservoir attached to the normal lead by -eVwith respect
to the reservoir on the superconducting side. The defor
tion of the states by itself produces no net current.28 The net
current flow results exclusively from the difference in occ
pation of the~finite voltage! scattering states incident from
the left and right reservoirs. Writing the sum over chann
as a trace, we obtain the current-voltage relation

I5E de
1

e
@ f ~e!2 f ~e1eV!#Gs~e,V!, ~5!

with the spectral conductance

Gs~e,V!5
2e2

h
Tr$12Ree

† ~e,V!Ree~e,V!

1Rhe
† ~e,V!Rhe~e,V!%. ~6!

A factor two accounts for the spin degeneracy of the ch
nels. The definedspectral conductanceGs(e,V) describes
the current contribution of the incident scattering states
energye, at a given voltageV ~by convention, the energy is
measured with respect to the chemical potential in the su
conductor!. Formulas~5! and ~6! imply the differential con-
ductance

dI

dVU
V

52E de f 8~e1eV!Gs~e,V!

1E de
1

e
@ f ~e!2 f ~e1eV!#

]Gs~e,V!

]V
, ~7!

with the expansion

dI

dVU
V

5Gs~2eV,0!12V]VGs~e,V!ue52eV,V501•••,

~8!

at zero temperature. This differs from the differential co
ductance of Ref. 3,dI/dV5Gs(2eV,0), by accounting for
the change in the conductance of the open channels
increasing voltage.

To complete the general derivation we need to express
matrix R̂ in terms of the given scattering matrices~1! and
~2!. Summing over all scattering paths of an incident elect
or hole excitation, multiply scattered between the disor
region and the NS interface, we arrive at

R̂~e,V!5 r̂ 11~e!1 t̂12~e!@12 r̂ I~e! r̂ 22~e!#21r̂ I~e! t̂21~e!.
~9!

Apart from the direct reflection at the disorder region, t
simplest process contributing consists of an excitation, wh
is first transmitted (t̂21) through the disorder region, reflecte
( r̂ I) at the NS interface, and transmitted (t̂12) back to the
normal lead. All further paths result form iterative scatteri
processes between the disorder region and the NS inter
~note that the scattering matrix for the disorder includes
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55 3149NONLINEARITY IN NORMAL-METAL–SUPERCONDUCTOR . . .
propagation in the ballistic leadN2). The expressions~5!,
~6!, and~9! determine the general form of the current-volta
relation of a disordered NS junction, without having ma
any assumptions about the nature of the scattering at the
interface like, e.g., the shape of the pair potentialD. In the
next section, we evaluate the spectral conductance~6! further
by using the Andreev approximation for the scattering at
NS interface.

We close this section with a discussion of the symme
of the CVC with respect to sign reversal of the applied vo
age. In the subgap regimeeuVu,D, the incoming quasipar
ticle excitations may not enter the superconductor. The pr
ability current of the statesueu,D is totally reflected and
thus the global reflection matrixR̂(e,V) of Eq. ~3! is unitary.
The unitarity produces the relationsRee

† Ree1Rhe
† Rhe51 and

ReeRee
† 1RehReh

† 51. The symmetry of electron- and hole
type excitations in the BdG equations guarante
Reh(e,V)52Rhe* (2e,V). As a consequence, the subg
conductance takes the form

Gs~e,V!5
4e2

h
Tr$Rhe

† ~e,V!Rhe~e,V!%

5
4e2

h
Tr$Reh

† ~e,V!Reh~e,V!%

5
4e2

h
Tr$Rhe

† ~2e,V!Rhe~2e,V!%

5Gs~2e,V!. ~10!

A subtle issue is that this symmetry does not yet imply
symmetry in the CVC under reversal of voltage.29 The latter
requires thatGs(e,V)5Gs(2e,2V), which amounts to
Gs(e,V) being independent of voltage. Then we ha
Gs(e)ue52eV5dI/dVuV and the differential conductance
invariant under sign reversal of the voltage. Indeed, in rec
experiments on SmS junctions,17,18 an asymmetry in the
CVC was found in the subgap regime, which can be und
stood on the basis of the above discussion taking into
count the voltage dependent Schottky barrier at the SmS
terface. The deviations from the symmetry are of the orde
eV/m or eV/V0, wherem denotes the chemical potential an
V0 characterizes the strength of the scattering potential.
explicit account of the voltage dependence ofGs requires the
scattering matrixSN to be determined in the applied electr
static potential. In principle, this task demands the s
consistent solution of the scattering problem and the Pois
equation,30 a problem which has not yet been thorough
addressed. In several cases of interest, though, an app
mate consideration of the voltage dependence will furnish
accurate description.

III. SPECTRAL CONDUCTANCE
IN THE ANDREEV APPROXIMATION

We start from the spectral conductance formula~6! and
evaluate it by solving the boundary conditions for the tra
parent interface in the Andreev approximation. The stati
ary states in the ballistic leads are solutions of the B
S

e
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equations1 and are of the plane wave type. A step functi
model for the pair potentialD(x)5Doe

ixu(x) is assumed,
which neglects the suppression of the pair potential in
superconductor on the distance of a coherence length.
NS interface connects electrons and holes of the same c
nel with a reflection amplitude depending on the reduc
chemical potential mn5m2\2k'

2 /2m. In the limit
e,D!mn , the BdG equations are simplified by linearizin
the dispersion relation around the effective Fermi wave nu
ber kn

(0)5A2mmn /\. The boundary conditions are fulfilled
in the Andreev approximation, which treats the wave num
kn in the phase factor of the single-particle excitations o
to zeroth order. As a consequence, incoming electrons
purely reflected into holes and vice versa. The reflection
electron~hole! channels into hole~electron! channels is thus
described by scalar reflection amplitudes, which turn ou
depend only on the energye and not on the channel index
The reflection matrix at the NS interface is given by

r̂ I~e!5S 0 r he~e!

r eh~e! 0 D 5S 0 e2 ixG~e!

eixG~e! 0 D ,
~11!

with G(e) defined by

G~e!55
e2 sign~e!Ae22D2

D
;

D

2ueu
, ueu.D,

e2 iAD22e2

D
5expS 2 i arccos

e

D D , ueu,D.

~12!

The 2N32N global reflection matricesRee andRhe can be
determined from Eq.~9!, and using Eq.~6!, we obtain the
multichannel spectral conductance formula

Gs~e,V!5
2e2

h
~11uG~e!u2! Tr$t21

† ~e!

3@12G* ~e!2r 22
Á ~2e!r 22

† ~e!#21

3@12uG~e!u2r 22
Á ~2e!r 22* ~2e!#

3@12G~e!2r 22~e!r 22* ~2e!#21t21~e!%,

~13!

valid at all energies. Equation~13! is one of the central re-
sults of this work. Combined with Eq.~5!, it provides the
finite voltage, finite temperature CVC of a disorder
normal-superconducting junction in the Andreev approxim
tion. The spectral conductance depends on the scattering
trices of the electrons at energies6e as a signature of the
presence of Andreev reflection~the explicit voltage depen
dence, although present in both reflection and transmis
matrices, is not indicated in the notation!. The dependence o
this formula on the phases of the reflection and transmiss
amplitudes proves crucial in determining the resona
peaks in the conductance. The elementary process, w
contributes to these phases is the propagation of an elec
and a hole between the disorder region and the NS interf

If no interchannel mixing takes place, i.e., the matric
t i j andr ii are diagonal, the conductance reduces to the qu
one-dimensional form,
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Gs~e,V!5
2e2

h (
n51

N
~11uG~e!u2!Tn~e,V!@12uG~e!u2Rn~2e,V!#

11uG~e!u4Rn~e,V!Rn~2e,V!22Re@G~e!2r n~e,V!r n* ~2e,V!#
. ~14!
in

s-
e
hi
io
ti

n

r

uc-
dif-

sal
r n5(r 22)nn is the reflection amplitude for a state coming
from the right side of the scattering region~Fig. 1! and
Rn5ur nu2 andTn512Rn denote the reflection and transmi
sion probabilities of then-th channel. The last term in th
denominator describes the crucial scattering process w
involves twice the propagation between the disorder reg
and the NS interface, once as an electron and a second
as a hole.

For voltages wellabovethe gap,ueu,V@D ~still assuming
ueu!m), the Andreev reflection is strongly suppressed a
drops according toG(e,V);D/2ueu→0. The spectral con-
ductance~13! asymptotically approaches the expression fo
normal junction,
-
e
es
th
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le

le
e
i

ch
n
me

d

a

Gs~e,V!5
2e2

h
Tr$t21

† ~e,V!t21~e,V!% ~15!

~note that this Landauer-type formula is the spectral cond
tance at finite voltage and energy and deviates from the
ferential conductance!. The conductance~15! exhibits no
particular symmetry properties with respect to sign rever
of the bias.

At voltagesbelowthe gap, we make use ofuG(e)u51 and
Tn512Rn and obtain the spectral conductance~14! in the
form,
Gs~e,V!5
4e2

h (
n51

N
Tn~e,V!Tn~2e,V!

11Rn~e,V!Rn~2e,V!22 Re@G~e!2r n~e,V!r n* ~2e,V!#
. ~16!
and
ion
st,
han-
ce
l re-
al
ma-
he

lem,

e
n

ned
-
e

g

The reflection and transmission coefficients at6e are sym-
metrically involved in this formula, which results in the sym
metry of the CVC discussed in Sec. II. In contrast, the sp
tral conductance~14! at voltages above the gap becom
increasingly asymmetric as it asymptotically approaches
Landauer expression. As an important difference to the n
mal expression~15!, the conductance~16! contains the phase
information of the scattering processes, which is impera
for the distinction of zero and finite bias peaks in the dou
barrier NS junction dicussed below.

The linear response limit (e,V→0) of Eq. ~16! can be
determined usingG(0)251 andRn512Tn and takes the
form4

G~0!5
4e2

h (
n

Tn~0!2

@22Tn~0!#2
. ~17!

Equation~17! has proved very useful through its remarkab
simplicity.

IV. DOUBLE BARRIER NINIS JUNCTION

In this section we apply the above results to a doub
barrier NINIS junction, which is a model system for th
study of the interplay between normal and Andreev levels
c-

e
r-

e
e

-

n

a Fabry-Pe´rot-type I1NI 2 interferometer. We will learn
about the mechanism govering the appearance of zero
finite bias anomalies and give insight into the interpretat
of the corresponding anomalies in a dirty NS junction. Fir
we discuss the structure in the conductance of a single c
nel NI1NI 2S junction, which we trace back to the presen
of Andreev resonances. Secondly, we present numerica
sults for a multichannel junction, showing that the typic
resonance structure of a single channel survives the sum
tion over the channels. This stability is a peculiarity of t
superconducting system not observed in a normal NI1NI 2N
double-barrier junction.

Since the channels separate in the double-barrier prob
we can make use of the result~14! for the conductance
Gs .

31 Gs depends on the phasesw(6e) of the reflection
amplitudes r (6e) as well as on the complex amplitud
G(e) of the Andreev reflection. We use the notatio
T(6e)5T6 , R(6e)5R6 , and r (6e)5AR6e

iw(6e) for
the reflection amplitude, the phase factors being determi
by the potential barriers I1 and I2 and the propagation be
tween them~for simplicity, we omit the explicit dependenc
of the scattering matrix on voltage!. We rewrite the ampli-
tude of the Andreev reflection asG(e)5uGue2 iq(e) with the
phaseq(e)5arccos(e/D) below the gap and vanishin
above. The conductance simplifies to
Gs~e!5
2~11uGu2!e2

h

T1~12uGu2R2!

11uGu4R1R222uGu2AR1R2cos@w~e!2w~2e!22q~e!#
, ~18!
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which is always less or equal to the universal value 4e2/h.
Note that the Andreev reflection is supressed above the
(uGu,1), while the phaseq(e) vanishes.

Below the gap, the phaseq(e) is decisive for the reso
nances produced by the interference of multiple-scatte
processes. The maximal conductance~which is twice the
normal conductance 2e2/h) is only assumed if the reflectio
probabilitiesR6 are equal and the phasew(e) fulfills the
resonance condition,

cos@w~e!2w~2e!22q~e!#51. ~19!

The analogous property is found in a double-barrier sys
within a normal constriction~NI 1N2N!, where the maximal
conductance 2e2/h is reached if the reflection probabilitie
of the two barriers coincide at the resonance energy.

Using the conductance formula~18!, we consider a one
channel NINS junction, which consists of a ballistic N
junction containing a single potential barrier at a distancd
from the perfect NS interface. In the limit of a high potent
barrier,R1 andR2 are approximately equal. The reflectio
amplitudesr (6e) describing the propagation of electron
and holes have nearly constant modulus and pha
w(6e)5p12k6d. Using the wave numberk65mvF
6e/vF (vF is the Fermi velocity of the channel!, the reso-
nance condition~19! yields the spectrum of Andreev level

en5
vF
2d S np1arccos

en
D D , ~20!

which predicts resonances in the conductance of a typ
width proportional to the transmissionT of the barrier@simi-
lar Andreev resonances are found for voltages above the
at en5npvF/2d with a width roughly}T/G(e)#. The phase
q(e) varies between2p/2 and 0 frome50 to e5D and
guarantees the existence of at least one Andreev reson
for arbitrarily smalld. In thed→0 limit, the weight of this
resonance lines up with the gap voltage and we recover
NIS junction as discussed by Blonderet al.3 featuring a sup-
pressed subgap conductivity and a peak in the differen
conductance at the gap voltage. This peak can be unders
in terms of the Andreev resonance which moves to the
energy ford→0.

We now introduce an additional barrier at the NS int
face and analyze the resulting double barrier NI1NI 2S junc-
tion using the same conductance formula~18!. Following our
definitions,w(6e) represent the phases for the reflection
electrons entering the double barrier scattering region fr
the right ~superconducting side!. The corresponding reflec
tion amplitudes are given by

r ~6e!5r 21
t2
2r 1e

2ik6d

12r 1r 2e
2ik6d

, ~21!

where r i ,t i are the amplitudes of the left (i51) and right
( i52) barrier. The phase of this reflection amplitude pla
the major role in determining the structure of the cond
tance, as it controls the existence of resonances accordin
Eq. ~19!. Let us fix the barrier I1 and increase I2 slowly,
keeping their strengthsH1. H2. In this situation, the INI
interferometer develops pronounced Andreev resonan
For r 1@r 2, the phasew(6e) of the reflection amplitude
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r (6e)'t2
2r 1e

2ik6d produces a linear energy dependence
the phasew(e), which changes by 2p on the scalevF /d and
results in equidistant resonances32, in accordance with Eq
~20!. As the strength of I2 is increased, the resonances p
up as is illustrated in Fig. 2. The phase functionw(e), as
displayed in Figure 2~solid line!, can be used to determin
the location of the resonances by finding those combinati
of energies 6e, which have a phase difference32

Dw(e)5w(e)2w(2e)5p12np. The double period of
Dw(e) with respect to the period ofw(e) accounts for the
pairing of the resonances.

When the strengths of the barriers become of the sa
order,H1; H2, the spectral weight of the INI interferomete
is shared by Andreev quasibound states of a mixed elect
hole character and normal electron quasibound states. Du
the large gradient of the phase close to the normal re
nances, see Fig. 2, the Andreev resonances tend to be pi
to normal resonances at either1e or 2e ~a notable excep-
tion to this rule is found when the normal resonance
aligned with the Fermi energy, but the Andreev resonan
remain at finite bias!. While the Andreev bound states con
tribute to the current, normal bound states do not couple
the superconductor and thus do not participate in the cha
transport. This is reflected by the symmetry of theGs(e)
under reversal of voltage which is observed for all barr
strengths; see Fig. 2.

FIG. 2. Andreev resonances and resonance condition for
phasew. Bottom: phasew(e) of the reflection amplitude versu
energy. The solid line represents the I1NI 2 interferometer with bar-
riers strengthsH152\vF (R150.8) andH25\vF (R250.5), the
dashed line stands for the inverse barrier sequence (R150.5 and
R250.8). TheAndreevresonance condition for the phase is met f
a pair of energies6en with phase differenceDw(en)5p12np.
This phase condition can be fulfilled only by the first barrier s
quence (R1.R2, solid line! at those energies indicated in the grap
and produces a peak in the conductance of the NINIS struct
Interchanging the strengths of the two barriers, theAndreevreso-
nances are greatly reduced, although the NININ double barrier
tem has the same overall transmission probabilityT ~dotted line! as
determined by thenormal resonances. Top: conductance~arbitrary
units! of the double barrier NS junction versus energy, the solid l
again representing the barriersR150.8, R250.5, and the dashed
line the barriersR150.5,R250.8. Note the symmetry of the reso
nances with respect toe50, which is due to their electron-hole
character.
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As the barrier strength is increased further toH2. H1,
the Andreev resonances are weakened and eventually d
pear. Although the normal resonances dominate in the
interferometer in this regime, only the weak Andreev re
nances show up in the conductance, which thus exhibits o
a weak ~but still symmetric! subgap structure. The phas
function w(e) in Fig. 2 ~dashed line! becomes nearly con
stant for r 1!r 2, see Eq.~21!, and the phase condition fo
resonance~19! cannot be met.

Let us compare the transport in the double barrier syst
NI 1NI 2S and NI2NI 1S, i.e., with inverse sequences of th
barriers I1 and I2. Note that the transmissionT(e) is identical
for both cases, see Fig. 2~dotted line!. Both the~finite volt-
age! conductance in the normal NININ junction~15! as well
as the linear response conductance in the supercondu
NINIS junction ~17! are thus independent of the sequence
the barriers I1 and I2. Let us assume thatH1@H2. In this first
barrier sequence, we have a strong energy dependence o
phasew(e) ~solid line in Fig. 2!, which implies the existence
of Andreev type resonances at finite bias. The electrons
tering the INI interferometer from the normal lead, are giv
enough time to build up an Andreev resonance and pre
ably leave into the superconductor. For the inverse bar
sequence, the barrier I2 at the NS interface dominates. Th
weak energy dependence of the phasew(e) of reflection al-
lows no sharp resonances to build up~dashed line in Fig. 2!.
This reflects the fact that the electrons which enter the
region leave through I1 into the normal lead before an An
dreev resonance can build up. In summary, the spectral
sity in the INI interferometer changes radically with the co
pling strengths of the normal and superconducting lea
Normal resonances dominate when the interferomete
coupled more strongly to the normal lead, whereas Andr
resonances take over in weight when the coupling to
superconductor is stronger. At any instant, however, only
Andreev states participate in the charge transport.

We turn to the numerical analysis of a multichann
NINIS junction which we carry out using the conductan
formula ~14!. This formula allows to extend the linear re
sponse study of Ref. 33 to finite voltage and temperature.
investigate an NI1NI 2S junction with twod-function barri-
ers of typical strengthH5*V(x)dx'\vF and correspond-
ing reflection probabilityR5H2/(H21\2vF

2) assuming val-
ues betweenR50.2 andR51. We vary the relative barrie
strengths to cover the range between the two lim
H1.H2 andH1,H2 discussed above. The distance betwe
the barriers is chosen to be of the order of or larger than
coherence length of the superconductor, providing the
ward channel with one to a few Andreev resonances.
number of resonances increases with the incidence ang
the channels. We chose leads with a cross section are
(100/kF)

2, which amounts to about 800 transverse chann
The ratio of the energy gap to the Fermi energy is assum
to beD/eF50.002. Each channel features the typical co
ductance structure of paired Andreev resonances exp
above. Their positions and widths depend on the ratio of
barrier strengthsH1 andH2 as well as the longitudinal ki-
netic energy of the single channels. Remarkably, the ove
conductance, which is obtained through summation of sin
channel conductances, exhibits a characteristic subgap s
ture signalling the presence of Andreev resonances. In c
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trast, the overall conductance of the correspond
NI 1NI 2N junction is practically constant, the normal res
nances of the INI region having been averaged out.

The numerical study of a three-dimensional NINS jun
tion has shown that both the positions and the numbe
resonances in the overall conductance correspond to tho
the forward channel.34,35 In the NINIS junction, we do not
find a direct correspondence of the resonances of the
conductance with the forward channel nor with any oth
specific channel, although a clear resonance structure
survives the summation over the channels.

Let us concentrate on the conductance formula~16!, valid
at subgap voltages, and on the properties of the CVC clos
zero voltage. ForH1.H2, the denominator of Eq.~16!
changes rapidly with the strong energy dependence of
phase ofr n(e) which is responsible for the appearance
conductance peaks at finite voltage. The pronounced st
ture in the conductance survives the summation over
channels as displayed in Figs. 3 and 4~solid lines!. The
repulsion of the Andreev levels around zero voltage p
duces a minimum indI/dV at zero voltage. ForH1,H2, the
phase of the reflection amplitudesr n(e) has negligible en-
ergy dependence and the numerator of Eq.~16! dictates the
features of the conductance. The expansion of the prod
Tn(e)Tn(2e)5Tn

22e2Tn8
2 about zero energy shows the e

istence of a zero bias maximum~the denominator can be
seen not to alter this property as long as the total transm
sion of the double barrier system is not too larg
Tn,0.55). The zero bias anomaly shows up as a charac
istic property of the overall conductance; see Figs. 3 an
~dotted lines!. The zero bias maximum coincides with th
maximum of the conductance productG(e)G(2e) of the
corresponding NININ junction at zero energy. Figures 3 a

FIG. 3. Differential conductance for a multichannel NINIS jun
tion with interbarrier distanced5vF /D5pj. The average conduc
tance per channel is plotted versus voltage at temperatureT50.
The barrier strengthsH ~reflection probabilitiesR5(11H2)/H2)
in units of \vF are H150.5 (R150.2) ~dotted line!, 1.0 (0.5)
~dashed!, 1.5 (0.7)~dot-dashed!, and 2.0 (0.8)~solid! in the normal
region, whileH251 (R250.5) at the NS interface. The norma
state conductance, which is roughly independent over this volt
range, is indicated on the left. With increasing barrier strengthH1

the zero bias anomaly develops into a finite bias anomaly as
Andreev resonance is formed forH1.H2.
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4 illustrate the crossover from zero to finite bias anoma
for two different interbarrier distancesd as the strength o
barrier I1 is increased and I2 is kept fixed. For an interbarrie
distance larger than the coherence length of the supercon
tor, several Andreev resonances show up~see Fig. 4!. Note
that the inversion of the barrier sequence transforms the
voltage conductance from a local minimum to a local ma
mum, while keeping the same zero voltage conductan
This is illustrated in Fig. 4 by the pair of solid lines aroun
zero voltage corresponding to inverse barrier sequences

In an attempt to understand the width of zero and fin
bias peaks as well as the position of the first finite b
anomaly, we have compared them to the Thouless energ
the system. The Thouless energy36Ec in a disordered system
can be defined as the product of the dimensionless nor
state conductanceg and the level spacingdE, Ec5gdE. We
have determined a corresponding Thouless energy in
system by taking the level spacing of the INI box multiplie
by its overall conductance. In the numerical simulations o
weakly transparent barrier system, we found good agreem
of this energy scale with both the width and the position
the finite bias anomaly. The width of the zero bias anom
coincided with the characteristic energy scale of the cond
tance correlator̂G(E1e)G(E)&E as well as withEc . In
this case, the distribution of the channel transmission of
double-barrier system is bimodal and resembles strongly
of a dirty system.33 As the overall transparency approach
1, however, the width of the resonances andEc disagree. In
this limit, the double-barrier system does not represent
bimodal distribution of the dirty system properly and w
cannot expect the above definition of the Thouless energ
be a sensible quantity. Of experimental interest is the ef
of temperature on the conductance resonances pred

FIG. 4. Differential conductance for a multichannel NINIS jun
tion of widthd52vF /D52pj. The average conductance per cha
nel is plotted versus voltage for temperatureT50. The barrier
strengths~reflection probabilities! in units of \vF are H150.2
(R150.04) ~dotted line!, 0.5 (0.2)~dashed!, 0.8 (0.4)~dot-dashed!,
and 1.1 (0.54)~solid! in the normal region, and fixed atH250.5
(R250.2) at the NS interface. The normal-state conductivity is
dicated on the left. As the strength ofH1 is increased, the zero bia
anomaly turn into an finite bias anomaly and several Andreev re
nances appear. For the last choice of barriersH151.1 and
H250.5 we have interchanged the barrier sequence: the con
tance at zero voltage remains the same while changing from a
bias minimum to a zero bias maximum~short solid line!.
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above. A finite bias anomaly will be smeared out to a ze
bias anomaly for a temperature of the order of the Thoul
energy. In the systems investigated here this energy is of
order of 0.1D.

The interference of multiple scattering processes betw
the scattering region and the NS interface thus produce
interesting structure in the differential conductance. R
cently, experiments in disordered NS and SmS junctions13–17

have concentrated on the observation of zero and finite
anomalies. It has been understood theoretically10–12,37 that
these features are due to the interplay between the barri
the NS interface and disorder in the normal lead. At sm
disorder, the differential conductance exhibits a zero b
maximum, while at large enough disorder, a finite bias pe
is expected12 at a voltage of the order of the Thouless ener
Ec of the normal lead. This has recently been confirmed
an experiment.18 Here, we have found the existence of th
analog features in a ballistic double barrier NS junction~in
addition, the double barrier junction shows higher harmon
in the resonances of the conductance!. The ballistic point of
view applied to the disordered NS junction thus suggests
interpretation of the finite bias anomaly as a superposition
resonances due to quasibound Andreev states betwee
superconductor and the disorder.

V. CONCLUSION

We have used the scattering matrix approach includ
finite voltage and nonzero temperature dependences to
scribe the current-voltage characteristics of NS junctio
The current-voltage relation has been expressed throug
spectral conductance which takes into account the exp
voltage dependence of the scattering problem. We have d
onstrated the existence of a symmetry of the spectral con
tance under sign reversal in the subgap regime. Above
gap, the symmetry is destroyed as the conductance
proaches the Landauer expression. We have presented
spectral conductance formula in the Andreev approximat
for a multichannel NS junction at all voltages in Eq.~13!.
This result has enabled us to carry out a study of a dou
barrier NINIS junction at finite voltage, which has reveal
the crossover from normal to Andreev resonances in the
interferometer as the ratio of the barrier strength is vari
Interestingly, a radical dependence of the conductance on
sequence of the barriers has been found. We have lea
about the mechanism governing the occurrence of and
crossover between zero and finite bias anomalies, tra
them back to the energy dependence of the modulus and
phase of the reflection amplitude, respectively. Finally,
have established the similarity of the conductance of
double barrier NS junction with a disordered NS junction
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