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Nonlinearity in normal-metal —superconductor transport: Scattering-matrix approach
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A general formula for the current through a disordered normal-superconducting junction is derived, which is
valid at finite temperature and includes the full voltage dependence. The result depends on a multichannel
scattering matrix, which describes elastic scattering in the normal region, and accounts for the Andreev
scattering at the normal-metal—superconductor interface. The symmetry of the current with respect to sign
reversal in the subgap regime is discussed. The Andreev approximation is used to derive a spectral conductance
formula, which applies to voltages both below and above the gap. In a case study the spectral conductance
formula is applied to the problem of a normal-metal—insulator—normal-metal—insulator—superconductor
double barrier junction.S0163-1827)07505-X]

. INTRODUCTION zero or finite voltagé®~? The investigation of these so-
called zero and finite bias anomalies in the subgap conduc-

The study of electronic transport in normal-metal—tance has been the object of recent experim&nt§. The
superconductor (NS) or semiconductor—superconductor present work draws much of its motivation from the ongoing
(Sm9S sandwiches has attracted a considerable amount afiscussions and experiments in this area. In our case study of
interest in the past years. At sufficiently low temperature anda double barrier normal-metal—insulator—normal-metal—
in high-quality mesoscopic samples, the phase-breakingsulator—superconduct@NINIS) junction we observe zero
length of the electrons is larger than the typical system sizeand finite bias anomalies and shed light on the mechanism
The resulting coherence of the electron wave functions proproducing these structures.
duces directly observable quantum effects, which manifest Stoof and Nazard¥ have recently described carrier trans-
themselves in a typical nonlocal response of the currents tport in disordered NS junctions in terms of an energy-
the applied fields. Of special interest is the effect of the elecdependent diffusion constant, successfully explaining the re-
tronic phase coherence in a normal-metal-superconduct@ent experiments on reentrance in the conductivity at low
system. In the standard theory of the proximity effect, thetemperature&® Their work uses the quasiclassical Green’s
influence of the superconductor on the normal metal can b&nctions technique, which allows to describe transport both
understood in terms of the coherent coupling of electrons andlose to equilibriurf® and far away from equilibriut®*and
holes in the metal as described by the Bogoliubov-de Genndacilitates the averaging over disorder in diffusive conduc-
(BdG) equations. The correlation between electrons andtors. This approach is quite indispensable if phase-breaking
holes is produced by the process of Andreev refleéiat  processes are to be included. An appealing alternative ap-
the NS interface, which mixes electron and hole states whil@roach is the scattering matrix technique, which relies on the
guasiparticle current is converted to supercurrent. This miguasiparticle wavefunctions described by the BdG equations.
croscopic picture of electron-hole correlation is equivalent tawhile being valid in a general context, it describes the trans-
that provided by a condensate wave function in the normaport in mesocopic systems from a ballistic point of view,
metal which is induced by the superconductor through thesuggesting an intuitive, nearly classical pict&feThe trans-
continuity conditions at the NS interface. The scattering maport through normal or superconducting leads is expressed
trix approach makes use of the microscopic single particlehrough the properties of a multichannel scattering matrix
picture of coupled electron and hole channels providing accounting for all elastic-scattering processes, whether they
straightforward and powerful tool within a formalism of the be due to a geometric constriction, single impurities, or dis-
Landauer-Bttiker type?—6 order (inelastic processes are excluded from such a descrip-

The quality of the interface as well as the phase breakingion). By these means, the transport problem is reduced to
processes determine the strength of the proximity effect andolving a ballistic problem at the interfaces of the normal and
naturally have their impact on the current-voltage charactersuperconducting leads. The current and the conductance of
istics (CVC). A few fascinating transport experimefitd  the system are determined analytically in terms of the trans-
have been carried out recently, investigating temperature amission and reflection amplitudes of the scattering matrix.
voltage dependence, as well as the flux modulation, of bottidhering to this formalism rather than the Green'’s function
NS and SmS junctions. Interestingly, the relative strength ofechnique helps us to improve our understanding of zero and
the interface barrier and the elastic scattering in the normdinite bias anomalies.
region is crucial for the features of the CVC. The ratio of the The study of normal—-superconducting junctions goes
two determines whether subgap conductance peaks arise leck to the works of Kulik' on superconductor—normal-
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metal—superconduct¢éBNS junctions and of Blondeet al?
on normal-metal—insulator—superconductiitS) junctions,
who studied nonlinear transport within the framework of the Ny
BdG equations considering quasi-one-dimensional models.
On the other hand, the scattering matrix technique was de-
veloped by Landauer and co-work&?sn the linear response LN
regime, resulting in the well-known conductance formula for

a normal metal. Lambért and Takane and Ebisafvaex- 0,
tended the approach to include superconducting segments, o
on the basis of which BeenakKerderived a zero- — .
temperature, linear response conductance formula for the

transport through NS junctions. A few studies have been _ _ S _
carried out recentI’yL'Z“ combining the scattering matrix ap- FIG. 1. Schematic structure of a dl_sordered NS junction. Ballis-
proach with the finite voltage transport model of Ref. 3.tic normal (N1, Np) and superconducting leads) are coupled to
They have limited themselves to the energy dependence §fS€rvoirs at chemical potential—eV and u, respectively. Scat-
the scattering states to extract finite voltage properties of th ring is limited to the hatched region between the ballistic leads
CVC in the subgap regime. Here, we extend these works to*! andNo.

voltages above the gap and additionally take into account the . . . L
full voltage dependence of the transport problem. This i cattering processes, mclu_dmg effects of a magnetic field.
important within the context of the sign reversal symmetry of etween the scatiering region and the NS interface, a small

the differential conductance which we discuss below. At thepallistic normal region serves to separate the scattering in the

same time, we provide a common framework for the abové10rmal part, which mixes all electron_channels at a given
studies, tracing them back to a single general formula. energy, from the scattering at the NS interface, where elec-

In the present paper, we derive the general expression f%ﬂn and hole c{wanndels f?“eﬂT'X.eOt' in th def rt'eflgzcﬂ_o? process
the current through a NS junction in the scattering matrix N evzlanetsce_lr_lh mo hes mt Isttm erme t': ed' a 'dS'C region
approach, valid for multiple channels, finite voltage, andg2'€ Neglec ed The coherent scattering in the disorder region

nonzero temperature. In Sec. Il, we present the derivation o(?f the normal metal is described by thé% 4N scattering

N g

A Is

Os

the current-voltage relation and express it in terms spec- matrix,

tral conductance formula, thereby accounting for the full e R
voltage dependence of the transport problem. We discuss the | ©1 ri(e) 0 tio€) 0 17
related symmetry of the CVC with respect to the sign rever- o'{ 0 ri(—e) 0 TA—€) |*11
sal of the bias, which follows independently of any approxi- e | = e
mations for the BdG equations. In Sec. IIl, the reflection at | ©2 tai(€) 0 r2A€) 0 12
the NS interface is made explicit using the Andreev approxi- | O} 0 t5(—€) 0 rs—e)/ \ 15

mation and a spectral conductance formula is obtained ex-
pressing the result in terms of the normal, energy- and

voltage-dependent scattering matrix. We illustrate this for- ri(e) t (€)\[ 1"
: , 11 12 1
mula in the new regime of voltages above the gap and ex- =| ~ el )
pose its connection to previously obtained limits. In Sec. IV, t21( 6) r22( €)1z

the conductance formula is used for the analytical as well as
the numerical analysis of a multichannel, double barrier NS
junction. We describe the existence of resonances due t@hich we denote bys, . The matrix connects the incoming
quasibound Andreev states, and show that they producq electron(hole) channelsf (17) on each side to the equal
sharp conductance peaks in both the single and multichannghergy outgoing channel®® (O") according to Fig. 1
junction. We explain the generic mechanism underlying the; —1 ) TheN channels represent the different transverse
appearance of zero and finite bias anomalies in the ballistigiates at the Fermi surfagee neglect a change of the num-
two barrier system. Furthermore, we interpret our results ither of channels with increasing voltage, which is strictly
connection to experiments and theories of zero and finite biagyig only in the presence of electron-hole symm&ryr ;
anomalies in disordered NS junctions. and t;; are NXN reflection and transmission matrices for
electron channelsi;; andt;; the comprehensive Kbx 2N
matrices including the complex conjugated reflection and
transmission amplitudes for holed#iere we will denote the
complex conjugate of a matrigmn by m*, the transposed
We consider a normal-superconducting junction withmatrix bym? and the adjoint byn'.) Following usual con-
guasi-one-dimensional, ballistic normal and superconductingention, we include the propagation in the ballistic region
leads, as shown in Fig. 1. The pair potential vanishes in thé&l, in the scattering matrix. For states normalized to carry
normal part, due to the absence of attractive electron-electrounit probability current® the continuity equation implies the
interactions. Between the normal lead and the NS interfaceynitarity of the scattering matrix. Note that the important
the electrons traverse a disordered region, the transmissiahstinction to previous work is, that we allow the scattering
through and the reflection thereof are described by a scattematrix not only to depend on the energy of the states, but
ing matrix. The disorder stands for any source of elastic-also intrinsically on the applied voltagéhe voltage depen-

IIl. CURRENT VOLTAGE RELATION
AND SPECTRAL CONDUCTANCE
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dence is not explicit in the notatipnThis is necessary to —
account for the full voltage dependence of the scattering I,(eV)=
problem. We can thus describe the deformation of the states
due to the space dependent potential including, e.g., the volt-
age dependent Schottky barrier at a semiconductor- +> |Rhe(6,V)ﬁy|2]- (4)
superconductofSm9 interface. P
We define an analogous unitary scattering matrix for theSecond, the applied voltage shifts the chemical potential of
NS interfaceS, by the reservoir attached to the normal lead &Y with respect
to the reservoir on the superconducting side. The deforma-
tion of the states by itself produces no net curf&nthe net

14

[1—§;|ReaerﬁA2

15 red€) ren(€) ted€) tey(e) 5 current flow results exclusively from the difference in occu-
h / / h pation of the(finite voltage scattering states incident from
2] _ Me(€) Tan(€) thel€) tha(e) | [ Oz the left and right reservoirs. Writing the sum over channels
Os ted€) ten(€) Ted€) Ten(e) [| 1S as a trace, we obtain the current-voltage relation
o4 the(€) thn(€) rhole) rin(e)] \ 18 1
|=f de -[f(e)—f(e+eV)]G(€,V), )
(o)1 e
r(e) t/(e)\| ol with the spectral conductance
B t v’ 12 @ 2¢?
1(e) Ty(e) I: Gy(e,V)= TTr{l—R;e(e,V)Ree(e,V)
S

+Ri(€,V)Rho(€,V)}. (6)

Incident and outgoing channels are again labeled according factor two accounts for the spin degeneracy of the chan-
to Fig. 1.r, r’, andt, t" areNXN reflection and transmis- pels. The definedspectral conductanceGy(e,V) describes
sion matrices between states normalized to unit probabilityhe current contribution of the incident scattering states at
current in the normal and superconducting 18aand are energye, at a given voltage/ (by convention, the energy is
grouped into the RX2N matricesr;, { t;, t/. In the  measured with respect to the chemical potential in the super-

evaluation of the current, we will consider the matfiy to  conductoy. Formulas(5) and (6) imply the differential con-
be specified by an arbitrary model for the disorder, while thegyctance

matrix (2) will be made explicit below using the BdG equa- di
tions. For the present purpose they are both arbitrary and _ ,

thus the shape of the pair potential need not be specified. The  dv/|,~ j def’(et+eV)Gy(e,V)

total effect of all scattering processes in the disorder region

and at the NS interface can be described by a global scatter- 1 dG4(€,V)

ing matrix of the type(2), which is unitary as well. We +J de g[f(e)_f(e+eW]T' @)
restrict ourselves to its submatrik describing the reflection
into the normal region,

o8\ . e
(oz)ZR(“’W(lz

with the expansion

dl

e d_\/ :GS(_eV10)+2V’9VGS(61V)|6=76V,V=0+ T

| v

Iﬂ. (8)

1 3) at zero temperature. This differs from the differential con-
ductance of Ref. 3d1/dV=G4(—eV,0), by accounting for
the change in the conductance of the open channels with

Rees Rens Rne, andRy, are agairN X N reflection matrices.  increasing voltage.

R(e,V) will be computed below from the given scattering ~ To complete the general derivation we need to express the

matrices(1) and(2). We now derive the current-voltage re- matrix R in terms of the given scattering matricé® and

lation based on this global reflection mattixe do not need (2). Summing over all scattering paths of an incident electron

the transmission matrix, since we determine the currents iar hole excitation, multiply scattered between the disorder
the normal leagd region and the NS interface, we arrive at

Applying a voltageV (denoting the voltage in a two point . R N L .
measuremepton the normal side has two consequences. R(&,V)=T1i(€)+ti(€)[1—T (€)F (€)1 T (€)tp(e).
First, the voltage induces an electrostatic potential drop over 9
the disorder region in the NS junction, resulting in a defor-Apart from the direct reflection at the disorder region, the
mation of scattering states. The coupling of incident and outsimplest process contributing consists of an excitation, which
going channels is thus voltage dependent in general, as dg first transmitted ;) through the disorder region, reflected
scribed byR(e,V). A stationary state incident from the (f,) at the NS interface, and transmittetij back to the
normal lead(of energye in channelv) consists of the inci- normal lead. All further paths result form iterative scattering
dent electron and the reflected electron and hole states amudocesses between the disorder region and the NS interface
carries the currente=|e|), (note that the scattering matrix for the disorder includes the

Red€,V) Ren(€,V)
Rhe(E1V) th(E,V)
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propagation in the ballistic lealM,). The expressions5), equation$ and are of the plane wave type. A step function
(6), and(9) determine the general form of the current-voltagemodel for the pair potential (x)=A,e'X0(x) is assumed,
relation of a disordered NS junction, without having madewhich neglects the suppression of the pair potential in the
any assumptions about the nature of the scattering at the Ns&perconductor on the distance of a coherence length. The
interface like, e.g., the shape of the pair potenfialin the NS interface connects electrons and holes of the same chan-
next section, we evaluate the spectral conducté@ctirther  nel with a reflection amplitude depending on the reduced
by using the Andreev approximation for the scattering at thechemical potential ,uvz,u—hzkfIZm. In the limit
NS interface. €,A<pu,, the BdG equations are simplified by linearizing
We close this section with a discussion of the symmetrythe dispersion relation around the effective Fermi wave num-
of the CVC with respect to sign reversal of the applied volt-per k(vo): JV2mu,/%. The boundary conditions are fulfilled
age. In the subgap regineV|<A, the incoming quasipar- in the Andreev approximation, which treats the wave number
ticle excitations may not enter the superconductor. The prob  in the phase factor of the single-particle excitations only
ability current of the statege| <A is totally reflected and to zeroth order. As a consequence, incoming electrons are
thus the global reflection matriR(e,V) of Eq.(3) is unitary.  purely reflected into holes and vice versa. The reflection of
The unitarity produces the relatioﬁ%eRee+ R;ﬁeRhezl and electron(hole) channels into holéelectron) channels is thus
RecR! o+ RerRI,=1. The symmetry of electron- and hole- described by scalar reflection amplitudes, which turn out to
type excitations in the BdG equations guaranteeslepend only on the energyand not on the channel index.

Ren(€,V)=—Rf(—€,V). As a consequence, the subgap The reflection matrix at the NS interface is given by
conductance takes the form 0 f(e) 0 e~ XT(e)
~ he
) r'(e)_(reh(a 0 )‘(eme) 0 )
4e + 11)
Gy(e,V) == Tr{Rl(e,V)Rne(€,V)}
with T'(e) defined by
4e? .
=+~ Tr{R{(eV)Rer(€,V)} e— signie)Ve—A7 A le|>A,
I(e) A 2|’
4e? 7 N e a)
=+ T{Ri(— € V)R —€,V)} # —exnl —i arcco%) . lel<A.
=Gy(—€,V). (10) (12)

The 2N X 2N global reflection matriceR.. and Ry, can be
A subtle issue is that this symmetry does not yet imply adetﬁ.rn;]med ;‘rom Ifq(|9), a(r;d ;Jsmg qu(G)’I we obtain the
symmetry in the CVC under reversal of voltajelThe latter muftichannel spectral conductance formuia
requires thatGg(e,V)=Gg(—€,—V), which amounts to 262
Gy(€,V) being independent of voltage. Then we have Gy(€,V)= T(1+|F(E)|2) Tr{tly(e)
Gy(€)|.=_ey=dl/dV|, and the differential conductance is

invariant under sign reversal of the voltage. Indeed, in recent X[1=T*(€)2r L(—e)rbe)]
experiments on SmS junctions*® an asymmetry in the 22 2

CVC was found in the subgap regime, which can be under- X[1=|T(€)|%r o — €)r3(—€)]

stood on the basis of the above discussion taking into ac-

count the voltage dependent Schottky barrier at the SmS in- X[1-T(€)?rp )r3— €)1 'ta(€)},
terface. The deviations from the symmetry are of the order of (13)

eV/u or eVIVy, whereu denotes the chemical potential and i ] ]

V, characterizes the strength of the scattering potential. A¥alid at all energies. Equatiofi3) is one of the central re-
explicit account of the voltage dependenceSafrequires the  Sults of this work. Combined with Ed5), it provides the
scattering matrixSy to be determined in the applied electro- finite voltage, finite temperature CVC of a disordered
static potential. In principle, this task demands the self-normal-superconducting junction in the Andreev approxima-
consistent solution of the scattering problem and the PoissoliP"- The spectral conductance depends on the scattering ma-
equatior™® a problem which has not yet been thoroughly rices of the electrons at energiese as a signature of the
addressed. In several cases of interest, though, an approfiresence of Andreev reflectidithe explicit voltage depen-

mate consideration of the voltage dependence will furnish af€nce. although present in both reflection and transmission
accurate description. matrices, is not indicated in the notatjoithe dependence of

this formula on the phases of the reflection and transmission
amplitudes proves crucial in determining the resonance
peaks in the conductance. The elementary process, which
contributes to these phases is the propagation of an electron

We start from the spectral conductance form(@ and and a hole between the disorder region and the NS interface.
evaluate it by solving the boundary conditions for the trans- If no interchannel mixing takes place, i.e., the matrices
parent interface in the Andreev approximation. The stationt;; andr;; are diagonal, the conductance reduces to the quasi-
ary states in the ballistic leads are solutions of the BdGne-dimensional form,

Ill. SPECTRAL CONDUCTANCE
IN THE ANDREEV APPROXIMATION
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Gy(€e,V)=

2 N 2 _ 2 _
ZTGE (1+|T(e)|H)T,(e V[1—-[T(€)|°R,(—€,V)] (14)

=1 1+[T(6)]*R,(€,V)R,(— €,V)—2Rd ' (€)%r (e, V)IE(—€,V)]’

r,=(r.,),, is the reflection amplitude for a state coming in 2e? +

from the right side of the scattering regidfig. 1) and Gs(e,V)= 1 Trita(&,V)ta(e,V)} (15

R,=|r,|? andT,=1—R, denote the reflection and transmis-

sion probabilities of thev-th channel. The last term in the

denominator describes the crucial scattering process which

involves twice the propagation between the disorder regiorinote that this Landauer-type formula is the spectral conduc-

and the NS interface, once as an electron and a second tint@nce at finite voltage and energy and deviates from the dif-

as a hole. ferential conductange The conductancél5) exhibits no
For voltages welbbovethe gap,e|,V>A (still assuming  particular symmetry properties with respect to sign reversal

|e|<u), the Andreev reflection is strongly suppressed andf the bias.

drops according td’'(e,V)~A/2|e|—0. The spectral con- At voltagesbelowthe gap, we make use {f(€)|=1 and
ductancg13) asymptotically approaches the expression for al ,=1—R,, and obtain the spectral conductar(dd) in the
normal junction, form,
ey 4e2§ T, (e V)T (—€,V) 16
s(eV)= h 21 1+R,(e,V)R,(—€,V)—2 R4 (e)%r (e V)I* (—€,V)]’ (16

The reflection and transmission coefficientsta¢ are sym- a Fabry-Peot-type |;NI, interferometer. We will learn
metrically involved in this formula, which results in the sym- about the mechanism govering the appearance of zero and
metry of the CVC discussed in Sec. Il. In contrast, the specfinite bias anomalies and give insight into the interpretation
tral conductancg14) at voltages above the gap becomesof the corresponding anomalies in a dirty NS junction. First,
increasingly asymmetric as it asymptotically approaches th&e discuss the structure in the conductance of a single chan-
Landauer expression. As an important difference to the nor2€l NI;NI;S junction, which we trace back to the presence
mal expressioifl5), the conductancél6) contains the phase of Andreev resonances. Secondly, we present numerical re-
information of the scattering processes, which is imperativéults for a multichannel junction, showing that the typical

for the distinction of zero and finite bias peaks in the doubld€Sonance structure of a single channel survives the summa-
barrier NS junction dicussed below. tion over the channels. This stability is a peculiarity of the

The linear response limite{V—0) of Eq. (16) can be superconducting system not observed in a normaN\jN

i ; 2_ _1_ double-barrier junction.
;Joertrizmlned using’(0)"=1 andR,=1-T, and takes the Since the channels separate in the double-barrier problem,

we can make use of the result4) for the conductance
462 T.(0)? Gs.3! G4 depends on the phaseg *€) of the reflection
G(0)=—E —_— (17 amplitudesr(*+¢€) as well as on the complex amplitude
h 5 [2-T,(0)] I'(e) of the Andreev reflection. We use the notation
Equation(17) has proved very useful through its remarkable T(* €) =T~ , R(*€)=R., and r(+¢)=JR.€**9 for
simplicity. the reflection _amphtu_de, the phase factors being d.etermlned
by the potential barriers;land |, and the propagation be-
tween them(for simplicity, we omit the explicit dependence
of the scattering matrix on voltageWe rewrite the ampli-
In this section we apply the above results to a doubletude of the Andreev reflection d¥ €)=|T"|e”'%(¥) with the
barrier NINIS junction, which is a model system for the phase ¥(€)=arccose€/A) below the gap and vanishing
study of the interplay between normal and Andreev levels irebove. The conductance simplifies to

IV. DOUBLE BARRIER NINIS JUNCTION

2(1+|T'|?)e? T,.(1-|T|?R.)
h 1+|T|*RyR_—2|T|>JR:R_cog ¢(e) — o(— €)—23(e)]’

Gy(e)= (18
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which is always less or equal to the universal valeg/A.
Note that the Andreev reflection is supressed above the gap
(IT|<1), while the phasé}(e€) vanishes.

Below the gap, the phasé(e€) is decisive for the reso-
nances produced by the interference of multiple-scattering
processes. The maximal conductar(gehich is twice the 2n
normal conductancee?/h) is only assumed if the reflection
probabilitiesR. are equal and the phagsge) fulfills the
resonance condition,

cogp(e)—@(—€)—29(e)]=1. (19

The analogous property is found in a double-barrier system
within a normal constrictiofNI ;N ,N), where the maximal
conductance €%/h is reached if the reflection probabilities (I ——
of the two barriers coincide at the resonance energy. i
Using the conductance formuld8), we consider a one
channel NINS junction, which consists of a ballistic NS N
junction containing a single potential barrier at a distadce _FIG- 2. Andreev resonances and resonance condition for the
from the perfect NS interface. In the limit of a high potential Phasee. Bottom: phasep(e) of the reflection amplitude versus
barrier,R, andR_ are approximately equal. The reflection energy. The solid line represents thé\l , interferometer with bar-
St - e ; riers strengthdd,=2Ave (R;=0.8) andH,=#Avg (R,=0.5), the
amplitudesr(* €) describing the propagation of electrons . . :
and holes have nearly constant modulus and ohas dashed line stands for the inverse barrier sequefge-0.5 and
+ ) =mi2k.d. Usi y th beik. = P %§z=0.8). TheAndreewesonance condition for the phase is met for
f(JvE) ZUW i tﬁe .Ferrillinseloceityvé?\;ﬁe r;l;]r:ngelti; rrr(lavsf) a pair of energiest ¢, with phase difference\ ¢(e,)=m+2n.
= €lvg (Vg -

o . This phase condition can be fulfilled only by the first barrier se-
nance conditior{19) yields the spectrum of Andreev levels, g,ence R,>R,, solid line at those energies indicated in the graph,

and produces a peak in the conductance of the NINIS structure.

o(e)

0
ed/iv,

en:v_': mﬁ—arccosf—n), (200  Interchanging the strengths of the two barriers, Arelreevreso-
2d A nances are greatly reduced, although the NININ double barrier sys-

. . . . _tem has the same overall transmission probabliitglotted ling as
which predicts resonances in the conductance of a typicgjetermined by th@ormal resonances. Top: conductan@ebitrary

width proportional to the transmissidnof the barrieffsimi-  nitg) of the double barrier NS junction versus energy, the solid line
lar Andreev resonances are found for voltages above the ga@yain representing the barrieRs=0.8, R,=0.5, and the dashed
at e,=nmvg/2d with a width roughly=T/I"(€)]. The phase jine the barrierR,=0.5, R,=0.8. Note the symmetry of the reso-
¥(e) varies between-7/2 and 0 frome=0 to e=A and  nances with respect te=0, which is due to their electron-hole
guarantees the existence of at least one Andreev resonangaracter.
for arbitrarily smalld. In thed— 0 limit, the weight of this ) )
resonance lines up with the gap voltage and we recover thel = €) ~t3r,€°"=" produces a linear energy dependence of
NIS junction as discussed by Blonderral? featuring a sup-  the phasep(e), which changes E’%& on the scaler/d and
pressed subgap conductivity and a peak in the differentidieSults in equidistant resonancesin accordance with Eq.
conductance at the gap voltage. This peak can be understobgl): AS the strength ofJ is increased, the resonances pair

in terms of the Andreev resonance which moves to the gag.p as is illustrated in Fig. 2. The phase functi(e), as
energy ford—0. isplayed in Figure Zsolid line), can be used to determine

We now introduce an additional barrier at the NS inter_the location of the resonances by finding those combinations

; : . of energies +e, which have a phase differeriée
I%Cneuz?r?giﬂil);;?n?(e:orr?csiﬂgggcio%?ﬁ(ﬁg)rrllsgmlvzvisngugﬁ-r Ae(e)=¢(e) ~¢(~€)=m+2nm. The double period of
: . A ith t to th iod ts for th
definitions, ¢ (= €) represent the phases for the reflection of ¢(e) with respect to the period op(e) accounts for the

: ) ; ) nEJairing of the resonances.
electrons entering the double barrier scattering region from \yhen the strengths of the barriers become of the same

the right (superconducting side The corresponding reflec- orger H,~ H., the spectral weight of the INI interferometer
tion amplitudes are given by is shared by Andreev quasibound states of a mixed electron-
) hole character and normal electron quasibound states. Due to

[(+€) =1+ torqe 21) the large grao_llent of the phase close to the normal reso-

- 2 1—r1r2e2'Rra’ nances, see Fig. 2, the Andreev resonances tend to be pinned
to normal resonances at eith¢re or — e (a notable excep-

wherer; t; are the amplitudes of the lefi£1) and right tion to this rule is found when the normal resonance is
(i=2) barrier. The phase of this reflection amplitude playsaligned with the Fermi energy, but the Andreev resonances
the major role in determining the structure of the conduc+emain at finite bias While the Andreev bound states con-
tance, as it controls the existence of resonances according tdbute to the current, normal bound states do not couple to
Eg. (19). Let us fix the barrier 4 and increase,lslowly, the superconductor and thus do not participate in the charge
keeping their strengthbl,> H,. In this situation, the INI transport. This is reflected by the symmetry of Bg(e)
interferometer develops pronounced Andreev resonanceander reversal of voltage which is observed for all barrier
For ry>r,, the phasep(*¢€) of the reflection amplitude strengths; see Fig. 2.

2ik .. d

2ik . d
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As the barrier strength is increased furtherHg> H,, 10
the Andreev resonances are weakened and eventually disap-
pear. Although the normal resonances dominate in the INI
interferometer in this regime, only the weak Andreev reso-
nances show up in the conductance, which thus exhibits only~g
a weak (but still symmetri¢ subgap structure. The phase
function ¢(e€) in Fig. 2 (dashed ling becomes nearly con-
stant forr,<r,, see Eq.(21), and the phase condition for
resonancél19) cannot be met.

Let us compare the transport in the double barrier systems
NI ;NI ,S and NLNI;S, i.e., with inverse sequences of the
barriers | and b. Note that the transmissiof( €) is identical
for both cases, see Fig.(8otted ling. Both the(finite volt-
age conductance in the normal NININ junctiddb) as well . e
as the linear response conductance in the superconducting °%% 10 00 10 20
NINIS junction (17) are thus independent of the sequence of eV/A
the barriers{ and b. Let us assume th&t,;>H,. In this first
barrier sequence, we have a strong energy dependence of theFK_;- 3_. Diﬁereptial _conductance for a multichannel NINIS junc-
phasep(€) (solid line in Fig. 2, which implies the existence tion with mterbarrler_dlstancd:vF/Azwg. The average conduc-
of Andreev type resonances at finite bias. The electrons erf@"ce per channel is plotted versus voltage at temperatar@.
tering the INI interferometer from the normal lead, are given' "€ barrier strengthsl (reflection probabilitiesR=(1+H")/H")
enough time to build up an Andreev resonance and prefefr. Units of five are H,=0.5 (R,=0.2) (dotted ling, 1.0 (0.5)
ably leave into the superconductor. For the inverse barrie?d"".SheqJL L5 (0.7)(dot-dasheyj and 2.0 (O'E.;XSO"OD in the normal

. i . region, whileH,=1 (R,=0.5) at the NS interface. The normal-
sequence, the barriej bt the NS interface domlngtes. The state conductance, which is roughly independent over this voltage
weak energy dependence of thg phage) of Tef'e.c“o,” al- range, is indicated on the left. With increasing barrier stremgith
|0V\_/S no sharp resonances to build (@ashed .Ilne in Fig. R the zero bias anomaly develops into a finite bias anomaly as the
This reflects the fact that the electrons which enter the INl\ngreey resonance is formed for, > H..
region leave through,linto the normal lead before an An-
dreev resonance can build up. In summary, the spectral detrast, the overall conductance of the corresponding
sity in the INI interferometer changes radically with the cou-NI ;NI ,N junction is practically constant, the normal reso-
pling strengths of the normal and superconducting leadsances of the INI region having been averaged out.

Normal resonances dominate when the interferometer is The numerical study of a three-dimensional NINS junc-
coupled more strongly to the normal lead, whereas Andreetion has shown that both the positions and the number of
resonances take over in weight when the coupling to theesonances in the overall conductance correspond to those in
superconductor is stronger. At any instant, however, only théhe forward channet*3 In the NINIS junction, we do not
Andreev states participate in the charge transport. find a direct correspondence of the resonances of the total

We turn to the numerical analysis of a multichannelconductance with the forward channel nor with any other
NINIS junction which we carry out using the conductancespecific channel, although a clear resonance structure still
formula (14). This formula allows to extend the linear re- survives the summation over the channels.
sponse study of Ref. 33 to finite voltage and temperature. We Let us concentrate on the conductance forn{&, valid
investigate an NJNI ,S junction with twoé-function barri-  at subgap voltages, and on the properties of the CVC close to
ers of typical strengttH= [V(x)dx~#Avg and correspond- zero voltage. ForH;>H,, the denominator of Eq(16)
ing reflection probabilityR=H?/(H?+%2v?2) assuming val- changes rapidly with the strong energy dependence of the
ues betweeiR=0.2 andR=1. We vary the relative barrier phase ofr (e) which is responsible for the appearance of
strengths to cover the range between the two limitsconductance peaks at finite voltage. The pronounced struc-
H,>H, andH;<H, discussed above. The distance betweeriure in the conductance survives the summation over the
the barriers is chosen to be of the order of or larger than thehannels as displayed in Figs. 3 and(sblid lines. The
coherence length of the superconductor, providing the forrepulsion of the Andreev levels around zero voltage pro-
ward channel with one to a few Andreev resonances. Thduces a minimum inll/dV at zero voltage. Fo; <H,, the
number of resonances increases with the incidence angle phase of the reflection amplitudes(e) has negligible en-
the channels. We chose leads with a cross section area efgy dependence and the numerator of @) dictates the
(100kg)?, which amounts to about 800 transverse channelgeatures of the conductance. The expansion of the product
The ratio of the energy gap to the Fermi energy is assumed,(e) T, (— e)zTﬁ— €>T'? about zero energy shows the ex-
to be A/eg=0.002. Each channel features the typical con-istence of a zero bias maximufthe denominator can be
ductance structure of paired Andreev resonances exposeagen not to alter this property as long as the total transmis-
above. Their positions and widths depend on the ratio of theion of the double barrier system is not too large,
barrier strength$d, andH, as well as the longitudinal ki- T,<0.55). The zero bias anomaly shows up as a character-
netic energy of the single channels. Remarkably, the overalbtic property of the overall conductance; see Figs. 3 and 4
conductance, which is obtained through summation of singlédotted line$. The zero bias maximum coincides with the
channel conductances, exhibits a characteristic subgap strutraximum of the conductance produ@fe)G(—e€) of the
ture signalling the presence of Andreev resonances. In corgorresponding NININ junction at zero energy. Figures 3 and

di/dV in units of 2e
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20 ‘ , ‘ above. A finite bias anomaly will be smeared out to a zero
bias anomaly for a temperature of the order of the Thouless
energy. In the systems investigated here this energy is of the
order of 0.1A.

The interference of multiple scattering processes between
the scattering region and the NS interface thus produces an
interesting structure in the differential conductance. Re-
cently, experiments in disordered NS and SmS junctitié
have concentrated on the observation of zero and finite bias
anomalies. It has been understood theoretit&ily=’ that
these features are due to the interplay between the barrier at
the NS interface and disorder in the normal lead. At small
disorder, the differential conductance exhibits a zero bias
maximum, while at large enough disorder, a finite bias peak
is expectetf at a voltage of the order of the Thouless energy
E. of the normal lead. This has recently been confirmed in
an experiment® Here, we have found the existence of the
analog features in a ballistic double barrier NS junction
addition, the double barrier junction shows higher harmonics
in the resonances of the conductandee ballistic point of
view applied to the disordered NS junction thus suggests the
interpretation of the finite bias anomaly as a superposition of

832:%2) aththle f':‘s imﬁrfa"e' Thﬁ narmal-state cdonﬁuctivityti; I"-resonances due to quasibound Andreev states between the
icated on the left. As the strength ldf, is increased, the zero bias superconductor and the disorder.

anomaly turn into an finite bias anomaly and several Andreev reso-
nances appear. For the last choice of barrietg=1.1 and V. CONCLUSION
H,=0.5 we have interchanged the barrier sequence: the conduc- . ) ] ]
tance at zero voltage remains the same while changing from a zero We have used the scattering matrix approach including
bias minimum to a zero bias maximugshort solid line. finite voltage and nonzero temperature dependences to de-
scribe the current-voltage characteristics of NS junctions.
4 illustrate the crossover from zero to finite bias anomaliesThe current-voltage relation has been expressed through a
for two different interbarrier distances as the strength of spectral conductance which takes into account the explicit
barrier | is increased and; lis kept fixed. For an interbarrier Voltage dependence of the scattering problem. We have dem-
distance larger than the coherence length of the supercondu@Pstrated the existence of a symmetry of the spectral conduc-
tor, several Andreev resonances show(see Fig. 4 Note tance under sign reversal in the subgap regime. Above the
that the inversion of the barrier sequence transforms the ze@2P: the symmetry is destroyed as the conductance ap-
voltage conductance from a local minimum to a local maxi-Proaches the Landauer expression. We have presented the
mum, while keeping the same zero voltage conductancePectral conductance formula in the Andreev approximation
This is illustrated in Fig. 4 by the pair of solid lines around O & multichannel NS junction at all voltages in EQ3).

zero voltage corresponding to inverse barrier sequences. | NS result has enabled us to carry out a study of a double

In an attempt to understand the width of zero and finiteParrier NINIS junction at finite voltage, which has revealed

bias peaks as well as the position of the first finite biadhe crossover from normal to Andreev resonances in the INI

anomaly, we have compared them to the Thouless energy Upterferometer as the ratio of the barrier strength is varied.

the systém The Thouless enetlig, in a disordered system Interestingly, a radical dependence of the conductance on the
. c :

can be defined as the product of the dimensionless normaféguence of the b;\rners has.been found. We have learned

state conductancg and the level spacingE, E,=g5E. We about the mechanism governing the occurrence of and the

have determined a corresponding Thouless energy in o ossover between zero and finite bias anomalies, tracing
system by taking the level spacing of the INI box multipliedt em back to the energy dependence of the modulus and the

by its overall conductance. In the numerical simulations of ﬂgase of the reflection amplitude, respectively. Finally, we

di/dV in units 26/h

0.5

FIG. 4. Differential conductance for a multichannel NINIS junc-
tion of widthd=2v/A=2m¢. The average conductance per chan-
nel is plotted versus voltage for temperatufe=0. The barrier
strengths(reflection probabilities in units of Ave are H;=0.2
(R;=0.04) (dotted ling, 0.5 (0.2)(dasheg, 0.8 (0.4)(dot-dashej
and 1.1 (0.54)(solid) in the normal region, and fixed &,=0.5

weakly transparent barrier system, we found good agreeme ve estab!lshed '.[he S.'m"af'ty of.the conductance .Of the
of this energy scale with both the width and the position of ouble barrier NS junction with a disordered NS junction.
the finite bias anomaly. The width of the zero bias anomaly
coincided with the characteristic energy scale of the conduc-
tance correlato G(E+ €)G(E))s as well as withE;. In We are indebted to M. Sanquer and W. Pairier for numer-
this case, the distribution of the channel transmission of theus stimulating discussions. We wish to acknowledge an en-
double-barrier system is bimodal and resembles strongly thdightening discussion with Y. Imry. A.L.F. is grateful to A.

of a dirty systent> As the overall transparency approachesvan Otterlo for his competent support. The work of G.B.L.
1, however, the width of the resonances &ddisagree. In  was done during his stay at SPEC, Saclay, and partly at
this limit, the double-barrier system does not represent th&€TH-Zurich, the hospitality of which is greatly appreciated.
bimodal distribution of the dirty system properly and we We acknowledge the financial support of the Schweizerische
cannot expect the above definition of the Thouless energy thlationalfonds zur Falerung der wissenschaftlichen Fors-
be a sensible quantity. Of experimental interest is the effeathung. G.B.L. acknowledges partial support by the NATO
of temperature on the conductance resonances predictetllaboration research program through Grant No. 921333.
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