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Susceptibility of a mesoscopic superconducting ring

Xiaxian Zhang and John C. Price
Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 19 August 1996!

The susceptibility of a single mesoscopic aluminum ring has been studied with an integrated superconduct-
ing quantum interference device susceptometer at temperatures near the superconducting critical temperature,
and anomalous behavior has been found just aboveTc . Below the zero-field critical temperature of 1.266 K we
find excellent agreement with a Ginzburg-Landau theory of the susceptibility, and all of the important sample
parameters can be accurately determined. The phase-slip transition rates are measured as a function of flux at
temperatures down to 0.950 K, and a comparison with the theoretical free-energy barrier heights for these
transitions shows that we are able to predict the ratio of the saddle-point energy to the initial-state energy with
an accuracy of a few percent. Just above the mean-fieldTc we expect the susceptibility to be dominated by
thermodynamic fluctuations. A clear signal is found fromTc to 25 mK aboveTc , but it is as much as 50 times
larger than predicted. The observed phase-slip rates can be used to show that this anomalously large suscep-
tibility just above Tc is not due to temperature fluctuations and that it is not a noise-driven effect.
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I. INTRODUCTION

Experiments on small superconducting rings and cy
ders have provided clear demonstrations of many feature
superconductivity. Phenomena studied by susceptibility
inductive coupling experiments include the original demo
strations of flux quantization,1 the thermal decay of supercu
rents in rings containing weak links,2 the current-phase rela
tionship for weak links,3 and macroscopic quantum effects4

Transport measurements on rings and cylinders have
dressed the Little-ParksTc oscillations,

5,6 and magnetocon
ductance oscillations due to superconducting fluctuatio7

Recently, transport experiments involving mesoscopic su
conducting rings~'1 mm diameter! have explored the local
ity of fluctuation effects,8 and the influence of a supercon
ducting boundary on quantum transport.9 In the present work
we extend the scope of susceptibility measurements to si
mesoscopic superconducting rings. We use the susceptib
and phase-slip rate belowTc to characterize the ring in term
of Ginzburg-Landau theory, and then show that the susc
tibility above Tc is anomalously large. Davidovicet al.10

have described experiments on the susceptibility of ri
very similar to ours, but in large arrays. That work focus
on the effects of interactions between rings, while we attem
to understand the detailed behavior of a single ring.

What new features might be revealed in the susceptib
of mesoscopic superconducting rings? One of the initial m
tivations for our experiments was an interest in mesosco
effects in the sense of quantum transport physics. The dis
guishing feature of such effects is that they are sample
cific in macroscopically identical samples because they
pend on the detailed configuration of the microsco
disorder. In rings, mesoscopic effects arise from theh/e-
period flux dependence of the single-electron energy lev
An h/e-periodic contribution to the susceptibility of a sma
ballistic superconducting ring was suggested long ago
Bogacheck, Gogadze, and Kulik.11 In normal-metal and
semiconducting mesoscopic ringsh/e-periodic persistent
550163-1829/97/55~5!/3128~13!/$10.00
-
of
r
-

d-

.
r-

le
ity

p-

s
s
pt

y
-
ic
n-
e-
e-
c

ls.

y

currents have recently been observed.12 Conductance oscilla-
tions with periodh/e are established in transport expe
ments on mesoscopic rings.13 However, noh/e-periodic ef-
fects were visible in the experiments reported here. S
effects may yet be observed in smaller samples or in sam
with lower critical temperatures.

Besides sample-specific mesoscopic effects, sm
samples with lowTc are distinguished by the importance
thermodynamic fluctuation effects, due to the small cond
sation energy, which is proportional to the sample volu
and to the square of the critical temperature. Two types
thermodynamic fluctuation phenomena may be dis
guished: small fluctuations about an equilibrium configu
tion which is a local minimum of the Ginzburg-Landau fre
energy, and large fluctuations which cause transitions
tween different local minima.14

Large fluctuations occur via localized phase slips of
order parameter in samples which are one-dimensional w
respect to the Ginzburg-Landau coherence length.15 The
phase-slip rate has been studied previously by measuring
resistance of fine wires16 very close to the mean-fieldTc , and
phase slips have also been studied by susceptibility in ri
containing weak links.2 It appears that phase slips have n
been studied before in homogeneous one-dimensional r
by susceptibility. Such experiments are attractive beca
rather than measuring an average rate, one may obs
single phase-slip events between distinct initial and fi
states, and much lower phase-slip rates can be studied th
possible in transport. It is also possible to observe effe
which only appear when the circumference is comparable
the Ginzburg-Landau coherence length. We measure
phase-slip rate as a function of both temperature and fl
and compare our measurements to a calculation which
dicts the free-energy barrier height.

The small fluctuations lead to a contribution to the su
ceptibility which is nonzero above the mean-fieldTc . In
small samples this fluctuation susceptibility has been stud
previously in a collection of fine aluminum particles with
3128 © 1997 The American Physical Society
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55 3129SUSCEPTIBILITY OF A MESOSCOPIC . . .
known size distribution.17 We report here a zero-field sus
ceptibility just aboveTc which we find to be much too larg
to be explained by thermodynamic fluctuations of t
Ginzburg-Landau free energy. We refer to this signal as
fluctuation susceptibility, although it may not in fact be
fluctuation effect. Hypotheses concerning the mechanism
this effect are highly constrained by our knowledge of t
Ginzburg-Landau behavior and the phase-slip rates. Sev
conventional explanations for the signal are discussed
shown to be inadequate.

We begin in Sec. II below with a description of our m
crosusceptometer apparatus. The observed susceptibili
the absence of fluctuations is discussed in Sec. III, and
to Ginzburg-Landau theory is used to determine sev
sample parameters. We then discuss the phase slips in
IV, and the fluctuation susceptibility in Sec. V. A circu
model of the susceptometer which has been used to eva
the calibration constants is discussed in Appendix A, a
Appendix B presents the theory of the phase-slip rate.

II. APPARATUS AND SAMPLES

The three main components of our susceptometer sys
are a superconducting susceptometer device, a supercon
ing quantum interference device~SQUID! amplifier, and a
small transparent sapphire substrate carrying the sample
100mm32 mm32 mm sample substrate is glued to the t
surface of the susceptometer chip. The sample ring is m
by electron beam lithography on the lower surface of
sapphire sample substrate, and is aligned under an op
microscope with 0.5mm accuracy to the sensitive specim
site on the susceptometer chip. This arrangement allows
ferent samples and SQUID devices to be tested with
same susceptometer chip. In this section we discuss the
ceptometer device and its calibration, the SQUID read
and other electronics, and the sample fabrication and mo
ing. A more detailed description of our apparatus and ot

FIG. 1. The 4mm by 4mm specimen site on the susceptome
device. The lower Nb film is separated from the upper Pb-alloy fi
an SiO insulating layer.
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aspects of the experiments reported here is give
elsewhere.18

The specimen site on the susceptometer chip is shown
Fig. 1. The susceptometer senses the change in inductance
a 4mm34 mm square hole due to the presence of the samp
ring. Three sides of the specimen site are formed by a 30
nm thick Nb ground plane film sputtered directly onto a sap
phire substrate, and the fourth side is formed from an ove
lying 500 nm thick evaporated Pb-alloy~Pb-Au-In! film. The
two superconducting films are separated by a 350 nm thic
SiO insulating layer. Sapphire is chosen for the susceptom
eter substrate material to provide a thermal-expansion mat
to the sapphire sample substrate.

The physical layout of the conducting layers on the sus
ceptometer chip is shown in Fig. 2, and a simplified sche
matic is shown in Fig. 3. The specimen site is connected
series with a second identical 4mm square hole and a 12mm
square hole which forms the transformer primary. This serie
circuit is formed by a T-shaped slot in the Nb ground plan
film. A wider T-shaped Pb-alloy film shields the inductance
of the slot except at the ends. The three ends of the s
extend beyond the Pb-alloy shield and form the three hole

r

FIG. 2. Layout of the conducting layers of the susceptomete
device. The ground plane is 4.4 mm long. The three layers show
are separated by SiO insulating layers. The upper Pb-alloy wiring
actually two layers as required to form the coil crossovers.

FIG. 3. Schematic of the experiment. The susceptometer devi
and SQUID amplifier are each fabricated on separate 6.2 m
square chips. The connection between these two devices is made
superconducting wire bonds. Only these two chips and the samp
substrate are in the cryogenic environment.
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3130 55XIAXIAN ZHANG AND JOHN C. PRICE
The inductance of the primary circuit is matched to the 1
nH SQUID input inductance by a planar transformer.19 The
76-turn transformer secondary is patterned in an upper
alloy layer along with the two field coils and a pair ofLC
ladder filters. The field coils are counter wound so that eq
bias currents in the two field coils gives no signal at t
SQUID in the absence of a sample. TheLC filters are pro-
vided to ensure that the sample is not heated by microwa
frequency flux from the SQUID’s Josephson oscillation
The five-stage ladder filter has a cutoff frequency of 4 G
and is designed to provide about 200 dB of attenuation at
'40 GHz Josephson frequency of the input SQUID.

The sample ring is fabricated on a separate 100mm thick
sapphire substrate by electron-beam lithography. This s
phire substrate is transparent and polished on both side
that it can be aligned to the susceptometer chip unde
optical microscope. The sample substrate is pushed
alignment using a fine needle connected to a precision th
axis translator mounted on the stage of the optical mic
scope. Once correctly located, the sample chip is held d
with the needle and then glued in place with a drop of po
~methyl methacrylate! ~PMMA! electron-beam resist.

The sample patterning is done with a single-layer PMM
liftoff process. Because the substrate is an excellent ins
tor, the PMMA must be coated with 15 nm of aluminu
before being exposed to the electron beam. This coatin
etched away in a dilute NaOH solution before the PMMA
developed. After development, the sample chip is place
bell-jar evaporator and exposed to an oxygen plasma
cleaning, and then the aluminum sample material is th
mally evaporated. The final step is a liftoff in acetone w
ultrasonic agitation.

The susceptometer chip with the sample and the SQU
chip are mounted on a copper-clad G-10 header whic
bolted to a copper cold finger. Connections to the chips
made by three kinds of ultrasonic wire bonds. The SQU
input is connected to the susceptometer output with a
alloy wire20 that is superconducting at 4 K. Several gold w
bonds are used to connect large normal-metal pads on
SQUID chip to the copper header cladding for heat sinki
Aluminum wire bonds are used for other connections. T
cold finger is enclosed in a thick niobium cylinder whic
shields against external magnetic fields.

Figure 3 shows the SQUID device and other electron
used in the experiments. The integrated SQUID ampli
chip was developed by Welty and Martinis.21 A conventional
voltage-biased input SQUID is followed by a 100 eleme
series-array SQUID amplifier. This array provides sufficie
gain so that no tank circuit or matching transformer
needed for coupling to the room-temperature JFET prea
lifier ~Stanford Research SR560!. The input SQUID and
SQUID array are biased to operate as linear amplifiers,
feedback is applied to the input SQUID to stabilize the ov
all gain. The noise of the SQUID system is about 1mF0/Hz

1/2

at 1 kHz, referred to the input SQUID loop.~We denote the
quantum of flux asF0[h/2e.!

Data is collected by applying a small 1 kHz ac flux to t
sample ring and detecting the output of the instrument at
same frequency with a lock-in amplifier. The data is th
proportional to the derivative of the circulating sample c
rent with respect to the applied flux. The 1 kHz ac signa
0
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generated by an oscillator in the lock-in and applied to
drive box, which generates balanced currents for the fi
coils. The drive box contains a gain trim in one chann
which can be adjusted so the SQUID output signal is zero
the absence of the sample~or well above the sample critica
temperature!. A low-frequency sweep or dc signal is gene
ated by the lock-in under computer control and summed w
the ac signal in the drive box. This signal determines at w
value of fluxF the derivative signaldI(F)/dF is measured.

Two calibration constants are needed to interpret the o
put of the instrument. We define these constants in suc
way that they do not depend on whether or not we inclu
the effects of the self-inductance of the sample ring
screening of the applied field by the ring. Because the
periments described here were done on small samples c
to Tc , self-field effects do not play a major role.

If the data are expressed as a plot ofdI(F)/dF versusF,
the two calibration constants control the scaling of thex and
y axes. The first determines the applied flux and is defined
the ratio of the flux applied to the sample ring to the b
anced current applied to the field coils. The applied sam
flux is taken as the total flux out to the mean radius of
sample, but in the absence of the sample. This quantity
the dimensions of an inductance and is denotedMF-R ~field-
to-ring!. The periodicity inF0 of the induced sample curren
can be used to directly measureMF-R . In the next section we
give a Ginzburg-Landau model of the sample which pred
minima indI/dF at the flux values

Fn5F0

n

11~w/2R!2,
~1!

wheren is an integer. The denominator, which depends
the ratio of the ring linewidthw to the mean radiusR, shifts
the minima by only 8%, and thus the locations of the minim
can be predicted accurately even thoughw is only known to
10%. This expression is exact to lowest order inw/R and
sufficiently close toTc . For the data reported here we fin
M F-R

21 51130611 mA/F0.
The other calibration constantMR-S ~ring-to-SQUID! de-

termines the sample current. It is defined as the ratio of
flux induced in the input SQUID loop to the sample curre
with zero field current. The sample current is taken to be
idealized line current at the mean radius of the sample. T
constant cannot be directly measured. To avoid having
calibration depend on a large number of model paramet
some of which are not known accurately, it is helpful
expressMR-S in terms of another quantityMF-S ~field-to-
SQUID!, which can be directly measured.MF-S is the ratio
of the SQUID flux to an unbalanced~single-sided! field coil
current in the absence of a sample. A simple model of
system~see Appendix A! shows that

MR2S5
MF2RMF2S

nFMF
. ~2!

HerenF510.75 is the number of turns in one field coil an
MF is the mutual inductance between one field coil and
circuit loop containing the specimen site. This express
includes the effects of all stray inductances and stray mu
inductances. We measure the valueM F-S

215460610 mA/F0,
and from the geometry of the susceptometer chip we e
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FIG. 4. Susceptibility of the aluminum ring at six temperatures plotted versusf[F/F0. The small dots are data as obtained directly fro
the lock-in amplifier shown in Fig. 3. No background subtraction or other processing of the data has been done. The solid lines are
derivative of Eq.~12! with the four fit parameters of Eq.~15! and the calibration constants from Sec. II.
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mate MF589613 pH. This gives the resultM R-S
21

50.2460.04 A/F0. The uncertainty in this calibration facto
is dominated byMF which we believe is known to abou
15%, based on our ability to predictMF-S from model pa-
rameters.

III. GINZBURG-LANDAU BEHAVIOR

In this section we present the susceptibility data for c
ditions where thermodynamic fluctuations are not importa
The observations are compared to a Ginzburg-Landau th
for the ring. We use the results of the comparison betw
experiment and theory to measure certain parameters o
sample and to refine our values for other parameters.
cause the sample parameters are important for what foll
in later sections, we go into some detail here about how
parameters and their uncertainties are determined.

The data were collected with an ac flux amplitude of 0.
F0, and the average applied flux was slowly swept fro
22.7F0 to 12.7F0 and then back to22.7F0. Our results
for six temperatures are shown in Fig. 4. The data have b
plotted using the values of the calibration constantsMF2R
andMR2S given in Sec. II above. In Fig. 5 we show th
temperature dependence of the susceptibility at the peri
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minima which occur at the flux values given by Eq.~1! for
n50,61,62.

We next develop a Ginzburg-Landau theory for the da
The geometry of our ring is shown in Fig. 6. We the negle
effects of the self-field generated by the supercurrent and
radial variations of the order parameter. As we will discu
later, the validity of these approximations depends on
magnetic penetration depthl being greater than the thick
ness of the ring, and the Ginzburg-Landau coherence len
j being greater than the width of the ring.

The applied magnetic field is assumed to be uniform a
perpendicular to the plane of the ring. It may be described
a vector potential

AW 5
1

2
rB û. ~3!

The order parameter without radial variations takes the fo

c5 f einu n5•••22,21,0,1,2,... . ~4!

With these approximations, the Ginzburg-Landau fre
energy density is given by
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F/V5a f 21
1

2
b f 41

f 2

2m*V E
V
S 2

n\

r
1
1

2
e* rB D 2d3r .

~5!

By minimizing the free energy, we find an expression for t
order-parameter amplitude

f 252
a

b
2
1

b

\2

4mR2 H S n2
F

F0
D 21Fn23 1S F

F0
D 2G S w2RD 2J .

~6!

HereR is the mean radius of the ring,F is the flux through
the ring out to the mean radius,F0 is the flux quantum
(h/2e), andw is the width of the ring. Only the terms o
lowest order in the small parameterw/2R have been retained
If the right side of Eq.~6! is negative, thenf 250 and the
system is in the normal state. By setting Eq.~6! equal to
zero, a formula for the location of the mean-field pha
boundary may obtained. This formula has been used to
scribe the Little-ParksTc oscillations.

6 The term containing
w/2R causes a suppression of the order parameter at
fields. It is clear from Fig. 4 that it is essential to include th
aperiodic suppression to describe our data.

The thermodynamic current of the ring is given by t
derivative

FIG. 5. The temperature dependence of the susceptibility at
minima corresponding to the solutionsn50,61,62. The solid line
is from Eq.~12!.
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I52
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2V

F0

a

b

\2

4mR2 H n2F11S w2RD 2GfJ
3H 11

\2

4mR2a F ~n2f!21S w2RD 2S n23 1f2D G J , ~7!

wheref5F/F0, andV is the sample volume. This is th
equivalent current which, if concentrated at the mean rad
R, would have the same energy of interaction with the a
plied field as the true current distribution.

To include the temperature dependence, we express
parametersa andb in terms of the critical fieldHc and the
magnetic penetration depthl using the standard relations22

2
a

b
5

m

2m0e
2l2 , ~8!

1

b
5

m2

4m0
3e4l4Hc

2 , ~9!

wherem ande are the electron mass and charge. Then
insert phenomenological temperature dependences

Hc~T!5Hc~0!F12S TTcD
2G , ~10!

1

l2~T!
5

1

l2~0! F12S TTcD
4G . ~11!

Substituting Eqs.~8!–~11! into Eq. ~7! yields our final for-
mula

I ~f,t !5I 0A~12t4!~n2~11e2!f!

3H 12 j̄2
11t2

12t2 F ~n2f!21e2S n23 1f2D G J ,
~12!

which is expressed in terms of the dimensionless tempera
t[T/Tc . The four parameters contained in Eq.~12! are

I 05
F0

2pm0R
, A5

sw

l2~0!
, j̄5

j~0!

R
, e5

w

2R
,

~13!

FIG. 6. Sample geometry and dimensions. These are the dim
sions known independently from the susceptibility data. As d
cussed in the text, from the data the value for the thickness ca
refined tos52064 nm.
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55 3133SUSCEPTIBILITY OF A MESOSCOPIC . . .
wheres is the sample thickness, andj~0! is the Ginzburg-
Landau coherence length at zero temperature. In terms o
critical field and penetration depth the coherence length

j~T!5
F0

A8pm0Hc~T!l~T!
. ~14!

We next compare the data with the theory by fitting t
parametersI 0A, j̄, e, and Tc , and then comparing the fi
values with known sample parameters. The fit is done i
way which seeks exact agreement only in the limitT→Tc .
The best-fit parameter values obtained by fitting with E
~12! are

I 0A5200630 mA, j̄50.20360.006,
~15!

e50.27160.008, Tc51.26660.003 K.

The 15% uncertainty in the fit value ofI 0A accounts for the
fact that this parameter is sensitive to the calibration cons
MR-S . The solid curves shown in Figs. 4 and 5 are obtain
by plotting the derivative of Eq.~12! using the best-fit pa-
rameters. Equation~12! gives an excellent description of th
data for temperatures abovet'0.90.

The mean-field critical temperatureTc is defined as the
point where the zero-field susceptibility shown in Fig. 5 e
trapolates linearly to zero. Contributions to the fit value d
to thermodynamic fluctuations are expected to be very sm
~see Sec. V!. The fit value is somewhat higher than the bu
value of 1.175 K, as is often seen in thin aluminum film
The geometrical parametere obtained from the measure
ring dimensions given in Fig. 6 ise50.27960.030, in very
good agreement with the fit value. The fit value ofj̄ can be
used to compute the productm0Hc~0!l~0!512,0006700
G nm. This cannot be directly compared with anya priori
value becausel~0! ~which depends on disorder! is not
known. However, the value is very reasonable for evapora
aluminum films, and close to that measured by Groff a
Parks.6 By using the known critical field of aluminum o
Hc~0!5100 Oe we may obtainl~0!512067 nm from the
value ofm0Hc~0!l~0! given above. Groff and Parks showe
that values ofl~0! measured in this way agree well wit
values deduced from transport data together with the the
of the dirty penetration depth.

The parameterI 0A also depends onl~0!, as well as
known geometrical parameters. It can thus be used to
another independent value for the penetration depth. We
l~0!5160638 nm, which is consistent with, but less acc
rate than, the previous value. Because the uncertaint
dominated by the ring thicknesss, it is possible to use the
previous more accurate value ofl~0! to refine our value for
the thickness. In this way we obtains52064 nm. This
agreement between the two values ofl~0! may be viewed as
a check on our calibration constantMR-S .

As mentioned earlier, we have neglected both self-fi
effects and radial variations of the order parameter. We
pect the self-field effects to be small whenl(T)@s. For the
data shown in this sectionl(T) is greater than 140 nm an
so this condition is satisfied. We may also compare the s
flux induced by the supercurrent to the applied flux. For
he
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estimate of the self-flux we use the formula for the se
inductance of an annulus with a uniform curre
distribution23

L5m0RF lnS 8Rw D2
1

2G . ~16!

We find that the self-flux is not larger than 4% of the appli
flux for t.0.90, but that it may be as large as 16% of t
applied flux at the lowest temperature shown in Figs. 4 a
5. We can also compare the self-inductance energy 1/2LI 2 to
the condensation free energy of Eq.~5!. The ratio of these
quantities does not exceed 4% for any of the data sho
The one-dimensional form of the order parameter Eq.~4! is
appropriate only if the Ginzburg-Landau coherence len
j(T) is much greater than the width of ring. This condition
always satisfied sufficiently close toTc . For our parameters
the coherence length becomes equal to the width att50.88.
These estimates suggest that the departure of the theory
the data at the lowest temperatures may be due both to
flux and to increasing radial dependence of the order par
eter.

The solutions given by Eqs.~4! and ~6! are local minima
of the Ginzburg-Landau free energy for functions with un
formly varying phase. Additional analysis is needed to det
mine if these solutions are stable when small variations w
nonuniform phase are considered.18,24The conclusion is that
the solutions are only stable for flux values sufficiently clo
to the minimum points given by Eq.~1!. In practice, thermal
fluctuations allow phase slips well before the solutions
come unstable. Then50 ton51 phase-slip transition will be
discussed in detail in Sec. IV below.

The discussion thus far does not explain the sharp pos
peaks seen in Fig. 4 at the two highest temperatures. T
peaks do not represent the true static susceptibility, but
an artifact of our ac detection method. They occur when
0.05F0 amplitude ac applied flux causes repeated phase
transitions at the ac drive frequency. They disappear at lo
temperatures where the free-energy barrier between adja
states becomes too large to allow such repeated transit
Although it is possible to give a quantitative analysis of the
repeated transitions,18 we prefer to analyze phase slips in th
manner discussed in the next section, where the condit
are chosen to allow only a single transition.

IV. THERMODYNAMIC FLUCTUATIONS: PHASE SLIPS

In this section we discuss the large fluctuations wh
cause transitions between different local minima of the f
energy. Our results concern then50 to n51 transition
shown in Fig. 7. The transition rate is measured by fi
setting the dc flux to zero to place the ring in then50 state.
Then the flux is swept quickly to a positive value where t
n50 state is metastable with a transition rate to then51
state in the range 100–1024 s21. An 0.05F0 amplitude ac
flux at 1 kHz is continuously applied so that the susceptib
ity can be detected. When the susceptibility changes, indi
ing that the transition has occurred, the time delay is
corded and the flux is returned to zero. This process
repeated many times for each value of flux and temperat
The individual time delays appear to be drawn from a s
tionary process and can be fit to an exponential distributi
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In this way the mean transition rates shown in Fig. 8 hav
been determined.

In Appendix B we present a theory for the transition rat
following the calculation of Langer and Ambegaokar,15 who
discussed phase slips in superconducting wires which
one-dimensional with respect to the coherence length. T
phase-slip rate is of the form

R[V expS 2
Fs2F0

kT D . ~17!

The barrier heightDF[Fs2F0 is the difference between the
free energyFs of a saddle-point solution of the Ginzburg-
Landau equations and the free energyF0 of the initial ~n50!
state. The saddle-point solution is the state of highest fr
energy between the initial and final states along the path
function space followed by the transition. It has the sam
phase winding number as the initial state~zero in this case!,

FIG. 7. Phase-slip transition fromn50 to n51. The two solid
lines are the free energies of the initial and final states. The das
line is the free energy of the saddle point that must be traversed
then50 to n51 transition. Then50 solution becomes unstable a
the value flux where the saddle-point energy meets then50 energy.

FIG. 8. Measured phase-slip rate as a function of flux for fiv
different temperatures. The lines are a linear fit to the data. T
measured rates are obtained by fitting to the exponentially distr
uted delay times observed at each value of flux and temperatur
e

re
e

e
in
e

but nonuniform amplitude and phase variations around
circumference. Our theory for the barrier height negle
self-field effects and radial variations of the order parame
but includes first corrections for the width of the ring~the
same approximations as were used in Sec. III above!. For the
prefactorV we use the theory of McCumber and Halper
for one-dimensional wires,14,25which gives

V'
2pR

j
ADF

kT

1

t
, ~18!

where t is a relaxation time from the time-depende
Ginzburg-Landau equation

t5
ph

8k~Tc2T!
. ~19!

Our results are extremely insensitive to the value of the p
actor, and so we have not included refinements to the p
actor given by McCumber and Halperin, or recently deriv
corrections arising from the finite circumference.26

Figure 9 shows predictions of the theory for the high
two temperatures, for which our Ginzburg-Landau descr
tion is most accurate. Because the rate is a very rapid fu
tion of flux, it is important to average the theory over the
variations of the flux. The average is strongly dominated
the highest flux values, so that to a good approximation
theory for the barrier height should be evaluated at the p
flux ~the dc flux plus 0.05F0!. Both the predictions and the
data in Fig. 9 are plotted as a function of the dc flux.

For the highest temperature the theory predicts switch
at a dc flux value which is about 0.07F0 too large. The
magnitude of this discrepancy reflects only a very small er
in the predicted saddle-point energy. To obtain a rate of 121

requires a barrier heightDF/kT of about 25. As can be see

ed
in

e
b-
.

FIG. 9. Comparison of the measured phase-slip rate with p
dictions of theory. The curve labeled ‘‘theory with inductance
includes the effects of the self-inductance energy 1/2 LI2.
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from Fig. 7, this is only 2.8% of the values ofF0 and Fs

individually. Thus the predicted rate depends on a very sm
difference between two nearly equal energies. Note also
with DF/kT525 an order of magnitude change of the pr
actor V corresponds to only a 10% change in the barr
height, or a 0.25% change in the saddle-point energy. Th
crude theory of the prefactor is adequate.

The various approximations in our theory are expected
cause slightly different errors for the saddle-point andn50
energies. In particular, the currents of the two states di
and this will lead to different self-field corrections. For th
curves labeled ‘‘theory with inductance’’ in Fig. 9 the se
inductance energy 1/2LI 2 has been added to both the sadd
point and the initial-state energies, using Eq.~16! to estimate
the self-inductance, and currents from Eq.~12! and Appen-
dix B. At 1.192 K the self-inductance correction on
changes the saddle-point and initial-state energies by 2.0
3.7 %, but this is sufficient to reduce the error in the p
dicted switching point to about 0.04F0. This is not an exact
treatment of the self-inductance correction both because
~15! does not reflect the true current distribution and beca
we have not solved the Ginzburg-Landau equations with
self-inductance energy included.

It is perhaps more direct to use the measured transi
rates and the theoretical prefactor Eq.~18! to compute a mea
sured barrier height, and then to compare this with the p
diction. This is done in Fig. 10. The predicted barrier heig
at 1.192 K is about a factor of 2 too large, which could
accounted for by a saddle-point energy which is 2.5 %
large. Uncertainties in the sample parameters alone ca
account for this error, because the main uncertainty is in
overall factor, which effects the saddle-point and unifor
state energy in the same way. However, the above estim
suggest that self-field effects may be important, and it is a
possible that radial variations of the order parameter may
important. The present agreement seems to be as good a
be expected within the approximations we have made.

FIG. 10. Comparison of the measured free-energy barrier he
with theory. The measured value is computed using the theore
prefactor of Eq.~18!. It is plotted at the flux value where the tran
sition actually occurs, which is 0.05F0 above the dc flux. The
theoretical barrier height is computed using the theory of Appen
B with the self-inductance correction.
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V. THERMODYNAMIC FLUCTUATIONS:
FLUCTUATION SUSCEPTIBILITY

In this section we present results for the susceptibility j
above the mean-field critical temperature of 1.266 mK. O
data for the zero-flux susceptibility are shown in Fig. 11. T
scatter in the data is due in part to the SQUID noise and
part to a background susceptibility signal which becom
evident at very small signal levels. The flux dependence
the susceptibility for several temperatures is shown in F
12. Although the effect is near the limit of our resolutio
there is clearly a symmetric signal present near zero fl
The signal is reproducible over different runs of the cryos
and always disappears into the noise about 30 mK above
mean-fieldTc . The data shown in Fig. 11 were not used f
the fit to Ginzburg-Landau theory discussed in the previo
section, but are in good agreement with that fit belowTc .
The signal aboveTc cannot be explained by uncontrolle
variations of the cryostat temperature. Our thermometry
dicates that the cryostat temperature is stable to about
mK. The very rapid temperature dependence of the pha
slip rate reported in the previous section provides a sec
check on our temperature stability. Fluctuations larger tha
few mK would lead to large variations of the rate which we
not observed.

Recent theoretical interest in the fluctuation susceptibi
of superconducting mesoscopic rings has grown out of
forts to understand the susceptibility of normal-metal me
scopic rings. In a pioneering experiment on an array of7

mesoscopic copper rings, Le´vy et al.27 observed anh/2e-
period persistent current. Ambegaokar and Eckern28 then ad-
vanced a diagrammatic theory which invoked electro
electron interactions as a possible explanation of the dat
Levy et al., and extended their theory to include the behav
of superconducting rings aboveTc .

29 von Oppen and
Riedel30 showed that the Ambegaokar and Eckern theory
superconductors aboveTc ~and withTc greater than the cor
relation energyEc! is equivalent to a theory of thermody
namic fluctuations of the Ginzburg-Landau free energy
Gaussian approximation, and gave improved self-consis

ht
al

ix

FIG. 11. The susceptibility at zero flux very close to the critic
temperature. The curve labeled Ginzburg-Landau is from Eq.~12!
with the four fit parameters of Eq.~15!. The curve labeled Fluctua
tion Theory has been multiplied by 10 before being plotted. It
from Eqs. ~20!–~22! which include the effects of thermodynam
fluctuations.
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3136 55XIAXIAN ZHANG AND JOHN C. PRICE
Hartree and Hartree-Fock results for the fluctuation susc
tibility, which eliminated a divergence atTc . von Oppen and
Riedel also showed how the exact Ginzburg-Landau parti
function for a one-dimensional ring can be recast as a t
dimensional quantum-mechanics problem, and gave es
tially exact solutions for the fluctuation current by solvin
this new problem numerically.

In the Hartree-Fock approximation the von Oppen a
Reidel result for the fluctuation current aboveTc is

I ~f!52
2pkT

F0

sin~2pf!

cosh~2py!2cos~2pf!
, ~20!

where the self-consistency parametery is determined by

y32SRj D 2y5
1

E0
SRj D 3 sinh~2py!

cosh~2py!2cos~2pf!
. ~21!

The dimensionless parameterE0 is the condensation energ
of one coherence length of the ring, in units of the critic
temperature:

E0[
m0Hc

2

kTc
jsw. ~22!

The temperature dependence of these expressions is thr
the critical fieldHc(T) and the coherence lengthj(T). This
result is for a strictly one-dimensional ring and therefore
gives a periodic equilibrium current.

The zero-flux susceptibility obtained from the derivati
of Eq. ~20! is plotted in Fig. 11~curve labeled Fluctuation

FIG. 12. The flux dependence of the susceptibility just above
mean-field critical temperature. This is a portion of the data use
construct Fig. 11. A linear background was subtracted from
data.
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Theory!. The predicted susceptibility is a factor of 10–5
times smaller than the observed signal. Unlike the phase-
rate, this prediction does not depend sensitively on
sample parameters. Uncertainties in the sample paramete
calibration factors cannot be used to significantly impro
the agreement. We have extended the von Oppen and R
theory by averaging the free energy over the sample w
~as was done in Sec. III above! to find corrections to lowes
order inw/2R. We have also used the method of von Opp
and Reidel to go beyond the Hartree-Fock approximat
and compute the exact one-dimensional susceptibility in
extended theory.18 None of these efforts significantly im
proves the poor agreement between theory and experim
shown in Fig. 11. At the temperatures shown in Fig. 11,
coherence length is not less than 1.3mm, and so there is no
possibility that the equilibrium fluctuations excite radi
modes which are not included in the one-dimensional th
ries. Despite the fact that the susceptibility of the ring bel
Tc is described very well by the Ginzburg-Landau model
Sec. III, we conclude that this same model with thermod
namic fluctuations included is unable to describe the fluct
tion susceptibility just aboveTc .

It is conceivable that the effect we see will require
explanation involving novel physics. However, at least tw
conventional explanations should be considered first. O
possibility is that our effect is due to fluctuations of the ord
parameter, but that these fluctuations are driven by exte
noise rather than by thermal fluctuations. In this case, mo
of the order parameter could be excited more strongly
the fluctuation susceptibility could be larger than predic
by the equilibrium theory. One would have to hypothes
mean energies for fluctuating modes 10–50 times larger t
in equilibrium. @As can be seen from Eq.~20!, the equilib-
rium fluctuation current is proportional to the equipartitio
energykT.# A detailed theory would depend on the spectru
of the fluctuating driving force, which might be differen
than in equilibrium. We do not favor an explanation alo
these lines for two reasons. First, we have not been a
to identify a plausible source for the external noise. T
source would have to couple strongly to the sample curr
without significantly heating the sample or other parts
the apparatus. The Josephson oscillations of the SQUID
not seem to be implicated because our signal does not
pend upon the bias conditions of the SQUID. Second,
phase-slip data presented in the previous section show
the fluctuations of the order parameter belowTc cannot be
excited to energies more than about twice the ambient t
perature.

Another possibility is that our description of the system
a homogeneous ring is not adequate very close toTc . Per-
haps variations in the ring material at different points arou
the circumference could lead to a smearing of the appa
critical temperature. We do not see any clear way to add
this hypothesis with the results presented here. With data
many rings it might be possible to determine if the effect
see is sample specific, or if it depends on the microstruc
of the material. If the effect were found to be sample ind
pendent and robust against changes in the microstruc
then an explanation based on inhomogeneity would not
tenable.
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VI. DISCUSSION

We conclude with a few remarks on previous expe
ments, and on the possible existence of a ‘‘singly co
nected’’ state. Vloeberghset al.31 have conducted transpo
experiments on 1mm diameter aluminum rings with specia
attention to the Little-Parks oscillations of the critical tem
perature as a function of applied flux. They observed ano
lous behavior, particularly at low fields, which is not cons
tent with an equilibrium Ginzburg-Landau description. T
good agreement between our data and an equilibrium
scription indicates that the features observed by Vloeber
et al.are almost certainly nonequilibrium effects. Indeed,
authors suggest that their effect may be related to a resist
enhancement aboveTc observed by Santhanamet al. in alu-
minum wires.32 Experiments on the magnetization of a lar
array of 12mm diameter indium disks in the vicinity of th
3.25 K superconducting critical temperature have been
ported by Buissonet al.33 An oscillation of the magnetiza
tion versus flux was observed, with an amplitude much l
than was expected from a prediction based on Ginzbu
Landau theory. The authors suggested that this behavior
be due to degraded material near the outer radius of the
which changes the effective boundary condition. Our d
shows that no such modification of the boundary conditio
occurs in small aluminum rings.

Several recent papers have argued that there exists a
of solutions to the Ginzburg-Landau equations for which
order parameter is zero at one point along
circumference.24,34,35Such solutions would trade the energ
cost of suppressing the order parameter at a point for
energy gained by relaxing the fluxoid quantization co
straint. Berger and Rubenstein34 showed that in uniform one
dimensional rings such singly connected states are never
bal minima, but in a ring with small variations of the widt
they could become global minima in a small range of te
perature and flux. Horaneet al.24 have argued that even in
uniform ring these solutions are local minima~for certain
values of flux and temperature! and the system may linger i
such a state while making a transition between unifo
states. The singly connected state has zero circulating
rent, so a transition to such a state would cause the sus
tibility to switch abruptly to zero.~For a ring of finite width,
the susceptibility would be go to a small, but nonze
value.! No such transitions to a state of near zero susce
bility were observed in the switching data used to produ
Fig. 8. If the zero current state does exist, then its lifetime
less than about 1 s under our conditions.

The major puzzle presented by our results is the ano
lously large susceptibility observed just aboveTc . We do not
have any explanation for this signal. We think that we ha
eliminated explanations based on uncertainties in the sam
parameters, temperature fluctuations, and the possibility
noise-driven effect. We have not ruled out the possibility t
it could be caused by inhomogeneities in the ring. This co
be addressed in future experiments which would compare
behavior of several nominally similar rings.
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APPENDIX A: CALIBRATION CONSTANT MR-S

The calibration constantMR-S is defined as the ratio of the
flux induced in the input SQUID loop to the sample curre
with zero field current. It can be expressed in terms o
minimum number of model parameters with the help of F
13.

The field coil inductanceLF is coupled through the mu
tual inductanceMF to the specimen site or sample hole i
ductanceLh . The inductancesLS represent strays in the im
mediate vicinity of the specimen site due to the spreading
current at the corners of the hole. Because the field co
wrapped around both the specimen site and these strays
mutual inductanceMF is given by MF5nF(Lh12LS),
wherenF is the number of turns in the field coil. The samp
ring is coupled to the specimen site through the mutual
ductanceMS . The currentI F is the current in the field coil,
and the currentI S is the sample current. The effective indu
tanceL8 represents the total inductance seen by the sam
site, which includes the inductance of the other 4mm hole,
the transformer primary, the SQUID inductance coup
through the matching transformer, and various additio
strays. The SQUID fluxFS due to the field current or sampl
current is proportional to the loop currentI 8 ~see Fig. 13!,
and we will express it asFS5aL8I 8, wherea is a dimen-
sionless coupling constant.

The ratio of the SQUID flux to the unbalanced field co
current~in the absence of a sample! is then given by

MF-S5MF

L8

L81Lh12LS
a, ~A1!

FIG. 13. Circuit model of the susceptometer device.
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3138 55XIAXIAN ZHANG AND JOHN C. PRICE
and similarly the ratio of the SQUID flux to the sample cu
rent is

MR-S5MS

L8

L81Lh12LS
a. ~A2!

The final quantity we need isMF-R , the ratio of the flux
applied to the sample to a balanced field coil current~in the
absence of any induced sample currents!. In this case the
currentI 8 is zero, so the flux inLh is nFLhI F . The fraction of
the flux inLh which goes through the sample is the flux inLh
multiplied by the ratioMS/Lh . Thus we findMF-R5nFMS .
Substituting this result and Eq.~A1! into Eq. ~A2! gives Eq.
~2! of the main text.

APPENDIX B: THEORY OF PHASE-SLIP RATE

The mean-field order parameters of the formf exp~inu!
derived in Sec. III have uniform magnitude and uniform
varying phase. Each solution represents a local minimum
the free energy@for flux values close enough to the minimu
points of Eq.~1!#. If there were no thermal fluctuations, the
solutions would be perfectly stable. Langer a
Ambegaokar15 found the saddle point on the path throu
function space between two uniform solutions with differe
values ofn. The energy of this saddle-point solution dete
mines the phase-slip transition rate. Their theory was in s
one dimension and for an infinitely long wire. We extend t
theory to a ring of finite circumference in a magnetic fie
and we include first corrections for the width of the ring~see
also Ref. 26!. As in Sec. III, both self-field effects and radia
variations of the order parameter are neglected.

At a saddle point the free energy is stationary with resp
to small changes inC, so that C should satisfy the
Ginzburg-Landau equations,

ac̄1buc̄u2c̄1
\2

2m* S 2 i¹2
e*A

\ D 2c̄50. ~B1!

We look for solutions of the form

c̄5 f ~u!exp@ ix~u!#. ~B2!

The equations then become

a f1b f 31
\2

2m* F f S 1r dx

du
2
e*A

\ D 22 1

r 2
d2f

du2G50,

1

r f

d

du F f 2S 1r dx

du
2
e*A

\ D G50. ~B3!

The second of these equations shows that the current den

J~r !5
\e

m
f 2S 1r dx

du
2
e*A

\ D5
\e

m
J~r !, ~B4!

only depends on the radius. With the substitutions

a95
2m* uau

\2 , b95
2m*

\2 b, ~B5!

we obtain
of

t
-
ct

,

ct

ity,

2a9 f1b9 f 31
J2~r !

f 3
2

1

r 2
d2f

du2
50. ~B6!

This obviously has no exact solutions sincef does not
depend onr . Approximate solutions which include the e
fects of the finite width can be obtained by averaging o
the radius, the same procedure we followed in Sec. III for
uniform solutions. The result is

2a9 f1b9 f 31
^J2&
f 3

2
1

2e
lnF11e

12eG 1

R2

d2f

du2
50, ~B7!

where as beforee5w/2R, a small parameter. Now le
a85a9/e8, b85b9/e8, J825^J2&/e8 and x5Ru, where
e851/2e ln@~11e!/~12e!#. Equation~B7! then becomes

2a8 f1b8 f 31
J82

f 3
2
d2f

dx2
50. ~B8!

Equation~B8! is of the same form as found by Langer an
Ambegaokar, and it may be solved by the same meth
although our case is somewhat more involved because o
boundary conditions. It may be interpreted as the equatio
motion of a particle moving in an effective radial potentia

d2f

dx2
52

d

d f F J822 f 2
1
1

2
a8 f 22

1

4
b8 f 4G52

d

d f
Ueff

~B9!

with f as the radial coordinate andx playing the role of time.
The conservation of total energyE reads

d

dx F12 S d fdxD
2

1Ueff~ f !G[ dE

dx
50, ~B10!

or in integral form

x5E
f1

f d f

A2@E2Ueff~ f !#
, ~B11!

where we have chosenf5 f 1 at x50. The effective potential
appears as in Fig. 14 forJ8 not too large. Periodic motions
which have a chance to satisfy the boundary conditions oc
for E,Ueff~f 0!. The turning points f 1 and f 2 satisfy
E5Ueff( f 1)5Ueff( f 2),Ueff~f 0!. A solution may be selected
by choosing eitherE and J8 or f 1 and f 2, but only special
choices will givef andx the correct periodicity.

Following Langer and Ambegaokar we introduce the
mensionless quantities

FIG. 14. Effective radial potential for the magnitude of the ord
parameter.
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f 25
a8

b8
u, J85A 4a83

27b82
j 8, E5

a82

2b8
E, ~B12!

and rewrite Eq.~B11! as

x5
1

A2a8
E
u1

u du

Au322u212Eu2
8

27
j 82

. ~B13!

The cubic in the denominator can be factored

u322u212Eu2
8

27
j 825~u2u0!~u2u1!~u2u2!,

~B14!

and since the denominator is zero at the turning points
can identify

f 1
25

a8

b8
u1 , f 2

25
a8

b8
u2 . ~B15!

Comparing the coefficients before the same power ou
yields

u01u11u252,

u0u11u0u21u1u252E, ~B16!

u0u1u25
8

27
j 82.

We will find that it is simplest to impose the boundary co
ditions in terms of new parametersD[u02u1 and
y[(u22u1)/D. These are related to theu’s by

u05
21~22y!D

3
,

u15
22~11y!D

3
, ~B17!

u25
21~2y21!D

3
.

Expressing the denominator in Eq.~B13! in terms ofu1, u2
andu0, we get the solution

x5
1

A2a8
E
u1

u du

A~u2u0!~u2u1!~u2u2!

5
1

A2a8

2

Au02u1
F~g,q!, ~B18!

whereF(g,q) is an elliptic function of the first kind and

g5sin21A u2u1
u22u1

, q5Au22u1
u02u1

5Ay. ~B19!

Two equations will be needed to determineD and y. A
first relation can be found by requiring thatu5p at the turn-
ing point f 2, or equivalently thatx5pR at u5u2 . Equation
~B18! then yields
e

pR5
1

A2a8

2

AD
FS p

2
,AyD . ~B20!

A second equation can be found by requiring that
phase be periodic modulo 2p. To impose this condition we
return to Eq.~B4! for the current

J25 f 4S 1r dw

du
2
e*A

\ D 2. ~B21!

Averaging over the width of the ring gives

^J2&/e85J825 f 4F S dx

dx
2

1

e8

f

RD 21 e9

e8 S f

RD 2G , ~B22!

wheree95~11e2!21/e8. This can be solved fordx/dx and
integrated around the ring to find the total phase chan
Imposing periodicity then yields

2pn52p
f

e8
12E

0

pRAJ82

f 4
2

e9

e8 S f

RD 2dx. ~B23!

The integral can be evaluated approximately by expand
the square root to first or higher order in the small parame
e9/e8, which is proportional toe2 whene is small. Using the
measure

du5A2a8A~u2u0!~u2u1!~u2u2!dx, ~B24!

each term can be then expressed in terms of elliptic functi
of the first, second, or third kinds. With the square root e
panded to first order we find

2pne852pw1
2&

3)
e8 j 8U212

3)

2&

w2

a8R2 e9
1

j 8
U11 ,

~B25!

where
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0
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1

A2a8
U11

5
1

A2a8
F2u0AD

FS p

2
,AyD 22ADES p

2
,AyD G

~B26!

and

E
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pR 1

u
dx5

1

A2a8
U215

1

A2a8

2

u1AD
PS p

2
,2

yD

u1
,AyD .

~B27!

This result gives a second relation betweenD and y which
completely specifies the solution. The results given in
main text were obtained by expanding the square roo
second order, which leads to lengthy expressions.

We still need to find a result for the free energy of t
saddle-point solution. The calculation proceeds as follow
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Barrier heights computed from this formula are shown in Figs. 7 and 10.
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