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Susceptibility of a mesoscopic superconducting ring

Xiaxian Zhang and John C. Price
Department of Physics, University of Colorado, Boulder, Colorado 80309
(Received 19 August 1996

The susceptibility of a single mesoscopic aluminum ring has been studied with an integrated superconduct-
ing quantum interference device susceptometer at temperatures near the superconducting critical temperature,
and anomalous behavior has been found just aligvéelow the zero-field critical temperature of 1.266 K we
find excellent agreement with a Ginzburg-Landau theory of the susceptibility, and all of the important sample
parameters can be accurately determined. The phase-slip transition rates are measured as a function of flux at
temperatures down to 0.950 K, and a comparison with the theoretical free-energy barrier heights for these
transitions shows that we are able to predict the ratio of the saddle-point energy to the initial-state energy with
an accuracy of a few percent. Just above the mean-fighde expect the susceptibility to be dominated by
thermodynamic fluctuations. A clear signal is found frdgto 25 mK aboveT ., but it is as much as 50 times
larger than predicted. The observed phase-slip rates can be used to show that this anomalously large suscep-
tibility just above T, is not due to temperature fluctuations and that it is not a noise-driven effect.
[S0163-18297)02505-9

[. INTRODUCTION currents have recently been observé@onductance oscilla-
tions with periodh/e are established in transport experi-

Experiments on small superconducting rings and cylin-ments on mesoscopic ringSHowever, noh/e-periodic ef-
ders have provided clear demonstrations of many features décts were visible in the experiments reported here. Such
superconductivity. Phenomena studied by susceptibility oeffects may yet be observed in smaller samples or in samples
inductive coupling experiments include the original demon-with lower critical temperatures.
strations of flux quantizatiohthe thermal decay of supercur- Besides sample-specific mesoscopic effects, small
rents in rings containing weak linksthe current-phase rela- samples with lowT, are distinguished by the importance of
tionship for weak links, and macroscopic quantum effeéts. thermodynamic fluctuation effects, due to the small conden-
Transport measurements on rings and cylinders have adation energy, which is proportional to the sample volume
dressed the Little-Parks, oscillations>® and magnetocon- and to the square of the critical temperature. Two types of
ductance oscillations due to superconducting fluctuationsthermodynamic fluctuation phenomena may be distin-
Recently, transport experiments involving mesoscopic supeguished: small fluctuations about an equilibrium configura-
conducting ringg~1 um diameter have explored the local- tion which is a local minimum of the Ginzburg-Landau free
ity of fluctuation effect$ and the influence of a supercon- energy, and large fluctuations which cause transitions be-
ducting boundary on quantum transpohh the present work  tween different local minima®
we extend the scope of susceptibility measurements to single Large fluctuations occur via localized phase slips of the
mesoscopic superconducting rings. We use the susceptibilitgrder parameter in samples which are one-dimensional with
and phase-slip rate beloW, to characterize the ring in terms respect to the Ginzburg-Landau coherence lefytiihe
of Ginzburg-Landau theory, and then show that the suscegphase-slip rate has been studied previously by measuring the
tibility above T, is anomalously large. Davidoviet all® resistance of fine wiré8very close to the mean-fielf,,, and
have described experiments on the susceptibility of ringphase slips have also been studied by susceptibility in rings
very similar to ours, but in large arrays. That work focusescontaining weak link$.1t appears that phase slips have not
on the effects of interactions between rings, while we attempbeen studied before in homogeneous one-dimensional rings
to understand the detailed behavior of a single ring. by susceptibility. Such experiments are attractive because,

What new features might be revealed in the susceptibilityather than measuring an average rate, one may observe
of mesoscopic superconducting rings? One of the initial mosingle phase-slip events between distinct initial and final
tivations for our experiments was an interest in mesoscopistates, and much lower phase-slip rates can be studied than is
effects in the sense of quantum transport physics. The distirpossible in transport. It is also possible to observe effects
guishing feature of such effects is that they are sample spavhich only appear when the circumference is comparable to
cific in macroscopically identical samples because they dethe Ginzburg-Landau coherence length. We measure the
pend on the detailed configuration of the microscopicphase-slip rate as a function of both temperature and flux,
disorder. In rings, mesoscopic effects arise from kiie-  and compare our measurements to a calculation which pre-
period flux dependence of the single-electron energy leveldicts the free-energy barrier height.
An h/e-periodic contribution to the susceptibility of a small ~ The small fluctuations lead to a contribution to the sus-
ballistic superconducting ring was suggested long ago bgeptibility which is nonzero above the mean-field. In
Bogacheck, Gogadze, and Kufik.In normal-metal and small samples this fluctuation susceptibility has been studied
semiconducting mesoscopic rind¥e-periodic persistent previously in a collection of fine aluminum particles with a
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\\\s FIG. 2. Layout of the conducting layers of the susceptometer
device. The ground plane is 4.4 mm long. The three layers shown
\ are separated by SiO insulating layers. The upper Pb-alloy wiring is
actually two layers as required to form the coil crossovers.

aspects of the experiments reported here is given

8
FIG. 1. The 4um by 4 um specimen site on the susceptometerelse‘k’:’heré' . . h hip is sh .

device. The lower Nb film is separated from the upper Pb-alloy film __ The specimen site on the susceptometer ¢ .Ip' IS shown In

an SiO insulating layer. Fig. 1. The susceptometer senses the change in inductance of

a 4 umx4 um square hole due to the presence of the sample
. C g i ring. Three sides of the specimen site are formed by a 300
known size distributiort” We report here a zero-field sus- nny'thick Nb ground plane film sputtered directly onto a sap-
ceptibility just aboveT; which we find to be much too large phire substrate, and the fourth side is formed from an over-
to be explained by thermodynamic fluctuations of thelying 500 nm thick evaporated Pb-all¢yb-Au-In film. The

Ginzburg-Landau free energy. We refer to this signal as thg,,q superconducting films are separated by a 350 nm thick
fluctuation susceptibility, although it may not in fact be a gj insulating layer. Sapphire is chosen for the susceptom-

fluctuation effect. Hypotheses concerning the mechanism Qiter substrate material to provide a thermal-expansion match
this effect are highly constrained by our knowledge of they, ihe sapphire sample substrate.

Ginzburg-Landau behavior and the phase-slip rates. Several T physical layout of the conducting layers on the sus-
conventional explanations for the signal are discussed an@eptometer chip is shown in Fig. 2, and a simplified sche-
shown to be inadequate. _ o . matic is shown in Fig. 3. The specimen site is connected in
We begin in Sec. Il below with a description of our Mi- sarjes with a second identicaldn square hole and a 42m
crosusceptometer apparatus. The observed susceptibility &y are hole which forms the transformer primary. This series
the absence of fluctuations is discussed in Sec. Ill, and a fitj it is formed by a T-shaped slot in the Nb ground plane
to Ginzburg-Landau theory is used to determine severafim A wider T-shaped Pb-alloy film shields the inductance
sample parameters. We then discuss the phase slips in Seg.the slot except at the ends. The three ends of the slot

IV, and the fluctuation susceptibility in Sec. V. A circuit gyiang beyond the Pb-alloy shield and form the three holes.
model of the susceptometer which has been used to evaluate

the calibration constants is discussed in Appendix A, and
Appendix B presents the theory of the phase-slip rate. 5 10k

Pb-alloy Shield Layer

Nb Ground Plane

II. APPARATUS AND SAMPLES

Preamplifier

The three main components of our susceptometer systemN
are a superconducting susceptometer device, a superconduct- 5
ing quantum interference devid&QUID) amplifier, and a IField T N Voltage
small transparent sapphire substrate carrying the sample. The
100 umx2 mmx2 mm sample substrate is glued to the top
surface of the susceptometer chip. The sample ring is made
by electron beam lithography on the lower surface of the ——vwW—
sapphire sample substrate, and is aligned under an optical
microscope with 0.5um accuracy to the sensitive specimen
site on the susceptometer chip. This arrangement allows dif-

ferent samples and SQUID devices to be tested with the FG. 3. Schematic of the experiment. The susceptometer device

same susceptometer chip. In this section we discuss the Sugid SQUID amplifier are each fabricated on separate 6.2 mm

ceptometer device and its calibration, the SQUID readougquare chips. The connection between these two devices is made by
and other electronics, and the sample fabrication and mounsuperconducting wire bonds. Only these two chips and the sample
ing. A more detailed description of our apparatus and othesubstrate are in the cryogenic environment.

Drive Lockin Oscilloscope

Temperature

Computer Controller
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The inductance of the primary circuit is matched to the 190generated by an oscillator in the lock-in and applied to the
nH SQUID input inductance by a planar transforriethe  drive box, which generates balanced currents for the field
76-turn transformer secondary is patterned in an upper Pisoils. The drive box contains a gain trim in one channel
alloy layer along with the two field coils and a pair b€  which can be adjusted so the SQUID output signal is zero in
ladder filters. The field coils are counter wound so that equalhe absence of the samer well above the sample critical
bias currents in the two field coils gives no signal at thetemperaturg A low-frequency sweep or dc signal is gener-
SQUID in the absence of a sample. Th€ filters are pro- ated by _the Io_ck—in under computer qontrol and sgmmed with
vided to ensure that the sample is not heated by microwavél® ac signal in the drive box. This signal determines at what
frequency flux from the SQUID's Josephson oscillations.value of f|u'XCD tlhe derivative signadl(P)/dd is measured.
The five-stage ladder filter has a cutoff frequency of 4 GHz WO calibration constants are needed to interpret the out-
and is designed to provide about 200 dB of attenuation at thBUt of the instrument. We define these constants In such a
~40 GHz Josephson frequency of the input SQUID. way that they do not depend on whether or not we include

The sample ring is fabricated on a separate &00thick the effects of the self-inductance of the sample ring or

sapphire substrate by electron-beam lithography. This Sapc,_creening of the applied field by the ring. Because the ex-

phire substrate is transparent and polished on both sides ﬁ(?rlments described here were done on small samples close

: . : T., self-field effects do not play a major role.
that it can be aligned to the susceptometer chip under an ¢
optical microscope. The sample substrate is pushed int If the data are expressed as a plotio{®)/d® versus?,

alignment using a fine needle connected to a precision thred® WO cal|brat|on constants control _the scaling Qfxrm.'d
axis translator mounted on the stage of the optical microY @xes. The first determines the applied flux and is defined as

scope. Once correctly located, the sample chip is held dowH1e ratio of the qu>§ applied tq the sgmple ring tp the bal-
with the needle and then glued in place with a drop of Iooly_anced current applied to the field coils. The applied sample

: flux is taken as the total flux out to the mean radius of the
(methyl methacrylate(PMMA) electron-beam resist. . . ;
Thgsample p);tterning is done with a single-layer PI\/lMAsample, but in the absence of the sample. This quantity has

liftoff process. Because the substrate is an excellent insul _he.d|men3|ons .Of an mductance aT‘d is dendtdy, (field-
o-ring). The periodicity in®, of the induced sample current

etched away in a dilute NaOH solution before the PMMA isdive indl/d® at the I
developed. After development, the sample chip is place in funima in at the flux values
bell-jar evaporator and exposed to an oxygen plasma for

: ; S n
cleaning, and then the aluminum sample material is ther- O =0g s (1)
mally evaporated. The final step is a liftoff in acetone with 1+(w/2R)%,
ultrasonic agitation. wheren is an integer. The denominator, which depends on

The susceptometer chip with the sample and the SQUIRne ratio of the ring linewidttw to the mean radiuR, shifts
chip are mounted on a copper-clad G-10 header which ighe minima by only 8%, and thus the locations of the minima
bolted to a copper cold finger. Connections to the chips arggp pe predicted accurately even thowglis only known to
made by three kinds of ultrasonic wire bonds. The SQUID1go. This expression is exact to lowest ordemifR and
input is connected to the susceptometer output with a Phgyficiently close tT,. For the data reported here we find
alloy wire”’ that is superconducting at 4 K. Several gold wire \j —1 —1130+11 uA/®,.
bonds are used to connect large normal-metal pads on the The other calibration constai r.s (ring-to-SQUID) de-
SQUID chip to the copper header cladding for heat sinkingtermines the sample current. It is defined as the ratio of the
Aluminum wire bonds are used for other connections. Th&juy induced in the input SQUID loop to the sample current,
cold finger is enclosed in a thick niobium cylinder which yith zero field current. The sample current is taken to be an
shields against external magnetic fields. _ idealized line current at the mean radius of the sample. This

Figure 3 shows the SQUID device and other electronicgonstant cannot be directly measured. To avoid having the
used in the experiments. The integrated SQUID amplifiefcajipration depend on a large number of model parameters,
chip was developed by Welty and MartirfisA conventional  some of which are not known accurately, it is helpful to
voltage-biased input SQUID is followed by a 100 e|eme”texpressM rs in terms of another quantity g (field-to-
series—array SQUID amp!ifier_. This array provides sufficientSQU|D), which can be directly measurell ¢ s is the ratio
gain so that no.tank circuit or matching transformer isqf the SQUID flux to an unbalancegingle-sided field coil
needed for coupling to the room-temperature JFET preampsyrrent in the absence of a sample. A simple model of the

lifier (Stanford Research SR560The input SQUID and gystem(see Appendix A shows that
SQUID array are biased to operate as linear amplifiers, andy

feedback is applied to the input SQUID to stabilize the over- Mg_rMg_g

all gain. The noise of the SQUID system is aboptliy/Hz2 Mr-s=— - 2

at 1 kHz, referred to the input SQUID loop(We denote the FOF

qguantum of flux asb,=h/2e.) Hereng=10.75 is the number of turns in one field coil and

Data is collected by applying a small 1 kHz ac flux to the Mg is the mutual inductance between one field coil and the
sample ring and detecting the output of the instrument at theircuit loop containing the specimen site. This expression
same frequency with a lock-in amplifier. The data is thusincludes the effects of all stray inductances and stray mutual
proportional to the derivative of the circulating sample cur-inductances. We measure the vaMe 5=460+10 uA/d,,
rent with respect to the applied flux. The 1 kHz ac signal isand from the geometry of the susceptometer chip we esti-
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FIG. 4. Susceptibility of the aluminum ring at six temperatures plotted vepsub/d,. The small dots are data as obtained directly from

the lock-in amplifier shown in Fig. 3. No background subtraction or other processing of the data has been done. The solid lines are from the

derivative of Eq.(12) with the four fit parameters of Eq15) and the calibration constants from Sec. Il.

mate M =89+13 pH. This gives the resultM L  minima which occur at the flux values given by Ea) for
=0.24+0.04 AKD,. The uncertainty in this calibration factor n=0,+1,=2.

is dominated byMg which we believe is known to about We next develop a Ginzburg-Landau theory for the data.
15%, based on our ability to predidM .5 from model pa- The geometry of our ring is shown in Fig. 6. We the neglect
rameters. effects of the self-field generated by the supercurrent and any
radial variations of the order parameter. As we will discuss
later, the validity of these approximations depends on the
magnetic penetration depth being greater than the thick-

In this section we present the susceptibility data for conness of the ring, and the Ginzburg-Landau coherence length
ditions where thermodynamic fluctuations are not important¢ being greater than the width of the ring.

The observations are compared to a Ginzburg-Landau theory The applied magnetic field is assumed to be uniform and
for the ring. We use the results of the comparison betweeperpendicular to the plane of the ring. It may be described by
experiment and theory to measure certain parameters of thevector potential

sample and to refine our values for other parameters. Be-

cause the sample parameters are important for what follows R
in later sections, we go into some detail here about how the A=
parameters and their uncertainties are determined.

The data were collected with an ac flux amplitude of 0.05 ) i L
®,, and the average applied flux was slowly swept from 1 he order parameter without radial variations takes the form
—2.7d, to +2.7 &y and then back te-2.7 . Our results _
for six temperatures are shown in Fig. 4. The data have been y=fe"? n=-..—2-10,1.2.... (4
plotted using the values of the calibration constavits_g
and Mg_g given in Sec. Il above. In Fig. 5 we show the With these approximations, the Ginzburg-Landau free-
temperature dependence of the susceptibility at the periodienergy density is given by

Ill. GINZBURG-LANDAU BEHAVIOR

rBo. (3

N -
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0.8 0.9 1 1.1 1.2 13 To include the temperature dependence, we express the

T (K) parametersy and B in terms of the critical fieldH. and the
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FIG. 5. The temperature dependence of the susceptibility at the
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1 f2 nt 1 2 1 m?
— 2, = 4 T Ak 3 —=————, 9
FIV=af?t 5 Bttt or fv< —+e rB) dr. B~ au3en 2 9

5) wherem ande are the electron mass and charge. Then we

. _ _ insert phenomenological temperature dependences
By minimizing the free energy, we find an expression for the

order-parameter amplitude T)\2
Hc(T)=Hc(0){1— T—) } (10)

e e ] |5+l || S i)

T B BAmR ||\ ®y) |3 \®,) |I2R] | R T
popam ’ ’ ©) xz(T)‘v(m{l (T) | 1y

Substituting Eqs(8)—(11) into Eq. (7) yields our final for-
HereR is the mean radius of the ring is the flux through  mula
the ring out to the mean radiuf, is the flux quantum
(h/2e), andw is the width of the ring. Only the terms of (1) =1,A(1—tH(Nn—(1+ €?) )

lowest order in the small paramet@f2R have been retained.

2 2

: : : , 2_ — 1+ n
If the rlght_3|de of Eq.(6) is negative, t_herf =0 and the x{1- ¢ — (N— $)2+ €| — + ¢2 } ,
system is in the normal state. By setting Ef) equal to 1-t 3
zero, a formula for the location of the mean-field phase (12

boundary may obtained. This formula has been used to de-

scribe the Little-Parkd, oscillations® The term containing which is expressed in terms of the dimensionless temperature

W/2R causes a suppression of the order parameter at higi=T/T.. The four parameters contained in Eg2) are

fields. It is clear from Fig. 4 that it is essential to include this

aperiodic suppression to describe our data. - ®q PR £(0) _
The thermodynamic current of the ring is given by the O 27 uoR’ A2(0)’ R ' € 2R’

derivative (13
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wheres is the sample thickness, ad0) is the Ginzburg- estimate of the self-flux we use the formula for the self-
Landau coherence length at zero temperature. In terms of theductance of an annulus with a uniform current
critical field and penetration depth the coherence length is distributiorf®

D,
VB7uoH(TIN(T)

1
- —} . (16)

|H(W 2

We find that the self-flux is not larger than 4% of the applied

We next compare the data with the theory by fitting theflux for t>0.90, but that it may be as large as 16% of the
parameterd \A, ¢, € and T., and then comparing the fit applied flux at the lowest temperature shown in Figs. 4 and

values with known sample parameters. The fit is done in - W€ can also compare the self-inductance energy. 1720
way which seeks exact agreement only in the lifit T, . the condensation free energy of H&). The ratio of these

The best-fit parameter values obtained by fitting with Eq.duantities does not exceed 4% for any of the data shown.
(12) are The one-dimensional form of the order parameter @gis

appropriate only if the Ginzburg-Landau coherence length
&(T) is much greater than the width of ring. This condition is
always satisfied sufficiently close .. For our parameters
(19 the coherence length becomes equal to the width-at8s.
€=0.271+0.008, T.=1.266+0.003 K. These estimates suggest that the departure of the theory from
the data at the lowest temperatures may be due both to self-
The 15% uncertainty in the fit value 6§A accounts for the = flux and to increasing radial dependence of the order param-
fact that this parameter is sensitive to the calibration constargier.
MR-S' The solid curves shown in FIgS 4 and 5 are obtained The solutions given by Eq$4) and (6) are local minima
by plotting the derivative of Eq(12) using the best-fit pa- of the Ginzburg-Landau free energy for functions with uni-
rameters. Equatiofl2) gives an excellent description of the formly varying phase. Additional analysis is needed to deter-
data for temperatures abote0.90. mine if these solutions are stable when small variations with
The mean-field critical temperatufg; is defined as the nponuniform phase are considef®d” The conclusion is that
point where the zero-field susceptibility shown in Fig. 5 ex-the solutions are only stable for flux values sufficiently close
trapolates Iinearly to zero. Contributions to the fit value dueto the minimum points gi\/en by E(ﬁ]_) In practice, thermal
to thermodynamic fluctuations are expected to be very smafjyctuations allow phase slips well before the solutions be-
(see Sec. Y. The fit value is somewhat higher than the bulk come unstable. The=0 ton=1 phase-slip transition will be
value of 1.175 K, as is often seen in thin aluminum films. discussed in detail in Sec. IV below.
The geometrical parameter obtained from the measured  The discussion thus far does not explain the sharp positive
ring dimensions given in Fig. 6 is=0.279+0.030._in very  peaks seen in Fig. 4 at the two highest temperatures. These
good agreement with the fit value. The fit valueéofan be  peaks do not represent the true static susceptibility, but are
used to compute the produgiH (0)\(0)=12,000700  an artifact of our ac detection method. They occur when the
G nm. This cannot be directly compared with amypriori  0.05®, amplitude ac applied flux causes repeated phase-slip
value becausen(0) (which depends on disordelis not transitions at the ac drive frequency. They disappear at lower
known. However, the value is very reasonable for evaporategmperatures where the free-energy barrier between adjacent
aluminum films, and close to that measured by Groff andstates becomes too large to allow such repeated transitions.
Parks? By using the known critical field of aluminum of Although it is possible to give a quantitative analysis of these
H(0)=100 Oe we may obtaim(0)=120+7 nm from the repeated transition'$,we prefer to analyze phase slips in the

value of uoH:(O)\(0) given above. Groff and Parks showed manner discussed in the next section, where the conditions
that values Of)\(O) measured in this way agree well with are chosen to allow On|y a Sing|e transition.

values deduced from transport data together with the theory
of the dirty penetration depth. IV. THERMODYNAMIC FLUCTUATIONS: PHASE SLIPS
The parametel ;A also depends on\(0), as well as
known geometrical parameters. It can thus be used to find In this section we discuss the large fluctuations which
another independent value for the penetration depth. We findause transitions between different local minima of the free
A(0)=160+38 nm, which is consistent with, but less accu-energy. Our results concern the=0 to n=1 transition
rate than, the previous value. Because the uncertainty ishown in Fig. 7. The transition rate is measured by first
dominated by the ring thickness it is possible to use the setting the dc flux to zero to place the ring in the O state.
previous more accurate value »f0) to refine our value for Then the flux is swept quickly to a positive value where the
the thickness. In this way we obtais=20+4 nm. This n=0 state is metastable with a transition rate to thel
agreement between the two values\(® may be viewed as state in the range $610°* s™X. An 0.05 ®, amplitude ac
a check on our calibration constalty._s. flux at 1 kHz is continuously applied so that the susceptibil-
As mentioned earlier, we have neglected both self-fieldty can be detected. When the susceptibility changes, indicat-
effects and radial variations of the order parameter. We exing that the transition has occurred, the time delay is re-
pect the self-field effects to be small whe(T)>s. For the corded and the flux is returned to zero. This process is
data shown in this section(T) is greater than 140 nm and repeated many times for each value of flux and temperature.
so this condition is satisfied. We may also compare the selfThe individual time delays appear to be drawn from a sta-
flux induced by the supercurrent to the applied flux. For artionary process and can be fit to an exponential distribution.

L=/.LOR

&)= (14)

I,A=200£30 wA, &=0.203+0.006,
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FIG. 7. Phase-slip transition from=0 to n=1. The two solid & Inductance ]
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In this way the mean transition rates shown in Fig. 8 have ¢

been determined. _ _ _
In Appendix B we present a theory for the transition rate FIG. 9. Comparison of the measured phase-slip rate with pre-
following the calculation of Langer and Ambegaoﬁgwho dictions of theory. The curve labeled “theory with inductance”
discussed phase slips in superconducting wires which af@cludes the effects of the self-inductance energy 1211
one-dimensional with respect to the coherence length. Th

phase-slip rate is of the form But nonuniform amplitude and phase variations around the

circumference. Our theory for the barrier height neglects
F—Fo self-field effects and radial variations of the order parameter,
R=Q ex;{ s ) (17 but includes first corrections for the width of the rifidne
same approximations as were used in Sec. |l apdvar the
The barrier heighA F=F.— F, is the difference between the prefactor() we use the theory of McCumber and Halperin
free energyF. of a saddle-point solution of the Ginzburg- for one-dimensional wire¥,?*which gives
Landau equations and the free eneFgyof the initial (n=0)
state. The saddle-point solution is the state of highest free - @ A_FE (18)
energy between the initial and final states along the path in 3 KT 7’
function space followed by the transition. It has the sam
phase winding number as the initial st@zero in this casg

Svhere 7 is a relaxation time from the time-dependent
Ginzburg-Landau equation

10! g 7h
e = —
1.192 K L137 K o 8|((TC—T)

100 ¢ E

. 1 7 [ L083K ] 1.0341{‘ # Our results are extremely insensitive to the value of the pref-
101 | 4 1 3 [ 095K J actor, and so we have not included refinements to the pref-
L ] actor given by McCumber and Halperin, or recently derived

107 £ E corrections arising from the finite circumferertée.

L 4 Figure 9 shows predictions of the theory for the highest

10 F 10 i ] two temperatures, for which our Ginzburg-Landau descrip-

: - 4 tion is most accurate. Because the rate is a very rapid func-
1o+ E L ] tion of flux, it is important to average the theory over the ac

3 1 variations of the flux. The average is strongly dominated by

103 ] 3L ] the highest flux values, so that to a good approximation the

0.606 0.612 0.618
0768 0774 0780 theory for the barrier height should be evaluated at the peak

0206 022 O by Loms 1o 4 flux (the dc flux plus 0.058b,). Both the predictions and the
0 ta 128 12 data in Fig. 9 are plotted as a function of the dc flux.
For the highest temperature the theory predicts switching
FIG. 8. Measured phase-slip rate as a function of flux for fiveat a dc flux value which is about 0.08, too large. The
different temperatures. The lines are a linear fit to the data. Thénagnitude of this discrepancy reflects only a very small error
measured rates are obtained by fitting to the exponentially distribin the predicted saddle-point energy. To obtain a rate 6f'1 s

uted delay times observed at each value of flux and temperature.requires a barrier heigil F/kT of about 25. As can be seen

(19

R (s1)
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¢
FIG. 11. The susceptibility at zero flux very close to the critical

FIG. 10. Comparison of the measured free-energy barrier heigiemperature. The curve labeled Ginzburg-Landau is from(E2).
with theory. The measured value is computed using the theoreticavith the four fit parameters of E¢15). The curve labeled Fluctua-
prefactor of Eq(18). It is plotted at the flux value where the tran- tion Theory has been multiplied by 10 before being plotted. It is
sition actually occurs, which is 0.08®, above the dc flux. The from Egs.(20)—(22) which include the effects of thermodynamic
theoretical barrier height is computed using the theory of Appendixluctuations.

B with the self-inductance correction.
V. THERMODYNAMIC FLUCTUATIONS:

) o FLUCTUATION SUSCEPTIBILITY
from Fig. 7, this is only 2.8% of the values &%, and F

individually. Thus the predicted rate depends on a very small I this section we present results for the susceptibility just
difference between two nearly equal energies. Note also th&Pove the mean-field critical temperature of 1.266 mK. Our
with AF/kT=25 an order of magnitude change of the pref-data for the zero-flux susceptibility are shown in Fig. 11. The

actor Q corresponds to only a 10% change in the barrierscatter in the data is due in part to the SQUID noise and in

height, or a 0.25% change in the saddle-point energy. Thus %art to a background susceptibility signal which becomes

crude theorv of the prefactor is adeduate evident at very small signal levels. The flux dependence of
The varigus apprgximations in ou? theéry are expected tthe susceptibility for several temperatures is shown in Fig.

cause slightly different errors for the saddle-point and0 9. Although the effect is near the limit of our resolution,

i | icul h £ th diff there is clearly a symmetric signal present near zero flux.
energies. in particu ar, the current§ of the twp states difiefq signal is reproducible over different runs of the cryostat,
and this will lead to different self-field corrections. For the

" o A and always disappears into the noise about 30 mK above the
curves labeled “theory with inductance” in Fig. 9 the self- mean-fieldT, . The data shown in Fig. 11 were not used for

inductance energy 1/21? has been added to both the saddle-the fit to Ginzburg-Landau theory discussed in the previous
point and the initial-state energies, using EX) to estimate  section, but are in good agreement with that fit beldw
the self-inductance, and currents from E#j2) and Appen-  The signal aboveT, cannot be explained by uncontrolled
dix B. At 1.192 K the self-inductance correction only variations of the cryostat temperature. Our thermometry in-
changes the saddle-point and initial-state energies by 2.0 anficates that the cryostat temperature is stable to about 0.5
3.7 %, but this is sufficient to reduce the error in the pre-mK. The very rapid temperature dependence of the phase-
dicted switching point to about 0.GB,. This is not an exact slip rate reported in the previous section provides a second
treatment of the self-inductance correction both because Egheck on our temperature stability. Fluctuations larger than a
(15) does not reflect the true current distribution and becauséew mK would lead to large variations of the rate which were
we have not solved the Ginzburg-Landau equations with th@ot observed.
self-inductance energy included. Recent theoretical interest in the fluctuation susceptibility
It is perhaps more direct to use the measured transitionf superconducting mesoscopic rings has grown out of ef-
rates and the theoretical prefactor Etf) to compute a mea- forts to understand the susceptibility of normal-metal meso-
sured barrier height, and then to compare this with the prescopic rings. In a pioneering experiment on an array df 10
diction. This is done in Fig. 10. The predicted barrier heightmesoscopic copper rings, e et al?’ observed arh/2e-
at 1.192 K is about a factor of 2 too large, which could beperiod persistent current. Ambegaokar and Eckatiren ad-
accounted for by a saddle-point energy which is 2.5 % toovanced a diagrammatic theory which invoked electron-
large. Uncertainties in the sample parameters alone cannetectron interactions as a possible explanation of the data of
account for this error, because the main uncertainty is in ahevy et al,, and extended their theory to include the behavior
overall factor, which effects the saddle-point and uniform-of superconducting rings abov@,.?® von Oppen and
state energy in the same way. However, the above estimat&iedef® showed that the Ambegaokar and Eckern theory for
suggest that self-field effects may be important, and it is alssuperconductors abovie, (and with T, greater than the cor-
possible that radial variations of the order parameter may beelation energyE.) is equivalent to a theory of thermody-
important. The present agreement seems to be as good as aaamic fluctuations of the Ginzburg-Landau free energy in
be expected within the approximations we have made. Gaussian approximation, and gave improved self-consistent
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Theory. The predicted susceptibility is a factor of 10-50
times smaller than the observed signal. Unlike the phase-slip
rate, this prediction does not depend sensitively on the
sample parameters. Uncertainties in the sample parameters or
calibration factors cannot be used to significantly improve
, , , . ) the agreement. We have extended the von Oppen and Reidel
-5 -1 05 0 05 1 1.5 theory by averaging the free energy over the sample width
¢ (as was done in Sec. lll abovto find corrections to lowest
order inw/2R. We have also used the method of von Oppen
~ — . - — and Reidel to go beyond the Hartree-Fock approximation
1271 K 3 and compute the exact one-dimensional susceptibility in this
o S e s e extended theor}? None of these efforts significantly im-
P e S proves the poor agreement between theory and experiment
AT ; shown in Fig. 11. At the temperatures shown in Fig. 11, the
- o P coherence length is not less than L&, and so there is no
’ 0 ’ ' possibility that the equilibrium fluctuations excite radial
modes which are not included in the one-dimensional theo-
ries. Despite the fact that the susceptibility of the ring below
3 T. is described very well by the Ginzburg-Landau model of
- ) 3 Sec. lll, we conclude that this same model with thermody-
R e namic fluctuations included is unable to describe the fluctua-

ES

R

- 1278 K

dl/d uA)

GLL L L i g

%

¢

.

A
Lot Sl bt

AL o

dud¢ (A)

dU/do UA)

tion susceptibility just abov@, .
. It is conceivable that the effect we see will require an
-5 1 05 0. 05 1 1.5 explanation involving novel physics. However, at least two
¢ conventional explanations should be considered first. One
possibility is that our effect is due to fluctuations of the order
FIG. 12. The flux dependence of the susceptibility just above theyarameter, but that these fluctuations are driven by external
mean-field critical temperature. This is a portion of the data used t¢,gise rather than by thermal fluctuations. In this case, modes
construct Fig. 11. A linear background was subtracted from thq)f the order parameter could be excited more strongly and
data. the fluctuation susceptibility could be larger than predicted

Hartree and Hartree-Fock results for the fluctuation suscegpy the equn_lbrlum theory.. One would have Fo hypothesize
tibility, which eliminated a divergence &, . von Oppen and mean energies for fluctuating modes 10-50 times larger than

Riedel also showed how the exact Ginzburg-Landau partitioff? €quilibrium. [As can be seen from EG20), the equilib-

function for a one-dimensional ring can be recast as a twolUm fluctuation current is proportional to the equipartition
dimensional quantum-mechanics problem, and gave esseRN€r9YKT.] A detailed theory would depend on the spectrum
tially exact solutions for the fluctuation current by solving ©f the fluctuating driving force, which might be different
this new problem numerically. than in equilibrium. We do not favor an explanation along

In the Hartree-Fock approximation the von Oppen anothese lines for two reasons. First, we have not been able

kM LA L Sl L s
$
)
3

Reidel result for the fluctuation current aboVgis to identify a plausible source for the external noise. The
source would have to couple strongly to the sample current

2mkT sin(2mw¢) without significantly heating the sample or other parts of
()=~ B, costi2my)—cod2nd)’ (200 the apparatus. The Josephson oscillations of the SQUID do
. _ _ not seem to be implicated because our signal does not de-

where the self-consistency parameyeis determined by pend upon the bias conditions of the SQUID. Second, the
2 3 . phase-slip data presented in the previous section show that

s_(R _ 1 /(R sinh(27y) 21 the fluctuations of the order parameter bel®wcannot be
yolZ) Y= E = - (2)) . . : .
o\ &/ cosii2my)—coq2m ) excited to energies more than about twice the ambient tem-

rature.
Another possibility is that our description of the system as
a homogeneous ring is not adequate very clos&_ toPer-

The dimensionless parametgy is the condensation energy pe
of one coherence length of the ring, in units of the critical

temperature: . X ; ) ) !
haps variations in the ring material at different points around
H?2 the circumference could lead to a smearing of the apparent
MoHl¢ ..
Eo= T Esw. (22 critical temperature. We do not see any clear way to address
Cc

this hypothesis with the results presented here. With data on
The temperature dependence of these expressions is througtany rings it might be possible to determine if the effect we
the critical fieldH (T) and the coherence leng#(iT). This  see is sample specific, or if it depends on the microstructure
result is for a strictly one-dimensional ring and therefore itof the material. If the effect were found to be sample inde-
gives a periodic equilibrium current. pendent and robust against changes in the microstructure,

The zero-flux susceptibility obtained from the derivative then an explanation based on inhomogeneity would not be
of Eq. (20) is plotted in Fig. 11(curve labeled Fluctuation tenable.
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VI. DISCUSSION

ments, and on the possible existence of a ‘“singly con-
nected” state. Vloeberghst al3! have conducted transport 's
experiments on um diameter aluminum rings with special

attention to the Little-Parks oscillations of the critical tem- I —>
perature as a function of applied flux. They observed anoma- Ly

lous behavior, particularly at low fields, which is not consis- Ly % O) s g >
tent with an equilibrium Ginzburg-Landau description. The

good agreement between our data and an equilibrium de- 7
scription indicates that the features observed by Vloeberghs Ms

et al. are almost certainly nonequilibrium effects. Indeed, the g
Ls

We conclude with a few remarks on previous experi- %

authors suggest that their effect may be related to a resistance
enhancement abovE, observed by Santhanaet al. in alu-
minum wires®? Experiments on the magnetization of a large

array of 12um diameter indium disks in the vicinity of the &~

3.25 K superconducting critical temperature have been re- M

ported by Buissoret al>* An oscillation of the magnetiza-

tion versus flux was observed, with an amplitude much less FIG. 13. Circuit model of the susceptometer device.

than was expected from a prediction based on Ginzburg-
Landau theory. The authors suggested that this behavior mays and Rick Welty for the SQUID amplifier devices. We
be due to degraded material near the outer radius of the diskish to thank Sihan Lin, Art Klittnick, Jinzhong Pang, James
which changes the effective boundary condition. Our datdvlooney, and Patrick Sullivan for their assistance. We are
shows that no such modification of the boundary conditiongrateful for discussions with Daniel Reich and Dragomir
occurs in small aluminum rings. Davidovic. This work was supported by the Office of Naval
Several recent papers have argued that there exists a cld@esearch under N00014-90-J-1891, the National Science
of solutions to the Ginzburg-Landau equations for which theFoundation under DMR-9057426, and the David and Lucile
order parameter is zero at one point along thePackard Foundation.
circumferencé*3*35Such solutions would trade the energy
cost of suppressing the order parameter at a point for the
energy gained by relaxing the fluxoid quantization con-

straint. Berger and Rubenst&frshowed that in uniform one- The calibration constam ;s is defined as the ratio of the
dimensional rings such singly connected states are never glglux induced in the input SQUID loop to the sample current,
bal minima, but in a ring with small variations of the width with zero field current. It can be expressed in terms of a
they could become global minima in a small range of tem-minimum number of model parameters with the help of Fig.
perature and flux. Horanet al?* have argued that even in a 13.
uniform ring these solutions are local mininfgor certain The field coil inductancé.( is coupled through the mu-
values of flux and temperatyrand the system may linger in tual inductanceM to the specimen site or sample hole in-
such a state while making a transition between uniformguctancel,,. The inductances g represent strays in the im-
states. The singly connected state has zero circulating Cumediate vicinity of the specimen site due to the spreading of
rent, so a transition to such a state would cause the suscegurrent at the corners of the hole. Because the field coil is
tibility to switch abruptly to zero(For a ring of finite width,  wrapped around both the specimen site and these strays, the
the susceptibility would be go to a small, but nonzero,mutual inductanceMg is given by Mg=ng(L,+2Lg),
value) No such transitions to a state of near zero susceptiwheren; is the number of turns in the field coil. The sample
bility were observed in the switching data used to producging is coupled to the specimen site through the mutual in-
Fig. 8. If the zero current state does exist, then its lifetime isquctanceM 5. The current ¢ is the current in the field coil,
less than abdul s under our conditions. and the currentg is the sample current. The effective induc-
The major puzzle presented by our results is the anomaanceL’ represents the total inductance seen by the sample
lously large susceptibility observed just abdve We do not  site, which includes the inductance of the other hole,
have any explanation for this signal. We think that we havehe transformer primary, the SQUID inductance coupled
eliminated explanations based on uncertainties in the sampifirough the matching transformer, and various additional
parameters, temperature fluctuations, and the possibility of gtrays. The SQUID flusbs due to the field current or sample
noise-driven effect. We have not ruled out the possibility thatcurrent is proportional to the loop curreht (see Fig. 13
it could be caused by inhomogeneities in the ring. This coulthnd we will express it ads=aL’l’, wherea is a dimen-
be addressed in future experiments which would compare th§ionless coupling constant.
behavior of several nominally similar rings. The ratio of the SQUID flux to the unbalanced field coil
current(in the absence of a samplis then given by

APPENDIX A: CALIBRATION CONSTANT Mg.g
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Meg=Mp ————— a, (A1)
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and similarly the ratio of the SQUID flux to the sample cur-

rent is Grr 4

L/

MR_S:MSW‘FZLS a. (AZ)

The final quantity we need iMr_g, the ratio of the flux
applied to the sample to a balanced field coil curi@mthe
absence of any induced sample currgnts this case the
currentl " is zero, so the flux iy, is ngL | . The fraction of
the flux inLy, which goes through the sample is the fluxip FIG. 14. Effective radial potential for the magnitude of the order
multiplied by the ratioM ¢/L;,. Thus we findM . g=nMg. parameter.
Substituting this result and EGAL) into Eq.(A2) gives Eq.
(2) of the main text. J4(r) 1 d?f

_ al!f+ﬂ/lf3+ f_3_ r_Z d_02:

0. (B6)

APPENDIX B: THEORY OF PHASE-SLIP RATE
' . This obviously has no exact solutions sinteloes not
The mean-field order parameters of the fofraxp(ing) depend orr. Approximate solutions which include the ef-

dern{ed in Sec. Il have u_mform magnitude and u_n!formlyf cts of the finite width can be obtained by averaging over
varying phase. Each solution represents a local minimum %he radius, the same procedure we followed in Sec. Il for the

the free energyfor flux values close enough to the minimum = = . :
points of Eq.(1)]. If there were no thermal fluctuations, these uniform solutions. The result is
solutions would be perfectly stable. Langer and <J2 1 1+e] 1 d2f
Ambegaokal® found the saddle point on the path through —a"f+ B3+ 35— —1n — =
function space between two uniform solutions with different f 2¢ "|1-e]R°d0
values ofn. The energy of this saddle-point solution deter-where as beforee=w/2R, a small parameter. Now let
mines the phase-slip transition rate. Their theory was in strick’=o//¢', B'=p'l€, 3’2:<32>/6’ and x=R#, where
one dimension and for an infinitely long wire. We extend the¢’ =1/2¢ In[(1+€)/(1—¢)]. Equation(B7) then becomes
theory to a ring of finite circumference in a magnetic field,
and we include first corrections for the width of the rifsge ) o3
also Ref. 26. As in Sec. Ill, both self-field effects and radial o't B S5 02 =0, (B8)
variations of the order parameter are neglected.

At a saddle point the free energy is stationary with respect Equation(B8) is of the same form as found by Langer and
to small changes in¥, so that¥ should satisfy the Ambegaokar, and it may be solved by the same method,
Ginzburg-Landau equations, although our case is somewhat more involved because of the
boundary conditions. It may be interpreted as the equation of

=0, (B7)

J'2 d*

ayrt Blo2ut — ( _iv_ . J=0. (B1) motion of a particle moving in an effective radial potential
a*f  dfJy* 1 1 d
We look for solutions of the form - ailarzta a7 BT = g Ve
I=H(Oexdix(0)] ®2 (59
= exdix(0)].
_ with f as the radial coordinate amdblaying the role of time.
The equations then become The conservation of total enerdy reads
P A% [ [1dx e*A\? 1 d*] d[1/df\? utr]=9E_q B10
ot B o v de” 7 ) a7 dx |2 |ax) TYerP)|=q =0 (810
1 d ldy e*A or in integral form
— — | 2= —=>——||=0. (B3)
rf do r do fi f df
. . X= —————— (B11
The second of these equations shows that the current density, f1 V2[E—Uex(f )]
he ,(1 dy e*A\ #he where we have chosdn=f, atx=0. The effective potential
Ir)=—1f (F do- T) =7 ), (B4)  appears as in Fig. 14 fa’ not too large. Periodic motions
which have a chance to satisfy the boundary conditions occur
only depends on the radius. With the substitutions for E<Ugq(fp). The turning pointsf; and f, satisfy
E=Ux(f1) =Ueu(f2) <Uex(fo). A solution may be selected
. 2m*|al , . 2m* by choosing eitheE andJ’ or f; and f,, but only special
=T =z B, (B5  choices will givef and y the correct periodicity.

Following Langer and Ambegaokar we introduce the di-
we obtain mensionless quantities
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) a/ ’ 461’,3 y a/2
f :F u, J'= 27’8,2] , Ezz—ﬂ,g, (812)
and rewrite Eq(B11) as
du
X (B13)

_\/%Juul\/

8
3_ 2+ _ 112
u®—2u“+2&u 27]

3139

7R (B20)

B 1 2 F(’IT \/_)
2a, \/K 2! y .
A second equation can be found by requiring that the

phase be periodic modulom2 To impose this condition we
return to Eq.(B4) for the current

1de e*A\?
o . =14 = —— (B21)
The cubic in the denominator can be factored rde 4
8 Averaging over the width of the ring gives
u3—2u2+2€u—2—7j’2=(u—u0)(u—ul)(u—u2),
d 1 2 e" 2
(B14) (32" =3'2=1* (d—i——,g) - (%) } (B22)
and since the denominator is zero at the turning points we € €
can identify where €'=(1+€)—1/€'. This can be solved fody/dx and
, , integrated around the ring to find the total phase change.
fi:% Uy, fgz% Us. (815  Imposing periodicity then yields

Comparing the coefficients before the same poweruof

yields
Uptustu,=2,

UOU1+ UOU2+ U1U2:2(€, (816)

U0U1U2:2_7 J ,2.

¢ R J/Z €" ¢ 2
27TI']=27T—,+2J 7 T\ 5 dx. (823)
€ 0 f e \R

The integral can be evaluated approximately by expanding
the square root to first or higher order in the small parameter
€'l€', which is proportional ta® when e is small. Using the
measure

du=+2a'(u—ug)(u—uy)(u—uydx, (B24)

We will find that it is simplest to impose the boundary con-gach term can be then expressed in terms of elliptic functions

ditions in terms of new parametera=uy,—u; and
y=(u,—uy)/A. These are related to thes by

2+(2-y)A

UOZT,
2—(1+y)A

U=—"3" . (B17)
2+(2y—1)A

UZZT.

Expressing the denominator in E@®13) in terms ofu,, u,
andug, we get the solution

e 1 fu du
v2a' Jup (u—ug)(u—up)(u—uy)

1 2
= F(y,q),
2’ u—u. (7,9)

whereF(y,q) is an elliptic function of the first kind and

L u—ug Up—Uug
= l = =
y=sin \/uz_ul, q \/uo_ul \Jy. (B19

Two equations will be needed to determifteandy. A
first relation can be found by requiring thét 7 at the turn-
ing pointf,, or equivalently thak= 7R at u=u,. Equation
(B18) then yields

(B18)

of the first, second, or third kinds. With the square root ex-
panded to first order we find

2 ! 2 + V'VU 3‘/3 ()02 n 1
mhe' =27 — € i ———=5 € ,
¢ 33 J 1 o3 @ RZ€ ] +1
(B2Y5)
where
J‘#R 1
udx=—U
0 V2a' "t
1 2up [ T
=——|—=F| =, —2VJAE| =,
2a’ [ VA (ny) W(ZW)
(B26)
and
R 1 1 1 2 T YA )
fo u 2a’ Y 2a VA 127 U W
(B27)

This result gives a second relation betweemndy which
completely specifies the solution. The results given in the
main text were obtained by expanding the square root to
second order, which leads to lengthy expressions.

We still need to find a result for the free energy of the
saddle-point solution. The calculation proceeds as follows:
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o ]

1 — 1 R
=——,[>’J d3r|¢|4=——,BwsJ dxf4,
2 V] 2 —-7R

2

- 1 —
of P+ 5 Blul+

— g f (B29)

a? 1 up udu

S f
V2a' Ju (u=—ug)(u—uy)(u—uy)

=—%2WSJ%[—§JK (2—y)AE g,&)—zA(l—y)F(g,&H
+2JA (U uy) F(%,W)—E g,&)%%%g,&”.

Barrier heights computed from this formula are shown in Figs. 7 and 10.
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