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Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets
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A macroscopic equation of motion for the magnetization of a ferromagnet at elevated temperatures should
contain both transverse and longitudinal relaxation terms and interpolate between the Landau-Lifshitz equation
at low temperatures and the Bloch equation at high temperatures. It is shown that for the classical model where
spin-bath interactions are described by stochastic Langevin fields and spin-spin interactions are treated within
the mean-field approximatiotMFA), such a “Landau-Lifshitz-Bloch’(LLB) equation can be derived exactly
from the Fokker-Planck equation, if the external conditions change slowly enough. For weakly anisotropic
ferromagnets within the MFA the LLB equation can be written in a macroscopic form based on the free-energy
functional interpolating between the Landau free energy fgaand the “micromagnetic” free energy, which
neglects changes of the magnetization magnitiutie at low temperature§S0163-18287)03905-2

[. INTRODUCTION tion of the density-matrix equation with the method similar
to that used in the classical case. A kind of LLB equation

The famous Landau-Lifshitz equatidmyhich is the basis taking into account the spin-spin relaxation was obtained by
of innumerable investigations of magnetically ordered matePlefka®! for a quantum model with long-range “spin-
rials, considers magnetization as a vector of fixed length anblock” interactions.
ignores its longitudinal relaxation. Such an approach is ob- The coefficients in the relaxation terms of such a general
viously unsatisfactory at elevated temperatures since magnéLB equation are nonlinear functions of magnetization itself;
tization is an average over some distribution function and itgshe only application of this equation up to now is that to the
magnitude can change. Alternatively, semiphenomenologicaialculation of the nonlinear mobility of domain wallBW)
“soft-spin” equations of motion for the spin density allow- in rare-earthRE) ferrites garnet$? where the strongly ther-
ing for the longitudinal relaxation and for the influence of the mally disordered spins of the RE sublattice do not interact
bath described by stochastic Langevin terms are known iwith each other and are subject to only the combined influ-
the theory of dynamic critical phenomefid. A phenomeno- ence of the external field and the molecular field acting from
logical deterministic equation of motion for the magnetiza-the iron sublattice. For the simplest one-sublattice weakly
tion of magnetically ordered materials with the longitudinal anisotropic ferromagnetic model beloWw. the dominant
relaxation terms, which is a direct generalization of theterm in the molecular field is the homogeneous exchange, so
Landau-Lifshitz equation, was formulated by Bar'yakffar that the directions of the molecular field and magnetization
and applied to the domain wall dynamics at elevatedhearly coincide. In this case the general LLB equation sim-
temperature$.The Bar'yakhtar equation was conceived for plifies to its particular form similar to the Bar'yakhtar equa-
the temperature range below the Curie pdigt the theory tion. The latter was applied in Refs. 14, 9, 15 to calculate the
does not answer what happens with phenomenological relaxifomain-wall mobility in uniaxial ferromagnets in the whole
ation terms abov@& . and whether the Bloch equation used in temperature range and, in particular, near the phase transition
the theory of EPR and NMR can be recovered in this regionfrom Bloch to linear(Ising-like) walls at someTg<<T( pre-

The simplest nontrivial model, for which the problem of dicted by Bulaevskii and Ginzburg.As this second-order
finding an equation of motion for magnetization in the wholephase transition is accompanied by changing the roles of
range of temperatures can be formulated, is a semiphenortransverse and longitudinal relaxation processes in the DW
enological model considering an isolated classical spin interdynamics, the DW mobility has a deep minimum at
acting with the bath modeled by stochastic Langevin fieldsTg.***This minimum, and thus the DW phase transition,
The spin-spin interactions in this model, which lead to thewas recently observed in dynamic susceptibility experiments
ferromagnetism, can be taken into account on the next stagen Ba and Sr hexaferrité§-#
on the mean-field level. Dynamics of such a spin is described An important dynamical scenario is that when the rate of
by the Fokker-Planck equatioirPE), which can be solved changing of magnetizatiofor of its spatial distributiop
analytically only in limiting cases, in particular, of low and which can be controlled by an external influence, is slow in
high temperatures. Reduction of the FPE using the modelingomparison to the spin-relaxation rate. This small parameter
of the distribution functiof (the accuracy of this procedure makes it possible to solve the Fokker-Planck equation ex-
was shown to be about 7% in most situatiphas led to the actly without making assumptions about the form of the dis-
closed equation of motion for magnetization interpolatingtribution function. For example, calculation of the low-
between the Landau-Lifshitz and Bloch equations at low andrequency imaginary part of the longitudinal susceptibility
high temperatures — the so-called “Landau-Lifshitz-Bloch” leads to the exact analytical expression for the integral relax-
(LLB) equation. The LLB equation was also derived for aation time r;,;, which is defined as the area under the mag-
quantumspin system interacting with a bdthy the reduc- netization relaxation curve after an abrupt infinitesimal
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change of the magnetic fiefd®=2? The quantity ;,; de- The equation of motion for the spin polarizatitthe first

scribes, in particular, the thermoactivation escape rate of finexoment of the distribution function

ferromagnetic particles with a uniaxial anisotropy over the

potential barrier, which is valid, in contrast to the well-

known Brown’s solutiorf® in the whole temperature range.

Such a situation is also characteristic for the dynamics of . .

domain walls, whose velocity depends on the amplitude oPf an assembly of magnetic atoms can be derived from Eq.

the driving field and can be kept whatever small. In this casé2-3 and has the form

the Fokker-Planck equation can be solved exactly, which _

leads to the exact form of the LLB equation, if the spin-spin m=y[mXH]—Aym— yN{[sX[sxH]]) (2.6

interactions are considered within the mean-field approxima-

tion (MFA) Derivation of this exact “slow” form of the [Cf Eq (21)], WhereAN is the characteristic diffusional re-

LLB equation is the main purpose of this article. Iagation rate or, for the tht_armoactivation escape problem, the
The main part of the paper is organized as follows. In SecNeel attempt frequency given by

Il the Fokker-Planck equation for a classical spin, its low-

and high-temperature solutions, and the approximate reduc- An=7y'=2y\T/ . 2.7

tion of the FPE to the Landau-Lifshitz-Bloch equation is ]

outlined. In Sec. Ill the FPE is exactly solved in the slow- It can be seen that E¢2.6) is not closed but coupled to the

motion case and the slow LLB equation is derived. In SecSecond moments of the distribution functiafs;s;), in its

IV the simplified form of the latter for ferromagnets below last term. The behavior of Eq2.6) is determined by the

and neafT is worked out. In Sec. V further possible appli- feduced fieldg, given by

cations of the method and some unsolved problems are dis-

cussed. &o=|&

mz<s>=f d®NNf(N,t) (2.5

v &o=uoH/T. (2.8

For £,>1 (low temperaturesthe second term in E(2.6)

can be neglected and the last term decouples for distribution
We shall describe a magnetic atom as a classical spifnctions localized about some directiofg;s;))=m;m;. In

vectors of a unit length. The magnetic and mechanical mo-this case the Landau-Lifshitz equation of the ty@el) for

ments of the atom are given y= uosandL = yues, where M without the stochastic field is recovered. In the high-

v is the gyromagnetic ratio. In the case of a weak coupling€mperature casg,<1, the second term of E¢2.6) domi-

with the bath the dynamics of the vectocan be described hates over the last one, which can be neglected. Here one

with the help of the stochastic Landau-Lifshitz equation ~ gets the equation of motion fan with the Bloch relaxation
term.

s=y[sX(H+O)]— yA[sX[sXH]] (2.1) In the intermediate regiogo~1, where the first-moment
equation(2.6) is not closed, the resonance and relaxational
with A<1, where correlators of the, 3=X,y,z components behavior of the FPE2.3) is not described by Lorentz and
of the Langevin fieldf(t) are given by Debye curves, and the deviations from the latter reach 7% at
£,~3 8 Neglecting these features, one can obtaiisatated
equation of motion for the spin polarization of an assembly

Il. THE FOKKER-PLANCK AND LLB EQUATIONS

2\T
(La(4t )>:'ylu,o Sapd(t=1"). 2.2 of msagnetic atoms choosing the distribution function in a
form
The Fokker-Planck equation corresponding to €ql) is
formulated for the distribution function f(N,t) exd &t)N] sinhé
=(8(N—9(t))) on the sphergéN|=1, where the average is f(N,O)= zZ8 0 T 2.9

taken over the realizations ¢f Differentiatingf overt with

the use of Eq(2.1) and calculating the right part with the [cf. Egs.(2.4) and (2.8)], where &(t) is chosen so that the

methods of stochastic theofgee the Appendijx one comes first moment equatiof2.6) is satisfied. Calculating the terms

to the Fokker-Planck equatidn of Eq. (2.6) with the help of Eq.(2.9), one arrive$ at the
LLB equation for the nonequilibrium reduced fiejt)

of J
E+mky[NXH]—7)\[NX[NXH]]

) X[ &EX
E= y[fXH]—rl( 1- %) e Bl o
YAT J
+ ——|NX|NX— Hfzo. (2.3 ) . .
Mo oN with the longitudinal and transverse relaxation rates
One can easily see that the distribution function B(£) A £
rl:AN ] ’ F2:_N< _1), (21])
fo(N)cexd —H(N)/T], H(S)=—puoHs (2.4 £B'(¢) 2 \B(§)

satisfies Eq(2.3) at an equilibrium. For the small coupling to where Ay is given by EQq.(2.7), B(§)=cothé—1/¢ is the
the bath,\ <1, Eqg. (2.3 coincides with the Fokker-Planck Langevin function andB’(£)=dB(¢)/dé. The asymptotic
equation derived by Browf? forms of I'y andI', are given by
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2, For small deviations from equilibrium, whegg= &, and,
An| 1+ 7£8 ) é<1 accordingly, m=my=B(&,) & /&, one can put the LLB

r= (2.12  equation(2.16 [or, more conveniently, directly Eq2.10]

1 into the form
Anél1— =], &1,
”g( 5)

m=y[mx H]—rl( 1— m—r:]ro)m—l“z[mx[mx mo]]

and T mZ
(2.17
AN( 1+ igZ), <1 where the relaxation frequenci€s andI’, are functions of
o= 10 21 &, A kind of LLB equation similar to Eq(2.17 was ob-
=1 1 1 (2.13 tained by Gekhet al,** who assumed, for the calculation of
EAN§ 1+ 2/ &1, the linear transverse dynamic susceptibility, instead of

Eq. (2.9 a distribution function of the formf(N,t)

The relaxation rates of such a type also appear as a result 6ffo(N)[1+ (t)N], wheref, is given by Eq.(2.4) and «
calculation of the high-frequency longitudinal susceptibility Corresponds t&— &, in our notations. Although Geklet al.
and the far-from-resonance transverse drighe quantity ~claimed that “the single-moment approximation is permis-
I', is also proportional to the “effective eigenvalueXy of sible for small deylatlons from equilibrium,” Eq2.17) is in
Ref. 19. One can see that the equilibrium solution of Eqfact only approximate, as well as the more general Eq.

(2.10 is €= &,. The nonequilibrium spin polarizatiom is (2.16. The latter, in contrast, can be applied and has a rather
given by good accuracy in situations where deviations from equilib-

rium are large, as was checked in Ref. 8. In Sec. Il we will
m=mé&é, m=B(&). 21 consider the solution of the FPR.3) for slowly varying
g¢ (&) (2.19 field H(t). In this case the deviations from the instantaneous
The LLB equation forg, Eq. (2.10, can be written in the €quilibrium state are small and the FPE can be solved ex-
alternative equivalent form actly without assumptions about the form of the distribution
function f(N,1).

E= Y[ EXH]-T (- &) — (- Fl)%@. I THE “SLOW” LLB EQUATION

(2.19 If the magnetic fieldH slowly changes its magnitude and
direction, the solution of the Fokker-Planck equati@id)
nblightly deviates from the instantaneous equilibrium one and
can be searched for in the form

Here it can be seen that in the high-temperature regio
£,60<<1, whereB(§)=¢/3 andI'1=I",=Ay, the Landau-
Lifshitz double-vector-product relaxation term becomes

small and the Bloch equation is recovered. On the other exd &(t)N]
hand, at low temperatures, wheéné,>1, the magnitude of f(N,t)= T2
the vectorm in Eq. (2.14 saturates in most situations at 0
m=B(§)=1, and the longitudinal relaxation term in Eqg. where &(t)=uH(t)/T. The correction functionQ(N,t)
(2.10 no longer plays a role. Here the usual Landau-Lifshitz, ||4| and, additionally, it depends slowly on time, so that

equation IS recovered. ‘45'”9 Ec.ﬂ'l.“) one can derive the Qo<|H|2. Neglecting this small term, one obtains from Eg.
LLB equation for the spin polarizatiom itself. The result (2.3 the equation foQ having the form

can be written as

[1+Q(N,t)], Q<1, (3.1

aQ (a Q]| .

rh:')’[mXH]—AN(l—r:]—é;O)m [N><§o]m+)\ m+g0 N X Nxm = 7o(Me—N) &,
Sllalialie ] =B(&o)y 3.2

—o 1_? [mx[rr:xH]] 2,16 mo=B({o)p; 3.2

where 7o=uq/(yT). One can see that in leading order the
[cf. Egs.(2.1) and(2.6)], where&é= &(m) is determined im-  correctionQ(N,t) is determined by the instantaneous values
plicitly by the relationm=B(&). Note that here at low tem- of the magnetic fieldH(t) and its first derivativeH. The
peratures£>1, the coefficient before the transverse relax-right-hand part of this equation can be separated into the
ation term goes toyh, whereas the longitudinal one is terms describing the temporal changes of the magnitude and
nonessential, ifn is saturated. At high temperaturegsg1,  of the direction ofH as
the relaxation term in Eq(2.16 acquires the Bloch form
An(m—mg) with my=£&,/3 [see also Eq2.195]. The quan-
tum generalization of the classical LLB equation written
above was given in Ref. 9. The latter was applied in Ref. 12
to study the nonlinear dynamics of the RE sublattice of rarehere

earth ferrites garnets near the magnetization compensation ) )
point. Q=[x &)/ & (3.4

(Mmo—N)&=N[&*x Q]+

N& | .
mo— g_i:o} %o, (3.3
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is the precession frequency of the vecfgr In the spherical Now, the functionQ(N,t) having been determined, one
coordinate system withz axis along & Egq. (3.2 for can calculate the spin polarization using Egs.(2.5 and
Q(x,¢), wherex=cod, takes on the form (3.1). Returning to vector designations, one comes to the
result
ﬁQH\ i + 1-x2 i + >
05, ox T80/ (IX) et e 5,7 Q &B' HH\|H
. m=B&)| | 1Y B R H
= 7oéoV1—X°[Qycosp—Q,sing]+ 7o(X—Mp) &0, "
(3.5 vyH [HXH] T, [HX[HXH]]
TOMIFTZ T HE TR i !
where (), and (), are x andy components of the vector Y 2 Y

Q. (3.13
The solution of the linear differential equati@8.5) is a i , ,
sum of two contributions induced by the transverse and lonWherel'; is the transverse relaxation rate given by E4l1)

gitudinal inhomogeneous term®=Q, +Q;. Using the andI'y i is the inverse of the integral longitudinal relaxation

substitution time 7iny,
Q.=Q,co%+Qysine, Q.=Q,+iQy, (3.6 L S
one comes to the equation Tsin AnéosinheoB’ (o)
1 egox e*éox 2
ix 1 xf dx x—cothég+ =——| ,
Q++§—{ g 0| (A=X) — 752 Q+ SRR o Sinke,
0
(3.19
=700 V1—X2, (3.7

which is determined as the area under the magnetization re-
where () =0, +i€Q,. This equation cannot, in general, be laxation curve after an abrupt infinitesimal change of the
solved analytically, but the latter is possible in the typicallongitudinal magnetic field:*? Equation(3.13 describes the
case of the weak coupling to the battx<1. ForN/§,<1  lagging of the spin polarizatiom from its quasiequilibrium
one can easily find the solution iteratively, which yields  value my(t) of Eq. (3.2), which is determined by the small

derivativeH(t). The asymptotic forms afy inein Eq.(3.19

ix
Q =70, V1—x? R NCAR IR R read

0
On the other hand, in the high-temperature region, where Al 1+ lgé), £o<l
£0<<1, one can negled, in the round brackets in E¢3.7), r. = 9 31
after which Eq.(3.7) can be analytically solved to yield Lint= 1 (3.19

14 2iN/¢ ANEO(l_f_)’ o

+2iN &g 0
=700 1 X . .
Q+ =70}, X 1+ (2N &)? 3.9 Comparing Egs.(3.15 and (2.12 one can see that

. . o [>Ty . The relative deviations=I",/I'; j,,— 1 attains a
These two solutions overlap in the regian<é,<1, and yalue 5~0.07 atgy~3 8

thus they can be sewn together_m the whole range ol rpe next problem is to write down the equation of motion
temperatures into the formula, which can be; obtained bXfor m, which has the solutiof3.13. It is especially impor-
replacing the numerator of the fraction 3.9 by tant if the spin-spin interactions are taken into account within

1+ (IM€0) (21 £0X). . he MFA (see the next sectionin thi is repl
The equation foQ(x) can be written as :Ehg moIe((:i(Iaaertfieeld-ieMFtAsggatt)ainir:g; ifé? asndegti?:ii?)?y
,.dQy 4 . is in fact a differential equation fam, which should be still
(1-x )WZAN (x—=mg)ép.  (3.10  simplified. It can be done differentiating E@.13 over time
and neglecting terms of ordef? coming from the correction
Yerms withH in Eq. (3.13. This leads to

&"‘fo

It can be solved in two steps with the help of the substitutio
P(x)E(l—xz)dQH /dx. First, integrating Eq(3.10 one gets

% o box N )(HH)H_B )[HX[HXH]] (3.16
P(X) = —| Xx—cothég+ =——1|. (3.11 =&B"(§0) 3 (&0 H3 s
Anéo sinhg,
Then,Qy is given by Now H in this relation should be expressed througtwith
the help of Eq(3.13), which after some vector algebra leads
x dx to the “slow” LLB equation
Q(x)= f_lmP(X’HC, (3.12

[mX[mXmo]]

. mmy
where the constart is determined from the normalization y[mXH]_FL‘”t( 1= )m—l“z m? ’
condition for the distribution functio3.1). (3.17)



3054 D. A. GARANIN 55

wheremy is given by Eq.(3.2) and which is the refinement diagram technique for classical spin systef®ese, e.g., Ref.
of Eqg. (2.17 in the slow-motion situation. The quantities 25), which has proved to be rather efficient for description of
I'; of Eq.(2.1D andI'y ;, of Eq. (3.14) have the same lead- their static properties. Here we resort to the mean-field ap-
ing high- and low-temperature asymptotes, and, as was sajgfoximation with respect to spin-spin interactions, which
above, they differ by no more than 7% in the whole range ofmeans, however, dropping their contribution into the relax-
temperatures. The same order of magnitude also characteation rates. In MFA the distribution function of the system
izes the difference between the Debye one-relaxator form of4.4) is multiplicative, and one can use the distribution func-
the longitudinal dynamic susceptibility(w) following  tionsf; for each spin on the site which satisfy the Fokker-
from Eq.(2.17 and the actual form of(w) following from  Planck equatiori2.3) with H=H"", whereH"™ is given
the solition of the exact Fokker-Planck equati@3) at in- by Eq. (4.3) with the replacemeng=m;=(s). Solution of
termediate temperatur@dt should be noted that in the fast- such mean-field FPE’s similar to that of Sec. Il or Sec. Il
motion situations Eq(2.17) is better than Eq(3.17), since it leads to the set of coupled LLB equations fon;,

yields the exact leadingimaginary term of the high- i=1,2,... N of the type(2.16 in a general nonlinear situ-
frequency expansion QtH(w).8 ation or Eq.(3.17 for slow motions. The static solution of
these LLB equations satisfies the inhomogeneous Curie-
IV. LLB EQUATION FOR FERROMAGNETS Weiss equation,
For definiteness we consider the classical ferromagnetic & woHMA
model with the biaxially anisotropic exchange interaction m; = B(&’i)g_o-' &i=—F 4.7
I

He=— 1S Hig— EE 3 (DeSiSyi + TySyiSyi+ .15, ) which describes within the MFA both the homogeneous state
— Moz ST 5 T xSxiSxj T MySyiSyj T S2iz)) and such configurations as domain walls with account of
(4.1  thermal effectgsee, e.g., Ref. 26 and references therein

. - For the most of ferromagnetic substances the small-
where n,<ny<1 are the anisotropy coefficients. The dy-

. Y , ) . . . i ey, ,=1— <1, i ized. i
namics of this model interacting with the bath is descrlbem"’lnISOtrOpy case, 1.ewyy L Txy Lis r_eah_zed In th's
. 1 . case the spatial inhomogeneity of magnetization at a distance
by the stochastic Landau-Lifshitz equation

of the lattice spacing is small, and one can use the continu-
: ous approximation. ForM™ the latter means
s=ANSX(Hi ot &) 1= NS X[sXHi ] (4.2 i

[cf. Eq.(2.1)], where{; are postulated to be uncorrelated on MFA/ -~ , _ Jo
different lattice sites, and HTA(N) =He+Herr, HE_,u_Om‘
1 dH 1 Jo
i,tot=—ﬂ—O£:Hi+M—O; Jij (St mySyitss) éﬁ=H+%[aAm—77>’<mx— 77)’/my], (4.8

4.3

is the total field acting on a given spin at the sitevhich
depends on the orientation of spins on the neighboring sit
j. In EQ. (4.3 s,j=s,j€,, a=X,Y,z, ande, are the orts of
the Descarte coordinate system.

The Fokker-Planck equation for the distribution function

where J, is the zero Fourier component of the exchange
interaction, A is the Laplace operator, and is a lattice-
e8ependent constar{for the simple cubic Iatticea=a(2,/6,
wherea, is the lattice spacing The most important for fer-
romagnets is the case of the strong homogeneous exchange
field, |[Hg|>|Hlq4|, which is realized belowT = (1/3)J,,

N where there is a spontaneous magnetization, and also in the
frol {N;j}, 1) = < IT sN, —s(t))> (4.4  region just abov@ ¢, where the longitudinal susceptibility is

i=1 ¢ large. As in this case the external figh{t) that can drive
the system off the equilibrium is a relatively small quantity,
one can use Eq2.17) [or, for slow motions, Eq(3.17)] and
expandmgy=B(BuoH"A)YHMFAIHMFA “where B=1/T, up

of the whole system consisting #f spins can be derived in
the same way as E@2.3) and has the form

f ot J to the first order irtH 4. This leads to the equation
) m[ YN XH; o] = YALNDX [N X H o]
v SISO )\(1—B/m mH
AT P m=y[MXHeg] = yAg BB ™
+ — N|>< NIXW ftot=0. (45)
#o M [mX [mx Hgl]
One can check that the static solution of this equation is T Y2 m? ' (4.9
fro o {Ni}) < ex —H({N;})/T], (4.6 whereB=B(mpJy),
where? is given by Eq.(4.1). Solving Eq.(4.5) is a formi- T T
dable task that goes beyond the scope of this paper. It is in >\1=2?\J—0, 7\2=?\( 1- z) (4.10

any case not simpler than calculating averages with the dis-
tribution function(4.6) at an equilibrium and requires appli- if Eq. (2.17) was used, and the same wiXq=\ 11"y j,/I"y
cation of some kind of many-body perturbation theory, as thdor the “slow” LLB equation (3.17. The difference
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1-B/min Eq. (4.9 is a small quantity proportional to the (VM)ZE(VMX)2+(VMy)2+(VMZ)2, and F, is the equi-
deviation from the equilibrium. It can be further simplified to librium free energy in the absence of anisotropy and mag-
netic field. The direct derivation of this free energy from the

i 12_ T<T mean-field theory is tricky and will be presented elsewhere.
1-B/m | 2y \mi ) ¢ Equation (4.19 provides a link between the “micro-
BB 30/3 (410 magnetics,™?” which ignores changes of the magnetization
—(—mz—e), le|<1, magnitude |[M|, and the Landau theory of phase
Mo\ transitions2®2°which is a limiting form of the MFA pretend-
wheree=1-T/T., m, is the equilibrium spin-polarization ing to be valid only in the vicinity ofTc where the order
satisfyingme=B(m,BJ,), and parameteM (r) is small. In fact, for weakly anisotropic sys-
tems in a magnetic field smaller than the homogeneous ex-
- odm ug B'BJg change fieldHg, the actual small quantity, which remains
X”:<7_H:J_om (412 gmall in the whole temperature range, is ndf(r), but

. . o - rather the differencé1?(r)—M3, whereM, is the equilib-
is the spin-polarization susceptibility, calculated for yjym magnetization in the absence of anisotropy and mag-
m=m,. Using B(¢)=(1/3)¢~(1/45)¢°+--- and m; et field. Since in the MFA neafc one hasMZ2xy; !
=(5/3)e nearT¢, one can check that the two expressions in e=1—T/T¢, the last term of Eq(4.19 takes on the Lan-
(4.11) overlap in this region. ~ dau form AM2+BM* with A=—€A,, and Ay,B=const.
The last step is to rewrite E¢4.9) for the macroscopic  This shows, further, that E¢4.19 can be continued into the
magnetizationM = y.om/vo, whereuy is the unit-cell vol-  region T>T, as the usual Landau theory. The free energy
ume. This leads to the final result Eq. (4.19 can be brought into the “micromagnetic” form by
(MH )M [MX[M X He]] g:]rgdcl;cr:nt%ertiadenr:fil%netlzatlon direction vecte=M/M.

M=9[MXHgq]+L;

M2 2 MZ ’
@13 BV N NS 42
wherelL; andL, are the longitudinal and transverse kinetic 2xxy Y xyVxy: Y 2xxy (4.20
coefficients, .
whereK, , are the anisotropy constants.
Lio=YMeasn, a5 N o/Me, (4.14
a, and a4 are the corresponding Gilbert damping param- V. DISCUSSION
eters, and the effective field¢y is given by In this paper several forms of the Landau-Lifshitz-Bloch
2 (LLB) equation of motion for a single classical spin interact-
He=H+ iAM _ iM _ iM _ i(M__ 1) M ing with the bath as well as for classical ferromagnets within
¢ 3 X oxy Y2y Mg the MFA have been obtained. These LLB equations are ap-

(4.19 plicable for all temperatures and contain both transverse and
longitudinal relaxation terms. Theonlinear response of a
[cf. Eq. (4.8)]. In Eq. (4.15 single spin to the arbitrary changing magnetic fiel¢t) is

1 aly MS the most accurately described by the nonlinear LLB equation
Z=W. =, (4.16  (2.16. For slowly varying H(t) the exact “slow” LLB
Gd d vo equation(3.17 containing the integral longitudinal relax-

qq and W, are the characteristic dipolar wave number anc@tion time Eq.(3.14 can be used. This case is the most
dipolar energyad, is the second moment of the exchange'mportant one for the domain-wall dynamics. For ferromag-

interaction, and the susceptibilities are given by nets within the MFA the magnetic field in the LLB equa-
tion should be replaced Y™™, which is given by Eq(4.3)
Wy B’BJ, wy 1 with s=m;=(s) in a general case or by E¢.9), if the

XHZE m, Xx,y:xm- (4.17 continuous approximation is applicable. If, additionally, in
g. (4.8) the homogeneous exchange fiéld is dominant,
The effective fieldH of EQ. (4.15 can be written as a which is typical for ferromagnets below and near above
variational derivative Tc, the LLB equation reduces to the for@d.13 with Egs.
(4.18 and (4.19. Equation(4.13 could be also written,
without specifying the form of kinetic coefficients, , and
that of the free energy E@4.19, from general arguments. It
is very close to the phenomenological Baryakhtar
equatior® which contains an additional relaxation term pro-
portional toAH 4. This term, whose microscopic origin is

SF
Heﬁ(r)=—5M(r), (4.18

whereF is the MFA free energy of a ferromagnet,

|:=|:0+J' dr( —HM + iZ(VM)ZJr 1 M2+ iMf, the spin-spin interaction or the correlation of the Langevin
2qq 2Xx 2xy fields & in Eq. (4.2 on different lattice sites#j, was
1 shown! however, to yield a contribution into the domain-
+ _2_(M2_M§)2], (4.19  wall dynamics, which is negligible in comparison to that of
8Mex| the longitudinal relaxation term in E¢4.13.



3056 D. A. GARANIN 55

The quantum generalization of the nonlinear LLB equa- 1 1
tion (2.16), which contains additional relaxation terms of a HALn]= gex;{— %a dr?(7)
different symmetry, was derived in Ref. 9 by the approxi- ¢ o
mate solution of the density matrix equation for a single spinwhere Z,= [D{F is the noise partition function/[D¢ de-
interacting with an idealized phonon bath, which is based omotes functional integration over realizations &fr) and
choosing the distribution function of the type similar to Eq. a=2AT/(yuo). With the help of Eq.(A1) the average of
(2.9). In the classical limit the density-matrix equation goesany noise functionald[£] can be written as
over to the FPE and, accordingly, the quantum LLB simpli-
fies to EqQ.(2.16 with the microscopically determined bath-
coupling parametek. For ferromagnets with the dominant <A[§]>§:f DLALL] AL (A2)
homogeneous exchange interaction the quantum LLB equa- . . . .
tion simplifies to the same macroscopic foi@13. The  With the use of the obvious identity

o

: (A1)

main result of the present paper — the “slow” LLB equa- 5¢.(7)
tion (3.17 — can be obtained in the quantum case, too, by a 2% Sapd(T—1), (A3)
perturbative solution of the density-matrix equation for a 6¢p(1)

slowly changing magnetic field, which is similar to the deri- yne can calculate variations A ] of Eq. (AL):
vation in Sec. lll. The final result can be, however, obtained

by replacingl’;=1"; jn= Ti;tl in the longitudinal relaxation SH L]

term. The analytical expression fBy ;. in the quantum case PACEE 3 4O,
without single-site anisotropy was already given in Ref. 9.

Very recently it was generalized for the anisotropic case to S AL

describe the thermoactivation escape rate of quantum spin——————~=

1 1
?ga(t)gﬁ(t’)_ a(salgé(t_t,):|f[§],

The most serious problem by the derivation of the LLB (A4)
equation for ferromagnets, that has not been solved yet, istc. Since for alh one has
taking into account the spin-spin interactions. This is a rather
difficult task, since one should consider the FR@E) for the S"F ]
i | i i : D¢ =0, (A
whole system, which describes all possible static and dy 8, (1) 8¢ z(t2)"'5§ (ty)
al o O(n

namic spin correlations. Even at an equilibrium, where the
solution of the FPEA4.5) is known and given by Eq4.6),  the functional integration of EqA4) leads to({,(t))=0
one faces the problem of a phase transition in a many-bodgnd Eq.(2.2). Further, one can show that all averages of an
system. Calculation of spin-spin contributions into the longi-odd number off components are zero and those of an even
tudinal and transverse kinetic coefficieritg andL, in the  numbern>2 of {'s decay pairwise and can be expressed
LLB equation for ferromagnets, E4.13, goes beyond the through the pair average E@Q.2), i.e., the statistics of the

scope of this paper and is planned for the future. random field{(t) is Gaussian.
The distribution function of spin$§ is determined as
ACKNOWLEDGMENTS f(N,)=(m(t,[Z])),, 7(L[{)=6(N=-s(t)). (A6)

The author thanks Hartwig Schmidt for valuable discus-The time derivative of can be calculated using
sions. The financial support of Deutsche Forschungsgemein-
schaft under Contract No. Schm 398/5-1 is gratefully ac- - om.
w=——=5 (A7)
knowledged. N

and the equation of motio(2.1), which yields

APPENDIX: DERIVATION OF THE FOKKER-PLANCK
EQUATION

of J
==~ I VINXHIf = yA[NX[NXH]]f

Here the derivation of the Fokker-Planck equati@r8) is
presented, which is more direct and simple than the original +yINXG) m(t,[ED) 1} (A8)

3 . .
one by Browrd® and which uses more advanced stochasticrnen the averagé{(t) =(t,[£])), can be transformed with

methods ~ applied, in particula;r_,4 in  the dynamical ihe yse of the first of Eq€A4) and integration by parts,
renormalization-group(RG) theory“™ The RG consider-
oFlLl <57T(t,[§])>

ations start, however, with “soft-spin” models with the for-

mal Langevinsources(i.e., the inhomogeneous terms in the (&(t)7(t,[£])),= —af D& (t,[L]) PO
stochastic differential equations for the spin densityhich
cannot be interpreted as randamagnetic fieldsacting on am 5sp(t,[L])
spins. For our purposes, we will derive the FPE for magnetic == <5T W> X
systems with the methods of Refs. 2 and 4 but starting from A “
the more realistic stochastic Landau-Lifshitz equatidri). = wheree, with a=x,y,z are the orts of the Descarte coordi-
At first we introduce the probability distribution of the ran- nate system and summation over componentg is im-
dom Gaussian noisé& plied. The variational derivativésg/5{, can be calculated,

(A9)
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if one writes down the formal solution of the stochastic
Landau-Lifshitz equatiort2.1),

t
sp(t) = yﬁodt,eﬁyasy(t,)[Ha(t,)+ga(t,)]+'”l

FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH ...
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For t=t’' the above calculation does not yield a definite
value of 8s;/6¢, , but with the help of the usual arguments
based on the regularization éffunctiond the latter can be
found to be (1/2)e,;z,s,(t). Now Eg. (A9) can be finally
written in the form

(A10)
a of
whereeg,,,, is the antisymmetric unit tensor. One can see that (g(t)qr(t,[g]»g:%[ Nxﬁ—N}. (A12)
5sp(t,[2]) _ Y€4yaS,(1"), t'<t (A1) Adopting it in Eq. (A8), one comes to the Fokker-Planck
8L, (1) 0, t'>t. equation(2.3).
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