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Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets

D. A. Garanin*
I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstrasse 9, D-20355 Hamburg, Germany

~Received 9 July 1996!

A macroscopic equation of motion for the magnetization of a ferromagnet at elevated temperatures should
contain both transverse and longitudinal relaxation terms and interpolate between the Landau-Lifshitz equation
at low temperatures and the Bloch equation at high temperatures. It is shown that for the classical model where
spin-bath interactions are described by stochastic Langevin fields and spin-spin interactions are treated within
the mean-field approximation~MFA!, such a ‘‘Landau-Lifshitz-Bloch’’~LLB ! equation can be derived exactly
from the Fokker-Planck equation, if the external conditions change slowly enough. For weakly anisotropic
ferromagnets within the MFA the LLB equation can be written in a macroscopic form based on the free-energy
functional interpolating between the Landau free energy nearTC and the ‘‘micromagnetic’’ free energy, which
neglects changes of the magnetization magnitudeuM u, at low temperatures.@S0163-1829~97!03905-2#
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I. INTRODUCTION

The famous Landau-Lifshitz equation,1 which is the basis
of innumerable investigations of magnetically ordered ma
rials, considers magnetization as a vector of fixed length
ignores its longitudinal relaxation. Such an approach is
viously unsatisfactory at elevated temperatures since ma
tization is an average over some distribution function and
magnitude can change. Alternatively, semiphenomenolog
‘‘soft-spin’’ equations of motion for the spin density allow
ing for the longitudinal relaxation and for the influence of t
bath described by stochastic Langevin terms are known
the theory of dynamic critical phenomena.2–4 A phenomeno-
logical deterministic equation of motion for the magnetiz
tion of magnetically ordered materials with the longitudin
relaxation terms, which is a direct generalization of t
Landau-Lifshitz equation, was formulated by Bar’yakhtar5,6

and applied to the domain wall dynamics at eleva
temperatures.7 The Bar’yakhtar equation was conceived f
the temperature range below the Curie pointTC ; the theory
does not answer what happens with phenomenological re
ation terms aboveTC and whether the Bloch equation used
the theory of EPR and NMR can be recovered in this regi

The simplest nontrivial model, for which the problem
finding an equation of motion for magnetization in the who
range of temperatures can be formulated, is a semiphen
enological model considering an isolated classical spin in
acting with the bath modeled by stochastic Langevin fiel
The spin-spin interactions in this model, which lead to t
ferromagnetism, can be taken into account on the next s
on the mean-field level. Dynamics of such a spin is descri
by the Fokker-Planck equation~FPE!, which can be solved
analytically only in limiting cases, in particular, of low an
high temperatures. Reduction of the FPE using the mode
of the distribution function8 ~the accuracy of this procedur
was shown to be about 7% in most situations! has led to the
closed equation of motion for magnetization interpolati
between the Landau-Lifshitz and Bloch equations at low a
high temperatures — the so-called ‘‘Landau-Lifshitz-Bloch
~LLB ! equation. The LLB equation was also derived for
quantumspin system interacting with a bath9 by the reduc-
550163-1829/97/55~5!/3050~8!/$10.00
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tion of the density-matrix equation with the method simil
to that used in the classical case. A kind of LLB equati
taking into account the spin-spin relaxation was obtained
Plefka10,11 for a quantum model with long-range ‘‘spin
block’’ interactions.

The coefficients in the relaxation terms of such a gene
LLB equation are nonlinear functions of magnetization itse
the only application of this equation up to now is that to t
calculation of the nonlinear mobility of domain walls~DW!
in rare-earth~RE! ferrites garnets,12 where the strongly ther-
mally disordered spins of the RE sublattice do not inter
with each other and are subject to only the combined in
ence of the external field and the molecular field acting fr
the iron sublattice. For the simplest one-sublattice wea
anisotropic ferromagnetic model belowTC the dominant
term in the molecular field is the homogeneous exchange
that the directions of the molecular field and magnetizat
nearly coincide. In this case the general LLB equation s
plifies to its particular form similar to the Bar’yakhtar equ
tion. The latter was applied in Refs. 14, 9, 15 to calculate
domain-wall mobility in uniaxial ferromagnets in the who
temperature range and, in particular, near the phase trans
from Bloch to linear~Ising-like! walls at someTB,TC pre-
dicted by Bulaevskii and Ginzburg.13 As this second-order
phase transition is accompanied by changing the roles
transverse and longitudinal relaxation processes in the
dynamics, the DW mobility has a deep minimum
TB .

14,9,15This minimum, and thus the DW phase transitio
was recently observed in dynamic susceptibility experime
on Ba and Sr hexaferrites.16–18

An important dynamical scenario is that when the rate
changing of magnetization~or of its spatial distribution!,
which can be controlled by an external influence, is slow
comparison to the spin-relaxation rate. This small param
makes it possible to solve the Fokker-Planck equation
actly without making assumptions about the form of the d
tribution function. For example, calculation of the low
frequency imaginary part of the longitudinal susceptibil
leads to the exact analytical expression for the integral re
ation timet int , which is defined as the area under the ma
netization relaxation curve after an abrupt infinitesim
3050 © 1997 The American Physical Society
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55 3051FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH . . .
change of the magnetic field.8,19–22 The quantity t int de-
scribes, in particular, the thermoactivation escape rate of
ferromagnetic particles with a uniaxial anisotropy over t
potential barrier, which is valid, in contrast to the we
known Brown’s solution,23 in the whole temperature range
Such a situation is also characteristic for the dynamics
domain walls, whose velocity depends on the amplitude
the driving field and can be kept whatever small. In this c
the Fokker-Planck equation can be solved exactly, wh
leads to the exact form of the LLB equation, if the spin-sp
interactions are considered within the mean-field approxim
tion ~MFA!. Derivation of this exact ‘‘slow’’ form of the
LLB equation is the main purpose of this article.

The main part of the paper is organized as follows. In S
II the Fokker-Planck equation for a classical spin, its lo
and high-temperature solutions, and the approximate re
tion of the FPE to the Landau-Lifshitz-Bloch equation
outlined. In Sec. III the FPE is exactly solved in the slo
motion case and the slow LLB equation is derived. In S
IV the simplified form of the latter for ferromagnets belo
and nearTC is worked out. In Sec. V further possible app
cations of the method and some unsolved problems are
cussed.

II. THE FOKKER-PLANCK AND LLB EQUATIONS

We shall describe a magnetic atom as a classical
vectors of a unit length. The magnetic and mechanical m
ments of the atom are given bym5m0sandL5gm0s, where
g is the gyromagnetic ratio. In the case of a weak coupl
with the bath the dynamics of the vectors can be described
with the help of the stochastic Landau-Lifshitz equation

ṡ5g@s3~H1z!#2gl@s3@s3H## ~2.1!

with l!1, where correlators of thea,b5x,y,z components
of the Langevin fieldz(t) are given by

^za~ t !zb~ t8!&5
2lT

gm0
dabd~ t2t8!. ~2.2!

The Fokker-Planck equation corresponding to Eq.~2.1! is
formulated for the distribution function f (N,t)
5^d„N2s(t)…& on the sphereuNu51, where the average i
taken over the realizations ofz. Differentiating f over t with
the use of Eq.~2.1! and calculating the right part with th
methods of stochastic theory~see the Appendix!, one comes
to the Fokker-Planck equation8

] f

]t
1

]

]N H g@N3H#2gl@N3@N3H##

1
glT

m0
FN3FN3

]

]NG G J f50. ~2.3!

One can easily see that the distribution function

f 0~N!}exp@2H~N!/T#, H~s!52m0Hs ~2.4!

satisfies Eq.~2.3! at an equilibrium. For the small coupling t
the bath,l!1, Eq. ~2.3! coincides with the Fokker-Planc
equation derived by Brown.23
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The equation of motion for the spin polarization~the first
moment of the distribution function!

m[^s&5E d3NNf ~N,t ! ~2.5!

of an assembly of magnetic atoms can be derived from
~2.3! and has the form

ṁ5g@m3H#2LNm2gl^@s3@s3H##& ~2.6!

@cf. Eq. ~2.1!#, whereLN is the characteristic diffusional re
laxation rate or, for the thermoactivation escape problem,
Néel attempt frequency given by

LN[tN
21[2glT/m0 . ~2.7!

It can be seen that Eq.~2.6! is not closed but coupled to th
second moments of the distribution function,^sisj&, in its
last term. The behavior of Eq.~2.6! is determined by the
reduced fieldj0 given by

j0[uj0u, j0[m0H/T. ~2.8!

For j0@1 ~low temperatures! the second term in Eq.~2.6!
can be neglected and the last term decouples for distribu
functions localized about some direction:^sisj&>mimj . In
this case the Landau-Lifshitz equation of the type~2.1! for
m without the stochastic fieldz is recovered. In the high-
temperature case,j0!1, the second term of Eq.~2.6! domi-
nates over the last one, which can be neglected. Here
gets the equation of motion form with the Bloch relaxation
term.

In the intermediate region,j0;1, where the first-momen
equation~2.6! is not closed, the resonance and relaxatio
behavior of the FPE~2.3! is not described by Lorentz and
Debye curves, and the deviations from the latter reach 7%
j0;3.8 Neglecting these features, one can obtain anisolated
equation of motion for the spin polarization of an assem
of magnetic atoms choosing the distribution function in
form8

f ~N,t !5
exp@j~ t !N#

Z~j!
, Z54p

sinhj

j
~2.9!

@cf. Eqs. ~2.4! and ~2.8!#, wherej(t) is chosen so that the
first moment equation~2.6! is satisfied. Calculating the term
of Eq. ~2.6! with the help of Eq.~2.9!, one arrives8 at the
LLB equation for the nonequilibrium reduced fieldj(t)

j̇5g@j3H#2G1S 12
jj0
j2 D j2G2

@j3@j3j0##

j2
~2.10!

with the longitudinal and transverse relaxation rates

G15LN

B~j!

jB8~j!
, G25

LN

2 S j

B~j!
21D , ~2.11!

whereLN is given by Eq.~2.7!, B(j)5cothj21/j is the
Langevin function andB8(j)[dB(j)/dj. The asymptotic
forms ofG1 andG2 are given by
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3052 55D. A. GARANIN
G1>H LNS 11
2

15
j2D , j!1

LNjS 12
1

j D , j@1,

~2.12!

and

G2>H LNS 11
1

10
j2D , j!1

1

2
LNjS 11

1

j2D , j@1.

~2.13!

The relaxation rates of such a type also appear as a resu
calculation of the high-frequency longitudinal susceptibil
and the far-from-resonance transverse one.8 The quantity
G1 is also proportional to the ‘‘effective eigenvalue’’leff of
Ref. 19. One can see that the equilibrium solution of E
~2.10! is j5j0. The nonequilibrium spin polarizationm is
given by

m5mj/j, m5B~j!. ~2.14!

The LLB equation forj, Eq. ~2.10!, can be written in the
alternative equivalent form

j̇5g@j3H#2G1~j2j0!2~G22G1!
@j3@j3j0##

j2
.

~2.15!

Here it can be seen that in the high-temperature reg
j,j0!1, whereB(j)>j/3 andG1>G2>LN , the Landau-
Lifshitz double-vector-product relaxation term becom
small and the Bloch equation is recovered. On the ot
hand, at low temperatures, whenj,j0@1, the magnitude of
the vectorm in Eq. ~2.14! saturates in most situations
m5B(j)>1, and the longitudinal relaxation term in E
~2.10! no longer plays a role. Here the usual Landau-Lifsh
equation is recovered. Using Eq.~2.14! one can derive the
LLB equation for the spin polarizationm itself. The result
can be written as

ṁ5g@m3H#2LNS 12
mj0
mj Dm

2glS 12
m

j D @m3@m3H##

m2 ~2.16!

@cf. Eqs.~2.1! and ~2.6!#, wherej5j(m) is determined im-
plicitly by the relationm5B(j). Note that here at low tem
peratures,j@1, the coefficient before the transverse rela
ation term goes togl, whereas the longitudinal one i
nonessential, ifm is saturated. At high temperatures,j!1,
the relaxation term in Eq.~2.16! acquires the Bloch form
LN(m2m0) with m0>j0/3 @see also Eq.~2.15!#. The quan-
tum generalization of the classical LLB equation writt
above was given in Ref. 9. The latter was applied in Ref.
to study the nonlinear dynamics of the RE sublattice of ra
earth ferrites garnets near the magnetization compensa
point.
of
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For small deviations from equilibrium, wherej>j0 and,
accordingly,m>m0[B(j0)j0 /j0, one can put the LLB
equation~2.16! @or, more conveniently, directly Eq.~2.10!#
into the form

ṁ5g@m3H#2G1S 12
mm0

m2 Dm2G2

@m3@m3m0##

m2 ,

~2.17!

where the relaxation frequenciesG1 andG2 are functions of
j0. A kind of LLB equation similar to Eq.~2.17! was ob-
tained by Gekhtet al.,24 who assumed, for the calculation o
the linear transverse dynamic susceptibility, instead
Eq. ~2.9! a distribution function of the form f (N,t)
5 f 0(N)@11a(t)N#, where f 0 is given by Eq.~2.4! anda
corresponds toj2j0 in our notations. Although Gekhtet al.
claimed that ‘‘the single-moment approximation is perm
sible for small deviations from equilibrium,’’ Eq.~2.17! is in
fact only approximate, as well as the more general
~2.16!. The latter, in contrast, can be applied and has a ra
good accuracy in situations where deviations from equi
rium are large, as was checked in Ref. 8. In Sec. III we w
consider the solution of the FPE~2.3! for slowly varying
field H(t). In this case the deviations from the instantaneo
equilibrium state are small and the FPE can be solved
actly without assumptions about the form of the distributi
function f (N,t).

III. THE ‘‘SLOW’’ LLB EQUATION

If the magnetic fieldH slowly changes its magnitude an
direction, the solution of the Fokker-Planck equation~2.3!
slightly deviates from the instantaneous equilibrium one a
can be searched for in the form

f ~N,t !>
exp@j0~ t !N#

Z~j0!
@11Q~N,t !#, Q!1, ~3.1!

where j0(t)[m0H(t)/T. The correction functionQ(N,t)
}uḢu and, additionally, it depends slowly on time, so th
Q̇}uḢu2. Neglecting this small term, one obtains from E
~2.3! the equation forQ having the form

@N3j0#
]Q

]N
1lS ]

]N
1j0D FN3FN3

]Q

]NG G5t0~m02N!j̇0 ,

m0[B~j0!
H

H
, ~3.2!

wheret0[m0 /(gT). One can see that in leading order th
correctionQ(N,t) is determined by the instantaneous valu
of the magnetic fieldH(t) and its first derivativeḢ. The
right-hand part of this equation can be separated into
terms describing the temporal changes of the magnitude
of the direction ofH as

~m02N!j̇05N@j03V#1Fm02
Nj0
j0

G j̇0 , ~3.3!

where

V[@j03 j̇0#/j0
2 ~3.4!
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55 3053FOKKER-PLANCK AND LANDAU-LIFSHITZ-BLOCH . . .
is the precession frequency of the vectorj0. In the spherical
coordinate system withz axis along j0 Eq. ~3.2! for
Q(x,w), wherex[cosu, takes on the form

j0
]Q

]w
1lH S ]

]x
1j0D ~12x2!

]

]x
1

1

12x2
]2

]w2 JQ
5t0j0A12x2@Vycosw2Vxsinw#1t0~x2m0!j̇0 ,

~3.5!

whereVx and Vy are x and y components of the vecto
V.

The solution of the linear differential equation~3.5! is a
sum of two contributions induced by the transverse and l
gitudinal inhomogeneous terms:Q5Q'1Qi . Using the
substitution

Q'5Qxcosw1Qysinw, Q1[Qx1 iQy , ~3.6!

one comes to the equation

Q11
il

j0
H S ddx1j0D ~12x2!

d

dx
2

1

12x2 JQ1

5t0V1A12x2, ~3.7!

whereV1[V11 iV2. This equation cannot, in general, b
solved analytically, but the latter is possible in the typic
case of the weak coupling to the bath,l!1. For l/j0!1
one can easily find the solution iteratively, which yields

Q1>t0V1A12x2F11
il

j0
~21j0x!1••• G . ~3.8!

On the other hand, in the high-temperature region, wh
j0!1, one can neglectj0 in the round brackets in Eq.~3.7!,
after which Eq.~3.7! can be analytically solved to yield

Q1>t0V1A12x2
112il/j0
11~2l/j0!

2 . ~3.9!

These two solutions overlap in the regionl!j0!1, and
thus they can be sewn together in the whole range
temperatures into the formula, which can be obtained
replacing the numerator of the fraction in~3.9! by
11( il/j0)(21j0x).

The equation forQi(x) can be written as

S ddx1j0D ~12x2!
dQi

dx
5LN

21~x2m0!j̇0 . ~3.10!

It can be solved in two steps with the help of the substitut
P(x)[(12x2)dQi /dx. First, integrating Eq.~3.10! one gets

P~x!5
j̇0

LNj0
Fx2cothj01

e2j0x

sinhj0
G . ~3.11!

Then,Qi is given by

Qi~x!5E
21

x dx8

12x82
P~x8!1C, ~3.12!

where the constantC is determined from the normalizatio
condition for the distribution function~3.1!.
-

l

re

f
y

n

Now, the functionQ(N,t) having been determined, on
can calculate the spin polarizationm using Eqs.~2.5! and
~3.1!. Returning to vector designations, one comes to
result

m>B~j0!H S 11
j0B8

G1,intB

HḢ

H2 D HH
1

gH

~gH !21G2
2 S @H3Ḣ#

H2 1
G2

gH

@H3@H3Ḣ##

H3 D J ,
~3.13!

whereG2 is the transverse relaxation rate given by Eq.~2.11!
andG1,int is the inverse of the integral longitudinal relaxatio
time t int ,

1

G1,int
[t int5

1

LNj0sinhj0B8~j0!

3E
21

1

dx
ej0x

12x2 Fx2cothj01
e2j0x

sinhj0
G2,

~3.14!

which is determined as the area under the magnetization
laxation curve after an abrupt infinitesimal change of t
longitudinal magnetic field.8,22 Equation~3.13! describes the
lagging of the spin polarizationm from its quasiequilibrium
valuem0(t) of Eq. ~3.2!, which is determined by the sma
derivativeḢ(t). The asymptotic forms ofG1,int in Eq. ~3.14!
read

G1,int>H LNS 11
1

9
j0
2D , j0!1

LNj0S 12
1

j0
D , j0@1.

~3.15!

Comparing Eqs. ~3.15! and ~2.12! one can see tha
G1.G1,int . The relative deviationd[G1 /G1,int21 attains a
valued'0.07 atj0'3.8

The next problem is to write down the equation of moti
for m, which has the solution~3.13!. It is especially impor-
tant if the spin-spin interactions are taken into account wit
the MFA ~see the next section!. In this caseH is replaced by
the molecular fieldHMFA containingm itself, and Eq.~3.13!
is in fact a differential equation forṁ, which should be still
simplified. It can be done differentiating Eq.~3.13! over time
and neglecting terms of orderḢ2 coming from the correction
terms withḢ in Eq. ~3.13!. This leads to

ṁ>j0B8~j0!
~HḢ !H

H3 2B~j0!
@H3@H3Ḣ##

H3 . ~3.16!

Now Ḣ in this relation should be expressed throughm with
the help of Eq.~3.13!, which after some vector algebra lead
to the ‘‘slow’’ LLB equation

ṁ5g@m3H#2G1,intS 12
mm0

m2 Dm2G2

@m3@m3m0##

m2 ,

~3.17!
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3054 55D. A. GARANIN
wherem0 is given by Eq.~3.2! and which is the refinemen
of Eq. ~2.17! in the slow-motion situation. The quantitie
G1 of Eq. ~2.11! andG1,int of Eq. ~3.14! have the same lead
ing high- and low-temperature asymptotes, and, as was
above, they differ by no more than 7% in the whole range
temperatures. The same order of magnitude also chara
izes the difference between the Debye one-relaxator form
the longitudinal dynamic susceptibilityx i(v) following
from Eq.~2.17! and the actual form ofx i(v) following from
the solition of the exact Fokker-Planck equation~2.3! at in-
termediate temperatures.8 It should be noted that in the fas
motion situations Eq.~2.17! is better than Eq.~3.17!, since it
yields the exact leading~imaginary! term of the high-
frequency expansion ofx i(v).

8

IV. LLB EQUATION FOR FERROMAGNETS

For definiteness we consider the classical ferromagn
model with the biaxially anisotropic exchange interaction

H52m0(
i
H isi2

1

2(i j Ji j ~hxsxisx j1hysyisy j1szisz j!,

~4.1!

wherehx<hy<1 are the anisotropy coefficients. The d
namics of this model interacting with the bath is describ
by the stochastic Landau-Lifshitz equation

ṡi5g@si3~H i ,tot1zi !#2gl@si3@si3H i ,tot## ~4.2!

@cf. Eq. ~2.1!#, wherezi are postulated to be uncorrelated
different lattice sites, and

H i ,tot[2
1

m0

]H
]si

5H i1
1

m0
(
j
Ji j ~hxsx j1hysy j1sz j!

~4.3!

is the total field acting on a given spin at the sitei , which
depends on the orientation of spins on the neighboring s
j . In Eq. ~4.3! sa j[sa jea , a5x,y,z, andea are the orts of
the Descarte coordinate system.

The Fokker-Planck equation for the distribution functio

f tot~$Ni%,t !5K )
i51

N

d„Ni2si~ t !…L
z

~4.4!

of the whole system consisting ofN spins can be derived in
the same way as Eq.~2.3! and has the form

] f tot
]t

1(
i

]

]Ni
H g@Ni3H i ,tot#2gl@Ni3@Ni3H i ,tot##

1
glT

m0
FNi3FNi3

]

]Ni
G G J f tot50. ~4.5!

One can check that the static solution of this equation is

f tot,0~$Ni%!}exp@2H~$Ni%!/T#, ~4.6!

whereH is given by Eq.~4.1!. Solving Eq.~4.5! is a formi-
dable task that goes beyond the scope of this paper. It
any case not simpler than calculating averages with the
tribution function~4.6! at an equilibrium and requires appl
cation of some kind of many-body perturbation theory, as
id
f
er-
of

ic

d

es

in
s-

e

diagram technique for classical spin systems~see, e.g., Ref.
25!, which has proved to be rather efficient for description
their static properties. Here we resort to the mean-field
proximation with respect to spin-spin interactions, whi
means, however, dropping their contribution into the rela
ation rates. In MFA the distribution function of the syste
~4.4! is multiplicative, and one can use the distribution fun
tions f i for each spin on the sitei , which satisfy the Fokker-
Planck equation~2.3! with H⇒H i

MFA , whereH i
MFA is given

by Eq. ~4.3! with the replacementsi⇒mi[^si&. Solution of
such mean-field FPE’s similar to that of Sec. II or Sec.
leads to the set of coupled LLB equations formi ,
i51,2, . . . ,N of the type~2.16! in a general nonlinear situ
ation or Eq.~3.17! for slow motions. The static solution o
these LLB equations satisfies the inhomogeneous Cu
Weiss equation,

mi5B~j0i !
j0i
j0i

, j0i[
m0H i

MFA

T
, ~4.7!

which describes within the MFA both the homogeneous s
and such configurations as domain walls with account
thermal effects~see, e.g., Ref. 26 and references therein!.

For the most of ferromagnetic substances the sm
anisotropy case, i.e.,hx,y8 [12hx,y!1, is realized. In this
case the spatial inhomogeneity of magnetization at a dista
of the lattice spacing is small, and one can use the cont
ous approximation. ForH i

MFA the latter means

HMFA~r !>HE1Heff8 , HE5
J0
m0

m,

Heff8 5H1
J0
m0

@aDm2hx8mx2hy8my#, ~4.8!

where J0 is the zero Fourier component of the exchan
interaction,D is the Laplace operator, anda is a lattice-
dependent constant~for the simple cubic latticea5a0

2/6,
wherea0 is the lattice spacing!. The most important for fer-
romagnets is the case of the strong homogeneous exch
field, uHEu@uHeff8 u, which is realized belowTC5(1/3)J0,
where there is a spontaneous magnetization, and also in
region just aboveTC , where the longitudinal susceptibility i
large. As in this case the external fieldH(t) that can drive
the system off the equilibrium is a relatively small quantit
one can use Eq.~2.17! @or, for slow motions, Eq.~3.17!# and
expandm05B(bm0H

MFA)HMFA/HMFA, whereb[1/T, up
to the first order inHeff8 . This leads to the equation

ṁ5g@m3Heff8 #2gl1S 12B/m

m0bB8
2
mHeff8

m2 Dm
2gl2

@m3@m3Heff8 ##

m2 , ~4.9!

whereB5B(mbJ0),

l152l
T

J0
, l25lS 12

T

J0
D , ~4.10!

if Eq. ~2.17! was used, and the same withl1⇒l1G1,int /G1
for the ‘‘slow’’ LLB equation ~3.17!. The difference
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12B/m in Eq. ~4.9! is a small quantity proportional to th
deviation from the equilibrium. It can be further simplified

12B/m

m0bB8
>H 1

2x̃ i
Sm2

me
2 21D , T,Tc

J0
m0

S 35m22e D , ueu!1,

~4.11!

wheree[12T/Tc , me is the equilibrium spin-polarization
satisfyingme5B(mebJ0), and

x̃ i5
]m

]H
5

m0

J0

B8bJ0
12B8bJ0

~4.12!

is the spin-polarization susceptibility, calculated f
m5me . Using B(j)>(1/3)j2(1/45)j31••• and me

2

>(5/3)e nearTC , one can check that the two expressions
~4.11! overlap in this region.

The last step is to rewrite Eq.~4.9! for the macroscopic
magnetization,M5m0m/v0, wherev0 is the unit-cell vol-
ume. This leads to the final result

Ṁ5g@M3Heff#1L1
~MH eff!M

M2 2L2
@M3@M3Heff##

M2 ,

~4.13!

whereL1 andL2 are the longitudinal and transverse kine
coefficients,

L1,25gMea1,2, a1,25l1,2/me , ~4.14!

a1 and a1 are the corresponding Gilbert damping para
eters, and the effective fieldHeff is given by

Heff5H1
1

qd
2DM2

1

xx
M x2

1

xy
M y2

1

2x i
SM2

Me
2 21DM

~4.15!

@cf. Eq. ~4.8!#. In Eq. ~4.15!

1

qd
2[

aJ0
Wd

, Wd[
m0
2

v0
, ~4.16!

qd andWd are the characteristic dipolar wave number a
dipolar energy,aJ0 is the second moment of the exchan
interaction, and the susceptibilities are given by

x i5
Wd

J0

B8bJ0
12B8bJ0

, xx,y5
Wd

J0

1

12hx,y
. ~4.17!

The effective fieldHeff of Eq. ~4.15! can be written as a
variational derivative

Heff~r !5
dF

dM ~r !
, ~4.18!

whereF is the MFA free energy of a ferromagnet,

F5F01E dr H 2HM1
1

2qd
2 ~¹M !21

1

2xx
Mx

21
1

2xy
My

2

1
1

8Me
2x i

~M22Me
2!2J , ~4.19!
-

d

(¹M )2[(¹Mx)
21(¹My)

21(¹Mz)
2, and F0 is the equi-

librium free energy in the absence of anisotropy and m
netic field. The direct derivation of this free energy from t
mean-field theory is tricky and will be presented elsewhe
Equation ~4.19! provides a link between the ‘‘micro
magnetics,’’1,27 which ignores changes of the magnetizati
magnitude uM u, and the Landau theory of phas
transitions,28,29which is a limiting form of the MFA pretend-
ing to be valid only in the vicinity ofTC where the order
parameterM (r ) is small. In fact, for weakly anisotropic sys
tems in a magnetic field smaller than the homogeneous
change fieldHE , the actual small quantity, which remain
small in the whole temperature range, is notM2(r ), but
rather the differenceM2(r )2Me

2 , whereMe is the equilib-
rium magnetization in the absence of anisotropy and m
netic field. Since in the MFA nearTC one hasMs

2}x i
21

}e[12T/TC , the last term of Eq.~4.19! takes on the Lan-
dau form AM21BM4 with A52eA0, and A0 ,B5const.
This shows, further, that Eq.~4.19! can be continued into the
regionT.TC as the usual Landau theory. The free ener
Eq. ~4.19! can be brought into the ‘‘micromagnetic’’ form b
introducing the magnetization direction vectorn[M /M .
One can then identify

1

2xx,y
Mx,y

2 5Kx,ynx,y
2 , Kx,y5

M2

2xx,y
, ~4.20!

whereKx,y are the anisotropy constants.

V. DISCUSSION

In this paper several forms of the Landau-Lifshitz-Blo
~LLB ! equation of motion for a single classical spin intera
ing with the bath as well as for classical ferromagnets wit
the MFA have been obtained. These LLB equations are
plicable for all temperatures and contain both transverse
longitudinal relaxation terms. Thenonlinear response of a
single spin to the arbitrary changing magnetic fieldH(t) is
the most accurately described by the nonlinear LLB equa
~2.16!. For slowly varyingH(t) the exact ‘‘slow’’ LLB
equation ~3.17! containing the integral longitudinal relax
ation time Eq.~3.14! can be used. This case is the mo
important one for the domain-wall dynamics. For ferroma
nets within the MFA the magnetic fieldH in the LLB equa-
tion should be replaced byHMFA, which is given by Eq.~4.3!
with si⇒mi[^si& in a general case or by Eq.~4.8!, if the
continuous approximation is applicable. If, additionally,
Eq. ~4.8! the homogeneous exchange fieldHE is dominant,
which is typical for ferromagnets below and near abo
TC , the LLB equation reduces to the form~4.13! with Eqs.
~4.18! and ~4.19!. Equation ~4.13! could be also written,
without specifying the form of kinetic coefficientsL1,2 and
that of the free energy Eq.~4.19!, from general arguments. I
is very close to the phenomenological Bar’yakht
equation,5,6 which contains an additional relaxation term pr
portional toDHeff . This term, whose microscopic origin i
the spin-spin interaction or the correlation of the Lange
fields zi in Eq. ~4.2! on different lattice sitesiÞ j , was
shown,7 however, to yield a contribution into the domain
wall dynamics, which is negligible in comparison to that
the longitudinal relaxation term in Eq.~4.13!.
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The quantum generalization of the nonlinear LLB equ
tion ~2.16!, which contains additional relaxation terms of
different symmetry, was derived in Ref. 9 by the appro
mate solution of the density matrix equation for a single s
interacting with an idealized phonon bath, which is based
choosing the distribution function of the type similar to E
~2.9!. In the classical limit the density-matrix equation go
over to the FPE and, accordingly, the quantum LLB simp
fies to Eq.~2.16! with the microscopically determined bath
coupling parameterl. For ferromagnets with the dominan
homogeneous exchange interaction the quantum LLB eq
tion simplifies to the same macroscopic form~4.13!. The
main result of the present paper — the ‘‘slow’’ LLB equ
tion ~3.17! — can be obtained in the quantum case, too, b
perturbative solution of the density-matrix equation for
slowly changing magnetic field, which is similar to the de
vation in Sec. III. The final result can be, however, obtain
by replacingG1⇒G1,int[t int

21 in the longitudinal relaxation
term. The analytical expression forG1,int in the quantum case
without single-site anisotropy was already given in Ref.
Very recently it was generalized for the anisotropic case
describe the thermoactivation escape rate of quantum
systems.30

The most serious problem by the derivation of the LL
equation for ferromagnets, that has not been solved ye
taking into account the spin-spin interactions. This is a rat
difficult task, since one should consider the FPE~4.5! for the
whole system, which describes all possible static and
namic spin correlations. Even at an equilibrium, where
solution of the FPE~4.5! is known and given by Eq.~4.6!,
one faces the problem of a phase transition in a many-b
system. Calculation of spin-spin contributions into the lon
tudinal and transverse kinetic coefficientsL1 andL2 in the
LLB equation for ferromagnets, Eq.~4.13!, goes beyond the
scope of this paper and is planned for the future.
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APPENDIX: DERIVATION OF THE FOKKER-PLANCK
EQUATION

Here the derivation of the Fokker-Planck equation~2.3! is
presented, which is more direct and simple than the orig
one by Brown23 and which uses more advanced stocha
methods applied, in particular, in the dynamic
renormalization-group~RG! theory.2–4 The RG consider-
ations start, however, with ‘‘soft-spin’’ models with the fo
mal Langevinsources~i.e., the inhomogeneous terms in th
stochastic differential equations for the spin density!, which
cannot be interpreted as randommagnetic fieldsacting on
spins. For our purposes, we will derive the FPE for magn
systems with the methods of Refs. 2 and 4 but starting fr
the more realistic stochastic Landau-Lifshitz equation~2.1!.
At first we introduce the probability distribution of the ran
dom Gaussian noisez,
-

-
n
n
.

-

a-

a

d

.
o
in

is
r

y-
e
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-

-
in-
-

al
c
l

ic
m

F@z~t!#5
1

Zz
expF2

1

2aE2`

`

dtz2~t!G , ~A1!

whereZz5*DzF is the noise partition function,*Dz de-
notes functional integration over realizations ofz(t) and
a[2lT/(gm0). With the help of Eq.~A1! the average of
any noise functionalA@z# can be written as

^A@z#&z5E DzA@z#F@z#. ~A2!

With the use of the obvious identity

dza~t!

dzb~ t !
5dabd~t2t !, ~A3!

one can calculate variations ofF@z# of Eq. ~A1!:

dF@z#

dza~ t !
52

1

a
za~ t !F@z#,

d2F@z#

dza~ t !dzb~ t8!
5F 1a2 za~ t !zb~ t8!2

1

a
dabd~ t2t8!GF@z#,

~A4!

etc. Since for alln one has

E Dz
dnF@z#

dza1
~ t1!dza2

~ t2!•••dzan
~ tn!

50, ~A5!

the functional integration of Eq.~A4! leads to^za(t)&50
and Eq.~2.2!. Further, one can show that all averages of
odd number ofz components are zero and those of an ev
numbern.2 of z ’s decay pairwise and can be express
through the pair average Eq.~2.2!, i.e., the statistics of the
random fieldz(t) is Gaussian.

The distribution function of spinsf is determined as

f ~N,t ![^p~ t,@z# !&z , p~ t,@z# ![d„N2s~ t !…. ~A6!

The time derivative off can be calculated using

ṗ52
]p

]N
ṡ ~A7!

and the equation of motion~2.1!, which yields

] f

]t
52

]

]N
$g@N3H# f2gl@N3@N3H## f

1g@N3^z~ t !p~ t,@z# !&z#%. ~A8!

Then the averagêz(t)p(t,@z#)&z can be transformed with
the use of the first of Eqs.~A4! and integration by parts,

^z~ t !p~ t,@z# !&z52aE Dzp~ t,@z# !
dF@z#

dz~ t !
5aK dp~ t,@z# !

dz~ t ! L
52aK ]p

]Nb

dsb~ t,@z# !

dza~ t ! L ea , ~A9!

whereea with a5x,y,z are the orts of the Descarte coord
nate system and summation over componentsa,b is im-
plied. The variational derivativedsb /dza can be calculated
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if one writes down the formal solution of the stochas
Landau-Lifshitz equation~2.1!,

sb~ t !5gE
t0

t

dt8ebgasg~ t8!@Ha~ t8!1za~ t8!#1•••,

~A10!

whereebga is the antisymmetric unit tensor. One can see t

dsb~ t,@z# !

dza~ t8!
5H gebgasg~ t8!, t8,t

0, t8.t.
~A11!
t

For t5t8 the above calculation does not yield a definit
value ofdsb /dza , but with the help of the usual argument
based on the regularization ofd functions4 the latter can be
found to be (1/2)geabgsg(t). Now Eq. ~A9! can be finally
written in the form

^z~ t !p~ t,@z# !&z5
ga

2 FN3
] f

]NG . ~A12!

Adopting it in Eq. ~A8!, one comes to the Fokker-Planc
equation~2.3!.
t.

-

.

-
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