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Renormalization-group approach to nonequilibrium Green functions
in correlated impurity systems
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We present a technique for calculating nonequilibrium Green functions for impurity systems with local
interactions. We use an analogy to the calculation of response functions in the x-ray problem. The initial-state
and the final-state problems, which correspond to the situations before and after the disturbance~an electric or
magnetic field, for example! is suddenly switched on, are solved with the aid of Wilson’s momentum shell
renormalization group. The method is illustrated by calculating the nonequilibrium dynamics of the Ohmic
two–state problem.@S0163-1829~97!00205-1#
um
do
r

in
d
g
e
rit

al
m
p

ic

ve
tio

an
e

u-
h
o
ne
G

c
la
o
te
p
In
ca
ex
ac
m
s
th

b-
pic
lu-

te
er-
nce

ics

hed
e

of

rf

t of

s
fre-
I. INTRODUCTION

Recently there has been interest in the nonequilibri
transport properties of small devices, such as quantum
and ultrasmall tunnel junctions.1,2 These systems, togethe
with some resonant tunneling devices,3 offer possibilities for
studying many-body effects due to strong local Coulomb
teractions. The importance of these interactions in small
vices is seen, for example, in the suppression of tunnelin
the Coulomb blockade effect.4 Phenomena such as th
Kondo effect in quantum dots and the Fermi edge singula
in resonant tunneling devices have been predicted5–11 and
some aspects of these have been confirmed experiment3

The usual starting point for dealing with nonequilibriu
transport in such systems has been the formalism develo
by Keldysh12 and Kadanoff and Baym.13 Below we describe
a nonperturbative approach based on the numer
renormalization-group~NRG! method,14,15 which allows the
calculation of nonequilibrium Green functions for the abo
systems. We consider only the case in which the perturba
~an electric or magnetic field! causing the nonequilibrium
effects is suddenly switched on at timet50. The nonequi-
librium Green functions will then be calculated by solving
initial- ( t,0) and final- (t.0) state problem as in the cas
of calculating the photoemission and absorption spectra
the x-ray problem.16 In this paper we concentrate on calc
lating the nonequilibrium properties of a specific model, t
Ohmic two-state system.17 The application of the method t
the systems mentioned above follows along the same li
the only difference being the solution, using the NR
method, of different initial- and final-state Hamiltonians.

The paper is organized as follows: in Sec. II we introdu
the standard model of the Ohmic two-state system, formu
the problem of calculating the nonequilibrium dynamics
this model in terms of solving an initial- and a final-sta
problem and introduce an equivalent model, the anisotro
Kondo model, which we actually use in the calculations.
Sec. III we describe the NRG, its application to dynami
quantities and an approximate evaluation of the formally
act expressions for the nonequilibrium quantities. An ex
evaluation of nonequilibrium quantities first has to overco
certain technical difficulties, which we describe, and is po
poned for the future. Section IV contains our results for
550163-1829/97/55~5!/3003~7!/$10.00
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nonequilibrium dynamics of the Ohmic two-state system, o
tained on the basis of NRG calculations for the anisotro
Kondo model. In Sec. V we summarize our main conc
sions.

II. FORMULATION

A. The Ohmic two-state system

The nonequilibrium properties of the Ohmic two-sta
problem are of main interest in macroscopic quantum coh
ence experiments in rf superconducting quantum interfere
devices~SQUID’s!.18 Typically, an rf SQUID can be in one
of two possible fluxoid states. By applying a bias~corre-
sponding to an external magnetic field!, for times t,0, the
system is prepared in one of the two states. The dynam
after the bias is removed att.0 is then intrinsically a non-
equilibrium property. The Hamiltonian,H, of the system is
time dependent with a sudden perturbation att50, so that
we can writeH(t)5@12u(t)#HI1u(t)HF where HI ,HF
are the Hamiltonians before and after the bias is switc
off. The HamiltonianHI ,F describing the Ohmic two-stat
system is given by the spin-boson model,19
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Heres i ,i5x,y,z are Pauli spin matrices, the two states
the system correspond tosz5↑ and sz5↓ ~i.e., sz5↑,↓
correspond to the two possible fluxoid states of the
SQUID!. D is the bare tunneling matrix element ande is a
bias. The environment is represented by an infinite se
harmonic oscillators~labeled by the indexa) with masses
ma and frequency spectrumva coupling linearly to the co-
ordinateQ5(1/2)q0sz of the two-level system via a term
characterized by the couplingsCa ~the two-level system co-
ordinate could be the total flux,f5f1sz , in the case of an
rf SQUID experiment!. The environment spectral function i
given in terms of these couplings, oscillator masses and
quencies byJ(v)5(p/2)(a(Ca

2/mava)d(v2va). In the
3003 © 1997 The American Physical Society
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3004 55T. A. COSTI
case of an Ohmic heat bath, of interest to us here, we h
J(v)52pav, for v!vc , wherevc is a high-energy cutoff
and a is a dimensionless parameter characterizing
strength of the dissipation. This form for the spectral fun
tion is appropriate for describing quantum dissipation in an
SQUID. Preparation of the system in a state withsz511
with the oscillators relaxed about this state is equivalen
setting e52` in HSB, so the initial-state problem corre
sponds to solvingHI5HSB(e52`). Similarly, the final-
state problem is given byHF5HSB(e50). The Ohmic spin-
boson model has been intensively studied~for reviews we
refer the reader to Refs. 19,20!. We outline some of its fea
tures in order to introduce some useful notation. The mo
has a low-energy scale,D r,D for D!vc , which depends
on the dissipation strengtha, and which may be interprete
as a renormalized tunneling amplitude. Fora!1 the dynam-
ics corresponds to damped oscillations, with a crossove
incoherent behavior with increasing dissipation strength.
a→12, the renormalized tunneling amplitude vanishes g
ing rise to the phenomenon of ‘‘localization’’ or ‘‘self–
trapping’’ for a.ac'1 (ac depends also on the precis
value ofD). The dynamical quantities exhibiting the abo
features are defined below.

B. Nonequilibrium dynamical quantities

The simplest nonequilibrium dynamical quantity to stu
for the spin-boson model is the quantityP(t)5^sz(t)&r I

,19

where the thermodynamic average is taken with respec
the initial density matrixr I(b)5e2bHI/Tre2bHI, b is the
inverse temperature, and the time evolution is with respec
the Hamiltonian after the bias is switched off at timet50,
i.e., sz(t)5eiHFtsze

2 iHFt. Hence,P(t)51 for t,0 due to
the infinite biase52`, and for t.0, when the bias is
switched off (e50), P(t) describes how the two-level sys
tem coordinatesz relaxes to its long-time value of zero
Another quantity of interest is the retarded two-time Gre
function,Gr(t,t8)52 iu(t2t8)^@sz(t),sz(t8)#&r I

, with the
thermodynamic average defined as above. Since time tr
lational invariance is broken,Gr(t,t8) depends on both time
explicitly. We consider the Fourier transform ofGr(t,t8)
with respect to both the sumt1t8 and differencet2t8 of the
time variables. The resulting spectral dens
Cr(v,V)52(1/p) ImGr(v1 id,V), with v,V the Fourier
frequency variables corresponding tot2t8,t1t8, is given
within a Lehmann representation by the following expre
sion:

Cr~v,V!5
2p

ZI
(

mI ,mF ,mF8 ,mF9
e2bEmI^mI umF&^mF9 umI&

3^mFuszumF8 &^mF8 uszumF9 &dS V2
EmF

2Em
F9

2
D

3H dS v1FEmF
1Em

F9

2
2Em

F8
G D

2dS v2FEmF
1Em
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2
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Here, EmI
and umI& are the many-body eigenvalues an

eigenstates of the initial-state HamiltonianHI , ZI is the cor-
responding partition function, andEmF

, umF&, Em
F8
,

umF8 &, . . . are themany-body eigenvalues and eigenstates
the final-state HamiltonianHF . In the equilibrium case,
HI5HF5H, and the corresponding spectral dens
Cr
eq(v,V) reduces to

Cr
eq~v,V!5

2p

Z (
m,m8

e2bEmu^muszum8&u2d~V!

3$d~v1@Em2Em8# !2d~v2@Em2Em8# !%,

~3!

whereEm ,um& are the many-body eigenvalues and eige
functions ofH andZ is the corresponding partition functio
@the delta function,d(V), in the above expression reflec
the fact that in the equilibrium case,Gr(t,t8) depends only
on the difference of the time variables#.

We see that the nonequilibrium spectral density diffe
from the equilibrium one in several ways: first, even
T50, no ground-state energy appears in thed functions, the
excitations are between arbitrary~final! excited states of the
system. This reflects the fact that there is no station
ground-state for a nonequilibrium situation. Secondly,
nonequilibrium aspects, which are a result of an initial-st
preparation, are reflected in the presence of overlap ma
elements between the initial and final states. Finally the
pendence onV is a measure of the importance of transie
effects. Neglecting these effects results in the following si
plified expression for the spectral density:

C0r~v!5Cr~v,V50!

5
2p

ZI
(

mI ,mF ,mF8
e2bEmIu^mI umF&u2u^mFuszumF8 &u2

3d~V!$d~v1@EmF
2Em

F8
# !

2d~v2@EmF
2Em

F8
# !%. ~4!

This describes the steady-state caset1t8→`. In a strict
sense it is not a nonequilibrium quantity, although it do
take into account the effects of an initial-state preparation
the correlation function̂ sz(t)sz(0)&. Our motivation for
calculating this quantity is simply to illustrate that our tec
nique applies also to two-time Green functions. The calcu
tion of the full spectral densityCr(v,V), including both
frequencies involves a straightforward generalization.

Similarly we can write the Fourier transform ofP(t),
within a Lehmann representation, as

P~v!5
1

ZI
(

mI ,mF ,mF8
e2bEmI^mI umF&^mF8 umI&

3^mFuszumF8 &d„v2~EmF
2Em

F8
!…, ~5!

where the same notation as above is used.
P(t)5*0

`P(v)cos(vt)dt contains information on the on
set of quantum oscillations in the two-level system. F
small values of the dissipation strength,a!1, it is known
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55 3005RENORMALIZATION-GROUP APPROACH TO . . .
from the noninteracting blip approximation19 ~NIBA ! that
P(t) exhibits damped oscillations with a renormalized tu
neling frequencyD r5D@D/vc#

a/(12a). P(v) will exhibit
two peaks atv56D r . At the exactly solvable Toulous
point,21 a51/2, where the Ohmic two-state system reduc
to the resonant-level model,19,22 the dynamics is incoheren
and P(t) decays exponentially.P(v) consists of a single
peak atv50. It is not clear at which value of the dissipatio
strength the crossover to incoherent behavior occurs, in
ticular whether it occurs at exactlya51/2 or for some
smaller value ofa. This may depend on the definition of th
crossover and on whether equilibrium or nonequilibriu
quantities are being studied. For equilibrium quantities
smooth crossover has been found to occur ata51/3.24,28

C. The anisotropic Kondo model

Instead of solving directly the spin-boson model with t
NRG method it is more convenient to solve an equival
fermionic model which has the same dynamics. This is
anisotropic Kondo model~AKM !. The equivalence has bee
shown at the Hamiltonian level via bosonization.23 This was
believed to be valid in the regiona.1/2, which corresponds
~see below for the precise statement of the equivalence! to
the region in the parameter space of the AKM between w
coupling and the Toulouse point. In fact, recent work24

shows that the equivalence extends beyond the Toulo
point into the region describing weak dissipatio
0,a,1/2 ~or large antiferromagneticJi in the AKM, see
also Ref. 25!. The AKM is given by26

H5(
k,s

ekcks
† cks1

J'

2 (
kk8

~ck↑
† ck8↓S

21ck↓
† ck8↑S

1!

1
Ji

2(
kk8

~ck↑
† ck8↑2ck↓

† ck8↓!S
z1gmBhSz . ~6!

The first term represents noninteracting conduction electr
and the second and third terms represent an exchange
action between a localized spin 1/2 and the conduction e
trons with strengthJ' ,Ji . A local magnetic fieldh, coupling
only to the impurity spin in the Kondo model@the last term
in Eq. ~6!#, corresponds to a finite biase in the spin-boson
model. The correspondence betweenH and HSB is then
given bye5gmBh, D/vc5rJ' anda5(112d/p)2, where
tand52prJi/4, d is the phase shift for scattering of ele
trons from a potentialJi/4 andr51/2D is the conduction-
electron density of states per spin at the Fermi level for a
band of width 2D.19,24 We note that weak dissipatio
(a→0) in the spin-boson model corresponds to extreme
isotropy (Ji→`) in the Kondo model. For zero dissipatio
Ji5`, the two statesc651/A2(u↑&u↓&06u↓&u↑&0) made up
from the impurity states and the local conduction-elect
Wannier orbitals us&05(kcks

† uvac&, where uvac& is the
vacuum, are split byJ'5D ~with the identification
vc52D) and are completely decoupled from the rest of
conduction band, thus forming an isolated two-level syste
The system exhibits coherent oscillations w
P(t)5cos(Dt). As Ji is decreased from1`, the two levels
become weakly coupled, with strengthD2/Ji}a, for rJi
@1, to the remaining conduction states and their splitting
-
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renormalized downwards. The low-energy scale of the mo
is given by the Kondo temperature for the anisotropic Kon
model,27 TK(J' ,Ji),J' , for J'!D, which in the language
of the dissipative two-state system corresponds to a re
malized tunneling amplitudeD r .

24 An extensive discussion
of the equivalence between the anisotropic Kondo model
the Ohmic two-state system is given elsewhere.

III. CALCULATION OF NONEQUILIBRIUM DYNAMICS
VIA THE NRG

A. The NRG

The dynamical quantitiesP(t) and Gr(t,t8) defined
above for the two-level system translate into the correspo
ing quantities for the Kondo model (sz→Sz under the
equivalence!. We calculate these quantities by applying W
son’s momentum shell renormalization-group method gen
alized to the calculation of dynamical quantities~e.g., Refs.
24,29!. Thus in addition to solving an initial-state proble
HI5HAKM(e52`) and a final-state problem
HF5HAKM(e50), the final-state matrix elements of th
variablesz and the overlap matrix elements appearing in
above expressions forP(v),Cr(v) are also calculated. The
diagonalization ofHAKM proceeds as follows~for full details
see Ref. 14!: ~i! the spectrum is linearized about the Fer
energy ek→vFk, ~ii ! a logarithmic mesh ofk points
kn5L2n is introduced to achieve a separation of ener
scales, and~iii ! a unitary transformation of thecks is made
such thatf 0s5(kcks is the first operator in a new basis
f ns ,n50,1, . . . , which tridiagonalizesHc5(kmekmckm

† ckm

in k space, i.e.,Hc→(m(n50
` jnL

2n/2( f n11m
† f nm1H.c.),

with jn→(11L21)/2 for n@1. The Hamiltonian~6! with
the above discretized form of the kinetic energy is no
diagonalized by the following iterative process:~a! one
defines a sequence of finite-size Hamiltonia
HN5(m(n50

N21jnL
2n/2( f n11m

† f nm 1 H.c.) 1 J'/2( f 0↑
† f 0↓S

2

1 f 0↓
† f 0↑S

1)1Ji/2( f 0↑
† f 0↑2 f 0↓

† f 0↓)S
z for N>0; ~b! the

HamiltoniansHN are rescaled byL (N21)/2 such that the en-
ergy spacing remains the same, i.e.H̄N5LN21/2HN . This
defines a renormalization-group transformati
H̄N115L1/2H̄N1(mjN( f N11m

† f Nm1H.c.)2EG,N11, with
EG,N11 chosen so that the ground-state energy ofH̄N11 is
zero. Using this recurrence relation, the sequence of Ha
toniansH̄N for N50,1, . . . is iteratively diagonalized. Thi
gives the excitations and many-body eigenstates at a co
sponding set of energy scalesvN defined by
vN5L2(N21)/2 and allows a direct calculation of the dy
namical quantitiesP(t),Gr(t,t8), or more precisely their
Fourier transforms using the Lehmann representations~2,5!.
Our results were obtained forL52, keeping the 320 lowes
states at each iteration. Truncating the spectrum in this w
restricts the range of excitationsv at iterationN to be such
that vN<v<KvN , whereK5K(L)'7 for L52. In this
paper we discuss only theT50 results.

In diagonalizing the HamiltoniansH̄N the following sym-
metries are used to reduce the size of the matrices:~i! con-
servation of the z component of total spin
Sz
tot5Sz1(n50

N (1/2)(f n↑
† f ↑2 f n↓

† f ↓), ~ii ! conservation of to-
tal pseudospin,30 where the pseudospin operatorsj1, j2, j z
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3006 55T. A. COSTI
are defined by j15(n50
N (21)nf n↑

† f n↓
† j25( j1)† and

j z5(n50
N ( f nm

† f nm21/2). These symmetries hold for both th
zero and finite bias cases, which we consider in this pa
(e50 for the final-state problem ande52` for the initial-
state problem!. At this point we mention that although it is
in principal, possible to apply this renormalization-gro
method directly to the spin-boson model, in practice th
are disadvantages in the case of the bosonic problem.31

B. Broadening procedure for the discrete spectra

We note that the use of a discretized model implies tha
each iterationP(v) is a series ofd functions. Smooth curves
are obtained by broadening thesed functions with a Gauss
ian of width appropriate to the level spacing ofHN .

29 The
width of the Gaussians will not influence the intrinsic pe
widths at low energies, where the logarithmic spacing
sures high resolution, but may do so at higher energies w
the resolution is lower. This problem has been discusse
detail in Ref. 33, where a refined NRG scheme to overco
it has been suggested. In most problems one is intereste
the low-energy behavior and such a refinement is not
quired, however for the spin-boson model considered h
there is interesting dynamics at high energies and suc
refinement is required in order to obtain a complete desc
tion of all aspects of the high energy~short time! dynamics
~by high energy, we mean high relative to the renormaliz
tunneling amplitude, but still low relative to the high-ener
cutoff in the model!. In the present paper we have not impl
mented the above refined scheme, so we shall state b
which aspects of the high-energy dynamics we are able
obtain within the unmodified NRG scheme.

C. Approximate evaluation of nonequilibrium quantities

At this stage we point out an important difference in t
calculation of nonequilibrium quantities with respect to eq
librium quantities such asCr

eq(v,V). At T50, the latter can
be calculated on each energy scalevN by restricting atten-
tion to a single energy shellN. This is due to the existence o
a stationary ground state, from which all excitations in t
expression forCr

eq can be measured. Thed functions in the
Lehmann representation, Eq.~3!, then imply that in order to
calculateCr

eq at frequencyv, only one energy shell, that fo
which v'vN , is required, i.e.,

Cr
eq~v,V,T50!5

2p

ZN
(
m8

u^GSuszum8&Nu2d~V!

3$d~v1@EGS
N 2Em8

N
# !

2d~v2@EGS
N 2Em8

N
# !%, ~7!

whereum8&N , uGS&N are the eigenstates and the ground sta
corresponding to iterationN in the NRG procedure,Em8

N and
EGS
N the corresponding eigenvalues, andZN the (T50) par-

tition function. Contributions from energy shel
n50,1, . . . ,N21 haveEm

n 2EGS
n .v so they make no con

tribution to the spectral densityCr
eq at frequencyv'vN . At
er

e

at

-
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e
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re
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-

d
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to

-

e

e,

finite temperatures, there can be contributions from hig
energy states, although the Boltzmann factors in Eq.~3! will
suppress these.

The situation is different for nonequilibrium dynamic
quantities, such asP(v). From the Lehmann representatio
~5! we see that, even atT50, no ground-state energy ap
pears in thed functions. Instead the (T50) excitations are
between arbitrary~final! states. The response at frequen
v'vN can have contributions from all energy she
n50,1, . . . ,N. Hence, if we evaluateP(v), at the frequency
v;vN5DL2(N21)/2, by taking into account only theNth
energy shell, we have only theapproximateresult

P~v!'PN~v!5
1

ZN,I
(

mF ,mF8
^mI ,GSumF&N^mF8 umI ,GS&N

3^mFuszumF8 &Nd„v2~EmF

N 2Em
F8

N
!…. ~8!

The approximation implicit in this procedure is that sm
excitationsv;EmF

n 2Em
F8

n
between higher energy excite

states~i.e., from energy shells withn,N), make a negligible
contribution toP(v) compared to those on a scalev;vN
from theNth energy shell. This is clearly only an approx
mation to the formally exact expression~5!. The results and
arguments to be presented below show that the above
proximation has a regime of validity and a regime where
breaks down. We stress, however, that a full multiple-sh
evaluation of Eq.~5! will ultimately be required. This is
currently not feasible within the standard NRG procedu
described in Secs. III A and III B. One first has to overcom
two problems:~i! a possible double counting of excitations
adding contributions toP(v) from different energy shells
~ii ! a meaningful way of adding contributions toP(v) from
higher energy shells which have different resolutions. T
second problem can be overcome by replacing the stan
NRG procedure of Secs. III A and III B by one which elim
nates any dependence of static and dynamic quantities on
logarithmic discretization.33 These problems do not arise i
the case of equilibrium dynamical quantities since, as d
cussed above, the spectral densities can be calculated e
tially without approximation by restricting attention to ju
one energy shell for each frequency of interest29 ~although,
as discussed in Sec. III B, the use of a logarithmic discr
zation and a Gaussian broadening procedure can over
mate the widths of high-energy peaks in spectral densitie!.

Returning to Eq.~8! we expect this to be a valid approx
mation as long as orthogonality effects do not significan
affect the overlap matrix elements^mF8 umI ,GS&N appearing in
the above expression@and similar expressions forC0r(v)#.
When this occurs, as it will do for sufficiently low energies,32

an increasing number of final statesumF&N will be nearly
orthogonal to the initial ground stateumI ,GS&N and it will be
necessary to include higher-energy states. Information
higher-energy states is contained in previous iterati
within the NRG procedure. Thus if we evaluate the noneq
librium quantities approximately by using only one ener
shell, then we will obtain results with a restricted range
validity. The range of validity can be estimated: orthogon
ity effects between initial and final states become import
in the strong-coupling regime, i.e., for frequenciesv!TK ,



-
ix
f
ch

2

he
ng

a

o
e
ak
y

o

m
the

g
e

e as

-
tive

he

k
er

rly
he

-
the
ak
er-
er-
ure
ctly

-

-

n
e-
n-
d
tion
-
y

vel
er-
as

in
rs

n

.

55 3007RENORMALIZATION-GROUP APPROACH TO . . .
whereTK is the low-energy scale of the AKM~or the renor-
malized tunneling amplitudeD r , in the language of the spin
boson model!. However, the exponent with which the matr
elementŝmF8 umI ,GS&N vanish will also influence the range o
validity. We find, by keeping only one energy shell for ea
frequencyv, that P(v);C0r(v)/v;uvua/2,uvu!D r ~no-
ticeable in the low-energy part of our results in Figs. 1 and
presented in the next section!. The vanishing ofP(v) with
v→0 reflects the orthogonality of the matrix elements in t
expression forP(v) and we see that the exponent governi
this is a/2. The exact behavior ofP(v) and C0r(v) for
v→0 is not rigorously known. In special cases, such as
the Toulouse point, a51/2, it is known that
P(v→0);@C0r(v)/v#v→0; const, and P(t);e2at,
t→`. This type of exponential relaxation is expected f
othera in the range 0,a,1. In any case, we see that th
approximate evaluation of the nonequilibrium dynamics t
ing just one energy shell into account for each frequenc
expected to be accurate for weak dissipation~when the over-
lap exponent is small! and for energies which are not to

FIG. 1. P(v) for D50.1 (J'50.10397),a50.1 (Ji54.698),
solid line, anda50.2 (Ji53.12759), dashed line. Energies are
units of D5vc/251. The relation between the AKM paramete
J',i and the spin-boson model parametersa,D is given in the text.
Renormalizations of these parameters due to the discretizatio
the AKM model have been described in Ref. 24.

FIG. 2. C0r(v) for D50.1 (J'50.10397). ~a! a50.1
(Ji54.698), solid line, and~b! a50.2 (Ji53.12759), dashed line
Energies are in units ofD5vc/251.
,

t

r

-
is

small relative toD r . In the context of macroscopic quantu
coherence experiments in SQUID’s, one is interested in
short-time dynamics for times up to approximately 1/D r .
The long-time behaviort@1/D r is of interest in other con-
texts ~e.g., microscopic two-level systems!, and for these it
will be necessary to carry out the full calculation, includin
higher energy shells, for the nonequilibrium dynamics. W
expect that such a calculation will give results as accurat
those for equilibrium quantities.24

IV. RESULTS

For weak dissipation,a!1, one expects damped oscilla
tions of the two-level system at a frequency reduced rela
to the bare tunneling frequency,D, due to the coupling to the
environment. From Fig. 1, which showsP(v), we see that
this expected behavior is reproduced by our method. T
presence of an inelastic peak inP(v) at v5D r* indicates
damped oscillations of frequencyD r* The width,g r* of the
inelastic peak gives the characteristic time 1/g r* for the de-
cay of the oscillations. Fora!1 we find a renormalized
tunneling frequency D r*'D r,D with D r5D@D/
vc#

a/(12a), andD r is the relevant low-energy scale for wea
dissipation as obtained within the NIBA and several oth
approaches~Refs. 34,35!. The larger renormalization of the
tunneling amplitude with increasing dissipation is clea
seen in Fig. 1. Qualitatively similar results are found for t
quantityC0r(v)/v ~shown in Fig. 2!. For weak dissipation,
the inelastic peak widthg r*;aD r* vanishes linearly with
a20. Consequently, fora!1, the use of a logarithmic dis
cretization does not provide the necessary resolution at
peak position which is needed for resolving the intrinsic pe
width, i.e. any broadening of the discrete spectra will ov
estimate the inelastic peak width. This problem may be ov
come by averaging over discretizations using the proced
in Ref. 33. The standard procedure used here gives corre
the positions and weights of thed functions in the discrete
spectra~this has been shown in detail for alla in the range
0,a,1 for the case of equilibrium dynamical quantities24!.
The decay of the weights of thed functions with increasing
energy and hence the frequency dependence ofP(v) at en-
ergiesD r,v,vc is also correctly captured by our proce
dure. We find thatP(v);C0r(v)/v;v2(322a) for D
!vc , D r!v!vc and for 0,a,1 ~the error in the expo-
nent is typically less than 0.1%!. Thus, the short-time behav
ior of P(t) is identical to the NIBA result
P(t)512ct2(12a) for vc

21!t!D r
21. This gives indepen-

dent confirmation that the NIBA is correct forP(t) at short
times.

Hence for weak dissipation we recover the know
picture19,20 of damped oscillations at reduced tunneling fr
quencyD r . In particular, the short-time dynamics is no
trivial in the sense thatP(t) and correlation functions depen
on a-dependent exponents. On increasing the dissipa
strength, the inelastic peak inP(v) narrows and the incoher
ent contribution@P(v50)# becomes larger. For sufficientl
strong dissipation, we expect the incoherent part ofP(v) to
dominate and lead to incoherent dynamics of the two-le
system. Although the question of the crossover from coh
ent to incoherent dynamics in equilibrium quantities h

of
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been investigated with high accuracy using the NRG,24 the
same question is technically more difficult for nonequili
rium quantities such asP(v). In this paper we have calcu
lated the nonequilibrium dynamics only approximately, a
the approximation used, which we described in detail in S
III C, has a range of validity which restricts us to wea
dissipation and energies which are comparable to or hig
than the low-energy scale of the model. To address the q
tion of a crossover from coherent to incoherent dynamics
need to evaluateP(v) taking into account several energ
shells for each frequencyv, as detailed in Sec. III C.

V. CONCLUSIONS

To summarize, we have presented a numerical ren
malization-group approach to the calculation of nonequi
rium Green functions in correlated impurity systems. T
approach uses an analogy to the calculation of response f
tions in the x-ray problem where the disturbance is sudd
The method was illustrated by calculating the nonequi
rium dynamics of the Ohmic two-state system. An appro
mate evaluation of the nonequilibrium quantities, taking o
one energy shell into account for each frequency range, g
d
c.

er
s-
e

r-
-
e
nc-
n.
-
-
y
ve

accurate results within the expected range of validity of t
approximation: specifically, the approximate evaluation
P(t) gaveP(t)512ct2(12a) for vc

21!t!D r
21 for all dis-

sipation strengths providedD!vc . This is in agreement
with the NIBA prediction, which is known to be accurate a
short times. Including additional energy shells in the eval
ation of nonequilibrium quantities should give essentially e
act results. This is left for future work as it requires a mod
fied NRG procedure~as discussed in Sec. III C!. The method
is nonperturbative and can be used to study the effects
local interactions on the nonequilibrium transport throug
small devices such as quantum dots and tunnel junctions.
important aspect of the method is that the disturbance~an
electric or magnetic field! can be arbitrarily large, so it may
be used to study the nonlinear regime in theI -V characteris-
tics of small devices, such as quantum dots.
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