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We present a technique for calculating nonequilibrium Green functions for impurity systems with local
interactions. We use an analogy to the calculation of response functions in the x-ray problem. The initial-state
and the final-state problems, which correspond to the situations before and after the dist(ahazieetric or
magnetic field, for exampjes suddenly switched on, are solved with the aid of Wilson’'s momentum shell
renormalization group. The method is illustrated by calculating the nonequilibrium dynamics of the Ohmic
two—state problem.S0163-18207)00205-1

I. INTRODUCTION nonequilibrium dynamics of the Ohmic two-state system, ob-
tained on the basis of NRG calculations for the anisotropic
Recently there has been interest in the nonequilibriunKondo model. In Sec. V we summarize our main conclu-
transport properties of small devices, such as quantum doggons.
and ultrasmall tunnel junctior’s® These systems, together

with some resonant tunneling devickstfer possibilities for . Il. FEORMULATION
studying many-body effects due to strong local Coulomb in- _
teractions. The importance of these interactions in small de- A. The Ohmic two-state system

vices is seen, for example, in the suppression of tunneling or The nonequilibrium properties of the Ohmic two-state
the Coulomb blockade effett.Phenomena such as the problem are of main interest in macroscopic quantum coher-
Kondo effect in quantum dots and the Fermi edge singularityance experiments in rf superconducting quantum interference
in resonant tunneling devices have been predictédand  devices(SQUID's).2® Typically, an rf SQUID can be in one
some aspects of these have been confirmed experimegntallybf two possible fluxoid states. By applying a biémrre-

The usual starting point for dealing with nonequilibrium sponding to an external magnetic figldor timest<0, the
transport inzsuch systems has been the formalism de\_/elopgg,stem is prepared in one of the two states. The dynamics
by Keldysht? and Kadanoff and Bayri. Below we describe  after the bias is removed &t 0 is then intrinsically a non-

a nonperturbative approach based on the numericalgyilibrium property. The HamiltoniarH, of the system is
renormalization-grouNRG) method;***which allows the  time dependent with a sudden perturbatiort-aD, so that
calculation of nonequilibrium Green functions for the above\,e can write H(t) =[1— 6(t)JH, + 6(t)Hg where H, ,Hg
systems. We consider only the case in which the perturbatiogre the Hamiltonians before and after the bias is switched

(an electric or magnetic fieldcausing the nonequilibrium ¢ The HamiltonianH, - describing the Ohmic two-state
effects is suddenly switched on at time 0. The nonequi- system is given by the spin-boson mo#fl,

librium Green functions will then be calculated by solving an

initial- (t<0) and final- (>0) state problem as in the case 1 1 1

of calculating the photoemission and absorption spectra in Hepg=— shAoyt+ —ea‘z+2 w, azaa+ —)

the x-ray problent® In this paper we concentrate on calcu- 2 2 @ 2

lating the nonequilibrium properties of a specific model, the 1 c

Ohmic two-state systefi{. The application of the method to + 2090, ———(a,+al). (1
the systems mentioned above follows along the same lines, 2 a 2muw, - °

the only difference being the solution, using the NRG
method, of different initial- and final-state Hamiltonians. ~ Here oj,i=x,y,z are Pauli spin matrices, the two states of
The paper is organized as follows: in Sec. Il we introducethe system correspond t@,=1 and o,=| (i.e., 0,=1,]|
the standard model of the Ohmic two-state system, formulatéorrespond to the two possible fluxoid states of the rf
the problem of calculating the nonequilibrium dynamics of SQUID). A is the bare tunneling matrix element aeds a
this model in terms of solving an initial- and a final-state bias. The environment is represented by an infinite set of
problem and introduce an equivalent model, the anisotropiarmonic oscillatorglabeled by the indexx) with masses
Kondo model, which we actually use in the calculations. Inm, and frequency spectrum,, coupling linearly to the co-
Sec. Il we describe the NRG, its application to dynamicalordinateQ=(1/2)qqo, of the two-level system via a term
quantities and an approximate evaluation of the formally excharacterized by the couplings, (the two-level system co-
act expressions for the nonequilibrium quantities. An exacordinate could be the total fluxp= ¢, 0, in the case of an
evaluation of nonequilibrium quantities first has to overcomet SQUID experiment The environment spectral function is
certain technical difficulties, which we describe, and is postgiven in terms of these couplings, oscillator masses and fre-
poned for the future. Section IV contains our results for thequencies byJ(w)=(7-r/2)Ea(C§/mawa) S(w—w,). In the
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case of an Ohmic heat bath, of interest to us here, we haudere, Em, and |m,) are the many-body eigenvalues and

J(w)=2maw, for o<w., wherew, is a high-energy cutoff  gjgenstates of the initial-state Hamiltonigin, Z, is the cor-

and « is a dimensionless parameter characterizing thgesponding partition function, ancE._, |mg), En,
strength of the dissipation. This form for the spectral func- F F

tion is appropriate for describing quantum dissipation in an r1J mF>’.' .. are thernarjy—quy eigenvalues an_q e!genstates of
SQUID. Preparation of the system in a state with=+ 1 the final-state HamiltoniarHg. In th_e equilibrium case,
with the oscillators relaxed about this state is equivalent td!1=Hr=H, and the corresponding spectral ~density
setting e=—o in Hgg, SO the initial-state problem corre- Cr (@) reduces to

sponds to solvingH,=Hgg(e= —=). Similarly, the final- o

state problem is given by =Hsg(e=0). The Ohmic spin-  C&(,0)=—- > e PEm[(m|a|m')|26(Q)

boson model has been intensively studigat reviews we VA m,m’

refer the reader to Refs. 19)2We outline some of its fea-
tures in order to introduce some useful notation. The model X{o(@+[Em=Bn]) = 60— [En=Em D},
has a low-energy scaldy, <A for A<w., which depends 3)
on the dissipation strengtta, and which may be interpreted
as a renormalized tunneling amplitude. ok 1 the dynam-
ics corresponds to damped oscillations, with a crossover t
incoherent behavior with increasing dissipation strength. Fo
a—17, the renormalized tunneling amplitude vanishes giv-
ing rise to the phenomenon of “localization” or “self—
trapping” for a>a.~1 (a. depends also on the precise fro
value of A). The dynamical quantities exhibiting the aboveT
features are defined below.

where E,,,|m) are the many-body eigenvalues and eigen-
functions ofH andZ is the corresponding partition function
he delta function,6((1), in the above expression reflects
he fact that in the equilibrium cas&,(t,t’) depends only
on the difference of the time variables
We see that the nonequilibrium spectral density differs
m the equilibrium one in several ways: first, even at
=0, no ground-state energy appears in éfeinctions, the
excitations are between arbitraffinal) excited states of the
system. This reflects the fact that there is no stationary
B. Nonequilibrium dynamical quantities ground-state for a nonequilibrium situation. Secondly, the
The si I . . nonequilibrium aspects, which are a result of an initial-state
e simplest nonequilibrium dynamical quantity to study ; : )
for the spin-boson model is the quant®(t)=(c(t)), 2 preparation, are reflect_eq_m the presence of oyerlap matrix
) i k P elements between the initial and final states. Finally the de-
where the thermodynamic average is taken with respect tBendence orf) is a measure of the importance of transient

it ; ; —a—BH —pH ; ) : ) X
the initial density matrixp,(8)=e #"!/Tre” P, B is the  effects. Neglecting these effects results in the following sim-
inverse temperature, and the time evolution is with respect tBIified expression for the spectral density:

the Hamiltonian after the bias is switched off at tite0,

i.e., o,(t)=e"rloe HF. Hence,P(t)=1 for t<0 due to Cor(w)=C,(w,Q=0)
the infinite biase= —«, and fort>0, when the bias is

switched off €=0), P(t) describes how the two-level sys- _ 2_77 2

- BE 2 1\|2
: . X = e FEm|(m;|m m m
tem coordinateo, relaxes to its long-time value of zero. 1y me) | (me| ozl me)|

| ’
Another quantity of interest is the retarded two-time Green e

function, G, (t,t")= =i 6(t—t"){[o(t),0,(t")]),,, with the X S(Q){d(w+[Emp_— Emé])

thermodynamic average defined as above. Since time trans-

lational invariance is brokeig,(t,t") depends on both times — (0~ [Em.—En D} 4

explicitly. We consider the Fourier transform &, (t,t")
with respect to both the sut-t’ and differencd —t’ of the
time variables. The resulting spectral density
Cilw,Q)=—(1Um) IMG,(w+i6,Q), with »,Q the Fourier
frequency variables corresponding te-t’,t+t’, is given
within a Lehmann representation by the following expres-
sion:;

This describes the steady-state case’—ow. In a strict
sense it is not a nonequilibrium quantity, although it does
take into account the effects of an initial-state preparation on
the correlation function o ,(t)o,(0)). Our motivation for
calculating this quantity is simply to illustrate that our tech-
nique applies also to two-time Green functions. The calcula-
tion of the full spectral densityC,(w,()), including both
frequencies involves a straightforward generalization.
Similarly we can write the Fourier transform ¢#(t),

Q 2w 2 _pE Y
Cr(, )_z_ e FEm(my [ me)(m|m;) within a Lehmann representation, as

I'my ,mg ,m,’: ,m;;

1
En. —En Plw)= — - BE /
’ ’ " F F (w)_ Z € m'<ml|mF><mF|m|>
X<mF|Uz|mF><mF|Uz|mF>5<Q_T) Z|m| Mg Mp
EmF+ Em;; ><<mF|0'z| m[’:>5(w_(EmF_Em":))r 5
X) 8| w+|————E, . .
2 F where the same notation as above is used.
E +E.. P(t) = [{ P(w)cost)dt contains information on the on-
sl e Mg Mg E @) set of quantum oscillations in the two-level system. For
2 Me small values of the dissipation strength<1, it is known
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from the noninteracting blip approximatibh(NIBA) that  renormalized downwards. The low-energy scale of the model
P(t) exhibits damped oscillations with a renormalized tun-is given by the Kondo temperature for the anisotropic Kondo
neling frequencyA,=A[A/w )Y~ 9. P(w) will exhibit — model? Ty(J, ,J))<J, , for J, <D, which in the language
two peaks atw==*A,. At the exactly solvable Toulouse of the dissipative two-state system corresponds to a renor-
point?! a=1/2, where the Ohmic two-state system reducesnalized tunneling amplitudd, .>* An extensive discussion

to the resonant-level mod&:;?? the dynamics is incoherent of the equivalence between the anisotropic Kondo model and
and P(t) decays exponentiallyP(w) consists of a single the Ohmic two-state system is given elsewhere.

peak atw=0. It is not clear at which value of the dissipation

strength the crossover to incoherent behavior occurs, in par-

ticular whether it occurs at exactlw=1/2 or for some  lll. CALCULATION OF NONEQUILIBRIUM DYNAMICS
smaller value ofx. This may depend on the definition of the VIA THE NRG

crossover and on Whethgr eqwhbnum_q nonequm'b.num A The NRG

guantities are being studied. For equilibrium quantities a ) N ) ]
smooth crossover has been found to occus atl/32428 The dynamical quantitiesP(t) and G(t,t') defined

above for the two-level system translate into the correspond-
ing quantities for the Kondo modelo{—S, under the
equivalencg We calculate these quantities by applying Wil-
Instead of solving directly the spin-boson model with theson’s momentum shell renormalization-group method gener-
NRG method it is more convenient to solve an equivalentlized to the calculation of dynamical quantiti@sg., Refs.
fermionic model which has the same dynamics. This is the4,29. Thus in addition to solving an initial-state problem
anisotropic Kondo modg/AKM ). The equivalence has been H =H,,y(e=—=) and a final-state  problem
shown at the Hamiltonian level via bosonizatfdiiThis was ~ Hp=H sy (e=0), the final-state matrix elements of the
believed to be valid in the regiom>1/2, which corresponds variables, and the overlap matrix elements appearing in the
(see below for the precise statement of the equivalete above expressions fd?(w),C,(w) are also calculated. The
the region in the parameter space of the AKM between wealgiagonalization oH sy proceeds as followéfor full details
coupling and the Toulouse point. In fact, recent wérk see Ref. 1% (i) the spectrum is linearized about the Fermi
shows that the equivalence extends beyond the Toulousshergy e,—uvek, (i) a logarithmic mesh ofk points
point into the region describing weak dissipationk =A"" is introduced to achieve a separation of energy
0<a<1/2 (or large antiferromagnetid; in the AKM, see  scales, andiii) a unitary transformation of the,, is made

C. The anisotropic Kondo model

also Ref. 25. The AKM is given by® such thatf,,==,cy, is the first operator in a new basis,
3 _fn(,,nzo,l, e , which tridia:cgonalianizHcT:Ek#ekﬂclﬂckﬂ
HZE GKCEO.CKO.‘F_LE (ClTCkIlS_‘i‘CLCk’TS_*—) In. k Space, Ile,'iHcﬁE‘MEn:OgnA (fn.+l“an+H'C..)’
ko 240 with &,—(1+A~%)/2 for n>1. The Hamiltonian(6) with

3 the above discretized form of the kinetic energy is now
d t _ At z diagonalized by the following iterative proces&) one
" 2% (G Ci1 ~ Ch O )5+ QughS,. © defines a sequence of finite-size  Hamiltonians
_ _ _ _ Hn=3,SnC0 A Y2(F o fo, + He) + 3, 72(F0, oS
The first term represen_ts noninteracting conduction eIeCtronifglfOTSJr)"'JH/Z(ngfOT_fg)lfOL)sz for N=0: (b) the
and the second and third terms represent an exchange intgfz niyoniansH, are rescaled by =172 such that the en-
action between a localized spin 1/2 and the conduction elec- . . T UN_1/2 .

X e : ergy spacing remains the same, itgy=A Hy. This
trons with strengtld, ,J; . A local magnetic fielch, coupling defines a renormalization-arou transformation
only to the impurity spin in the Kondo modfhe last term  — 1o T group X
in Eq. (6)], corresponds to a finite biasin the spin-boson Hnra = AT HNF 280y vt HC) = Eonea, W't_h
model. The correspondence betwelnand Hgg is then  Egn+1 chosen so that the ground-state energyHgf,; is
given by e=gugh, Alw.=pJ, ande=(1+268/7)2 where Z€ro. Using this recurrence relation, the sequence of Hamil-
tans=—mpJ)/4, & is the phase shift for scattering of elec- t().nians,HN for' N.=0,1, ... Is iteratively .diagonalized. This
trons from a potentialj/4 andp=1/2D is the conduction- ~gives the excitations and many-body eigenstates at a corre-
electron density of states per spin at the Fermi level for a flagponding set of energy scaleswy defined by
band of width D.1%2* We note that weak dissipation wy=A~N"1"2 and allows a direct calculation of the dy-
(a—0) in the spin-boson model corresponds to extreme anramical quantitiesP(t),G,(t,t"), or more precisely their
isotropy (Jj—) in the Kondo model. For zero dissipation, Fourier transforms using the Lehmann representatiays.
Jj=2, the two states). = 1/J§(|T)|l>oi|l>|T>o) made up  Our results were obtained fdr= 2, keeping the 320 lowest
from the impurity states and the local conduction-electrorStates at each iteration. Truncating the spectrum in this way
Wannier orbitals |o)o=3,c{ |vac), where |vag is the restricts the range of excitations at iterationN to be su_ch
vacuum, are split byJ, =A (with the identification thatwny<w=Kwy, whereK=K(A)~7 for A=2. In this
w.=2D) and are completely decoupled from the rest of thePaper we discuss only the=0 results.
conduction band, thus forming an isolated two-level system. In diagonalizing the Hamiltoniand the following sym-
The system exhibits coherent oscillations  with metries are used to reduce the size of the matriggson-
P(t)=cos(@t). As J; is decreased from-, the two levels ~servation of the z component of total spin
become weakly coupled, with streng®?/Jjxa, for pJy  SP'=S,+ S o(1/2)(ff,f;—f} f)), (ii) conservation of to-
>1, to the remaining conduction states and their splitting igal pseudospif® where the pseudospin operatdrs,j~,j,
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are defined byj*zELo(—l)”fﬁTfll i~=(i)' and finite temperatures, there can be contributions from higher

jZ:Er’:‘:O(fEanM— 1/2). These symmetries hold for both the energy states, although the Boltzmann factors in(Bowill

zero and finite bias cases, which we consider in this papeguppress these.

(e=0 for the final-state problem ang= —o for the initial- The situation is different for nonequilibrium dynamical

state problem At this point we mention that although it is, quantities, such aB(w). From the Lehmann representation

in principal, possible to apply this renormalization-group (5) we see that, even &t=0, no ground-state energy ap-

method directly to the spin-boson model, in practice thergpears in thes functions. Instead theT(=0) excitations are

are disadvantages in the case of the bosonic proftem.  between arbitraryfinal) states. The response at frequency

w~wy can have contributions from all energy shells

n=0,1,... N. Hence, if we evaluat®(w), at the frequency

w~ony=DA~"N"D2 py taking into account only thélth
We note that the use of a discretized model implies that agnergy shell, we have only trepproximateresult

each iteratiorP(w) is a series ob functions. Smooth curves

are obtained by broadening theddunctions with a Gauss- 1 ,

ian of width appropriate to the level spacing l8f;.?° The P(w)~Py(w)=5— 2 (M edme)(melm; oy

B. Broadening procedure for the discrete spectra

width of the Gaussians will not influence the intrinsic peak me e
widths at low energies, where the logarithmic spacing en- / N N

; ; ) ) X{(m mMe)nS(w—(E, —E /). 8
sures high resolution, but may do so at higher energies where (me| ozl me ) oo = Mr mF)) ®

the resolution is lower. This problem has been discussed i h imation implicit in thi d is that I
detail in Ref. 33, where a refined NRG scheme to overcom e_ approximation implicit n this _procedure 1S that sma

it has been suggested. In most problems one is interested §XCitations o~Ep,_— Enm; between higher energy excited
the low-energy behavior and such a refinement is not restategi.e., from energy shells with<N), make a negligible
quired, however for the spin-boson model considered hereontribution toP(w) compared to those on a scale~ wy
there is interesting dynamics at high energies and such flom the Nth energy shell. This is clearly only an approxi-
refinement is required in order to obtain a complete descripmation to the formally exact expressi¢h). The results and
tion of all aspects of the high energghort time dynamics  arguments to be presented below show that the above ap-
(by high energy, we mean high relative to the renormalizechroximation has a regime of validity and a regime where it
tunneling amplitude, but still low relative to the high-energy breaks down. We stress, however, that a full multiple-shell
cutoff in the modell. In the present paper we have not imple- evaluation of Eq.(5) will ultimately be required. This is
mented the above refined scheme, so we shall state belowirrently not feasible within the standard NRG procedure
which aspects of the high-energy dynamics we are able tgescribed in Secs. Il A and Ill B. One first has to overcome

obtain within the unmodified NRG scheme. two problems(i) a possible double counting of excitations in
adding contributions td®(w) from different energy shells,
C. Approximate evaluation of nonequilibrium quantities (if) a meaningful way of adding contributions R{w) from

higher energy shells which have different resolutions. The
; S - , ~second problem can be overcome by replacing the standard
calculation of nonequilibrium quantities with respect to equi-N g procedure of Secs. Ill A and Il B by one which elimi-
librium quantities such a6, (). At T=0, the latter can a6 any dependence of static and dynamic quantities on the
be calculated on each energy scalg by restricting atten- |ogarithmic discretizatiod® These problems do not arise in
tion to a single energy shell. This is due to the existence of the case of equilibrium dynamical quantities since, as dis-
a stationary ground state, from which all excitations in thecyssed above, the spectral densities can be calculated essen-
expression foiC?? can be measured. Thefunctions in the  tially without approximation by restricting attention to just
Lehmann representation, E@), then imply that in order to  one energy shell for each frequency of intef&galthough,
calculateC;“ at frequencyw, only one energy shell, that for as discussed in Sec. Ill B, the use of a logarithmic discreti-
which o~ wy, is required, i.e., zation and a Gaussian broadening procedure can overesti-
mate the widths of high-energy peaks in spectral dengities
2 Returning to Eq(8) we expect this to be a valid approxi-
Cf“(w,Q,T=O):Z—E (GHa M )\?6(Q) mation as long as orthogonality effects do not significantly
N m’ affect the overlap matrix elementsn|m; g9)n appearing in
the above expressidand similar expressions faZ, (w)].

At this stage we point out an important difference in the

X{8(w+[Egs— E,’:i,]) When this occurs, as it will do for sufficiently low energi®s,
an increasing number of final staté®g)y will be nearly
orthogonal to the initial ground statm and it will be

~oo-[EdENDL () : ; o con

necessary to include higher-energy states. Information on

higher-energy states is contained in previous iterations

where|m’>N., |GS>_N are. the.eigenstates and the gr%und StateWithin the NRG procedure. Thus if we evaluate the nonequi-
corresponding to iteratioN in the NRG procedurez and  |iprium quantities approximately by using only one energy

Egs the corresponding eigenvalues, afid the (T=0) par-  shell, then we will obtain results with a restricted range of
tition  function. Contributions from energy shells validity. The range of validity can be estimated: orthogonal-
n=0,1,...N—1 haveE,—Egs>w so they make no con- ity effects between initial and final states become important
tribution to the spectral densi@; at frequencyw~ wy . At in the strong-coupling regime, i.e., for frequenciex Ty,
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4.0 . , ‘ small relative toA, . In the context of macroscopic quantum
coherence experiments in SQUID’s, one is interested in the
short-time dynamics for times up to approximatehA 1/

3.0 The long-time behaviot>1/A, is of interest in other con-
 4=0.1,A=0.1 texts (e.g., microscopic two-level systejnand for these it
3 50 002, Ac0.1 vv_|II be necessary to carry out the fuII_ (_:al_culatlon, mt_:ludlng
o , e higher energy shells, for the nonequilibrium dynamics. We
f expect that such a calculation will give results as accurate as
10} those for equilibrium quantitie¥:
/f‘
0'%.oo 020 040 0.60 0.80 V. RESULTS
Sl For weak dissipationg<<1, one expects damped oscilla-

tions of the two-level system at a frequency reduced relative
FIG. 1. P(w) for A=0.1 (3, =0.10397),a=0.1 (Jj=4.698), {0 the bare tunneling frequency, due to the coupling to the

solid line, anda=0.2 (Jj=3.12759), dashed line. Energies are in anvironment. From Fig. 1, which show ), we see that
units of D=w./2=1. The relation between the AKM parameters inis expected behavior is reproduced by our method. The
J, 1 and the spin-boson model parameterd is given in the text. resence of an inelastic peak () at w=A* indicates
Renormalizations of these parameters due to the discretization @ I R
the AKM model have been described in Ref. 24. ( ampgd OSCIIIatI'ons of frequenay;*_ T.he.W|dth, y¥ of the

inelastic peak gives the characteristic time/;1for the de-
cay of the oscillations. Fowr<1 we find a renormalized
tunneling frequency AF¥~A,<A with A,=A[A/
w:]®~9 andA, is the relevant low-energy scale for weak
dissipation as obtained within the NIBA and several other
approachegRefs. 34,35 The larger renormalization of the
tunneling amplitude with increasing dissipation is clearly

. : i S seen in Fig. 1. Qualitatively similar results are found for the
ticeable in the low-energy part of our results in Figs. 1 and ZQUantityCOr(w)/w (shown in Fig. 2. For weak dissipation,

presented in the next sectjoriThe vanishing ofP(w) with . . bk vk X . X

w— 0 reflects the orthogonality of the matrix elements in thethzeO |2elast|c peik \;V'dtzfl t‘ﬁAf vanlfs hels "”?{';‘{'Y W('jt.h

expression foP(w) and we see that the exponent governing® . onsequently, for= 1, the use of a logarithmic dis-
cretization does not provide the necessary resolution at the

this is @/2. The exact behavior oP(w) and Cy,(w) for . S i S

w—0 is not rigorously known. In special cases, such as ap(_aak position which is n_eeded for rgsolvmg the Intrinsic peak

the Toulouse point, a=1/2, it is knovx,/n that width, i.e. any broadening of the discrete spectra will over-

P(w—0)~[Co, (®)/®] ' cor;st and P(t)~e 2 estimate the inelastic peak width. This problem may be over-
- ~ Or w—0"" ’ -~ ’

t—c. This type of exponential relaxation is expected for SOMe by averaging over discretizations using the procedure

other a in the range & a<1. In any case, we see that the in Ref. 33. The standard procedure used here gives correctly

. . o . the positions and weights of th& functions in the discrete
approximate evaluation of the nonequilibrium dynamics tak-

L : . spectra(this has been shown in detail for atl in the range
ing just one energy shell into account for each frequency i A . .
expected to be accurate for weak dissipatiwhen the over- D<a<1 for the case of equilibrium dynamical quantifids

- : : The decay of the weights of th& functions with increasing
lap exponent is smalland for energies which are not too energy and hence the frequency dependend@(af) at en-

ergiesA, <w<w, is also correctly captured by our proce-
150.00 . dure. We find thatP(w)~Cq (@) o~w ©729 for A
<w¢, A<w<w, and for 0<a<1 (the error in the expo-
nent is typically less than 0.1p4Thus, the short-time behav-
o ior of P(t) is identical to the NIBA result
100.00 | | —— a=0.1,A=01 1 P(t)=1—ct?@ 9 for w, '<t<A, 1. This gives indepen-
. =02, A=0.1 dent confirmation that the NIBA is correct fét(t) at short

whereT is the low-energy scale of the AKNbr the renor-
malized tunneling amplituda, , in the language of the spin-
boson modegl However, the exponent with which the matrix
elementgmg|m; g9y Vanish will also influence the range of
validity. We find, by keeping only one energy shell for each
frequency w, that P(w)~Cq(w)/ w~|w|*?|w|<A, (no-

, times.
' i \\ Hence for weak dissipation we recover the known
/! 1

C,(o)o

50.00 ¢/ picture®?° of damped oscillations at reduced tunneling fre-
/ \ quencyA,. In particular, the short-time dynamics is non-
/ \ trivial in the sense tha®(t) and correlation functions depend
\ on a-dependent exponents. On increasing the dissipation
0.00 0.20 0.40 strength, the inelastic peak () narrows and the incoher-
© ent contribution] P(w=0)] becomes larger. For sufficiently
strong dissipation, we expect the incoherent paf®(b) to
FIG. 2. Cy(w) for A=0.1 (J,=0.10397). (8 «=0.1 dominate and lead to incoherent dynamics of the two-level
(Jj=4.698), solid line, andb) «=0.2 (J;=3.12759), dashed line. System. Although the question of the crossover from coher-
Energies are in units dd = w /2=1. ent to incoherent dynamics in equilibrium quantities has




3008 T. A. COSTI 55

been investigated with high accuracy using the Ni@e  accurate results within the expected range of validity of the
same question is technically more difficult for nonequilib- approximation: specifically, the approximate evaluation of
rium quantities such aB(w). In this paper we have calcu- P(t) gaveP(t)=1—ct?@~ %) for w_*<t<A, ! for all dis-
lated the nonequilibrium dynamics only approximately, andsipation strengths provided <w.. This is in agreement
the approximation used, which we described in detail in Seowith the NIBA prediction, which is known to be accurate at
Il C, has a range of validity which restricts us to weak short times. Including additional energy shells in the evalu-
dissipation and energies which are comparable to or higheition of nonequilibrium quantities should give essentially ex-
than the low-energy scale of the model. To address the queact results. This is left for future work as it requires a modi-
tion of a crossover from coherent to incoherent dynamics weied NRG proceduréas discussed in Sec. 1I)CThe method
need to evaluatd®(w) taking into account several energy is nonperturbative and can be used to study the effects of
shells for each frequenay, as detailed in Sec. Il C. local interactions on the nonequilibrium transport through
small devices such as quantum dots and tunnel junctions. An
important aspect of the method is that the disturbafare
V. CONCLUSIONS electric or magnetic fie)dcan be arbitrarily large, so it may

) ) be used to study the nonlinear regime in thé characteris-
To summarize, we have presented a numerical renoki.q of small devices. such as quantum dots

malization-group approach to the calculation of nonequilib-
rium Green functions in correlated impurity systems. The
approach uses an analogy to the calculation of response func-
tions in the x-ray problem where the disturbance is sudden.
The method was illustrated by calculating the nonequilib- We acknowledge useful discussions with P:[fiép Ph.
rium dynamics of the Ohmic two-state system. An approxi-Nozieres, and T. Martin. This work was supported by E.U.
mate evaluation of the nonequilibrium quantities, taking onlyGrant No. ERBCHRX CT93-0115 and the Institut Laue-
one energy shell into account for each frequency range, gaveangevin.
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