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Non-Abelian bosonization of the frustrated antiferromagnetic spin-1/2 chain
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We study the spin-1/2 chain with nearest-neighbef)(and next-nearest-neighbok) interactions in the
regime x,> k4, which is equivalent to two chains with a “zigzag” interaction. In the continuum limit, this
system is described in terms of two coupled level-1 Wess-Zumino-Witten field theories. We illustrate its
equivalence with four off-critical Ising mode({#1ajorana fermions This description is used to investigate the
opening of a gap as a function &f, and the associated spontaneous breakdown of parity. We calculate the
dynamic spin structure factor near the wave vectors accessible to the continuum limit. We comment on the
nonzero string order parameter and show the presence of a higdef, symmetry via a nonlocal transfor-
mation on the microscopic Hamiltonian. For a ferromagnetic interchain coupling, the model is conjectured to
be critical, with different velocities for the spin-singlet and spin-triplet excitatip86163-18207)00401-3

[. INTRODUCTION order and disorder fields are also very useful in calculating
the spin structure factor. We also discuss the occurrence of a
One-dimensional quantum antiferromagnets have peculisstring (topologica) order parameter and the associated
properties (exotic ground states, gapped excitations, )etc.Z,X7Z, symmetry.
which are not accessible to traditional methods like spin- Let us summarize here the main results of this paper and
wave theory or perturbation theory, but require the use ofxplain its organization. In Sec. Il we set up the description
variational, numerical, or field-theoretical approaches. Inof two coupled spins chains in terms of four Majorana fer-
particular, field-theoretical methods have been used successions. This implies a quick review of the non-Abelian
fully to predict the existence of an excitation gap in thebosonization of a single spin chaiits representation as a
spin-1 Heisenberg chdirand the scaling behavior of the level-1 WZW mode). The main result of this section is the
spin-1/2 Heisenberg chafrt In the latter case, Witten’s non- representatiori8) and (9) of the fields of the level-1 WZW
Abelian bosonizatich was used to express the spin-1/2 model in terms of four Majorana fermions and their associ-
Heisenberg chain as a Wess-Zumino-Witt8¥ZW) model  ated order and disorder fields. This representation allows for
perturbed by irrelevant interactions. a representation of the spin operator and interchain interac-
In this work, we apply non-Abelian bosonization to the tion with the help of Eq(4). In Sec. lll, we write the inter-
spin4 Heisenberg chain with nearest-neight®N) cou-  chain interactionland the marginal intrachain perturbation
pling x; and next-nearest-neighbdNN) coupling «, in in terms of the four fermions and discuss the renormalization
the regimex,> k4. This system may also be viewed as two of the couplings and velocities. A mass scale
spin4 chains coupled with a “zigzag” interactior; (Fig. m~ k,exp—(xy/k;) appears dynamically and provides a
1). This latter representation makes sense physically, sincaass for the fermions, accompanied by a spontaneous break-
such arrangements of atoms occur frequeliige, for in-  ing of parity. Lorentz invariance is explicitly broken by the
stance, Ref. b The Hamiltonian of this system is interchain interaction and one of the four fermions acquires a
distinct mass and velocitythe velocity renormalization is
calculated explicitly. In Sec. IV we set up the calculation of
H:KlEi 3'S+1+"2§i: S-Sita @D the spin structure factoB(q,w) (the imaginary part of the
dynamic spin susceptibilijy near the four wave vectors
wherein the spins are indexed consecutively along the zigavailable to the continuum limig=0,7,* 7/2 [when con-
zag. This model has recently been studied by White angidering wave vectors, we regard the systémas a single,
Affleck.® We shall extend the somewhat brief theoreticalfrustrated chain and not as two coupled chaifihe single-
analysis of Ref. 6. The originality of the approach followed spin excitations appear at a frequenay~m near
in this paper lies mostly in the description of two coupled
spin4 chains in terms of four Majorana fermioiter Ising K,
models, obtained directly from the non-Abelian description Ry By ey R
without going through an intermediate Abelian bosonization ” FE S0 S0 ’
of the theory. This approach makes the symmetry of the L, _ . o
system more evident, and the representation of the staggered . e e o
magnetization density by order-disorder operators may be
proven directly; it also allows for a simple description of the  FIG. 1. Zigzag chain, with interchain coupling and intrachain
magnetic excitations, in terms of which the Majorana fermi-coupling «,, also equivalent to a single chain with NN coupling
ons have a direct interpretation. The fermions and associated and NNN couplingk,.
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q==*m/2 while a two-particle continuum appears near S3(x) 1 — .
gq=0 andq=, like for the spin laddefin calculating the P E[Ja(x)+3a(x)]+(—1)x 20T g(x) 7],

spin structure factor, we treat the four fermions as free 0 (4)
fields). In Sec. V we show that the nonlocal string order

parameter of Ref. 7 is nonzero in the ground state, and howhere r are the usual Pauli matrices ang@x) the funda-

this breaks down a hidde, x 7, symmetry of the system. mental WZW field[an SU2) matrix]. The factor (1)*/2

We also perform an exadt.e., discretg nonlocal transfor-  alternates from one site to the next a@dis a nonuniversal
mation Eq.(1) that reveals thig, X Z, symmetry. In Sec. VI  constant. The first two terms of E¢4) constitute the local

we discuss the difference between this system and the usualagnetization and the last term is the local staggered mag-
spin ladder and address the case of ferromagnetic interchanetization.

coupling. A quick, largely notational review of WZW mod- Let us now turn our attention to the syste). In the

els and of the Ising modgMajorana fermioh is given in  regime x;<«, and in the continuum limit, it may be re-

Appendixes A and B. garded as two level-1 WZW models, plus some perturba-
tions. LetJ® andJ? denote the S(2) currents on one chain
[l. CONTINUUM DESCRIPTION OF TWO SPIN CHAINS and J'? and J’'? the corresponding currents on the other

chain. The first perturbation is marginally irrelevant and
given by two copies of Eq(3):

From the Bethe ansatz solution we know that the gpin- o o
Heisenberg chain Hamiltonian Lo=—2\,(J2J3+7'37'2), (5)

A. Non-Abelian bosonization

where\,~U/|t|. The second perturbation is the interchain
H= "Z S-S+ @ interaction (7). In the continuum limit and using E¢4), it
can be shown without difficulty to be
is critical. It was also argued by Affleékhat this critical L .
point is well described by a level-1 Wess-Zumino-Witten L1=2N\1(J3+I¥(J'3+7'3), (6)
conformal field theonjunless said otherwise, we will mean
by “WZW model” the SU(2) WZW model, at a specified wherex;~ x;/|t|>0.
level k] (cf. Appendix A). This equivalence is demonstrated The relevance or irrelevance of a perturbation is deter-
by starting from the half-filled Hubbard model with hopping mined, as a first approximation, from the scaling dimensions
integralt and on-site repulsiob) and taking the continuum of the various fields at the WZW fixed point. In terms the
limit. The charge degrees of freedom are then described by @onformal dimensionshh) appearing in Eq(A8), the scal-
Bose fielde which becomes massive for arbitrary smidll  ing dimension is\ =h+ h and the planar spin is—h. Since
while the spin degrees of freedom are described by thg,o conformal dimensions af® and J2 are, respectively,
level-1 WZW model.. At_U:O the charapteristip velocity (1,0) and (0,1), a perturbation of the foﬂﬁ?[like Eq.(5)]
of the VrYZ\IN mOdeI IS _S|mply the FeLm' VGIIOC.'WF_L”‘::O is marginal, while a perturbation of the fordiJ? violates
(a(? 'Sdt € att|c$ fspaglr?g Eor U>0t I'e Vdelgc'ty'é (()”ft € Lorentz (or rotation invariance. In fact, it renormalizes the
;spln hegre?s o rfe(;:] OT] IS renormalized y?ln ers — characteristic velocity of the theorigee below The inter-
rom the velocity of the charge exu_ta’qofspm-c arge sepa- action(6) is marginal, except for a velocity renormalization.
ratlon)_. Moreov_er, the continuum limit of the Hubbard La- WZW models, although they possess conformal invari-
grangian contains an additional term: ance, are not easy to deal with, especially in what regards the
calculation of correlation functions. In some cases., for
some values of the levé)) the WZW model is equivalent to
a theory of free fields. Then the calculation of correlation
functions becomes an almost trivial task and the overall
analysis is much simplified, in particular the study of the
vicinity of the fixed point. Such a free-field description is
ossible in the case of two coupled level-1 WZW models:
wo such models are equivalent to one level-2 WZW model,
plus one Ising modeor real fermion: see Appendix)BThis

L1=—\J2J3, 3)

whereJ? andJ? (a=1,2,3) are the left and right components
of the SU2) currents of the level-1 WZW model and
A~U/|t| (we will work in the imaginary-time Lagrangian
formalism; £ denotes the Lagrangian densityrhis pertur-
bation is marginally irrelevant. Thus, at long distances, th
spin degrees of freedom are exactly described by the level-

2
WZW model: equivalence was already used in Ref. 8 to describe the spin

Additional perturbations to the Heisenberg Hamiltonian . . )
(2) may be expressed in terms of WZW fields by using theIadder with bond alternation. Moreover, the level-2 WZW

following continuum-limit expression for the spin operator tmh?gsld:ffe?grl:tivﬁfr;t g?dtggiﬁbliiingt'h?cs)dftlzé]eiﬂﬁz ng_e
S [Note that expressiof#) cannot be substituted into E@) tinuum limit: Y 9 y

to find the WZW model Hamiltonian. This incorrect proce- '
dure yields the wrong sign for the marginal perturbat({8h

Eq. (4) should be used only to evaluate correlation functions

or express perturbations added to the half-filled Hubbard i
model): (in this section, the system will be regarded as just WZW,-,®lsing, (7b)
one chain with NNN interactions and not as two chains with

a zigzag interaction (Ising)*. (70

WZW,_; @ WZW, _;, (79)
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The representatiofvb) may be useful from the point of view J0= 01020300~ t1fbafatlo, (9a)
of symmetry since the interacting terms break down the

SU_(2)>< Sl_J(2) symmetry to S). However, 'ghe represen- U1= 1020 30— 01 [ha/h300, (9b)
tation (7¢) is more practical for calculations since it is made
entirely of free figlds and it; off—critica_lll(lqﬁO) behavior _ Up= 01 fhp0 30+ 102300, (90)
may be characterized by ordinary fermion mass terms. All is
not trivial, however, since the Ising model contains order and — _

. ] Ve, ST | CO1 03= 01021310~ L1M420300, (9d)
disorder fields in addition to a real fermion field, and these 3 TATAmene AT
three fields cannot be expressed locally in terms of each | O TGt 9e
other. Nevertheless, their correlation functions are known. 0= 719203007 f1kakiske, (%9
An additional difficulty comes from the breaking of Lorentz e O — o (9f)
invariance by the perturbatia(6). 917 T H10203H0™ T142#300,

We identify operators in two different representatidis . 9
by requiring their operator product expansid@PE to be 92= ~ O1f203ko T 11024300, (99
compatible. The OPE for the WZW models and the Ising )
model are given in appendixes A and B. The correspondence Q3= — 01024310~ H1M420300- (9h)

of operators belonging to the pictur€ga) and (7¢) is the

’ a ! W —
object of the next subsection. Note ~that —the —OPE's JYz)g/(ww)~0 _and

J'3(2)gi(w,w)~0 are satisfied, as they should: The two
chains are independent at this stage.

It is also possible to calculate the OPE gfwith itself,
The WZW,_; model cannot be simply represented in with the help of Eqs(B3a—(B3d). This is a bit tricky, since
terms of two Majorana fermions, even if the central charge ine must remember to anticommute the different disorder
the same in both cases<£1). The reason is the nonexist- fields. With the normalization chosen above and omitting

ence of a real, spig-representation of S@2). However, two  terms that do not diverge as—w, the end result coincides
copies of WZW,_, is equivalent to an S@) WZW model, with Eq. (Al6) for g and g’, plus the OPE
and the latter group admits a representation in terms of fougi(z,z)gj’(w,w)~0. Thus, the representati¢d) and(9) is a

real fermions. A representation of the WZW curredtand  complete and faithful representation of two independent cop-
J" in terms of four Majorana fermiong, , 3 ofollows imme-  ies of the WZW,_; model.

diately and its structure bears a strong resemblance with the

B. Description in terms of four Ising models

chiral generators of the Lorentz group: IIl. VELOCITY RENORMALIZATION AND
. RG ANALYSIS
=31 (o= aihs), (8a)
We are now able to write down the Lagrangian associated
32=2i(Yotho— Yaihy), (8b)  to the continuum limit o{1) solely in terms of real fermions.
The noninteracting part,, equivalent to the two level-1
3= (Paho— 1) (80 WZW models, is the free-fermion Lagrangian
(the corresponding expressions fbi?® are obtained by re- 13 o
versing th.e.sign_oibo). Using the OPE'¥B17) and Wick’s 50:2_2 vi( I+ o), (10)
theorem, it is a simple task to check that the ORB'$2) are Ti=0

satisfied. wherevg=---=vz=v is the velocity of spin excitation in

Adrepresentt_atlct>_n of tr;et;]”na;mx f|erllggs.antdg (thi Istgg— isolated chains. The factor in Eq.(10) is needed for con-
gered magnetizations of the two chains terms of Ising  Giio o with the OPEB1),

?elds IS glso n%edfed '3 _or?her fto”cal_cula;te r::_orrellgtlotn f_unc- The interacting termg5) and (6) may be expressed in
ions, and may be found in the following fashion. First, since, . . ." ¢ tha following operators:

g andg’ have conformal dimensions;(3), they must be

products of four order and disorder fields, such as O1= Yy by hotha+ Yy by hatba+ drathothaths, (118
10,0300, T1120340, and so on(there are 3=16 such
product3. Second, the action of each of the curreditsJ?, Oy= oo by + pthy+ aihs). (11b)

J'? andJ’® may be calculated on these 16 products, using

the OPE’s(B3e—(B3h). The result is a 16-dimensional ma- The interaction(5) is simply

trix representation of the currents. According to the OPE

(A11), the field gy, 1o is an eigenvector o8® with eigen- L2==25(01+0p). (12)

value— 3. Once such an eigenvector is found, one may applyrhe translation of Eq(6) requires more care, however, since
on it the other components of the curredtandJ and thus it implies regularized products of identical fermions. The fol-
obtain the other components gf Only one eigenvector al- lowing OPE must be used to extract the regular terms
lows a nontrivial solution(i.e., nonzero values of all the
components ofj). The same procedure is used r, with _ 1 i

the currents)’,J’. At last, one finds the following represen- vi(2) ¢y (wW) = 5 ﬂ+2(Z_W)T( W)+ ]
tation[we used the decompositiqA15)]: (13a
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_ 1 o Then the renormalization-group flow of the couplings,
$i(2) ¢hi(w) = §; Z—_—W—+2(Z—W)T(')(W)+ RN characterized by thg functions (L), is (in Euclidian
(13b) space-timg

@) 1@y i - :
.Vm Pig?ng m'gde)l. 'iﬁzerggfﬁgé momentum (ens@z) of the ;:% = Bijh A=~ 27Cijh jA - (21)
— 3 R If we apply this method for the perturbatiq@8), we must
L3=N1(01—03) +N; _3(T(O)+T(O))+Z (T('H‘T('))] use the OPE
- (14 _ y
Apart from the energy-momentum terms, this interaction co- (i) (@) () (W)~ = m (22)

incides with the marginal interchain interaction obtained by . :
Sheltonet al1° using Abelian bosonization. The effect of the 2Nd realize that the eigenmodes of the RG flow are the op-

energy-momentum tensor is simply to renormalize theSrators

speedw; of the fermions. Indeed, consider the Lagrangian K.=0,+0 K =0.—-0 23
(we have restored the velocityin the interaction term TR oot e 23
which have the OPE

L= o (ot g =~ oN(gag+gag) (19 6 4
K (2)Ke (W)~

. ' ' |Z—W|4_ |Z_W|2’C1(W)
[cf. Eq. (B2)], where\ is a dimensionless parameter. One
may combine the energy-momentum tensor with the kinetic —
term and this amounts to the following renormalizations of + Z—w[? oT+M)+---, (249

_ z—wl?
the speed and fields:

1—-m\

— 1 —
=V L K (DK_(W)~o—sO(T+T)+- -, (24
YT+an’ () 1+ﬂ_)\(l//,lﬂ)- (DK-(w) |z—w]| ( ) (24b)

v (16)

o _ _ where O(T+T_) stands for terms containing the energy-
In the case at hand, the velocity, is renormalized differ- momentum tensor which, although they have the right scal-

ently fromuvy, vy, andvs: ing dimensions, also have nonzero planar spin and do not
contribute to thed functions. The terms inz—w|~* only
Uoﬁvoﬂ VD 1-ahy (i=1,2,3. contribute to a shift of the vacuum energy and will be ig-
1-3mng © 7Y T I w nored. The interactior{18) may be expressed as a linear

(17)  combination of the operators. :
After the field renormalization, the interaction Lagrangian

takes the following form: Lim= N Kyt K, 29
with
Ni—A>o N+ Ao
Eim_(1+m\1)201_ (1+7h)(1—3m\y) O (19 _ 1 _ Mty M
AR TR ey ey ey g g ol R )
The Q4) symmetry of the fixed point, obvious in the La- 1 1 1
grangian(10), is violated by the interchain coupling, both  The RG equations obtained frof@1) and(24) are
in the interaction(18) and by the distinct renormalization of
Uo- d)\+ 2
The interaction term$18) are marginal, since they have mzsm"—" (27

conformal dimensions (1,1). Their behavior under . o )
renormalization-groufRG) flow is characterized by their If k1<<x2, the starting point is.;<1 andi,~1; thush, is
B functions. Instead of calculating the latter in the usual way€gative and\ . positive and small. Under this flow .
(a one-loop Feynman diagramiet us follow Polyakov _renormallzgs to zerdit is margmally irrelevant, like for an
who has shown that thg functions of a critical system isolated spin chainand A _ is marginally relevant. By fol-
perturbed by marginal terms are related to the coefficients dPWing the RG flow untilL= ¢ (the correlation length we

the operator algebra. Explicitly, consider the perturbed actiogonclude that~exp(1h _): A dynamical length scalé has
set in. If we concentrate on the Heisenberg mgdiewithout

) referring to the underlying Hubbard model, the characteristic
S=So+ Z )‘if d°x ¢i(x), (19 spin velocity should be ~ «,a, and the dimensionless cou-
pling constant\ _ should bex;/x,. Thus the dynamical
whereS, is the fixed-point action and thg;(x) are marginal length scale i~ exp—«,/k;. This conclusion was reached
operators l=h=1). Let the operator algebra be of the form in Ref. 6 in the (WZW_,)? representation. We shall con-
clude from this that the fermions have acquired a mass
B3 di(y)~ Cijk P(y) 20 m;~v;€ 1. The first three fermionsi;, , ) have a common
! ! Ix—y[? massm, while i, has a slightly higher mass, (in absolute
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value), sincevo>v;=v,=v3. An additional velocity renor- - m~ x,exp(— k,/6m«;) if the characteristic velocityof order
malization will take place during the RG flow, but cannot be ) s restored. Sincey,, ) = (10, — ), the massn, of
calculated by the above method. In a diagrammatic techme fourth Ising model is equal te-m, if vo=v;. Since
nique, it would show up at two loops, in a self-energy cor-;, . we conclude that- my>m. Of course, this conclu-
rection. The overall velocity renormalization is important, gioy is obtained in the largs- approximation, whereas
since without it the long-distance theory would have @#)0 N3, Therefore it is only approximately valid: One cannot

symmetry and all four fermions would have the same masgg|iaply predict the value of the masses. Moreover, the mas-
(up to a sign. _ L _ sive fermions still interact through a renormalizel term

In order to clarify the significance of these dynamically (e will neglect this effect when calculating the spin struc-
generated mass scales, let us consider the following modekre factor in the next section

1 N 1 o A short remark about the sign of the mass: From the Ising
L=5=2, v (9 + i dh) + 5\ . (28 model viewpoint, this sign simply indicates on which side of
27z (Widdi+ diodi) 2 IZ#J il (28) the transition we stand. By conventiom>0 in the disor-
dered phase(fx) #0) andm<0 in the ordered phas€ )
#0). Of course, it is the absolute valjra| which occurs in

the dispersion relation of the fermions.

This model would be equivalent to the Lagrangiéb® and

(18) if all velocities were equal, ik =0, and ifN=4, with

Ya=to and gy=—4o (Kramers-Wannier duahby_ The The appearance of fermion mass terms breaks the diago-

model (28) has GN) symmetry and a mass gap arises non- 17 ¢ — — ) (i=0 f the full

perturbatively in the spectrum d>0. To see this in a mean- nal Z, symmetry @;,4i)— (i, — i) (i=0-4 of the fu

i — . Lagrangiang10) and (18). Thus, the ground state must be

field approach, we assume tHaf; ) =is#0 (no sum over doubly degenerate and the condensatgy;)#0 picks one

i) and determine self-consistently. Let us make the substi- ubly deg sata)i) Jp .

tuti of these ground states, the theory of massive fermions de-

ution -~ o >

scribing excitations above that ground state only. This is

z//iZ—dstpiE (29) consistent with the Lieb-Schultz-Mattis theorem, which

. . _ _ o states that a half-integer spin chain with local interactions

in the Lagrangian, neglecting terms quartic ) which is  and no explicit parity breaking has either no gap or else has

equivalent to a largé¢+ approximation. We find the Lagrang- degenerate ground states.

ian of N massive fermions:

IV. SPIN STRUCTURE FACTOR

N
v - 0
L=2 [2—(¢ia¢i+wia¢i>+iA<N—1>swiwi ,
=147 In a recent paper, Rao and $&have argued that dimer-
(30 ized spin chains with second nearest-neighbor interactions

where the mass i;m=27\(N—1)e. This mass may be de- admit possibly three different phasgeere we use the word
termined self-consistently, using the following expression for‘phase” to distinguish regions where the spin structure fac-
the Green’s function of real fermiorts: tor S(qg) is not peaked at the same valueqdf They name
the three phases as followim this section, the system will
be regarded as just one chain with NNN interactions and not
as two chains with a zigzag interactiona Neel phase
[S(q) is peaked atr], a spiral phas@S(q) is peaked at an

d’k e 'k (31b intermediate momentum betweenand«/2], and a collinear

2|( efik»x

d
<¢(0)¢(X)>=0f7 v (313

k24+m?’

(p(0) (X)) =0

K2+ m? phase[S(q) is peaked atm/2]. In view of the numerical

results from Chitraet al,'* the collinear phase should not be

_ - d?k e ikx stable for the spi-chain. At first sight, there are two paths
(WO)p(x))=—1i3 mf — (319  thatS(q) may follow to go from the Nel phase to the col-

_ linear phase. The first possibility is for the peakSffy) to
where x and k stand, respectively, for u(r,x) and  move continuously fromm to /2, thus going through a
(io/v,k). The massm is determined from the self- spiral phase. The second possibility is for the peak(af) at

consistency condition m to progressively decrease in amplitude while a second
2 —ik-x peak atw/2 progressively appears; the system might then go

_m mJ %k e 77 (32)  through a dimerized state. In view of this, the question of the

27N(N—-1) 7 K+m? existence or not of a spiral phase for the frustrated $pin-

chain arises. To answer this question, we need to know how
the spin structure factor evolves as a function of the ratio
k1! k5. Unfortunately, in the present continuum approach we
m=*vAexp— 2an(N=1)’ (33)  can only calculate the spin-spin correlation function near
q=0, g=, andgq= = 7/2. As seen below, this calculation
whereA is a momentum cutoff. This solution exists only for is also interesting from the point of view of symmetry and

whose solution is, besides=0,

positive \.. allows us to relate the elementary spin excitations to the
Returning to the Lagrangian&l0) and (18) with A, fermions; .
renormalized to zero, all velocities equal, amnd=\_, The main conclusion of Sec. Il is that the syst€ihmay

this implies a mass gapm~vAexp(~1/6mA_) or be described in the continuum limit by four real fermions:
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three with masan>0 and velocityv, and one with mass The fact thatS(®(0,0) =0 reflects the conservation of the
me<<—m and velocityvy>v. At this point we will neglect total magnetization. This is not the case for the total magne-
the residual interaction between these fermions and treaization of each chain, sincen#m’, unless the two chains
them as free in the calculation of correlation functions. Theare decoupledri=m’=0). Thus,S{™(0,0) #0.

spin operatorS is represented in terms of these fermions According to Eq.(34), the magnetic susceptibility near
through the relation#&), (8) and(9). Thez component of the q==*=/2 is a product of four two-point functions of the
spin density has the following expression near the wave vedsing model, involving order and disorder fields. For in-

tors accessible to the continuum limit: stance, neag= 7/2,
S0 Wit i, (349 X\ (x, 7)o (( 1 20300) (0,00 (1 2 073070) (X, 7))
S % Yods+ doibs, (34b) =C2(mr)C(mr)C(mr), (42)

(340 whereC(R) andE(R) are, respectively, the two-point func-
tions of the order field and disorder field, as a function of the
séwﬂlzoc 103l - (34d) reduceg distanc_Rz \/xz_ +v2PlE= mr. These_ functions are
known'® and their leading asymptotic behavior is, in the dis-
Thus, the spin-spin correlation function negr0 takes ordered phase of the Ising model,
the form

A
Sy~ a2* M1M20300,

_ S A _
e A L L CR)=ZKo(R)+O(e™),
while nearq= 1, it takes the form E(R):A 1+ 8;R e R O(e R)| 42)

X' ™ (X, 7)< ((Patho+ Patho) (X, 7) (ratho+ ¥3140) (0,0)). i .
(36)  whereA is some constant and, ; are the modified Bessel

functions. If the argument of is negative(i.e., for a nega-
tive masg, we perform a Kramers-Wannier duality transfor-
gfation and identifyC(—R) with C(R). Thus, the leading
asymptotic behavior of the susceptibility nege /2 is

In the first case  near 0, the two fermions have the same
mass and velocity, while in the second cagengar) they
have different masses and velocities. Consider the case
two fermions with different massesn(andm’) but identical
velocities(for simplicity). The imaginary part of the Fourier . =5 ~ omr
transform of the spin-spin correlation function, i.e., the X (x,7)CAmn)C(|mo|r) C(mr) <K o(mr)+O(e )-

. : . S . (43
imaginary part of the dynamic susceptibility or the spin

structure factorS(q,w), may be calculated from the propa- Notice thatKy(R) is the real-space propagator of a free bo-

gators(31): son of mass m. Thus, its Fourier transform is
~(k?+m? 1. Going back to real frequencies, the imagi-
S(q, )~ q—z(m+m’)2+w—2(m—m’)2— w?+q? nary part of the susceptibility has a pole at
’ u|s? s° st w=(vk)?>+m?, plus an incoherent part starting at
w=2m:
X(m+m’)%(m-m')?|, (37 m
S (g, ) — 8(w— \/(vk)2+ m?) +incoherent part.
whereu ands are defined by |l
(44)
u?=(s?+m?—m’?)2—4m?s?, (38

The magnetic susceptibility near 7/2 is obtained by
2= w2—y2q? (39 Kramers-Wannier duality:

(in this expression we have returned to real frequencles X" (x, 7)< C(mr)CAmr) C(|mg|r) =K o(mr)2Ko(|m|r)
Lheea;:(z;ie(n= m’ this result becomes the spin structure factor +O(e"2m, (45)

The associated spin structure factor has no single-particle

2~2

<0 m-q 40 peak, but instead a continuum starting @t2m+|my|.
(9,0) B JZ—am?’ Thus, the single-particle magnetic excitations live around

k= /2, whereas the excitations nekr0,7 have a two-
Neglecting velocity renormalizatiorvg=v;), the model is particle behavior and those nekr=— /2 have a three-
O(4) symmetric at long distances amdy= —m. Then the particle behavior.

dynamical susceptibility neag= = would be given by the The residual interactions between the four Majorana fer-
more general expressid87) with m’= —m. The expression mions should not greatly affect the asymptotics of EB)

of S{™(q,w) appropriate for the more realistic casg+ v; since it is governed by a single-particle function. However,
can be obtained in closed form but is too cumbersome téhese interactions might significantly modify the continuum
display here. appearing in Eq(45).
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The above analysis assumed that the masgas positive, Here, we expect a nonzero value of the string order pa-
which amounts to choosing one of the degenerate grounchmeter for two reasons. First, since the (3Usymmetry
states, characterized by a short-range order argend/2. If ~ cannot be spontaneously broken—according to the Mermin-
the other ground state were chosen, the nmassould be  Wagner theorem—the mass of the first Ising mod®al X
negative and the above analysis could be repeated by intemust be the same as that of the second Ising maug),(in
changing the roles df=7/2 andk= — /2. Thus, the spon- order to keep the symmetry under the exchange of the labels
taneous breakdown of parity is reflected in the nonequivai, 2, and 3. It naturally implies that they must have the same
lence of S(k,w) and S(—k,w). However, this would be sign. So, if{(g1)#0 (m;>0), then{o,)#0 (M,>0). Simi-

unobservable in practice because of domain effects. larly, if w,;#0 (my<0), then{u,)#0 (m,<0). Second,
since a gap open by the introduction of the interchain cou-
V. STRING ORDER PARAMETER pling, the massem; andm, must be nonzero.
AND Z,XZ, SYMMETRY We can also reveal the presence of & Z, symmetry

) - ) without going to the continuum limit, i.e., directly from the
Kohmoto and Tasaki have shoffithat, for a spin; chain Hamiltonian(1). The unitary transformatiob introduced in

with dimerization, a string order parameter may be defineqet. 16 consists of many transformations applied in succes-
as den Nijs_and Rommelse have previously done for thgjon. Explicitly, we have

spin-1 chain. A nonlocal unitary transformation is intro-
duced to show that the nonzero value of this string order U=(D") 'RDG, (48
parameter is related to the breakdown dha 7, symmetry.
More recently, Sheltort all® showed that the string order
parameter

whereG performs a rotation ofr about they axis on some
of the spins:

L/2 T
49 G= _®1exp[7(s§j_l+ sxj)}. (49
i=

m

OZ(n,m)=exp{in (sz+§jz)
j=n

D is a duality transformatiorisee Appendix A of Ref. 16
which introduces intersite spins. It is followed by a transla-
lim (0% (x,y))~(o1)X(02)*—(u)*u)? (47) toN

Ix=yl—e

becomes, in the continuum limit,

. 1 1
It was also argued in Ref. 10 that the nonzero value of this Rir—z(r+32). (50
order parameter is related to the breakdown B§&Z, sym-  The spin on integer sites will be noted and those on the
metry which, in the continuum limit, is given by the invari- half-odd integer sites will be notetl The final operation is
ance under sign inversion of both chiral components of eackb make an inverse duality transformation for thepins. We
Majorana spinory,— — ¢, and y,— — i, (@a=1,2. This  refer the reader to the work of Kohmoto and Ta$%kir a
must be accompanied by an inversion of both order and didull description of this unitary transformation. If we apply
order fields:o,— — 0, and w,— — 1, this transformation to the Hamiltonigit), we find

N
—-1_ X_ X X_ .z 2z _ 2272 _ 22727 z z z y_y z z X z
UHU —zl{Kl[T}(-i-O'j oiri—ofol  — Tt ool )kl of ol t ol T T o el T
=

z z Lz Yy y z X _z
tojrof g Hiotrd ol ol ) (51

The o’s and 7's are sets of Pauli matrices. The new Hamil- (7 is some constant proportional to the interchain coupling
H _ -1 ; H H ) . . . . .

7 about thex axis applied to ther spins alone or the spins  gp6ye perturbation has scaling dimension 1: It is relevant. If

alone. A fourfgld_dggeneracy of the ground ;taté-loifn the e representatiofd) and the OPE’§B3a—(B3d) are used
thermodynamic limit does not follow from this broken sym- 5 express this interaction in terms of fermions, one finds
metry since this is not a local symmefry.

V1. DISCUSSION Lo 5 (912 + iy Yada—34od). (53

The crucial difference between the Hamiltoniél) and
that of the more familiar spin ladder is the occurrence, in theThis coincides with the conclusions of Ref. 10, obtained by

latter, of an interaction term of the form Abelian bosonization. The mass terms now appear explicitly,
with a triplet of massy and a singlet of mass-3%. The

_n a ' a interchain coupling explicitly breaks the invariance under

Liagger=5 - TH(gm)Tr(g"77) (52) parity that is spontaneously broken in the zigzag case. If the
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two rungs of the zigzag had different couplings,(and few definitions, in order to fix the notation and the normal-
k1), an interaction like Eq(52) would be generated and the ization used in this work. We follow in this respect Ref. 18.
gap would have a linear dependence on the interchain cou- Wess-Zumino-Witten(WZW) models are defined in
pling. Of course, the marginal interactiai8) is always terms of a matrix-valued field belonging to a unitary rep-
present and provides an additional renormalization of theesentation of SI2) (more generally, of a Lie groug) with
masses. A — k,, the dependence of the gap on the inter-the actionf} ™
chain coupling should become more and more exponential K
because of this renormalization. — | g2 1oy —1

We were concerned in this work with the regime S 167Tf d*x Tri(a%g "d,9)
k1<K, and the conclusions are nominally valid only in this ik
regime, although we expect the'm to be qualltqnvely cprrect _ _f d3y Szprrr(gflaﬂggflayggflapg),
even for k;~k,. However, in the opposite regime 24 )8
(k1> k5) the system should be treated as a single chain and (A1)
we should perturb around a single WZ\W, model. This is
explained in Ref. 3. The conclusion is that the perturbation igvhere the trace Tris proportional to the usual trace opera-
marginally irrelevant if the ratioc,/«; is smaller than some tion:
critical value, and leads to an exponential gap above that 1
critical value. In that regime the ground state is spontane- r_ _1
ously dimerizec{spontangeous brea?dng of padityThis Féon- T _xSTr’ Xs=3S(st1)(2s+1) (A2)
clusion is also valid in the regime; < «,. Indeed, the order

parameter for dimerization (s is the spin of the representatijork is a positive integer

called thelevel of the WZW model. The first term of Eq.
d=(S- S 1= S-S+ 1) (54) (A1) is .the usua}l nonlinearf model. The ;econq term is .

o . . o topological and is integrated on a three-dimensional mani-

coincides, in the continuum limit, with the ladder perturba-4|4 g of which two-dimensional space-time is the boundary.

tion (52), up to terms that have a vanishing expectationyi yajue is independent of the precise formBf(modulo

value. Translated in terms of the bare interaction couplings‘zw) providedk is an integer.

A= of Eq. (25) and of the masses andmy, the spontaneous  The fundamental property of the WZW model—enforced

dimerization becomes by the relative normalization of the two terms of the action

(Al)—is its full conformal symmetry. For this reason, it is
- + + . . X ;

Aol M\ = A1)+ Mo(A - +X)] 59 best described in the language of conformal field theory,
This is generically nonzero. with holomorphic (or left) and antiholomorphidor right)

So far we have supposed thaf is positive, correspond- coordinates
ing to an antiferromagnetic interchain coupling. The ferro- o
magnetic case may be treated just as well. In that case, both z=—i(Xx—vt)=v7—iX, z=i(X+tvt)=v7+iX,
interaction constanta .. of Eq. (25) are negative and thus (A3)
renormalize to zero: The model is equivalent to a theory of\qre
four free Majorana fermions, with different velocities. From
Eq. (17) with negative\ ;, we expect the velocity, of i, to
be smaller than the velocity of ¢, , 3. Thus, we conjecture

=it is the Euclidian time and is the characteristic
velocity of the model, implicit in the covariant notation of
Eqg. (Al). The left and right derivatives are commonly used:

that the ferromagnetic model is critical, albeit with two sec- 1/ 149\ — 1/ 19
tors having different velocm(_es: a triplet sec_tor equivalent to = 52—5(5 I; 7 =<?z—§ &—I o ar
the WZW,_, theory and a singlet sector with a smaller ve- (A4)

locity. This is not the same as saying that the two chains

decoupleat long distances, since in that case the structure ofhe WZW model has S(2) symmetry and this entails the
excitations would be different. This conjecture might beexistence of a conserved currelyf, expressed here in its
tested by exact diagonalizations on finite systems and sonleft (z) and right ¢) components:

information on the velocity renormalization might be ex- — _

tracted this way. J=J,=dgg” !, J=J;=g log. (A5)
Closely related to its conformal symmetry is the separate
conservation of the left and right currentsJ=0 and
Discussions with P. Mathieu and P. Di Francesco are?J=0 [the SU2) symmetry is enlarged to a chiral symmetry

gratefully acknowledged. This work is supported by NSERCsu(z)L_® SU(2)g]. HenceJ(z) depends only oz andJ(z)

(Canada and by F.C.A.R.(le Fonds pour la Formation de on thez. These matrix currents may be decomposed along a
Chercheurs et I'Aide da Recherche du Gouvernement du basis of Sp"‘s generators. For Spi%], we choose

Quiebeo.
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APPENDIX A: WZW MODELS . .
where ther? are the usual Pauli matrices.

A systematic review of WZW models cannot take place in In practice, the actiofAl) is not useful for practical cal-
a regular paper. Here we simply recall basic concepts and eulations. The traceless, symmetric energy-momentum ten-
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sor, which generates local conformal transformatignpar- — s(s+1)

ticular space-time translationsis more useful. Its two hs= ST Tkr 2 (AL13)
nonzero components are given by the so-called Sugawara

form The OPE of the various matrix fields is governed by the rule

of addition of angular momenta and by the constraint that no
field of spin s>k/2 occurs in the operator algebra. These
OPE’s were calculated in Ref. 9. We shall only be concerned
with the simplest casekE& 1).

The notation (- -) above stands for a normal orderitrggu- The level-1 WZW model has central charge=1 and
larized produc_)t The dynamics of the theory is deter_mlned contains a single matrix field,—(n,n=+1) of conformal

by the short-distance produ@perator-product expansion or ) L ) o ] .
OPB of the various fields. The OPE af(z) with a local dimensions {,7). With the proper normalization, its OPE is
scaling(or primary) field ¢(w,w) reflects the conformaor

scaling properties of that field: 9 Z,2) Ol W, W) ~

(I3, T(2)=

T(z)= (J333). (A7)

(k+2) (k+2)

1

m EnmETmm (A14)

h¢(W'V\Q ‘7W¢(W'W)’ (A8)  Wheree,q is the antisymmetric symbol. We may use the
(z—w) z—w following decomposition:

T(2) p(w)~

whereh is the conformal dimension of the field and the 13
symbol~ means an equality modulo terms which are regular 9(z,2)==>, 0.(2.2)7, g,=Tr(7%g). (A15)
as z—w. A similar expression holds fol and the sum 210

h+h is the usual scaling dimension. The OPE ©fwith  The OPE ofg with itself is then
itself is slightly different:

Y —  20ap Sa0t1
cl2 2T(W) 9y T(W) 9a(Z,2)gp(W,W) ~ |z—w|( —1)%07" (A16)
T(2)T(w)~ 7+ > . (A9)
(z—w) (z—w) Z—wW
The constantc in the most singular term is theentral APPENDIX B: THE ISING MODEL

chargeof the conformal theory and measures the number of |t js well known that the two-dimensional Ising model is

degrees of freedom of the theory; its value in the(BU equivalent to a realMajorana fermion in 1+1 dimensions.

WZW model is The critical point of the Ising model corresponds to the
3k massless point of the fermion theory and constitutes one of

_ (A10) the simplest conformal field theories, of central charge
k+2°

c=1. _This theory contains a two-component fermion

The OPE of the currentd and J with a local matrix field ~ (#(2),#(2))- The holomorphic fields has conformal dimen-
¢ fields reflects its transformation properties under the actiosions ¢,0) while its antiholomorphic counterpafthas con-

c

of SU(2): formal dimensions (@). Their OPE is
__ 1 7g(w,w) 1
P gww 5 ) WDYW)~ (B13)
1 g(W,W_)Ta T, — 1

J3(Z)g(W,W)~ (A11) () p(W) ~—— (B1b)

2 z-w —

The OPE of the current with itself constitutes the so-called w(z)ﬁw_)fvo_ (Blo

current algebra .
The products =i ¢ has conformal dimensiong,§) and is

(A12a) called theenergyfi_eld; if[_is the_mass term that takes the
model away from its critical point. The energy-momentum
tensor of the fermion theory is

Ki2)s,, ~ J°
Ja(Z)Jb(W)NﬁZb-I-ISang,

— = (k) I
a b N
J%(2)3°(w) e +|sabc—z_—w

~

. (A12b) T(2)=—syoy, T(@D=- % yay. (B2)

The critical Ising model also contains ander field o(z,z)
Ja(z)ﬁ(w_)wo_ (A120) which is the continuum limit of the Ising spin. This field has
conformal dimensionss, ) and is not locally related to the
The WZW at levek contains several matrix-valued scal- fermion field. Indeed, in the transfer-matrix description of
ing fields, one for each value of the sginup to (and includ-  the two-dimensional Ising model, the fermion field is intro-
ing) s=k/2. The conformal dimensiorts andh of the spin- duced by a(nonloca) Wigner-Jordan transformation. The
s field are Kramers-Wannier duality transformation of the Ising model
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maps the order fieldr into a disorder fieldu which has o o y*(z—w)1’2<p(w)+,87(z_—w_)1’2ﬁw_)
essentially the same properties, except that#0, (x)=0 u(z,2)o(W,w)~ T ,
in the ordered phase afd)=0, (u)#0 in the disordered V2|z-w]
phase. At the(masslesks critical point, both fields have a (B3d)
vanishing expectation value. All three field#,¢,u) are —
mutually nonlocal, which is reflected in their OPE by the ,/,(Z)U(W,W—)NM, (B3¢
existence of branch cuts. These OPE’s are given below: \/E(z—w)l’2
gy~ oW Baf
¢(Z)M(W,W)~\/§(TV\OM, (B3f)
o2 ToWW) ~ ot 52w, (B33 _ 67" w(wiw)
|z—w[** 2 Do)~ 7= _')1,2. (B39
z—w
—_ __ Byo(w,w)
YD p(W,W)~ —=——, (B3h)
Yo (W ) 1 1 314_ (\n oY V2(z—w)Y2
w(Z,z) w(w,w)~ = §|z—w| e (W,W), (B3b)

where some arbitrariness remains in the constgngsd v
because of the nonlocal character of these OPHE*s:+1

and y==e*'™ . In this work we choosey=¢e'™* and
B=1.
Since the regularized product of with u is a fermion,
o (2= W) P2y(w) + By (Z_—W)l’zﬁw_) these operators must carry some anticommuting character.
a(z,2) w(w,w)~ i , We shall assume that the disorder operatoanticommutes
V2|z—w| with all fermion fields and other disorder operators, but not

with itself nor with the order fields. This is a matter of con-
(B39 vention (o could have been chosen instgad
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