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Non-Abelian bosonization of the frustrated antiferromagnetic spin-1/2 chain

Dave Allen and David Se´néchal
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We study the spin-1/2 chain with nearest-neighbor (k1) and next-nearest-neighbor (k2) interactions in the
regimek2@k1, which is equivalent to two chains with a ‘‘zigzag’’ interaction. In the continuum limit, this
system is described in terms of two coupled level-1 Wess-Zumino-Witten field theories. We illustrate its
equivalence with four off-critical Ising models~Majorana fermions!. This description is used to investigate the
opening of a gap as a function ofk1 and the associated spontaneous breakdown of parity. We calculate the
dynamic spin structure factor near the wave vectors accessible to the continuum limit. We comment on the
nonzero string order parameter and show the presence of a hiddenZ23Z2 symmetry via a nonlocal transfor-
mation on the microscopic Hamiltonian. For a ferromagnetic interchain coupling, the model is conjectured to
be critical, with different velocities for the spin-singlet and spin-triplet excitations.@S0163-1829~97!00401-3#
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I. INTRODUCTION

One-dimensional quantum antiferromagnets have pecu
properties ~exotic ground states, gapped excitations, e!
which are not accessible to traditional methods like sp
wave theory or perturbation theory, but require the use
variational, numerical, or field-theoretical approaches.
particular, field-theoretical methods have been used succ
fully to predict the existence of an excitation gap in t
spin-1 Heisenberg chain1 and the scaling behavior of th
spin-1/2 Heisenberg chain.2,3 In the latter case, Witten’s non
Abelian bosonization4 was used to express the spin-1
Heisenberg chain as a Wess-Zumino-Witten~WZW! model
perturbed by irrelevant interactions.

In this work, we apply non-Abelian bosonization to th
spin-12 Heisenberg chain with nearest-neighbor~NN! cou-
pling k1 and next-nearest-neighbor~NNN! coupling k2 in
the regimek2@k1. This system may also be viewed as tw
spin-12 chains coupled with a ‘‘zigzag’’ interactionk1 ~Fig.
1!. This latter representation makes sense physically, s
such arrangements of atoms occur frequently~see, for in-
stance, Ref. 5!. The Hamiltonian of this system is

H5k1(
i
Si•Si111k2(

i
Si•Si12 , ~1!

wherein the spins are indexed consecutively along the
zag. This model has recently been studied by White
Affleck.6 We shall extend the somewhat brief theoretic
analysis of Ref. 6. The originality of the approach follow
in this paper lies mostly in the description of two coupl
spin-12 chains in terms of four Majorana fermions~or Ising
models!, obtained directly from the non-Abelian descriptio
without going through an intermediate Abelian bosonizat
of the theory. This approach makes the symmetry of
system more evident, and the representation of the stagg
magnetization density by order-disorder operators may
proven directly; it also allows for a simple description of t
magnetic excitations, in terms of which the Majorana ferm
ons have a direct interpretation. The fermions and associ
550163-1829/97/55~1!/299~10!/$10.00
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order and disorder fields are also very useful in calculat
the spin structure factor. We also discuss the occurrence
string ~topological! order parameter and the associat
Z23Z2 symmetry.

Let us summarize here the main results of this paper
explain its organization. In Sec. II we set up the descript
of two coupled spin-12 chains in terms of four Majorana fer
mions. This implies a quick review of the non-Abelia
bosonization of a single spin chain~its representation as
level-1 WZW model!. The main result of this section is th
representation~8! and ~9! of the fields of the level-1 WZW
model in terms of four Majorana fermions and their asso
ated order and disorder fields. This representation allows
a representation of the spin operator and interchain inte
tion with the help of Eq.~4!. In Sec. III, we write the inter-
chain interaction~and the marginal intrachain perturbatio!
in terms of the four fermions and discuss the renormalizat
of the couplings and velocities. A mass sca
m;k2exp2(k2 /k1) appears dynamically and provides
mass for the fermions, accompanied by a spontaneous br
ing of parity. Lorentz invariance is explicitly broken by th
interchain interaction and one of the four fermions acquire
distinct mass and velocity~the velocity renormalization is
calculated explicitly!. In Sec. IV we set up the calculation o
the spin structure factorS(q,v) ~the imaginary part of the
dynamic spin susceptibility! near the four wave vector
available to the continuum limitq50,p,6p/2 @when con-
sidering wave vectors, we regard the system~1! as a single,
frustrated chain and not as two coupled chains#. The single-
spin excitations appear at a frequencyv;m near

FIG. 1. Zigzag chain, with interchain couplingk1 and intrachain
coupling k2, also equivalent to a single chain with NN couplin
k1 and NNN couplingk2.
299 © 1997 The American Physical Society
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300 55DAVE ALLEN AND DAVID SÉ NÉCHAL
q56p/2 while a two-particle continuum appears ne
q50 andq5p, like for the spin ladder~in calculating the
spin structure factor, we treat the four fermions as f
fields!. In Sec. V we show that the nonlocal string ord
parameter of Ref. 7 is nonzero in the ground state, and
this breaks down a hiddenZ23Z2 symmetry of the system
We also perform an exact~i.e., discrete! nonlocal transfor-
mation Eq.~1! that reveals thisZ23Z2 symmetry. In Sec. VI
we discuss the difference between this system and the u
spin ladder and address the case of ferromagnetic interc
coupling. A quick, largely notational review of WZW mod
els and of the Ising model~Majorana fermion! is given in
Appendixes A and B.

II. CONTINUUM DESCRIPTION OF TWO SPIN CHAINS

A. Non-Abelian bosonization

From the Bethe ansatz solution we know that the spi1
2

Heisenberg chain Hamiltonian

H5k(
i
Si•Si11 ~2!

is critical. It was also argued by Affleck2 that this critical
point is well described by a level-1 Wess-Zumino-Witt
conformal field theory@unless said otherwise, we will mea
by ‘‘WZW model’’ the SU~2! WZW model, at a specified
level k# ~cf. Appendix A!. This equivalence is demonstrate
by starting from the half-filled Hubbard model with hoppin
integral t and on-site repulsionU and taking the continuum
limit. The charge degrees of freedom are then described
Bose fieldw which becomes massive for arbitrary smallU,
while the spin degrees of freedom are described by
level-1 WZW model. AtU50 the characteristic velocityv
of the WZW model is simply the Fermi velocityvF5utua0
(a0 is the lattice spacing!. For U.0 the velocityv of the
spin degrees of freedom is renormalized byU and differs
from the velocity of the charge excitations~spin-charge sepa
ration!. Moreover, the continuum limit of the Hubbard La
grangian contains an additional term:

L152lJaJ̄a, ~3!

whereJa andJ̄a (a51,2,3) are the left and right componen
of the SU~2! currents of the level-1 WZW model an
l;U/utu ~we will work in the imaginary-time Lagrangian
formalism;L denotes the Lagrangian density!. This pertur-
bation is marginally irrelevant. Thus, at long distances,
spin degrees of freedom are exactly described by the lev
WZW model.2

Additional perturbations to the Heisenberg Hamiltoni
~2! may be expressed in terms of WZW fields by using
following continuum-limit expression for the spin operat
Si @Note that expression~4! cannot be substituted into Eq.~2!
to find the WZW model Hamiltonian. This incorrect proc
dure yields the wrong sign for the marginal perturbation~3!;
Eq. ~4! should be used only to evaluate correlation functio
or express perturbations added to the half-filled Hubb
model#: ~in this section, the system will be regarded as j
one chain with NNN interactions and not as two chains w
a zigzag interaction!:
r
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Sa~x!

a0
5

1

2p
@Ja~x!1 J̄a~x!#1~21!x/a0QTr@g~x!ta#,

~4!

whereta are the usual Pauli matrices andg(x) the funda-
mental WZW field@an SU~2! matrix#. The factor (21)x/a0
alternates from one site to the next andQ is a nonuniversal
constant. The first two terms of Eq.~4! constitute the local
magnetization and the last term is the local staggered m
netization.

Let us now turn our attention to the system~1!. In the
regime k1!k2 and in the continuum limit, it may be re
garded as two level-1 WZW models, plus some pertur
tions. LetJa and J̄a denote the SU~2! currents on one chain
and J8a and J̄8a the corresponding currents on the oth
chain. The first perturbation is marginally irrelevant a
given by two copies of Eq.~3!:

L2522l2~J
aJ̄a1J8aJ̄8a!, ~5!

wherel2;U/utu. The second perturbation is the intercha
interaction (k1). In the continuum limit and using Eq.~4!, it
can be shown without difficulty to be

L152l1~J
a1 J̄a!~J8a1 J̄8a!, ~6!

wherel1;k1 /utu.0.
The relevance or irrelevance of a perturbation is de

mined, as a first approximation, from the scaling dimensio
of the various fields at the WZW fixed point. In terms th
conformal dimensions (h,h̄) appearing in Eq.~A8!, the scal-
ing dimension isD5h1h̄ and the planar spin ish2h̄. Since
the conformal dimensions ofJa and J̄a are, respectively,
(1,0) and (0,1), a perturbation of the formJaJ̄a @like Eq. ~5!#
is marginal, while a perturbation of the formJaJa violates
Lorentz ~or rotation! invariance. In fact, it renormalizes th
characteristic velocity of the theory~see below!. The inter-
action~6! is marginal, except for a velocity renormalizatio

WZW models, although they possess conformal inva
ance, are not easy to deal with, especially in what regards
calculation of correlation functions. In some cases~i.e., for
some values of the levelk) the WZW model is equivalent to
a theory of free fields. Then the calculation of correlati
functions becomes an almost trivial task and the ove
analysis is much simplified, in particular the study of t
vicinity of the fixed point. Such a free-field description
possible in the case of two coupled level-1 WZW mode
Two such models are equivalent to one level-2 WZW mod
plus one Ising model~or real fermion: see Appendix B!. This
equivalence was already used in Ref. 8 to describe the
ladder with bond alternation. Moreover, the level-2 WZ
model is equivalent to three Ising models.9 We thus have
three different ways of describing the system~1! in the con-
tinuum limit:

WZWk51^WZWk51 , ~7a!

WZWk52^ Ising, ~7b!

~ Ising!4. ~7c!
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55 301NON-ABELIAN BOSONIZATION OF THE FRUSTRATED . . .
The representation~7b! may be useful from the point of view
of symmetry since the interacting terms break down
SU(2)3SU(2) symmetry to SU~2!. However, the represen
tation ~7c! is more practical for calculations since it is ma
entirely of free fields and its off-critical (k1Þ0) behavior
may be characterized by ordinary fermion mass terms. A
not trivial, however, since the Ising model contains order a
disorder fields in addition to a real fermion field, and the
three fields cannot be expressed locally in terms of e
other. Nevertheless, their correlation functions are kno
An additional difficulty comes from the breaking of Loren
invariance by the perturbation~6!.

We identify operators in two different representations~7!
by requiring their operator product expansions~OPE! to be
compatible. The OPE for the WZW models and the Isi
model are given in appendixes A and B. The corresponde
of operators belonging to the pictures~7a! and ~7c! is the
object of the next subsection.

B. Description in terms of four Ising models

The WZWk51 model cannot be simply represented
terms of two Majorana fermions, even if the central charg
the same in both cases (c51). The reason is the nonexis
ence of a real, spin-12 representation of SU~2!. However, two
copies of WZWk51 is equivalent to an SO~4! WZW model,
and the latter group admits a representation in terms of
real fermions. A representation of the WZW currentsJ and
J8 in terms of four Majorana fermionsc1,2,3,0follows imme-
diately and its structure bears a strong resemblance with
chiral generators of the Lorentz group:

J15 1
2 i ~c1c02c2c3!, ~8a!

J25 1
2 i ~c2c02c3c1!, ~8b!

J35 1
2i ~c3c02c1c2! ~8c!

~the corresponding expressions forJ8a are obtained by re-
versing the sign ofc0). Using the OPE’s~B17! and Wick’s
theorem, it is a simple task to check that the OPE’s~A12! are
satisfied.

A representation of the matrix fieldsg andg8 ~the stag-
gered magnetizations of the two chains! in terms of Ising
fields is also needed in order to calculate correlation fu
tions, and may be found in the following fashion. First, sin

g and g8 have conformal dimensions (14 ,
1
4 ), they must be

products of four order and disorder fields, such
s1s2s3s0, s1m2s3m0, and so on~there are 24516 such
products!. Second, the action of each of the currentsJa, J̄a,
J8a, and J̄8a may be calculated on these 16 products, us
the OPE’s~B3e!–~B3h!. The result is a 16-dimensional ma
trix representation of the currents. According to the O
~A11!, the fieldg1/2,1/2 is an eigenvector ofJ3 with eigen-

value2 1
2 . Once such an eigenvector is found, one may ap

on it the other components of the currentsJ and J̄ and thus
obtain the other components ofg. Only one eigenvector al
lows a nontrivial solution~i.e., nonzero values of all the
components ofg). The same procedure is used forg8, with
the currentsJ8,J̄8. At last, one finds the following represen
tation @we used the decomposition~A15!#:
e
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g05s1s2s3s02m1m2m3m0 , ~9a!

g15m1s2s3m02s1m2m3s0 , ~9b!

g25s1m2s3m01m1s2m3s0 , ~9c!

g35s1s2m3m02m1m2s3s0 , ~9d!

g085s1s2s3s01m1m2m3m0 , ~9e!

g1852m1s2s3m02s1m2m3s0 , ~9f!

g2852s1m2s3m01m1s2m3s0 , ~9g!

g3852s1s2m3m02m1m2s3s0 . ~9h!

Note that the OPE’s Ja(z)gi8(w,w̄);0 and
J8a(z)gi(w,w̄);0 are satisfied, as they should: The tw
chains are independent at this stage.

It is also possible to calculate the OPE ofg with itself,
with the help of Eqs.~B3a!—~B3d!. This is a bit tricky, since
one must remember to anticommute the different disor
fields. With the normalization chosen above and omitti
terms that do not diverge asz→w, the end result coincides
with Eq. ~A16! for g and g8, plus the OPE
gi(z,z̄)gj8(w,w̄);0. Thus, the representation~8! and~9! is a
complete and faithful representation of two independent c
ies of the WZWk51 model.

III. VELOCITY RENORMALIZATION AND
RG ANALYSIS

We are now able to write down the Lagrangian associa
to the continuum limit of~1! solely in terms of real fermions
The noninteracting partL0, equivalent to the two level-1
WZW models, is the free-fermion Lagrangian

L05
1

2p(
i50

3

v i~c i ]̄c i1c̄ i]c̄ i !, ~10!

wherev05•••5v35v is the velocity of spin excitation in
isolated chains. The 2p factor in Eq.~10! is needed for con-
sistency with the OPE~B1!.

The interacting terms~5! and ~6! may be expressed in
terms of the following operators:

O15c1c̄1c2c̄21c1c̄1c3c̄31c2c̄2c3c̄3 , ~11a!

O25c0c̄0~c1c̄11c2c̄21c3c̄3!. ~11b!

The interaction~5! is simply

L252l2~O11O2!. ~12!

The translation of Eq.~6! requires more care, however, sinc
it implies regularized products of identical fermions. The fo
lowing OPE must be used to extract the regular terms

c i~z!c j~w!5d i j H 1

z2w
12~z2w!T~ i !~w!1•••J ,

~13a!
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302 55DAVE ALLEN AND DAVID SÉ NÉCHAL
c̄ i~ z̄!c̄ j~w̄!5d i j H 1

z̄2w̄
12~ z̄2w̄!T̄~ i !~w̄!1•••J ,

~13b!

where (T( i ),T̄( i )) is the energy-momentum tensor~B2! of the
i th Ising model. The result is

L15l1~O12O2!1l1F23~T~0!1T̄~0!!1(
i51

3

~T~ i !1T̄~ i !!G .
~14!

Apart from the energy-momentum terms, this interaction
incides with the marginal interchain interaction obtained
Sheltonet al.10 using Abelian bosonization. The effect of th
energy-momentum tensor is simply to renormalize
speedsv i of the fermions. Indeed, consider the Lagrang
~we have restored the velocityv in the interaction term!

L5
v
2p

~c]̄c1c̄]c̄ !2 1
2 vl~c]c1c̄ ]̄c̄ ! ~15!

@cf. Eq. ~B2!#, wherel is a dimensionless parameter. O
may combine the energy-momentum tensor with the kin
term and this amounts to the following renormalizations
the speed and fields:

v→v
12pl

11pl
, ~c,c̄ !→

1

A11pl
~c,c̄ !. ~16!

In the case at hand, the velocityv0 is renormalized differ-
ently from v1 , v2, andv3:

v0→v0
113pl1

123pl1
, v i→v i

12pl1

11pl1
~ i51,2,3!.

~17!

After the field renormalization, the interaction Lagrangi
takes the following form:

Lint5
l12l2

~11pl1!
2O12

l11l2

~11pl1!~123pl1!
O2. ~18!

The O~4! symmetry of the fixed point, obvious in the La
grangian~10!, is violated by the interchain couplingl1, both
in the interaction~18! and by the distinct renormalization o
v0.

The interaction terms~18! are marginal, since they hav
conformal dimensions (1,1). Their behavior und
renormalization-group~RG! flow is characterized by thei
b functions. Instead of calculating the latter in the usual w
~a one-loop Feynman diagram!, let us follow Polyakov,11

who has shown that theb functions of a critical system
perturbed by marginal terms are related to the coefficient
the operator algebra. Explicitly, consider the perturbed ac

S5S01(
i

l iE d2x f i~x!, ~19!

whereS0 is the fixed-point action and thef i(x) are marginal
operators (h5h̄51). Let the operator algebra be of the for

f i~x!f j~y!;
Ci jkfk~y!

ux2yu2
. ~20!
-
y

e

ic
f

r
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n

Then the renormalization-group flow of the couplingsl i ,
characterized by theb functionsb i jk(L), is ~in Euclidian
space-time!

dl i

dlnL
5b i jkl jlk522pCi jkl jlk . ~21!

If we apply this method for the perturbation~18!, we must
use the OPE

~c i c̄ i !~z!~c j c̄ j !~w!;2
d i j

uz2wu2
~22!

and realize that the eigenmodes of the RG flow are the
erators

K15O11O2 , K25O12O2 , ~23!

which have the OPE

K6~z!K6~w!;
6

uz2wu4
2

4

uz2wu2
K6~w!

1
1

uz2wu2
O~T1T̄!1•••, ~24a!

K1~z!K2~w!;
1

uz2wu2
O~T1T̄!1•••, ~24b!

where O(T1T̄) stands for terms containing the energ
momentum tensor which, although they have the right sc
ing dimensions, also have nonzero planar spin and do
contribute to theb functions. The terms inuz2wu24 only
contribute to a shift of the vacuum energy and will be i
nored. The interaction~18! may be expressed as a line
combination of the operatorsK6 :

Lint5l1K11l2K2, ~25!

with

l65
1

2~11pl1!
H 7

l11l2

123pl1
1

l12l2

11pl1
J . ~26!

The RG equations obtained from~21! and ~24! are

dl6

dlnL
58pl6

2 . ~27!

If k1!k2, the starting point isl1!1 andl2;1; thusl1 is
negative andl2 positive and small. Under this flow,l1

renormalizes to zero~it is marginally irrelevant, like for an
isolated spin chain! andl2 is marginally relevant. By fol-
lowing the RG flow untilL5j ~the correlation length!, we
conclude thatj;exp(1/l2): A dynamical length scalej has
set in. If we concentrate on the Heisenberg model~1! without
referring to the underlying Hubbard model, the characteris
spin velocity should bev;k2a0 and the dimensionless cou
pling constantl2 should bek1 /k2. Thus the dynamical
length scale isj;exp2k2 /k1. This conclusion was reache
in Ref. 6 in the (WZWk51)

2 representation. We shall con
clude from this that the fermions have acquired a m
mi;v ij

21. The first three fermions (c1,2,3) have a common
massm, while c0 has a slightly higher massm0 ~in absolute
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55 303NON-ABELIAN BOSONIZATION OF THE FRUSTRATED . . .
value!, sincev0.v15v25v3. An additional velocity renor-
malization will take place during the RG flow, but cannot
calculated by the above method. In a diagrammatic te
nique, it would show up at two loops, in a self-energy c
rection. The overall velocity renormalization is importan
since without it the long-distance theory would have an O~4!
symmetry and all four fermions would have the same m
~up to a sign!.

In order to clarify the significance of these dynamica
generated mass scales, let us consider the following mo

L5
1

2p(
i51

N

v ~c i ]̄c i1c̄ i]c̄ i !1
1

2
l(
iÞ j

c i c̄ ic j c̄ j . ~28!

This model would be equivalent to the Lagrangians~10! and
~18! if all velocities were equal, ifl150, and ifN54, with
c45c0 and c̄452c̄0 ~Kramers-Wannier duality!. The
model ~28! has O~N! symmetry and a mass gap arises no
perturbatively in the spectrum ifl.0. To see this in a mean
field approach, we assume that^c i c̄ i&5 i«Þ0 ~no sum over
i ) and determine« self-consistently. Let us make the subs
tution

c i c̄ i→ i«1c i c̄ i ~29!

in the Lagrangian, neglecting terms quartic inc, which is
equivalent to a large-N approximation. We find the Lagrang
ian of N massive fermions:

L5(
i51

N H v
2p

~c i ]̄c i1c̄ i]c̄ i !1 il~N21!«c i c̄ i J ,
~30!

where the mass ism52pl(N21)«. This mass may be de
termined self-consistently, using the following expression
the Green’s function of real fermions:12

^c~0!c~x!&5]E d2k

p

e2 ik•x

k21m2 , ~31a!

^c̄~0!c̄~x!&5 ]̄E d2k

p

e2 ik•x

k21m2 , ~31b!

^c~0!c̄~x!&52 i 1
2 mE d2k

p

e2 ik•x

k21m2 , ~31c!

where x and k stand, respectively, for (vt,x) and
( iv/v,k). The massm is determined from the self
consistency condition

m

2pl~N21!
5mE d2k

p

e2 ik•x

k21m2 , ~32!

whose solution is, besidesm50,

m56vLexp2
1

2pl~N21!
, ~33!

whereL is a momentum cutoff. This solution exists only fo
positivel.

Returning to the Lagrangians~10! and ~18! with l1

renormalized to zero, all velocities equal, andl5l2 ,
this implies a mass gapm;vLexp(21/6pl2) or
h-
-

s

l:

-

r

m;k2exp(2k2/6pk1) if the characteristic velocity~of order
k2) is restored. Since (c4 ,c̄4)5(c0 ,2c̄0), the massm0 of
the fourth Ising model is equal to2m, if v05v i . Since
v0.v i , we conclude that2m0.m. Of course, this conclu-
sion is obtained in the large-N approximation, whereas
N53. Therefore it is only approximately valid: One cann
reliably predict the value of the masses. Moreover, the m
sive fermions still interact through a renormalizedc4 term
~we will neglect this effect when calculating the spin stru
ture factor in the next section!.

A short remark about the sign of the mass: From the Is
model viewpoint, this sign simply indicates on which side
the transition we stand. By convention,m.0 in the disor-
dered phase (^m&Þ0) andm,0 in the ordered phase (^s&
Þ0). Of course, it is the absolute valueumu which occurs in
the dispersion relation of the fermions.

The appearance of fermion mass terms breaks the di
nal Z2 symmetry (c i ,c̄ i)→(c i ,2c̄ i) ( i50–4! of the full
Lagrangians~10! and ~18!. Thus, the ground state must b
doubly degenerate and the condensate^c i c̄ i&Þ0 picks one
of these ground states, the theory of massive fermions
scribing excitations above that ground state only. This
consistent with the Lieb-Schultz-Mattis theorem, whi
states that a half-integer spin chain with local interactio
and no explicit parity breaking has either no gap or else
degenerate ground states.

IV. SPIN STRUCTURE FACTOR

In a recent paper, Rao and Sen13 have argued that dimer
ized spin chains with second nearest-neighbor interact
admit possibly three different phases@here we use the word
‘‘phase’’ to distinguish regions where the spin structure fa
tor S(q) is not peaked at the same value ofq#. They name
the three phases as follows~in this section, the system wil
be regarded as just one chain with NNN interactions and
as two chains with a zigzag interaction!: a Néel phase
@S(q) is peaked atp#, a spiral phase@S(q) is peaked at an
intermediate momentum betweenp andp/2#, and a collinear
phase@S(q) is peaked atp/2#. In view of the numerical
results from Chitraet al.,14 the collinear phase should not b
stable for the spin-12 chain. At first sight, there are two path
thatS(q) may follow to go from the Ne´el phase to the col-
linear phase. The first possibility is for the peak ofS(q) to
move continuously fromp to p/2, thus going through a
spiral phase. The second possibility is for the peak ofS(q) at
p to progressively decrease in amplitude while a seco
peak atp/2 progressively appears; the system might then
through a dimerized state. In view of this, the question of
existence or not of a spiral phase for the frustrated sp12
chain arises. To answer this question, we need to know h
the spin structure factor evolves as a function of the ra
k1 /k2. Unfortunately, in the present continuum approach
can only calculate the spin-spin correlation function ne
q50, q5p, andq56p/2. As seen below, this calculatio
is also interesting from the point of view of symmetry an
allows us to relate the elementary spin excitations to
fermionsc i .

The main conclusion of Sec. II is that the system~1! may
be described in the continuum limit by four real fermion



re
h
ns

e

e

e

r
he
in
-

to

e
ne-

r
e
n-

-
he

is-

l

r-

o-

i-
at
t

ticle

nd

er-

er,
m

304 55DAVE ALLEN AND DAVID SÉ NÉCHAL
three with massm.0 and velocityv, and one with mass
m0,2m and velocityv0.v. At this point we will neglect
the residual interaction between these fermions and t
them as free in the calculation of correlation functions. T
spin operatorSi is represented in terms of these fermio
through the relations~4!, ~8! and~9!. Thez component of the
spin density has the following expression near the wave v
tors accessible to the continuum limit:

Sq;0
z } c1c21c̄1c̄2 , ~34a!

Sq;p
z } c0c31c̄0c̄3 , ~34b!

Sq;p/2
z } m1m2s3s0 , ~34c!

Sq;2p/2
z } s1s2m3m0 . ~34d!

Thus, the spin-spin correlation function nearq50 takes
the form

x~0!~x,t!}^~c1c21c̄1c̄2!~x,t!~c1c21c̄1c̄2!~0,0!&,
~35!

while nearq5p, it takes the form

x~p!~x,t!}^~c3c01c̄3c̄0!~x,t!~c3c01c̄3c̄0!~0,0!&.
~36!

In the first case (q near 0!, the two fermions have the sam
mass and velocity, while in the second case (q nearp) they
have different masses and velocities. Consider the cas
two fermions with different masses (m andm8) but identical
velocities~for simplicity!. The imaginary part of the Fourie
transform of the spin-spin correlation function, i.e., t
imaginary part of the dynamic susceptibility or the sp
structure factorS(q,v), may be calculated from the propa
gators~31!:

S~q,v!}
1

u Fq2s2 ~m1m8!21
v2

s2
~m2m8!22

v21q2

s4

3~m1m8!2~m2m8!2G , ~37!

whereu ands are defined by

u25~s21m22m82!224m2s2, ~38!

s25v22v2q2 ~39!

~in this expression we have returned to real frequencies!. In
the casem5m8 this result becomes the spin structure fac
nearq50:

S~0!~q,v!}
m2q2

s3As224m2
. ~40!

Neglecting velocity renormalization (v05v i), the model is
O~4! symmetric at long distances andm052m. Then the
dynamical susceptibility nearq5p would be given by the
more general expression~37! with m852m. The expression
of S(p)(q,v) appropriate for the more realistic casev0Þv i
can be obtained in closed form but is too cumbersome
display here.
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The fact thatS(0)(0,v)50 reflects the conservation of th
total magnetization. This is not the case for the total mag
tization of each chain, sincemÞm8, unless the two chains
are decoupled (m5m850). Thus,S(p)(0,v)Þ0.

According to Eq.~34!, the magnetic susceptibility nea
q56p/2 is a product of four two-point functions of th
Ising model, involving order and disorder fields. For i
stance, nearq5p/2,

x~p/2!~x,t!}^~m1m2s3s0!~0,0!~m1m2s3s0!~x,t!&

5C̃2~mr!C~mr!C~m0r !, ~41!

whereC(R) andC̃(R) are, respectively, the two-point func
tions of the order field and disorder field, as a function of t
reduced distanceR5Ax21v2t2/j5mr. These functions are
known15 and their leading asymptotic behavior is, in the d
ordered phase of the Ising model,

C~R!5
A

p
K0~R!1O~e23R!,

C̃~R!5AH 11
1

8pR2e
22R1O~e24R!J , ~42!

whereA is some constant andK0,1 are the modified Besse
functions. If the argument ofC is negative~i.e., for a nega-
tive mass!, we perform a Kramers-Wannier duality transfo
mation and identifyC(2R) with C̃(R). Thus, the leading
asymptotic behavior of the susceptibility nearq5p/2 is

x~p/2!~x,t!}C̃2~mr!C̃~ um0ur !C~mr!}K0~mr!1O~e22mr!.
~43!

Notice thatK0(R) is the real-space propagator of a free b
son of mass m. Thus, its Fourier transform is
;(k21m2)21. Going back to real frequencies, the imag
nary part of the susceptibility has a pole
v5A(vk)21m2, plus an incoherent part starting a
v52m:

S~p/2!~q,v!}
m

uvu
d~v2A~vk!21m2!1 incoherent part.

~44!

The magnetic susceptibility near2p/2 is obtained by
Kramers-Wannier duality:

x~2p/2!~x,t!}C̃~mr!C2~mr!C~ um0ur !}K0~mr!2K0~ um0ur !

1O~e22mr!. ~45!

The associated spin structure factor has no single-par
peak, but instead a continuum starting atv52m1um0u.
Thus, the single-particle magnetic excitations live arou
k5p/2, whereas the excitations neark50,p have a two-
particle behavior and those neark52p/2 have a three-
particle behavior.

The residual interactions between the four Majorana f
mions should not greatly affect the asymptotics of Eq.~43!
since it is governed by a single-particle function. Howev
these interactions might significantly modify the continuu
appearing in Eq.~45!.
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The above analysis assumed that the massm was positive,
which amounts to choosing one of the degenerate gro
states, characterized by a short-range order aroundk5p/2. If
the other ground state were chosen, the massm would be
negative and the above analysis could be repeated by i
changing the roles ofk5p/2 andk52p/2. Thus, the spon-
taneous breakdown of parity is reflected in the nonequ
lence of S(k,v) and S(2k,v). However, this would be
unobservable in practice because of domain effects.

V. STRING ORDER PARAMETER
AND Z23Z2 SYMMETRY

Kohmoto and Tasaki have shown16 that, for a spin-12 chain
with dimerization, a string order parameter may be defin
as den Nijs and Rommelse have previously done for
spin-1 chain.7 A nonlocal unitary transformation is intro
duced to show that the nonzero value of this string or
parameter is related to the breakdown of aZ23Z2 symmetry.
More recently, Sheltonet al.10 showed that the string orde
parameter

Oz~n,m!5expH ip(
j5n

m

~Sj
z1S̃j

z!J ~46!

becomes, in the continuum limit,

lim
ux2yu→`

^Oz~x,y!&;^s1&
2^s2&

22^m1&
2^m2&

2. ~47!

It was also argued in Ref. 10 that the nonzero value of
order parameter is related to the breakdown of aZ23Z2 sym-
metry which, in the continuum limit, is given by the invar
ance under sign inversion of both chiral components of e
Majorana spinor:ca→2ca and c̄a→2c̄a (a51,2!. This
must be accompanied by an inversion of both order and
order fields:sa→2sa andma→2ma .
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Here, we expect a nonzero value of the string order
rameter for two reasons. First, since the SU~2! symmetry
cannot be spontaneously broken—according to the Merm
Wagner theorem—the mass of the first Ising model (m1)
must be the same as that of the second Ising model (m2), in
order to keep the symmetry under the exchange of the la
1, 2, and 3. It naturally implies that they must have the sa
sign. So, if^s1&Þ0 (m1.0), then^s2&Þ0 (m2.0). Simi-
larly, if m1Þ0 (m1,0), then ^m2&Þ0 (m2,0). Second,
since a gap open by the introduction of the interchain c
pling, the massesm1 andm2 must be nonzero.

We can also reveal the presence of theZ23Z2 symmetry
without going to the continuum limit, i.e., directly from th
Hamiltonian~1!. The unitary transformationU introduced in
Ref. 16 consists of many transformations applied in succ
sion. Explicitly, we have

U5~Dt!21RDG, ~48!

whereG performs a rotation ofp about they axis on some
of the spins:

G5 ^

j51

L/2

expF ip2 ~S4 j21
y 1S4 j

y !G . ~49!

D is a duality transformation~see Appendix A of Ref. 16!
which introduces intersite spins. It is followed by a trans
tion

R:r→ 1
2 ~r1 1

2 !. ~50!

The spin on integer sites will be noteds and those on the
half-odd integer sites will be notedt. The final operation is
to make an inverse duality transformation for thet spins. We
refer the reader to the work of Kohmoto and Tasaki16 for a
full description of this unitary transformation. If we appl
this transformation to the Hamiltonian~1!, we find
UHU215(
j51

N

$k1@t j
x1s j

x2s j
xt j

x2s j
zs j11

z 2t j
zt j11

z 2s j
zt j

zt j11
z s j11

z #1k2@s j
zt j

xs j11
z 1s j

yt j
yt j11

z s j11
z 1t j

zs j
xt j11

z

1s j
zt j11

x s j11
z 1 is j

zt j
yt j11

y s j11
y 1t j

zs j11
x t j11

z #%. ~51!
g

t. If

by
itly,

er
the
Thes ’s andt ’s are sets of Pauli matrices. The new Ham
tonian H̃5UHU21 is clearly invariant under a rotation o
p about thex axis applied to thes spins alone or thet spins
alone. A fourfold degeneracy of the ground state ofH in the
thermodynamic limit does not follow from this broken sym
metry since this is not a local symmetry.17

VI. DISCUSSION

The crucial difference between the Hamiltonian~1! and
that of the more familiar spin ladder is the occurrence, in
latter, of an interaction term of the form

Lladder5
h

2p
Tr~gta!Tr~g8ta! ~52!
e

(h is some constant proportional to the interchain couplin!.

Since the matrix fieldg has conformal dimensions (14,
1
4), the

above perturbation has scaling dimension 1: It is relevan
the representation~9! and the OPE’s~B3a!—~B3d! are used
to express this interaction in terms of fermions, one finds

Lladder5 i
h

2p
~c1c̄11c2c̄21c3c̄323c0c̄0!. ~53!

This coincides with the conclusions of Ref. 10, obtained
Abelian bosonization. The mass terms now appear explic
with a triplet of massh and a singlet of mass23h. The
interchain coupling explicitly breaks the invariance und
parity that is spontaneously broken in the zigzag case. If
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two rungs of the zigzag had different couplings (k1 and
k18), an interaction like Eq.~52! would be generated and th
gap would have a linear dependence on the interchain
pling. Of course, the marginal interaction~18! is always
present and provides an additional renormalization of
masses. Ask18→k1, the dependence of the gap on the int
chain coupling should become more and more exponen
because of this renormalization.

We were concerned in this work with the regim
k1!k2 and the conclusions are nominally valid only in th
regime, although we expect them to be qualitatively corr
even for k1;k2. However, in the opposite regim
(k1@k2) the system should be treated as a single chain
we should perturb around a single WZWk51 model. This is
explained in Ref. 3. The conclusion is that the perturbatio
marginally irrelevant if the ratiok2 /k1 is smaller than some
critical value, and leads to an exponential gap above
critical value. In that regime the ground state is sponta
ously dimerized~spontaneous breaking of parity!. This con-
clusion is also valid in the regimek1!k2. Indeed, the order
parameter for dimerization,

d5^S2i•S2i212S2i•S2i11&, ~54!

coincides, in the continuum limit, with the ladder perturb
tion ~52!, up to terms that have a vanishing expectat
value. Translated in terms of the bare interaction coupli
l6 of Eq. ~25! and of the massesm andm0, the spontaneous
dimerization becomes

d}m0@m~l22l1!1m0~l21l1!#. ~55!

This is generically nonzero.
So far we have supposed thatk1 is positive, correspond

ing to an antiferromagnetic interchain coupling. The fer
magnetic case may be treated just as well. In that case,
interaction constantsl6 of Eq. ~25! are negative and thu
renormalize to zero: The model is equivalent to a theory
four free Majorana fermions, with different velocities. Fro
Eq. ~17! with negativel1, we expect the velocityv0 of c0 to
be smaller than the velocityv of c1,2,3. Thus, we conjecture
that the ferromagnetic model is critical, albeit with two se
tors having different velocities: a triplet sector equivalent
the WZWk52 theory and a singlet sector with a smaller v
locity. This is not the same as saying that the two cha
decoupleat long distances, since in that case the structur
excitations would be different. This conjecture might
tested by exact diagonalizations on finite systems and s
information on the velocity renormalization might be e
tracted this way.
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APPENDIX A: WZW MODELS

A systematic review of WZW models cannot take place
a regular paper. Here we simply recall basic concepts an
u-

e
-
al

t

d

is

at
-

-
n
s

-
th

f

-

s
of

e

e

a

few definitions, in order to fix the notation and the norma
ization used in this work. We follow in this respect Ref. 1

Wess-Zumino-Witten ~WZW! models are defined in
terms of a matrix-valued fieldg belonging to a unitary rep-
resentation of SU~2! ~more generally, of a Lie groupg) with
the action,4,19

S5
k

16pE d2x Tr8~]mg21]mg!

2
ik

24pEBd3y «mnrTr8~g21]mgg
21]ngg

21]rg!,

~A1!

where the trace Tr8 is proportional to the usual trace oper
tion:

Tr85
1

xs
Tr, xs5

1
3 s~s11!~2s11! ~A2!

(s is the spin of the representation!. k is a positive integer
called thelevel of the WZW model. The first term of Eq
~A1! is the usual nonlinears model. The second term i
topological and is integrated on a three-dimensional ma
fold B of which two-dimensional space-time is the bounda
Its value is independent of the precise form ofB ~modulo
2p), providedk is an integer.

The fundamental property of the WZW model—enforc
by the relative normalization of the two terms of the acti
~A1!—is its full conformal symmetry. For this reason, it
best described in the language of conformal field theo
with holomorphic ~or left! and antiholomorphic~or right!
coordinates

z52 i ~x2vt !5vt2 ix, z̄5 i ~x1vt !5vt1 ix,
~A3!

wheret5 i t is the Euclidian time andv is the characteristic
velocity of the model, implicit in the covariant notation o
Eq. ~A1!. The left and right derivatives are commonly use

][]z5
1

2 S ]

]x
1 i

1

v
]

]t D ]̄[] z̄5
1

2 S ]

]x
2 i

1

v
]

]t D .
~A4!

The WZW model has SU~2! symmetry and this entails th
existence of a conserved currentJm , expressed here in its
left (z) and right (z̄) components:

J[Jz5]gg21, J̄[J z̄5g21]̄g. ~A5!

Closely related to its conformal symmetry is the separ
conservation of the left and right currents:] J̄50 and
]̄J50 @the SU~2! symmetry is enlarged to a chiral symmet
SU(2)L^SU(2)R#. HenceJ(z) depends only onz and J̄( z̄)
on thez̄. These matrix currents may be decomposed alon
basis of spin-s generators. For spin12, we choose

J~z!5Ja~z!ta, J̄~ z̄!5 J̄a~ z̄!ta, ~A6!

where theta are the usual Pauli matrices.
In practice, the action~A1! is not useful for practical cal-

culations. The traceless, symmetric energy-momentum
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sor, which generates local conformal transformations~in par-
ticular space-time translations!, is more useful. Its two
nonzero components are given by the so-called Sugaw
form

T~z!5
1

~k12!
~JaJa!, T̄~ z̄!5

1

~k12!
~ J̄aJ̄a!. ~A7!

The notation (•••) above stands for a normal ordering~regu-
larized product!. The dynamics of the theory is determine
by the short-distance product~operator-product expansion o
OPE! of the various fields. The OPE ofT(z) with a local
scaling~or primary! field f(w,w̄) reflects the conformal~or
scaling! properties of that field:

T~z!f~w!;
hf~w,w̄!

~z2w!2
1

]wf~w,w̄!

z2w
, ~A8!

whereh is the conformal dimension of the fieldf and the
symbol; means an equality modulo terms which are regu
as z→w. A similar expression holds forT̄ and the sum
h1h̄ is the usual scaling dimension. The OPE ofT with
itself is slightly different:

T~z!T~w!;
c/2

~z2w!4
1

2T~w!

~z2w!2
1

]wT~w!

z2w
. ~A9!

The constantc in the most singular term is thecentral
chargeof the conformal theory and measures the numbe
degrees of freedom of the theory; its value in the SU~2!
WZW model is

c5
3k

k12
. ~A10!

The OPE of the currentsJ and J̄ with a local matrix field
f fields reflects its transformation properties under the ac
of SU~2!:

Ja~z!g~w,w̄!;2
1

2

tag~w,w̄!

z2w
,

J̄a~ z̄!g~w,w̄!;
1

2

g~w,w̄!ta

z2w
. ~A11!

The OPE of the current with itself constitutes the so-cal
current algebra:

Ja~z!Jb~w!;
~k/2!dab
~z2w!2

1 i«abc
Jc~w!

z2w
, ~A12a!

J̄a~ z̄!J̄b~w̄!;
~k/2!dab

~ z̄2w̄!2
1 i«abc

J̄c~w̄!

z̄2w̄
, ~A12b!

Ja~z!J̄b~w̄!;0. ~A12c!

The WZW at levelk contains several matrix-valued sca
ing fields, one for each value of the spins up to ~and includ-
ing! s5k/2. The conformal dimensionsh and h̄ of the spin-
s field are
ra

r

f

n

d

hs5h̄s5
s~s11!

k12
. ~A13!

The OPE of the various matrix fields is governed by the r
of addition of angular momenta and by the constraint that
field of spin s.k/2 occurs in the operator algebra. The
OPE’s were calculated in Ref. 9. We shall only be concern
with the simplest case (k51).

The level-1 WZW model has central chargec51 and

contains a single matrix fieldgn n̄ (n,n̄56 1
2 ) of conformal

dimensions (14,
1
4). With the proper normalization, its OPE i

gn n̄~z,z̄!gmm̄~w,w̄!;
1

uz2wu
«nm« n̄ m̄ , ~A14!

where «nm is the antisymmetric symbol. We may use th
following decomposition:

g~z,z̄!5
1

2(i50

3

ga~z,z̄!ta, ga5Tr~tag!. ~A15!

The OPE ofg with itself is then

ga~z,z̄!gb~w,w̄!;
2dab

uz2wu ~21!da011. ~A16!

APPENDIX B: THE ISING MODEL

It is well known that the two-dimensional Ising model
equivalent to a real~Majorana! fermion in 111 dimensions.
The critical point of the Ising model corresponds to t
massless point of the fermion theory and constitutes one
the simplest conformal field theories, of central char

c5 1
2. This theory contains a two-component fermio

„c(z),c̄( z̄)…. The holomorphic fieldc has conformal dimen-

sions (12,0) while its antiholomorphic counterpartc̄ has con-

formal dimensions (0,12). Their OPE is

c~z!c~w!;
1

z2w
, ~B1a!

c̄~ z̄!c̄~w̄!;
1

z̄2w̄
, ~B1b!

c~z!c̄~w̄!;0. ~B1c!

The product«5 i c̄c has conformal dimensions (12,
1
2) and is

called theenergyfield; it is the mass term that takes th
model away from its critical point. The energy-momentu
tensor of the fermion theory is

T~z!52 1
2 c]c, T̄~ z̄!52 1

2 c̄ ]̄c̄. ~B2!

The critical Ising model also contains anorder field s(z,z̄)
which is the continuum limit of the Ising spin. This field ha

conformal dimensions (116,
1
16) and is not locally related to the

fermion field. Indeed, in the transfer-matrix description
the two-dimensional Ising model, the fermion field is intr
duced by a~nonlocal! Wigner-Jordan transformation. Th
Kramers-Wannier duality transformation of the Ising mod
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maps the order fields into a disorder fieldm which has
essentially the same properties, except that^s&Þ0, ^m&50
in the ordered phase and^s&50, ^m&Þ0 in the disordered
phase. At the~massless! critical point, both fields have a
vanishing expectation value. All three fields (c,s,m) are
mutually nonlocal, which is reflected in their OPE by th
existence of branch cuts. These OPE’s are given below:

s~z,z̄!s~w,w̄!;
1

uz2wu1/4
1
1

2
uz2wu3/4«~w,w̄!, ~B3a!

m~z,z̄!m~w,w̄!;
1

uz2wu1/4
2
1

2
uz2wu3/4«~w,w̄!, ~B3b!

s~z,z̄!m~w,w̄!;
g~z2w!1/2c~w!1bg* ~ z̄2w̄!1/2c̄~w̄!

A2uz2wu1/4
,

~B3c!
-
h

. B
m~z,z̄!s~w,w̄!;
g* ~z2w!1/2c~w!1bg~ z̄2w̄!1/2c̄~w̄!

A2uz2wu1/4
,

~B3d!

c~z!s~w,w̄!;
gm~w,w̄!

A2~z2w!1/2
, ~B3e!

c~z!m~w,w̄!;
g*s~w,w̄!

A2~z2w!1/2
, ~B3f!

c̄~ z̄!s~w,w̄!;
bg*m~w,w̄!

A2~ z̄2w̄!1/2
, ~B3g!

c̄~ z̄!m~w,w̄!;
bgs~w,w̄!

A2~ z̄2w̄!1/2
, ~B3h!

where some arbitrariness remains in the constantsb andg
because of the nonlocal character of these OPE’s:b561
and g56e6 ip/4. In this work we chooseg5eip/4 and
b51.

Since the regularized product ofs with m is a fermion,
these operators must carry some anticommuting chara
We shall assume that the disorder operatorm anticommutes
with all fermion fields and other disorder operators, but n
with itself nor with the order fields. This is a matter of co
vention (s could have been chosen instead!.
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