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Magnetic phase diagram of the half-filled three-dimensional Hubbard model
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Magnetic properties of the half-filled Hubbard model on three-dimensional bipartite lattices have been
studied by using the linked-cluster series expansion method. The series for the free energy and the staggered
susceptibility have been calculated as a functioBbfor three-dimensional bipartite lattices for an arbitrary
value of the Coulomb interactiod. We obtain a transition from a paramagnetic to an antiferromagnetic
U/t—Ty/t phase diagram from the divergence of the staggered susceptibility series. Comparisons with Monte
Carlo simulation, Onsager reaction field result of an effective spin Hamiltonian, and Uatgeisenberg
high-temperature solutions are mafi©0163-18207)09205-9

I. INTRODUCTION ena in spin systenfs. However, the method has not been
widely used to study the correlated electrons systems. In this
The Hubbard modélis one of the simplest models which paper we study the antiferromagnetic phase of the half-filled
describes the behavior of correlated electron systems. It hasubbard model for the simple cubic lattice and the body-
long been used in describing the metal-insulator transftion,centered cubic lattice using the linked-cluster series expan-
antiferromagnetism, and ferromagnetisrh.Most recently,  sion method. The linked cluster expansion method has been
the Hubbard model has also been propdsedstudy the  the most efficient theoretical method for solving many-body
physical mechanism of high-temperature superconductivity proplems. This method has been extensively used on spin
The Hamiltonian of the single-band Hubbard model issystems with crystalline potentials involv@iThe method

given by sums up all perturbation terms to certain order and estimates
the result through a well-developed extrapolation method.
H=UY, nnnu—E MigNigtt (cf;cjg+ cfacig), The calculation of the thermodynamic properties using this

i i,o

(Lo method covers the whole range of temperature, above as well
@) as below the critical temperature. Above the critical tempera-
whereU is the on-site Coulomb repulsion potentigis the  ture the linked cluster series are identical to the high-
nearest-neighbor hopping integral,,, c;,, are creation, an- temperature series.
nihilation operators for localized electron states of spion Recently, we developed a generalized linked-cluster ex-
sitei, andn;,=c;' c;, . The site-dependent effective chemi- pansion techniqié with the multiple-site Wick reduction
cal potentialu;,. includes a uniform magnetic field and a  theorem applied to the Hubbard model. We generate the se-

staggered magnetic fielg, ries expansion of the grand potential and the staggered mag-
netic susceptibility of the Hubbard model by the generalized
kig=pta(o)(h=g), (2 linked-cluster expansion method. We have obtained the first

where the sign=1 depends on whether tiiéh site belongs to fi\_/_e term_s of the grand potentia! anq the staggered suscepti-
the A or B sublattice andx(o) is +1 and—1 for spinog=1  bility series. In th strong.—couplmg !lmlﬂ{t—>oo, our stag-
and |, respectively. gered susceptibility series are identical to the high-
Despite the simplicity of the model, no exact solutionstemperature series expansionddTSE'S of spin-1/2
exist except in one dimensirin more than one dimension, antiferromagnetic Heisenberg model. The resultanelNe
the model is not exactly solvable. A variety of approximatetemperaturely as a function ofU/t is in broad agreement
methods have been used to study this problem. These includéth the Onsager reaction field calculations.
mean-field theory,random phase approximati6rseries ex- The paper is organized as follows. In Sec. Il we discuss
pansion method; 3 Onsager reaction field approach of an briefly the generalized linked-cluster series expansion of the
effective spin Hamiltoniah? functional integral tech- grand potential for the Hubbard model. We have developed a
nique®*® quantum Monte Carlo simulatiort$!® and exact general computer program written in the programming lan-
diagonalizationt® Despite these efforts the ground state orguageFortran to perform all calculations symbolically. In
the thermodynamics of the Hubbard model are not fullySec. Ill we give the result of an analysis of the series and
known. present the resulting magnetic phase diagram of the half-
Series expansion method has provided the most accuratded Hubbard model. A comparison with related work is
results in the study of phase transition and critical phenomalso presented. Finally, a summary is given in Sec. IV.
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Il. GENERALIZED LINKED-CLUSTER EXPANSION TABLE I. List of free-energy connected graphs.
The Hubbard Hamiltonianil) is split into two parts Graph  Weight (e Graph  Weight ~ [Aftee
N 1 LC ﬂ\'}é‘n 20160 LC)
H=Ho+H;. () il 3 Lcw lt_:ﬁs 20160 Lc@
;—IO is the unperturbed single-site Hamiltonian of the diagonal ﬂ?—’ 12 e It - o
orm =
ﬂ 6 LC(5) if_’
HOZUZ nmnu_Mz (ni1+nu)_92 (niy—nj)) W e Heo = wene
i i i —
Mr‘ 180 LC) {_;t_ 00 Lc®
+ gzj: (nj;—n;)), 4 1§ 120 Lc® 5 o o
—» 5
wherei andj refer to the sites of two distinct interpenetrat- ¥ % % e @ wo  1om
ing sublattices angd is the staggered magnetic field for cal- ﬂf} 360 LC®)
culating the stag_gered susceptlk_nllty. _ - /<> 20160 ®
The perturbation pafti; contains only the hopping term f} 20 LC® =
O i o T——’G > 40320 LC1o
-
H.,= (ijE)a t; ,j(Citer ot CJ-J:TCiU) . (5 VR . «G‘_—: 20160 LCa0)
The grand potentidF of the Hubbard model can be writ- N~ 12w ﬁ%—‘» e Lcao
ten as :‘E 1260 LC@) f_ﬂ' _J
e } e 1cao)
F=Fy+AF, (6) R GE]'
10080 LC®
whereF is the grand potential corresponding to the unper- M om e
turbed HamiltoniarH, and AF is expressed &5 }_‘% o 1o fHY we o
T
s <« mﬂ 20160 LC(3)
1 (=" (8 B B Tﬁ§ s0d0 Lo®)
AFz—E > o f dflf de---f dr, O o v
n=1 : 0 0 0 ﬂﬂm 3360 LCG) s
X(TH1(m)H(75) - Hi(m0) e, (7 Nf_::v w80 LCO) O_» w0 Loay
where 8= (kgT) ! and the subscript means the cumulant MIN o0 e @\ o0 Loab
part of the ~ordered products, or, in the diagram analysis, ‘_T 0 e 2
linked graphs only are considered. ”3 ©
It is convenient to represent the terms in the series expan- O 5040 Leas
sion by diagrams. Diagrams involving up to eight interaction @ o we

lines are shown in Table I, where eakh(r) in the grand
potential expansion corresponds to the nearest-neighbor pairs
of annihilation and creation operators which represent the

hopping +proce§ses over the entire lattice. Each_palr of facénd the weights of the graphs in Table | are produced from
tors, tj;c;,Cj,, is represented by an arrow from sjtéo the

nearest-neighbor sitie the Ising graphs by an algorithm which has been imple-
A product Of|:|1(7') in the grand potential expansion is mented on a computer. Summation over the lattice sites is
represented by graphs which are composed of directed aPbtained by taking the appropriate free multiplicity as the

rows. The expansion akF then can be expressed as Iattiqe lcgnstar’n@ and muItipIying the term byt". The free
multiplicity can be expressed in terms of weak embedded
17— lattice constant® The nonzero lattice constants in terms of
AF=—— “— W(g)L(gn)1(gn)- ®) weak embedded lattice constants for the bipartite graphs are
Bag, N shown in Table II.

Each diagram represents a term in the expansion of
The summation is over all linkettonnected graphs where — BAF. The first step in the calculation of theintegrals
0, indicates amth-order linked graphW(g,,) is the weight implied by each graph is to express the cumulants or the
of the graph or the number of topologically equivalentsemi-invariants in terms of moments or thermal averages.
graphs appearing in the expansitr{g,) is thelattice con-  We use Eq(9) to transform the cumulants to the momefits,
stantof the graphl(g,) is the value of ther integral of the ~ where([0,0,---0,]). represents the cumulant of the prod-
cumulant product which the graph represents. The graphsct of fermion operators:
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TABLE II. The nonzero lattice constanie.C) in terms of weak embedded lattice constants for the
bipartite graphs.

LC number LC in terms of weak embedded lattice constants
LC(1) z

LC(2) 22

LC(3) z

LC(4) 2

LC(5) 8p,+22°—z

LC(6) 8zp,+22°—7°

LC(7) 12pg— 48p,+482p,+ 523 — 622+ 22

LC(8) 12pga+24p,+ 23+ 22— 2

LC(9) (8p,+22%—2)%lz

LC(10) Z2(8p,+272%—2)

LC(12) 48pgr+ 72pga+ 56p,+ 24+ 22—z

LC(12) 2(12pg—48p,+ 48z py+52°— 67°+ 22)

LC(13) (8p,+272°—2)°

LC(14) 16p,5— 96pgr+ 33604 — 96p6+ 962 P+ 264p,+ 2560,

— 448 p,+224p,72 — 768042/ 2+ 142* — 282°+ 20z°— 52

each set. A program has been developed to calculate this
transformation.

Next the fermion operators in each product are replaced
by standard basis operatdrsThe replacement of the prod-
uct of fermion operators by standard basis operators in the
thermal average expression is also done by a computer pro-
gram. All nonzero contributions are found and regrouped

<Tr[01( 71)Oy(72) - Og( Tn)]>c

=}

=3 (-1}~ H(-1)"
1

x X

<TT I1 oJ-(Tj)D <T I1 oquq)D ,
p(n.1) i=1 0 0

©)

p(n,l) represents a partition af operatorsO,, O,,...,0,
into | sets without regard to the ordd?, is the number of

with terms of the same by the program. Since the standard
basis operators include pseudofermion operators, the sign of
each expression is calculated when these operators are inter-
changed.

Finally, the integrals containing a product of standard ba-

interchanges of the fermion operators for this arrangemensis operators are calculated by using the multiple-site Wick
and m;,m,,...,m, represents the number of operators inreduction theore?"*®

B B B
f dTl"'f di"'f dro(T (7)) I Ta(7n) 1o
0 0 0

1 (8

B
:G_k . dry-- J;) dTn[(TT{[I1'|k]71"'In(T“)}>0+<TT{|1(71)[|2-|k]72'"|n(7n)}>0+"'+<T7{|1(7'1)“'[|n,|k]7n}>0].

(10

The operatoil, is a product of even number of pseudofer- We calculate the grand potenti&l by the method de-
mion operators or a product of pseudospin operators or acribed above. The resulting expression can be written as
product of a mixture of these operators. The pseudospin op-
erators commute and pseudofermion operators anticommute
under the symbol of ther product. The mixture of
7-dependent standard basis operators integral can be calcu-
lated by successive application of the Wick reduction inte-
gral formula.independent standard basis operators integral
are calculated by forming all permutations of standard basi§he staggered susceptibility is calculated from the grand po-
operators. A general computer program has been developéential by differentiation. We consider the case of half-filling,
to performrdependent integral as well asndependent in- where the chemical potential jis=U/2. The zero-field stag-
tegral calculation symbolically. gered susceptibility at half-filling is given as

BF=BFo+n§2fn(BU,BM,Bg)(Bt)”- (1)
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. F(BF)

X'==B 5aa7 g:O=/3xO+ﬁ§,2 an(BU,7)(BH)",

12

where

_exppu2)
T 1+ exp BUR)]

(13

The coefficientsa,, for x° and f, for F are expressed as
polynomials in the variables@U) !, exp(— 8U), and 7.
The coefficients,, andf, up to eighth order for the bipartite
lattice are available upon request.

The series obtained have been checkgdn the U=0
limit and (ii) in the strong-coupling limitU/t—cc at half-
filling. In the noninteracting casel=0), the Hamiltonian

becomes trivial, and the single-particle eigenstates have en-

ergies
1 s
ék:tZFk, where Fk:; E e y (14)
5

z is the number of nearest neighbors, afids a nearest-
neighbor vector. The zero field grand potenfabf nonin-
teracting fermions is

2
F=-5 3 In{1+eqifu—el). (15

Expanding aroungBe, =0, one obtains the expansion

BF = BFo+Fa(B)*+F4(B)*+Fg(B)°+Fg(B)%+:-- .
(16)

The polynomials=, are given as

2
Fo=— 5 In[1+exp )], (17)
ZZ
Fo=—vl 2 T

1 .z A
Fa=— =615 2 T

1 2
- — 2 31 6
Fo=— 350l 7~ 307"+ 120°] g 2 I

(Bt)? 210

B x°=1+|6
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1 z8
- _ 2 3 4 8
Fg 20160[7 126y~ +1680y°—5040y"] N Ek Iy,

where y=exp(Bw)/[1+exp(Bw)]>. In the case of nearest-
neighbor interaction, the lattice sums in terms of weak em-
bedded lattice constants for bipartite lattigsgmple cubic,
body-centered cubjaare given as

z? )
N; T =27,

i

V4
N > Ti=8ps+27°-2,
k
(18)

6
zZ
N > I'8=12ps—48p,+482p,+ 523 67%+ 27,
k

e}

pA
N = Tk=160525— 96pgr+ 336052 ~ 96p5+ 9625 + 264D,

+ 25602 — 4482 py+ 224p .72 — 768042/ z+ 147
—2823+207°-5z.

In the U=0 limit, our results agree completely with the ex-
act solution given above.

At half-filling and in the strong-coupling limitJ/t— o,
our staggered susceptibility’(g=0) series are identical to
the high-temperature series expansions of the antiferromag-
netic Heisenberg modé&%:2® Furthermore, the series obtained
from different graphs can also be checked internally. The
grand potential or the staggered susceptibility series of a
graph is invariant under an interchange of up-spin fermion
operator and down-spin fermion operator in zero magnetic
field. Therefore a symmetric pair of graphs obtained by in-
terchanging of up-spin and down-spin yield the same result
in zero magnetic field. In this way all symmetric pairs of
graphs that appeared in the sixth order and the eighth order
are checked.

We give the full expression for the staggered susceptibil-
ity per site at half filling, for the simple cubic lattice, and up
to the (Bt)® terms:

1696 3339 12216

_ﬁ+i} _+[28_
U (BUY?] (BU)

BU (BUZ " (BU)

(Bt)* {

1128
(BUZ "

BU (U (BU)

77610} (Bt)®

+ —(,BU)4 —(BU)3+{494.80—

10786.0, 54132.0 169038.75 10030.50 4259316.8T (Bt)®
BU (BU)? (BU)® (

(19

(BUY* T T(BU® | (BU*

Since the terms that contain the exponentiatg8U are always exponentially smaller than other terms in the expression, we

neglect these terms in this expression.

Similarly, the staggered susceptibility series per site at half filling for the body-centered cubic lattice is given as
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B Ix=1+

g 32, 32 }(Bt)z [160 392 128 2208} (BH* [1024 14944 11882 42224
(

TBUT (B (BU) |3 BU (BUXZ T (BUE (BUZ | T3 38U T (BUY (BU)
N 224341 (,8t)6 +[2073 06 48232.02+ 276877.30_ 829552.25_ 171617.02+ 17921678.7T (ﬂt)8

(BUY* | (BU)3 9 50 (BUZ  (BU® (B (BU® | (BU*
(20

In the strong-coupling limitJ/t— o, these staggered suscep- yield the molecular field resulfy=6t%/U in the strong-
tibility series are identical to the high-temperature seriesoupling limit and the conjectured form for the triig(U)
expansion®-2® of the spin-1/2 antiferromagnetic Heisenberg by Kakehasi and Hasegaw.

model with nearest-neighbor couplidg=4t*/U. In the intermediate coupling region, the &léemperature
in the linked-cluster series expansion is lower than that in the
ll. PHASE DIAGRAM OF THE HALF-FILLED ORF calculation. We believe this to be the effects of cou-
THREE-DIMENSIONAL HUBBARD MODEL plings beyond nearest-neighbor which stabilize the antiferro-

A transition from a paramagnetic to an antiferromagneticmagnet'c phase in the ORRef. 19 calculation. However,

phase diagramy/t—T,/t) can be obtained from the diver- the convergence of .Iinked-clust(_ar series expgnsjon Is also
gence of the staggered susceptibility series for staggered fiefioW In this region. Since the series extrapolation is better at
g=0. In this work we use Padepproximants to extrapolate '2r9eVU, and not so well as small, it is important to obtain

the staggered susceptibility series to small coupling regiorth® higher-order terms to describe more correctly the behav-
The staggered susceptibility series in Et9) or Eq.(20) is  1OF of (U/t—T,/t) phase diagram in the weak-coupling re-

regarded as a series i (8t?)/U: gion. _ .
We have also attempted to analyze the series using the

ratio method?® The critical temperature is determined from
-1 S:Z a.x" (22) . s
B “x = An% the value ofxy at which x®° diverges. We have

Padeapproximants [./M] to the series expansigs 1y® are
defined by 1 BnU

= 2= (23)
no+nlx+...+nLXL XN (IBNt) n—oo

[LIMI= g ™ 22

Since the coefficients of the power series are functions of 0.6 —
BU, it is easy to obtain the approximants/M] from fixed
value of BU. For a given value o8U, approximantsiL/M] 05 | %
are calculated from the coefficients @ 1y® series. The %
value ofxy at which the susceptibility diverges is estimated % | .
by finding the roots of the denominators of approximants. =, -, mTsE
We have used roots from ttj&/2] and[1/3] approximants. . % %
We obtainT,/t from Ty /t=1/\/(xy)(BU) with known val- N 03 AN %
ues ofxy and BU. We then multiplyT,/t to BU to find the & ft \“‘3},». e MFA
corresponding value dfl/t. Carrying out this procedure for ozl |
different values of3U will give the (U/t—T,/t) phase dia- / e
gram. i ‘
In Fig. 1 we show the Y/t—T,/t) phase diagram ob-
tained from linked-cluster series expansion metfib@E) I
for the simple cubic lattice. They are plotted as a solid line 0.0 &
which was estimated from the average of faé2] and[1/3] 0 5 10
approximants with error bars. The error bars are estimated as U/t
half the spread of these approximants. Figure 1 also com-
pares our results witlfy of the three-dimeqsion_aﬁBD) Hub- FIG. 1. The Nel temperaturd/t as a function olU/t of the
bard.model obtalned_from Qnsager reactl_on f_(m':) cal- half-filled Hubbard model for the simple cubic lattice. Solid line
CU|at'12nS of an effective Heisenberg Hamiltonian by Szczec:%ives results of the linked cluster series expansion. Error bars indi-
et al.” We see that both calculations are in good agreemeniate spread of the Padgproximants. Dashed line gives Onsager
with each other at largel (U/t=10). In the strong-coupling  yeaction field methodORF, Ref. 14. The open circles represent
region, both calculations approach from above the strongomc results. Dotted curves show the molecular-field approxima-
coupling Heisenberg estimate dfy=3.83%U obtained tion (MFA) and high-temperature series expansisitSE) for the
from high-temperature series calculatign€® We also show Heisenberg model. Also shown is a plausible form Tgr curve
the results of quantum Monte Catlocalculations which given in Ref. 16(dot-dashed ling

0.1}

15 20 25 30 35 40
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FIG. 2. The ratio of two successive coefficients of the staggered £z 3. The Nel temperaturd/t as a function ofU/t of the
susceptibility series in the paramagnetic phaseyJlotted vs 10yt filled Hubbard model for the body-centered cubic lattice. Solid
for the simple cubic lattice with different values GU. line gives results of the linked cluster series expansion. Error bars

) ) o indicate spread of the Pad@proximants. Dotted curves show the
For a series with only a finite number of terms known, Wemjecular-field approximatiofMFA) and high-temperature series
can only estimate the value a&f, by extrapolation. We de-  expansionfHTSE) for the Heisenberg model.

fine

1 apy) o
XN an-1(BU) IV. SUMMARY
For each value oBU, the critical value oky is estimated by In summary, we obtained series for the grand potential
extrapolation: and the staggered susceptibility of the half-filled Hubbard
model using the linked-cluster series expansion method. A
1 a a. transition from a paramagnetic to an antiferromagnetic phase
—=n—"—(n-1) >, (25)  diagram (U/t—Ty/t) for 3D bipartite latticessimple cubic

XN an-1 an-2 and body-centered cubievere obtained using the series ex-
) . trapolation method. The resultant &léemperaturdl as a

Ty/t is obtained fromTy/t=1/y(xy)(BU). The corre-  fynction of U/t for the simple cubic lattice is in broad agree-
sponding value o)/t is calculated fromTy/t andBU. The  ment with the Onsager reaction field calculations except in
1ixy versus 1 plot for the simple cubic lattice with certain the weak-coupling limit. The convergence of the series is
values of U is shown in Fig. 2. For larger values U @  gjow in the moderate and weak-coupling region. Higher-
straight line can be drawn through the points except the firshrger terms are needed to describe the correct behavior of
one. However, there is still a small deviation of the pointsmagnetic phase boundary of the Hubbard model in the weak-
from a straight line. For the smaller value BU, corre-  ¢oupling region. A phase diagram for the body-centered cu-

sponding to smaller value df/t, the oscillation grows big- pjc |attice is also shown in the present calculation.
ger. In general, the ratio method analysis for the larger values

of U/t agrees with the results obtained from the Page
proximants analysis.
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