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Magnetic phase diagram of the half-filled three-dimensional Hubbard model
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Magnetic properties of the half-filled Hubbard model on three-dimensional bipartite lattices have been
studied by using the linked-cluster series expansion method. The series for the free energy and the staggered
susceptibility have been calculated as a function ofbt for three-dimensional bipartite lattices for an arbitrary
value of the Coulomb interactionU. We obtain a transition from a paramagnetic to an antiferromagnetic
U/t2TN/t phase diagram from the divergence of the staggered susceptibility series. Comparisons with Monte
Carlo simulation, Onsager reaction field result of an effective spin Hamiltonian, and large-U Heisenberg
high-temperature solutions are made.@S0163-1829~97!09205-9#
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I. INTRODUCTION

The Hubbard model1 is one of the simplest models whic
describes the behavior of correlated electron systems. It
long been used in describing the metal-insulator transitio2

antiferromagnetism,3 and ferromagnetism.4 Most recently,
the Hubbard model has also been proposed5 to study the
physical mechanism of high-temperature superconductiv

The Hamiltonian of the single-band Hubbard model
given by

H5U(
i
ni↑ni↓2(

i ,s
m isnis1t (

^ i , j &,s
~cis

1 cjs1cjs
1 cis!,

~1!

whereU is the on-site Coulomb repulsion potential,t is the
nearest-neighbor hopping integral,c is

1 , cis are creation, an-
nihilation operators for localized electron states of spins on
site i , andnis5c is

1 cis . The site-dependent effective chem
cal potentialm is includes a uniform magnetic fieldh and a
staggered magnetic fieldg,

m is5m1a~s!~h6g!, ~2!

where the sign61 depends on whether thei th site belongs to
theA or B sublattice anda~s! is 11 and21 for spins5↑
and↓, respectively.

Despite the simplicity of the model, no exact solutio
exist except in one dimension.6 In more than one dimension
the model is not exactly solvable. A variety of approxima
methods have been used to study this problem. These inc
mean-field theory,7 random phase approximation,8 series ex-
pansion method,9–13 Onsager reaction field approach of a
effective spin Hamiltonian,14 functional integral tech-
nique,15,16 quantum Monte Carlo simulations,17,18 and exact
diagonalization.19 Despite these efforts the ground state
the thermodynamics of the Hubbard model are not fu
known.

Series expansion method has provided the most accu
results in the study of phase transition and critical pheno
550163-1829/97/55~5!/2981~7!/$10.00
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ena in spin systems.25 However, the method has not bee
widely used to study the correlated electrons systems. In
paper we study the antiferromagnetic phase of the half-fi
Hubbard model for the simple cubic lattice and the bod
centered cubic lattice using the linked-cluster series exp
sion method. The linked cluster expansion method has b
the most efficient theoretical method for solving many-bo
problems. This method has been extensively used on
systems with crystalline potentials involved.20 The method
sums up all perturbation terms to certain order and estim
the result through a well-developed extrapolation meth
The calculation of the thermodynamic properties using t
method covers the whole range of temperature, above as
as below the critical temperature. Above the critical tempe
ture the linked cluster series are identical to the hig
temperature series.

Recently, we developed a generalized linked-cluster
pansion technique13 with the multiple-site Wick reduction
theorem applied to the Hubbard model. We generate the
ries expansion of the grand potential and the staggered m
netic susceptibility of the Hubbard model by the generaliz
linked-cluster expansion method. We have obtained the
five terms of the grand potential and the staggered susc
bility series. In the strong-coupling limitU/t→`, our stag-
gered susceptibility series are identical to the hig
temperature series expansions~HTSE’s! of spin-1/2
antiferromagnetic Heisenberg model. The resultant N´el
temperatureTN as a function ofU/t is in broad agreemen
with the Onsager reaction field calculations.

The paper is organized as follows. In Sec. II we discu
briefly the generalized linked-cluster series expansion of
grand potential for the Hubbard model. We have develope
general computer program written in the programming la
guageFortran to perform all calculations symbolically. In
Sec. III we give the result of an analysis of the series a
present the resulting magnetic phase diagram of the h
filled Hubbard model. A comparison with related work
also presented. Finally, a summary is given in Sec. IV.
2981 © 1997 The American Physical Society
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II. GENERALIZED LINKED-CLUSTER EXPANSION

The Hubbard Hamiltonian~1! is split into two parts

H5H01H1 . ~3!

H0 is the unperturbed single-site Hamiltonian of the diago
form

H05U(
i
ni↑ni↓2m(

i
~ni↑1ni↓!2g(

i
~ni↑2ni↓!

1g(
j

~nj↑2nj↓!, ~4!

wherei and j refer to the sites of two distinct interpenetra
ing sublattices andg is the staggered magnetic field for ca
culating the staggered susceptibility.

The perturbation partH1 contains only the hopping term

H15 (
^ i , j &,s

t i , j~cis
1 cjs1cjs

1 cis!. ~5!

The grand potentialF of the Hubbard model can be writ
ten as

F5F01DF, ~6!

whereF0 is the grand potential corresponding to the unp
turbed HamiltonianH0 andDF is expressed as21

DF52
1

b (
n51

`
~21!n

n! E
0

b

dt1E
0

b

dt2•••E
0

b

dtn

3^Tt@H1~t1!H1~t2!•••H1~tn!#&c , ~7!

whereb5(kBT)
21 and the subscriptc means the cumulan

part of thet-ordered products, or, in the diagram analys
linked graphs only are considered.

It is convenient to represent the terms in the series exp
sion by diagrams. Diagrams involving up to eight interacti
lines are shown in Table I, where eachH1(t) in the grand
potential expansion corresponds to the nearest-neighbor
of annihilation and creation operators which represent
hopping processes over the entire lattice. Each pair of
tors, t i j c is

1 cjs , is represented by an arrow from sitej to the
nearest-neighbor sitei .

A product of Ĥ1(t) in the grand potential expansion
represented by graphs which are composed of directed
rows. The expansion ofDF then can be expressed as

DF52
1

b (
n,gn

`
~21!n

n!
W~gn!L~gn!I ~gn!. ~8!

The summation is over all linked~connected! graphs where
gn indicates annth-order linked graph.W(gn) is the weight
of the graph or the number of topologically equivale
graphs appearing in the expansion.L(gn) is the lattice con-
stantof the graph.I (gn) is the value of thet integral of the
cumulant product which the graph represents. The gra
l

-

,

n-

irs
e
c-

r-

t

hs

and the weights of the graphs in Table I are produced fr
the Ising graphs by an algorithm which has been imp
mented on a computer. Summation over the lattice site
obtained by taking the appropriate free multiplicity as t
lattice constant22 and multiplying the term bytn. The free
multiplicity can be expressed in terms of weak embedd
lattice constants.23 The nonzero lattice constants in terms
weak embedded lattice constants for the bipartite graphs
shown in Table II.

Each diagram represents a term in the expansion
2bDF. The first step in the calculation of thet integrals
implied by each graph is to express the cumulants or
semi-invariants in terms of moments or thermal averag
We use Eq.~9! to transform the cumulants to the moments24

where^[O1O2•••On] &c represents the cumulant of the pro
uct of fermion operators:

TABLE I. List of free-energy connected graphs.
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TABLE II. The nonzero lattice constants~LC! in terms of weak embedded lattice constants for
bipartite graphs.

LC number LC in terms of weak embedded lattice constants

LC~1! z
LC~2! z2

LC~3! z3

LC~4! z4

LC~5! 8p412z22z
LC~6! 8zp412z32z2

LC~7! 12p6248p4148zp415z326z212z
LC~8! 12p6A124p41z31z22z
LC~9! (8p412z22z)2/z
LC~10! z2(8p412z22z)
LC~11! 48p8R172p6A156p41z41z22z
LC~12! z(12p6248p4148zp415z326z212z)
LC~13! (8p412z22z)2

LC~14! 16p223296p8R1336p6A296p6196zp61264p41256p4
2

2448zp41224p4z
22768p42/z114z4228z3120z225z
en
in

this

ced
-
the
pro-
ed
rd
n of
inter-

a-
ick
^Tt@O1~t1!O2~t2!•••On~tn!#&c

5(
l51

n

~ l21!! ~21! l21~21!Pl

3 (
p~n,l !

K TtF)
j51

m1

Oj~t j !G L
0

•••K TtF )
q51

mk

Oq~tq!G L
0

,

~9!

p(n,l ) represents a partition ofn operatorsO1 , O2 ,...,On
into l sets without regard to the order,Pl is the number of
interchanges of the fermion operators for this arrangem
and m1 ,m2 ,...,mn represents the number of operators
r-
r
o
u

al
te
gr
s
p

t,

each set. A program has been developed to calculate
transformation.

Next the fermion operators in each product are repla
by standard basis operators.13 The replacement of the prod
uct of fermion operators by standard basis operators in
thermal average expression is also done by a computer
gram. All nonzero contributions are found and regroup
with terms of the samet by the program. Since the standa
basis operators include pseudofermion operators, the sig
each expression is calculated when these operators are
changed.

Finally, the integrals containing a product of standard b
sis operators are calculated by using the multiple-site W
reduction theorem20,13
E
0

b

dt1•••E
0

b

dtk•••E
0

b

dtn^Tt@ I 1~t1!•••I k~tk!•••I n~tn!#&0

5
1

ek
E
0

b

dt1•••E
0

b

dtn†^Tt$@ I 1 ,I k#t1
•••I n~tn!%&01^Tt$I 1~t1!@ I 2 ,I k#t2

•••I n~tn!%&01•••1^Tt$I 1~t1!•••@ I n ,I k#tn
%&0‡.

~10!
s

po-
g,
The operatorI k is a product of even number of pseudofe
mion operators or a product of pseudospin operators o
product of a mixture of these operators. The pseudospin
erators commute and pseudofermion operators anticomm
under the symbol of thet product. The mixture of
t-dependent standard basis operators integral can be c
lated by successive application of the Wick reduction in
gral formula.t-independent standard basis operators inte
are calculated by forming all permutations of standard ba
operators. A general computer program has been develo
to performt-dependent integral as well ast-independent in-
tegral calculation symbolically.
a
p-
te

cu-
-
al
is
ed

We calculate the grand potentialF by the method de-
scribed above. The resulting expression can be written a

bF5bF01 (
n52

`

f n~bU,bm,bg!~bt !n. ~11!

The staggered susceptibility is calculated from the grand
tential by differentiation. We consider the case of half-fillin
where the chemical potential ism5U/2. The zero-field stag-
gered susceptibility at half-filling is given as
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xs52b
]2~bF !

]~bg!2
U
g50

5bx0
s1b (

n52

`

an~bU,h!~bt !n,

~12!

where

h5
exp~bU/2!

2@11exp~bU/2!#
. ~13!

The coefficientsan for xs and f n for F are expressed a
polynomials in the variables (bU)21, exp(2bU), and h.
The coefficientsan and f n up to eighth order for the bipartite
lattice are available upon request.

The series obtained have been checked~i! in the U50
limit and ~ii ! in the strong-coupling limitU/t→` at half-
filling. In the noninteracting case (U50), the Hamiltonian
becomes trivial, and the single-particle eigenstates have
ergies

ek5tzGk , where Gk5
1

z (
d

eik•d, ~14!

z is the number of nearest neighbors, andd is a nearest-
neighbor vector. The zero field grand potentialF of nonin-
teracting fermions is

F52
2

b (
k

ln$11exp@b~m2ek!#%. ~15!

Expanding aroundbek50, one obtains the expansion

bF5bF01F2~bt !21F4~bt !41F6~bt !61F8~bt !81••• .
~16!

The polynomialsFn are given as

F052
2

b
ln@11exp~bm!#, ~17!

F252@g#
z2

N (
k

Gk
2,

F452
1

12
@g26g2#

z4

N (
k

Gk
4,

F652
1

360
@g230g21120g3#

z6

N (
k

Gk
6,
n-

F852
1

20160
@g2126g211680g325040g4#

z8

N (
k

Gk
8,

where g5exp~bm!/@11exp~bm!#2. In the case of nearest
neighbor interaction, the lattice sums in terms of weak e
bedded lattice constants for bipartite lattices~simple cubic,
body-centered cubic! are given as

z2

N (
k

Gk
25z,

z4

N (
k

Gk
458p412z22z,

~18!

z6

N (
k

Gk
6512p6248p4148zp415z326z212z,

z8

N (
k

Gk
8516p223296p8R1336p6A296p6196zp61264p4

1256p4
22448zp41224p4z

22768p42/z114z4

228z3120z225z.

In theU50 limit, our results agree completely with the e
act solution given above.

At half-filling and in the strong-coupling limitU/t→`,
our staggered susceptibilityxs(g50) series are identical to
the high-temperature series expansions of the antiferrom
netic Heisenberg model.25,26Furthermore, the series obtaine
from different graphs can also be checked internally. T
grand potential or the staggered susceptibility series o
graph is invariant under an interchange of up-spin ferm
operator and down-spin fermion operator in zero magn
field. Therefore a symmetric pair of graphs obtained by
terchanging of up-spin and down-spin yield the same re
in zero magnetic field. In this way all symmetric pairs
graphs that appeared in the sixth order and the eighth o
are checked.

We give the full expression for the staggered suscepti
ity per site at half filling, for the simple cubic lattice, and u
to the (bt)8 terms:
, we
b21xs511F62
24

bU
1

24

~bU !2G ~bt !2

~bU !
1F282 210

bU
2

48

~bU !2
1

1128

~bU !3G ~bt !4

~bU !2
1F1202 1696

bU
1

3339

~bU !2
2

12216

~bU !3

1
77610

~bU !4G ~bt !6

~bU !3
1F494.802 10786.0

bU
1
54132.0

~bU !2
2
169038.75

~bU !3
1
10030.50

~bU !4
1
4259316.80

~bU !5 G ~bt !8

~bU !4
. ~19!

Since the terms that contain the exponential of2bU are always exponentially smaller than other terms in the expression
neglect these terms in this expression.

Similarly, the staggered susceptibility series per site at half filling for the body-centered cubic lattice is given as
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b21xs511F82
32

bU
1

32

~bU !2G ~bt !2

~bU !
1F1603 2

392

bU
2

128

~bU !2
1

2208

~bU !3G ~bt !4

~bU !2
1F 10243

2
14944

3bU
1

11882

~bU !2
2

42224

~bU !3

1
224348

~bU !4 G ~bt !6

~bU !3
1F2073.062 48232.02

bU
1
276877.30

~bU !2
2
829552.25

~bU !3
2
171617.02

~bU !4
1
17921678.78

~bU !5 G ~bt !8

~bU !4
.

~20!
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In the strong-coupling limitU/t→`, these staggered susce
tibility series are identical to the high-temperature ser
expansions25,26 of the spin-1/2 antiferromagnetic Heisenbe
model with nearest-neighbor couplingJ54t2/U.

III. PHASE DIAGRAM OF THE HALF-FILLED
THREE-DIMENSIONAL HUBBARD MODEL

A transition from a paramagnetic to an antiferromagne
phase diagram (U/t2TN/t) can be obtained from the diver
gence of the staggered susceptibility series for staggered
g50. In this work we use Pade´ approximants to extrapolat
the staggered susceptibility series to small coupling reg
The staggered susceptibility series in Eq.~19! or Eq. ~20! is
regarded as a series inx5(bt2)/U:

b21xs5(
n

anx
n. ~21!

Padéapproximants [L/M ] to the series expansionb21xs are
defined by

@L/M #5
n01n1x1•••1nLx

L

11d1x1•••1nMx
M . ~22!

Since the coefficients of the power series are functions
bU, it is easy to obtain the approximants [L/M ] from fixed
value ofbU. For a given value ofbU, approximants [L/M ]
are calculated from the coefficients ofb21xs series. The
value ofxN at which the susceptibility diverges is estimat
by finding the roots of the denominators of approximan
We have used roots from the@1/2# and @1/3# approximants.
We obtainTN/t from TN /t51/A(xN)(bU) with known val-
ues ofxN andbU. We then multiplyTN/t to bU to find the
corresponding value ofU/t. Carrying out this procedure fo
different values ofbU will give the (U/t2TN/t) phase dia-
gram.

In Fig. 1 we show the (U/t2TN/t) phase diagram ob
tained from linked-cluster series expansion method~LCE!
for the simple cubic lattice. They are plotted as a solid l
which was estimated from the average of the@1/2# and@1/3#
approximants with error bars. The error bars are estimate
half the spread of these approximants. Figure 1 also c
pares our results withTN of the three-dimensional~3D! Hub-
bard model obtained from Onsager reaction field~ORF! cal-
culations of an effective Heisenberg Hamiltonian by Szcz
et al.14 We see that both calculations are in good agreem
with each other at largeU (U/t>10). In the strong-coupling
region, both calculations approach from above the stro
coupling Heisenberg estimate ofTN53.83t2/U obtained
from high-temperature series calculations.25,26We also show
the results of quantum Monte Carlo17 calculations which
s

c

ld

n.

f

.

e

as
-

h
nt

g-

yield the molecular field resultTN56t2/U in the strong-
coupling limit and the conjectured form for the trueTN(U)
by Kakehasi and Hasegawa.16

In the intermediate coupling region, the Ne´el temperature
in the linked-cluster series expansion is lower than that in
ORF calculation. We believe this to be the effects of co
plings beyond nearest-neighbor which stabilize the antifer
magnetic phase in the ORF~Ref. 14! calculation. However,
the convergence of linked-cluster series expansion is a
slow in this region. Since the series extrapolation is bette
largeU, and not so well as smallU, it is important to obtain
the higher-order terms to describe more correctly the beh
ior of (U/t2TN/t) phase diagram in the weak-coupling re
gion.

We have also attempted to analyze the series using
ratio method.25 The critical temperature is determined from
the value ofxN at whichxs diverges. We have

1

xN
5

bNU

~bNt !
2 5 lim

n→`

an
an21

. ~23!

FIG. 1. The Ne´el temperatureTN/t as a function ofU/t of the
half-filled Hubbard model for the simple cubic lattice. Solid lin
gives results of the linked cluster series expansion. Error bars i
cate spread of the Pade´ approximants. Dashed line gives Onsag
reaction field method~ORF, Ref. 14!. The open circles represen
QMC results. Dotted curves show the molecular-field approxim
tion ~MFA! and high-temperature series expansion~HTSE! for the
Heisenberg model. Also shown is a plausible form forTN curve
given in Ref. 16~dot-dashed line!.
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For a series with only a finite number of terms known, w
can only estimate the value ofxN by extrapolation. We de-
fine

1

xN
n 5

an~bU !

an21~bU !
. ~24!

For each value ofbU, the critical value ofxN is estimated by
extrapolation:

1

xN
5n

an
an21

2~n21!
an21

an22
. ~25!

TN/t is obtained fromTN /t51/A(xN)(bU). The corre-
sponding value ofU/t is calculated fromTN/t andbU. The
1/x N

n versus 1/n plot for the simple cubic lattice with certai
values ofbU is shown in Fig. 2. For larger values ofbU a
straight line can be drawn through the points except the
one. However, there is still a small deviation of the poin
from a straight line. For the smaller value ofbU, corre-
sponding to smaller value ofU/t, the oscillation grows big-
ger. In general, the ratio method analysis for the larger va
of U/t agrees with the results obtained from the Pade´ ap-
proximants analysis.

Similarly, we show the (U/t2TN/t) phase diagram ob
tained from linked-cluster series expansion method for
bcc lattice in Fig. 3.TN/t versusU/t curve was obtained
from the average of the@1/2# and @1/3# approximants with
error bars. The error bars are estimated as half the sprea
these approximants. The qualitative behavior of the ph
diagram is similar to the simple cubic one. The exact stro
coupling Heisenberg estimate ofTN55.59t2/U obtained
from high-temperature series calculations25,26 and the mo-
lecular field result ofTN58t2/U are also shown for compari
son.

FIG. 2. The ratio of two successive coefficients of the stagge
susceptibility series in the paramagnetic phase 1/xN

n plotted vs 1/n
for the simple cubic lattice with different values ofbU.
st

es

e

of
se
-

IV. SUMMARY

In summary, we obtained series for the grand poten
and the staggered susceptibility of the half-filled Hubba
model using the linked-cluster series expansion method
transition from a paramagnetic to an antiferromagnetic ph
diagram (U/t2TN/t) for 3D bipartite lattices~simple cubic
and body-centered cubic! were obtained using the series e
trapolation method. The resultant Ne´el temperatureTN as a
function ofU/t for the simple cubic lattice is in broad agree
ment with the Onsager reaction field calculations except
the weak-coupling limit. The convergence of the series
slow in the moderate and weak-coupling region. High
order terms are needed to describe the correct behavio
magnetic phase boundary of the Hubbard model in the we
coupling region. A phase diagram for the body-centered
bic lattice is also shown in the present calculation.
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