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Partial order in frustrated quantum spin systems
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Groupe de Physique Statistique, Universite´ de Cergy-Pontoise, 2, Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, Fran
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We show in this paper the frustration effect on the magnetic properties of a body-centered-cubic lattice with
mixed quantum Heisenberg spins. The classical ground-state~g.s.! is determined as a function of spin ampli-
tudes and nearest-neighbor and next-nearest neighbor interactions. Various noncollinear g.s.’s are found. The
quantum behavior of collinear and noncollinear phases at zero and finite temperatures is then studied using the
Green function formalism which allows us to calculate self-consistently different properties. A general phase
diagram is shown. One of the striking results is the existence of a partially ordered phase at finite temperature
due to the frustration.@S0163-1829~97!11005-0#
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I. INTRODUCTION

The frustration effect has received increasing attent
during the last decade. Frustrated spin systems often h
noncollinear ground-state~g.s.! spin configurations which
cause difficulties in the calculation of their properties. Ma
established theoretical methods fail to give a correct beh
ior of such systems. It is known that competing interactio
give rise to frustration which, in turn, causes many specta
lar phenomena in spin systems such as a high ground-
degeneracy, noncollinear spin configurations, reentra
partial disorder, the controversial nature of the phase tra
tion, etc. For a recent review on different aspects of the fr
tration effect, the reader is referred to Ref. 1.

The purpose of this paper is to study the properties o
body-centered-cubic~bcc! lattice with a quantum Heisenber
spin of general amplitudes. We take into account the near
neighbor ~NN! and next-nearest-neighbor~NNN! interac-
tions.

In Sec. II we present the model and the mathemat
method: We first show the g.s. configuration and then w
out a general Green function’s formalism to study their m
netic properties at finite temperatures. Applications are gi
in Sec. III where a phase diagram is shown. We find here
partial disordering exists at equilibrium in our quantu
mixed spin system. Discussion on the frustration effec
given.

II. MODEL AND MATHEMATICAL FORMULATION

We consider a two-subblattice body-centered cubic~bcc!.
We divide the magnetic bcc lattice into two sc sublattic
A andB. To be general, let us suppose that each lattice p
of the A subblatice is occupied by a spin of magnitudeSA
and each lattice point of theB subblatice by a spin of mag
nitudeSB . SA andSB are arbitrary. In studying such a gen
eral case, we can apply our results to the case of ferrima
whereSA is different fromSB . This case is interesting be
cause, unlike the ferromagnets and antiferromagnets, t
has been only a very limited number of works on ferrima
nets. This is due perhaps to the fact that ferrimagnetic c
tals usually have complicated lattice structures.2 In particu-
lar, there have been some calculations of spin waves.2–6 All
550163-1829/97/55~5!/2975~6!/$10.00
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of these have been restricted to the zero-temperature
and a collinear spin configuration.

We consider the model system described by the follow
Hamiltonian:

H52J1(̂
i j &

Si•Sj12J2A(
^ i j &2

Si•Sj

12J2B(
^ i j &2

Si•Sj12(
i
diSi

z , ~1!

where(^ i j & indicates the sum over the NN spin pairs a
(^ i j &2

that over the NNN pairs,J1 denotes the NN exchang

coupling, andJ2A(B) the NNN exchange coupling betwee
spins of the sublatticeA(B). The last term is a very smal
stabilizing field pointed along the localz axis of thei th spin
that we introduce for numerical calculational convenien
Let us use the notationeA(B)5J2A(B) /J1. The classical g.s.
can be determined by minimizing the interaction energy, t
ing into account the hard spin conditions; i.e.,SA andSB are
constant~variational method!. The result is that the unit cel
is composed of two cubes as shown in Fig. 1 with four sp
denoted asA, A8, B, andB8. Let us describe the g.s. con
figuration.

FIG. 1. Magnetic unit cell composed of two cubes.A (B) spins
are shown by black~gray! circles.
2975 © 1997 The American Physical Society
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2976 55R. QUARTU AND H. T. DIEP
~1! Independent antiferromagnetic subsystems@zone IV of
Fig. 2~a!#: The A-spin subsystem is independent of t
B-spin one if eAeB. 4

9 ~dashed curve in the figure show
eAeB5 4

9!. In this case we haveSB52SB8, andSA52SA8,
whereQAB , being the angle betweenSA andSB , is arbitrary.
This is schematically shown by the right configuration F
2~b!.

~2! Collinear configuration@zone I of Fig. 2~a!#: This is
the case wheneA, 2

3SB /SA andeB, 2
3SA /SB . The resulting

spin configuration isSA5SA8, SB5SB8, andSA is antiparallel
to SB8. The collinear configuration is shown on the left
Fig. 2~b!.

~3! Noncollinear configuration ofB spins@zone II of Fig.
2~a!#: If eB. 2

3SA /SB and eA, 2
3SB /SA , thenSA5SA8, and

SBÞSB8, with

cos~QAB!52
2

3eB

SA
SB

and

cos~QBB8!52S 2

3eB

SA
SB

D 221,

whereQBB8 is the angle betweenSB andSB8. This is shown
by the second from left in Fig. 2~b!.

~4! Noncollinear configuration of A-spins@zone III of Fig.
2~a!#: if eA. 2

3SB /SA and eB, 2
3SA /SB , then SB5SB8, SA

ÞSA8, with

cos~QAB!52
2

3eA

SB
SA

FIG. 2. ~a! g.s. phase diagram plotted by takingSA50.5 and
SB51. See text for description.~b! Four g.s. spin configuration
corresponding, respectively, to zones I–IV of~a!. A (B) spins are
shown by short~long! and thick~thin! arrows. See text for detail.
.

and

cos~QAA8!52S 2

3eA

SB
SA

D 221,

whereQAA8 is the angle betweenSA andSA8. This is shown
by the third from left in Fig. 2~b!. Now we choose, for each
spin, the localz axis along its spin quantification axis.7 We
note that the localz-axis direction can change with the tem
perature upon iteration as seen below. We can rewrite
Hamiltonian in the local framework as

H52(̂
kl&

1
4Jkl@cos~Qkl!21#~Sk

1Sl
11Sk

2Sl
2!

1 1
4Jkl@cos~Qkl!11#~Sk

1Sl
21Sk

2Sl
1!

1Jklcos~Qkl!Sk
zSl

z1 1
2Jklsin~Qkl!~Sk

11Sk
2!Sl

z

1 1
2Jklsin~Q lk!~Sl

11Sl
2!Sk

z12(
i
diSi

z , ~2!

whereQkl is the angle between the two spins at the latt
sitesk and l . Equation~2! is valid for collinear and noncol-
linear configurations. Following Tahir-Kheli and de te
Haar,8 we define two double-time Green’s functions by

Gi j
6~ t,t8!5^^Si

6~ t !;Sj
2~ t8!nSj

1~ t8!n21&&,

Fi j
6~ t,t8!5^^Si

6~ t !;Sj
1~ t8!nSj

2~ t8!n21&&, ~3!

where n51, . . . ,2SA(B) . The equations, of motion fo
Gi j (t,t8)andFi j (t,t8) read

i
d

dt
Gi j

6~ t,t8!5^@Si
6~ t !,Sj

2~ t8!nSj
1~ t8!n21#&

2^^@H,Si
6~ t !#;Sj

2~ t8!nSj
1~ t8!n21&&,

i
d

dt
Fi j

6~ t,t8!5^@Si
6~ t !,Sj

1~ t8!nSj
2~ t8!n21#&

2^^@H,Si
6~ t !#;Sj

1~ t8!nSj
2~ t8!n21&&, ~4!

and we have

@Si
1 ,Sj

2nSj
1n21#5ui~n!d i j , ~5!

@Si
2 ,Sj

2nSj
1n21#50, ~6!

whereui(n) is a function ofSi
z .8 As Tyablikov, we neglect

the higher orders of correlation. Then, we have

^^Sk
zSi

6~ t !;Sj
2~ t8!nSj

1~ t8!n21&&

5^Sk
z&^^Si

6~ t !;Sj
2~ t8!nSj

1~ t8!n21&&,

^^Sk
1Si

6~ t !;Sj
2~ t8!nSj

1~ t8!n21&&

5^Sk
1&^^Si

6~ t !;Sj
2~ t8!nSj

1~ t8!n21&&50 ~7!

Furthermore, since we work at the first order, we have

^^Si
z ;Sj

2~ t8!nSj
1~ t8!n21&&50. ~8!
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We now introduce the Fourier transforms

Gi j
6~ t,t8!5

1

p3E E E
0

p

dk
1

2p

3E
2`

1`

dve2 iv~ t2t8!g6~v,k!eik•~ i2 j !. ~9!
is

o
to
f
e

The Fourier transforms of the retarded Green’s functio
satisfy a set of equations readily to be rewritten unde
matrix form. There are four atoms in a magnetic cell as s
by the g.s. configuration shown above~Fig. 1!. Therefore,
eight Green functions have to be defined. The explicit for
of these functions are too lengthy to write down here. W
give only one of them:
vg6AA85u62$7J1@cos~QAB!11#lAmAg
6BA7J1@cos~QAB8!11#lA8mAg

6B8A7J1@cos~QAB!21#lAmAg
7BA

7J1@cos~QAB8!21#lA8mAg
7B8A7J2

A@cos~QAA8!21#4g2mAg
7A8A

7J2
A@cos~QAA8!11#4g2mAg

6A8A62BAg6AA%.
ion

d
n
e

The constants are defined by

u15u,

u250,

mA~B!5^SA~B!
z &,

lA5ei ~kxa1kya!/41e2 i ~kxa1kya!/41e2 i /kza/2~ei ~kxa2kya!/4

1e2 i ~kxa2kya!/4!,

lA85ei ~kxa2kya!/41e2 i ~kxa2kya!/41e2 ikza/2~ei ~kxa1kya!/4

1e2 i ~kxa1kya!/4!,

lB5e1 ikza/2~ei ~kxa1kya!/41e2 i ~kxa1kya!/4!1ei ~kxa2kya!/4

1e2 i ~kxa2kya!/4,

lB85e1 ikza/2~ei ~kxa2kya!/41e2 i ~kxa2kya!/4!1ei ~kxa1kya!/4

1e2 i ~kxa1kya!/4,

g25
cos~ 1

2kxa!1cos~ 1
2kya!1cos~ 1

2kza!

2

BA54J1@mBcos~QAB!1mB8cos~QAB8!#

16J2
AmA8cos~QAA8!1dA , ~10!

a being the lattice constant of the bcc crystal, i.e., the d
tance between NN spins of the same sublattice.

By symmetry, we note that cos(QBB8)
5cos(2p22QAB)5cos(2QAB) and gA85gA , ^SA8

z &5^SA
z &,

gB85gB , ^SB8
z &5^SB

z &.
The set of equations obtained by writing the equations

the type Eq.~10! for all the Green functions can be applied
any phase shown in Fig. 2~b! with an appropriate choice o
Q i j . Solving these equations, we obtain the spin-wave sp
trum of the present system:

v1
65AW16AW2,
-

f

c-

v2
652AW16AW2,

W15AA
21AB

212ZABcos~QAB!2@CBsin~QAB!2#2,

W25$AA
22AB

21@CBsin~QAB!2#%214ZAB$AA1cos~QAB!

3@AB2CBsin~QAB!2#%$AAcos~QAB!

1@AB1CBsin~QAB!2#%, ~11!

where

AA516J1mBcos~QAB!1~12J2
A28J2

Ag2!mA12dB ,

AB516J1mAcos~QAB!1@12J2
Bcos~2QAB!

28J2
Bg2cos~QAB!2#mB12dA ,

CB58J2
BmBg2 ,

ZAB5~16g1!
2mAmB ,

g15cos~kxa/4!cos~kya/4!cos~kza/4!. ~12!

Using the spectral theorem which relates the correlat
function ^Si

2nSj
1n& to the Green’s functions,9 one has

^Si
2nSj

1n&5 lim
h→0

1

p3E
0

pE
0

pE
0

p

dkE
2`

1` i

2p
@g1~v1 ih!

2g1~v2 ih!#
dv

ebv21
eik•~ i2 j !, ~13!

where h is an infinitesimal positive constant an
b51/kBT, kB being the Boltzmann constant. The solutio
for all Green functions is lengthy to write down here. W
give only one of them:
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gAA
1 5

2uA
uD~v!u FAAAB

22AB
2v2AAv21v3

2ABZABcosS QAB

2 D 4
2vZABcosS QAB

2 D 42ABZABsinS QAB

2 D 4
1vZABsinS QAB

2 D 428CBZABcosS QAB

2 D 4sinS QAB

2 D 4
2AACB

2sin~QAB!41CB
2vsin~QAB!4G . ~14!

To determinê Si
A2nSj

A1n&, one definesFA(B)(T) by
lc
in
ini
rre
w
a
ua

ik
^SA
2nSA

1n&5uAFA~T!,

^SB
2nSB

1n&5uBFB~T!. ~15!

By varying n51, . . . ,2SA and n51, . . . ,2SB , we obtain
two independent sets of 2SA and 2SB equations, respec
tively. Following Tahir-Kheli and de ter Haar,8 we can write
down 2S independent simultaneous linear equations
^^Sz&&, ^^Sz2&&, ^^Sz3&&, . . . ,̂ ^Sz2S&&. By puttingn equal to
1, 2, . . . ,2S, we show that
^SA
z &5

@SA2FA~T!#@11FA~T!#~2SA11!1@SA1FA~T!#@FA~T!#~2SA11!

@11FA~T!#~2SA11!2@FA~T!#~2SA11! ,

^SB
z &5

@SB2FB~T!#@11FB~T!#~2SB11!1@SB1FB~T!#@FB~T!#~2SB11!

@11FB~T!#~2SB11!2@FB~T!#~2SB11! . ~16!

The internal energy per atom is given by taking the average value of the Hamiltonian

U5
1

2
J1(

B

1

4
„cos~QAB!21…~^SA

1SB
11SA

2SB
2&!1

1

4
„cos~QAB!11…~^SA

1SB
21SA

2SB
1&!1cos~QAB!^SA

z &^SB
z &

1
1

2
J1(

A

1

4
„cos~QAB!21…~^SB

1SA
11SB

2SA
2&!1

1

4
„cos~QAB!11…~^SB

1SA
21SB

2SA
1&!1cos~QAB!^SA

z &^SB
z &

1
1

2
J2A(

^A&2

1

4
2~^SA

1SA
21SA

2SA
1&!1^SA

z &21
1

2
J2B(

^B&2

1

4
@cos~2QAB!21#~^SB

1SB
11SB

2SB
2&!1

1

4
@cos~2QAB!11#

3~^SB
1SB

21SB
2SB

1&!1cos~2QAB!^SB
z &2, ~17!
where the functions such as^SA
2SA

1& are obtained by setting
n51 in Eq. ~15!.

Finally, the angle between each spin pair can be ca
lated in a self-consistent manner at any temperature with
first-order approximation. Strictly speaking, one has to m
mize the free energy at each temperature to get the co
value of the angle. This is a formidable task. Instead,
limit ourselves in taking only the quantum fluctuations
T50 into consideration and neglecting the thermal fluct
tions. In doing so, the angle is obtained by minimizingU,
instead of the free energy. This is in fact a mean-field-l
approximation. We have then

]U

]QAB
50. ~18!

In the zero-order approximation in̂S6S6&, one gets after
some calculations for the noncollinear regime
u-
a
-
ct
e
t
-

e

cos~QAB!52
2

3

J1
J2B

^SA
z &

^SB
z &
. ~19!

For the collinear regime one has the solutionQAB5p. In
the first-order approximation in̂S6S6&, one has

cos~QAB!5
V1

V2
, ~20!

where

V15(
B

J1
4

~^SA
1SB

11SA
2SB

2&!1
J1
4

~^SA
1SB

21SA
2SB

1&!

1J1^SA
z &^SB

z &(
A

J1
4

~^SB
1SA

11SB
2SA

2&!

1
J1
4

~^SB
1SA

21SB
2SA

1&!1J1^SA
z &^SB

z &,
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V252(
B

J2B~^SB
1SB

11SB
2SB

2&!1J2B~^SB
1SB

21SB
2SB

1&!

14J2B^SB
z &2. ~21!

The specific heat is obtained by taking numerical deri
tive of the internal energy with respect toT. The susceptibil-
ity is given by

x5
^Sz2&2^Sz&2

T
, ~22!

where

^Sz2&5S~S11!2^Sz&@112F~T!#, ~23!

with F being given by Eqs.~13! and ~15!.

III. RESULTS AND DISCUSSION

The above formalism can be applied to any set of para
eters (eA , eB , SA , SB , T). We show now two applications
SA51/2, SB51, eA50.2, and d/J150.08 with varying

FIG. 3. ~a! Phase diagram in the space (eB , T) for SA51/2,
SB51, eA50.2, andd/J150.008.~b! Phase diagram in the spac
(eA , T) for SA51/2, SB51, eB50.1 andd/J150.008. Thin line
separating phases I and III is a guide to the eye.P stands for
paramagnetic phase, PO for partially ordered phase, I for collin
‘‘ferrimagnetic’’ phase, and and II and III for canted phases d
scribed by configurations II and III, respectively, of Fig. 2~b!. See
text for comments.
-

-

eB , for the first application, andSA51/2, SB51, eB50.1,
and d/J150.008 with varyingeA , for the second applica
tion. The self-consistent numerical calculation is perform
as follows: AtT50, we usê SA

z &50.5, ^SB
z &51, and classi-

cal angleQ as inputs to calculate the spin-wave spectru
which is then used to compute the Green functions. Th
functions are used next to calculate the outputs^SA

z &, ^SB
z &,

andQ. One uses these outputs as inputs to repeat the ca
lations until one gets the self-consistent solution within
desired precision. Now we increaseT and use the solution a
T50 as inputs and so on. Figures 3~a! and 3~b! display the
general phase diagram in the space (eB ,T) and (eA ,T), re-
spectively. There are four phases in each application. Pha
corresponds to the collinear ‘‘ferrimagnetic’’ order (A spins
and B spins are antiparallel!. Phase II~III ! is the canted
ordering whereA (B) spins are parallel andB (A) spins
form an angleQAB with A (B) spins and an angleQBB8
(QAA8) between two neighboringB (A) spins @see the de-
scription of zone II~III ! in Fig. 2~a!#. PhaseP is the para-
magnetic phase. Phase PO~PO stands for partial ordering! is
the most interesting phase discovered here for the first ti
While the canted spins are still ordered, the parallel sp
become disordered. This phenomenon has been seen
now in theIsing frustrated systems but never before in qua
tum spin systems~see Ref. 1!. It is interesting at this stage to

ar
-

FIG. 4. ~a! Local order parameters versusT for eA50.2 and
eB50.9 ~b! Local order parameters vsT for eB50.1 andeA52.2.
The values of other parameters are the same as in Fig. 3. Cura
(b) is that ofA (B) spins.
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2980 55R. QUARTU AND H. T. DIEP
note that while the separation betwween phases I and
T50 is at eB51/3 @see Fig. 3~a!#, the critical line issued

FIG. 5. ~a! Specific heat per atom vsT for ~a! eA50.2,
eB50.9 and~b! eB50.1, eA52.2 ~in unit of J1 /kB). The values of
other parameters are the same as in Fig. 3. The two peaks, a
and highT, correspond to the disordering of the parallel and can
spins, respectively. Zones II, III, P, and PO are defined in the c
tion of Fig. 3.
r-
at

from this point is canted to the right at finiteT: This means
that the collinear configuration is favored at finiteT in the
rangeeB51/3–0.6 despite the fact that the spin configurati
at lowT is noncollinear in this range ofeB . This may be due
to the entropy effect which has been conjectured
Henley.10

Figure 4 shows an example of the local order parame
and the specific heat of the PO phase. In Fig. 4~a!, the
A-spin order parameter~curvea) becomes zero at some tem
perature well below the temperature where theB-spin order
parameter~curveb) vanishes. However, in Fig. 4~b!, it is the
B-spin order parameter that vanishes at a lower tempera
Our conclusion is that in the two cases the order paramete
the ‘‘parallel’’ spins becomes zero at a temperature low
than that where the order parameter of noncollinear sp
vanishes. In other words, only the sublattice with stron
interaction will remain ordered at high temperature.

In Fig. 5 we show the specific heat in the case whe
partial disorder exists. The presence of two peaks in the s
cific heat in Fig. 5~a! @Fig. 5~b!# indicates the two transitions
corresponding to the disordering ofA spins (B spins! and
B spins (A spins!, respectively.

At this stage, we stress that while our formalism presen
here allows us to calculate various physical properties o
frustrated mixed-spin system, the nature of the phase tra
tion, i.e., the universality class, cannot be determined by
method. This is currently a controversial subject in the lite
ture ~see Ref. 1 for recent reviews!. Finally, although we do
not know at present if there are real systems which sh
partially disordered phases described by the model of
paper, we believe that our results can help experimenta
to understand their observations whenever they encou
such exotic phases. We note that some frustrated spin
tems have been recently studied by many people.11
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