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Partial order in frustrated quantum spin systems
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We show in this paper the frustration effect on the magnetic properties of a body-centered-cubic lattice with
mixed quantum Heisenberg spins. The classical ground-gateis determined as a function of spin ampli-
tudes and nearest-neighbor and next-nearest neighbor interactions. Various noncollinear g.s.’s are found. The
guantum behavior of collinear and noncollinear phases at zero and finite temperatures is then studied using the
Green function formalism which allows us to calculate self-consistently different properties. A general phase
diagram is shown. One of the striking results is the existence of a partially ordered phase at finite temperature
due to the frustration.S0163-18207)11005-7

I. INTRODUCTION of these have been restricted to the zero-temperature case
and a collinear spin configuration.
The frustration effect has received increasing attention We consider the model system described by the following
during the last decade. Frustrated spin systems often havdamiltonian:
noncollinear ground-statég.s) spin configurations which
cause difficulties in the calculation of their properties. Many

established theoretical methods fail to give a correct behav- H=2312 S- sj+232A2 S-S

ior of such systems. It is known that competing interactions uy (i1)2

give rise to frustration which, in turn, causes many spectacu-

lar phenomena in spin systems such as a high ground-state +23,52, 3.gj+22 d; S, (1)
degeneracy, noncollinear spin configurations, reentrance, (ii)2 i

partial disorder, the controversial nature of the phase transi-

tion, etc. For a recent review on different aspects of the frUSwhereE<ij> indicates the sum over the NN spin pairs and

tration effect, the reader is referred to Ref. 1. _ 3ijy, that over the NNN pairs); denotes the NN exchange
The purpose of this paper is to study the properties of %oupling, andJ,a g the NNN exchange coupling between

bo_dy—centered—cublcpcc) latttice with qquantum Heisenberg f,pins of the sublatticd(B). The last term is a very small
spin of general amplitudes. We take into account the neares};

neighbor (NN) and next-nearest-neighb¢NNN) interac- stab|I|zmg field pointed along_the IocaIaX|_s of theith spin
. that we introduce for numerical calculational convenience.
tions. et us use the notatioB,gy=J /J;. The classical g.s

In Sec. Il we present the model and the mathematical CAB) < 2A(B) ML g:s.

method: We first show the g.s. configuration and then work2! be determined by minimizing the interaction energy, tak-

out a general Green function’s formalism to study their mag-Ing into account the hard spin conditions; i.8,,andS; are

netic properties at finite temperatures. Applications are giveﬁonstant(vanatmnal metholl The result is that the unit cell

. . . ' is composed of two cubes as shown in Fig. 1 with four spins
in Sec. Il where a phase diagram is shown. We find here tha] enoted ash\, A’, B, andB’. Let us describe the g.s. con-

partial disordering exists at equilibrium in our quantum iquration
mixed spin system. Discussion on the frustration effect isfg '
given.

Il. MODEL AND MATHEMATICAL FORMULATION

We consider a two-subblattice body-centered cubeaz).
We divide the magnetic bcc lattice into two sc sublattices
A andB. To be general, let us suppose that each lattice point ‘
of the A subblatice is occupied by a spin of magnitusle .M

and each lattice point of thB subblatice by a spin of mag-

nitude Sg. Sy andSg are arbitrary. In studying such a gen-

eral case, we can apply our results to the case of ferrimagnet A

where S, is different fromSg. This case is interesting be-

cause, unlike the ferromagnets and antiferromagnets, there A’

has been only a very limited number of works on ferrimag-

nets. This is due perhaps to the fact that ferrimagnetic crys-

tals usually have complicated lattice structutdn. particu- FIG. 1. Magnetic unit cell composed of two cubés(B) spins
lar, there have been some calculations of spin waveAll  are shown by blackgray) circles.
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where® , 5/ is the angle betwee8, andS,.. This is shown

\ Iv by the third from left in Fig. ). Now we choose, for each
\ spin, the localz axis along its spin quantification axisNVe

08 11 \ 1 note that the locat-axis direction can change with the tem-

N o perature upon iteration as seen below. We can rewrite the
28 -~ ] Hamiltonian in the local framework as
, 04 ~

12t \

0 ‘ ‘ . ; H=2<§I> 13lcog O ~11(S(S" +5S))

0 04 0.8 12 28 1.6

38, +3Ja[cogO) +11(S{ S +5.S)
+J311C0g O SIS+ 33O ) (S + ) S

+%Jk|sin(®|k)(8,++s|_)sﬁ+22i d;s7, )

B where®,, is the angle between the two spins at the lattice
sitesk andl. Equation(2) is valid for collinear and noncol-
I II 111 IV linear configurations. Following Tahir-Kheli and de ter
Haar® we define two double-time Green’s functions by

FIG. 2. (a) g.s. phase diagram plotted by takigg=0.5 and

s r + Q! + eryn—1
Sg=1. See text for description(b) Four g.s. spin configurations Gij (t,t )—<<3 (t);S (t )nSj (t"H" >>,
corresponding, respectively, to zones I1-1V(af. A (B) spins are . .
shown by shortlong) and thick(thin) arrows. See text for detail. Fq(t,t’)=((S,*(t);Sfr(t’)”Sf(t’)”’1>), (3)
(1) Independent antiferromagnetic subsystépume IV of ~Where n=1,..., 5, . The equations, of motion for

Fig. 2@]: The A-spin subsystem is independent of the Gij(t,t")andF;(t,t") read

B-spin one if exeg>3 (dashed curve in the figure shows

excg=2). In th.iS case we hav&z=— Sy, and_SA:—_SA,, i—Gﬁ(t,t')=<[S|i(t),S;(t')nS;r(t’)nle
where® 55, being the angle betwee), andSg, is arbitrary. dt

This is schematically shown by the right configuration Fig.

2(b). —(([H,S7 (D1 (t)"S ()" ),
(2) Collinear configuratiorizone | of Fig. 2a)]: This is d
2 2 i + + — _
the case wher,<<5Sg/S) and eg<<5S,/Sg. The resulting ian(t,t’)=<[S((t),Sj*(t’)“Sj (t")"1])

spin configuration iS,=Sa/, Sg=Sg', andS, is antiparallel
to Sgr. The collinear configuration is shown on the left in - PN /e ran—
Do), 9 ~(IHSE TS () (1)), @
(3) Noncollinear configuration oB spins[zone Il of Fig.  and we have
2@)]: If eg>32S,A/Sz and ex<32Sz/Sa, thenS,=S,/, and
Sg# Sg/, With [S".S " " =ui(n)s;, ()
2 SA - Q hgtn-17_
e [S .S "S 1=0, (6)
COi@AB) 368 SB i i ]

whereu;(n) is a function ofS? .2 As Tyablikov, we neglect

and the higher orders of correlation. Then, we have
2 S,\? . o on—
08 @gg)=2| z— = | —1, (SIS (1S ()" ()" 1)
363 SB
—_/QZ + QT (t! +pryn—1
where@®gg is the angle betwee8; andSg. This is shown =SS (1: 5 (1)"S (1)),
by the second from left in Fig.(B). e s e e et a1
(4) Noncollinear configuration of A-spirfzone IlI of Fig. (SST(1); S (1)"S (1))
- 2 2 — + — —
Z(a)] if _EA> 3SB/SA and €B< 3SA/SB, then SB_SB’1 SA =<S;><<S‘(t),5 (t/)nSJ‘F(tI)n l>>:o (7)
# Sy, With
> s, Furthermore, since we work at the first order, we have

COS(@AB):_ES_A <<Sz;ij(t/)nsjﬁr(t/)nfl»zo_ (8)
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We now introduce the Fourier transforms The Fourier transforms of the retarded Green’s functions
satisfy a set of equations readily to be rewritten under a
GE(tt))= _5J J' f dk— matrix form. There are four atoms in a magnetic cell as seen

! by the g.s. configuration shown above€ig. 1). Therefore,

eight Green functions have to be defined. The explicit forms
XJ dwe 1 @ttg= (o k)ek (=) (9) of these functions are too lengthy to write down here. We
- give only one of them:

g M =u* —{F ;[ cog O ap) + LINapag“ BAT I3[ COL O g/ ) + 1IN a7 a0 B AF I3[ O O pp) — 1IN pptag ™ B2
F31[COL O agr) — 1IN Aag ™2 AF I5[COL O pn) — 1147210 ™A A

J5[cogOpn)+ 1]4y,uag™ " A+ 2BAg AR

The constants are defined by 0 =— W1+ W2
ut=u,
o WL=AZ+AZ+2Zpc08 ©g) ~[CSiN(O np) 1%,
u = ’
uae)={Sa@m)) W2={AL~AZ+[CgSiN(® zg) 2]} +4Z ps{As+COS O 5p)

_ i 2
M p= el a2l g omilloarioala . g-ifkalz gl (ka—kya)ia X[Ag— CgSiN(0 ap) “THAACOL O pp)

H 2
e ita—kyady +[Ag+ Cgsin(O )]}, (11)
M= el (ka— kgl y g=iloa—kyald | g-ikear2 gl (katkyalia where
—i(k kya)/:
+e” harkar), An=160; 15C08 O pp) + (1293 — 832 y,) puat 2ds

AB: et ikza/2( ei(kxa+ kya)/4+ e_i(kxa+ kya)/4) + ei (kya—kya)/4 5
Ag=16J;uAC0 0O pp) +[12];C0420 5p)

—8J57,c09 O 2p)° g+ 2d,,

+ e i(ka—kya)/a

Np=e" ikpal2( gl (ka—kya)ld g g=i(ka—kya)l) 4 gi(ka+kya)la

+eilkatkaym CB:&]gMBh:
cog 3kea) +cog 3kya) + cog 3k,a) Zng=(16y1) %,
Y= 2
y1=cogk,a/4)cogkya/4)cogk,ald). (12

BA=4J1[ ugcog O ap) + g cOY O zp/) ]

+6351ac0L O pp) +da, (10 Using the spectral theorem which relates the correlation

ngt+n
a being the lattice constant of the bcc crystal, i.e., the dlsfuncﬂon(S S, ) to the Green’s function$one has

tance between NN spins of the same sublattice.

By symmetry, we note that (o CTYD) N
~03(2r—20,0)=Cos(Bpe) and gu =0, (SH)=(SH,  (F 9 n>‘,','L“0_f J, [ o[ omte wrin
9s'=9s. (S5,)=(Sp)-

The set of equations obtained by writing the equations of 9" (w—ip)] do ik (=) (13)
the type Eq(10) for all the Green functions can be applied to 9 7 °—1 '

any phase shown in Fig.(ld with an appropriate choice of
®;; . Solving these equations, we obtain the spin-wave speGyhere 7 is an infinitesimal positive constant and
trum of the present system: B=1/kgT, kg being the Boltzmann constant. The solution
. for all Green functions is lengthy to write down here. We
o= VW1+ W2, give only one of them:
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2u SA"SAM =ua®A(T),
gXA: A AAA2 AB(D AA(D (1)3 < A A > A A( )
|A(w)|
(¢} _
—ABZABcos( ZAB) (5755 = ughg(T). 15
®AB 4 . ®AB 4 i — _ H
— wZ\gCO — AgZagSin —— By varying n=1,...,5, andn=1, ... ,ZSB,_ we obtain
2 2 two independent sets of 3 and 2Sg equations, respec-

YK O\ [Oas) tively. Following Tahir-Kheli and de ter Hadnwe can write
+wZABsin(T) —8CBZABCOS<T) sin(T) down 2S independent simultaneous linear equations in

({SB)), ({S2)), ({S?®)), ... ((S?S)). By puttingn equal to
1,2,...,%5, we show that
— AAC3SiN(@ pp)*+ Cawsin( @ op)*

14

To determine(SAf"Sf”), one definesb g1y by

[Sa=PA(T)I[1+PA(T)] @AV +[Sp+ D A(T) [P A(T)] @AY
[1+(I)A(T)](ZSA+1)_[(DA(T)](ZSA+1) )

(Sh=

Sa= DT+ ()% D+ [Sy+ Pa(T) [ P(T)] 2"
[T+ Dp(T) P T [0 (T) J 2577

The internal energy per atom is given by taking the average value of the Hamiltonian

(=" 16

:_312 (C051®AB) 1)( <SASB+SASB>)+ (COS.AB)+1)(<SASB+SASB>)+C05(®AB)<S®<S>
+5 312 (COS(@)AB) 1)( <SBSA+SBSA>)+ (005{®AB)+1)(<SBSA+SBSA>)+C05(®AB)<SZ><SB>

1S Lsisiesisiy sty S (S S s s ) t
+2J2AA 42(<SASA+SASA>)+<SA> “‘2~3213<B> 4[005{2®AB) 1](<SBSB+SBSB>)+4[COS(2®AB)+1]
2

X ((Sg S + S5 Sg)) +€0920 4p)(Sp)?, (17
|
where the functions such 4§, S, ) are obtained by setting 2 J, (Sh)
n=1 in Eq.(15). COS{@AB):_§E<SZB)' (19

Finally, the angle between each spin pair can be calcu-
lated in a self-consistent manner at any temperature within a . .
. S . . .. For the collinear regime one has the solutfdpg= 7. In
first-order approximation. Strictly speaking, one has to mini- X T et

. the first-order approximation iiS=S~), one has
mize the free energy at each temperature to get the correct
value of the angle. This is a formidable task. Instead, we Y
L . . . 1
limit qurselves_m tal_<|ng only the quantum fluctuations at cog O pp) = v (20)
T=0 into consideration and neglecting the thermal fluctua- 2
tions. In doing so, the angle is obtained by minimizidg h
instead of the free energy. This is in fact a mean-field-like"/""€®
approximation. We have then

J1 + ot - o J1 +a— - ot
V1:§B: Z(<SASB+SASB>)+Z(<SASB+SASB>)

JU
0 0 (18 FISNSS P(SESI S5

In the zero-order approximation ¥5°S™), one gets after i LSS 4 2\ oz
some calculations for the noncollinear regime 4 ((Sg Sa S Sa)) + IS (Sp),
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FIG. 3. (a) Phase diagram in the spaceg( T) for Sy,=1/2,
Sg=1, €4=0.2, andd/J;=0.008.(b) Phase diagram in the space
(ea, T) for S4=1/2, Szg=1, eg=0.1 andd/J,;=0.008. Thin line
separating phases | and lll is a guide to the elyestands for
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FIG. 4. (a) Local order parameters versdsfor e,=0.2 and
eg=0.9 (b) Local order parameters VE for eg=0.1 ande,=2.2.
The values of other parameters are the same as in Fig. 3. @urve
(b) is that of A (B) spins.

paramagnetic phase, PO for partially ordered phase, | for collinear

“ferrimagnetic” phase, and and Il and Il for canted phases de-
scribed by configurations Il and Ill, respectively, of FighR See
text for comments.

Vo= 2 Js((S5 S5 + S5 8a)) T 326((S3.S5 + S Sg )

+4,5(Sh)?. (21)

eg, for the first application, an&,=1/2, Sg=1, eg=0.1,

and d/J;=0.008 with varyinge,, for the second applica-
tion. The self-consistent numerical calculation is performed
as follows: AtT=0, we usg(S;)=0.5,(Sg)=1, and classi-

cal angle® as inputs to calculate the spin-wave spectrum
which is then used to compute the Green functions. These
functions are used next to calculate the outd8%), (Sg),
and®. One uses these outputs as inputs to repeat the calcu-

The specific heat is obtained by taking numerical derivadations until one gets the self-consistent solution within a

tive of the internal energy with respecto The susceptibil-
ity is given by

(S (9?2
e

(22

where
(S%)=8(S+1)—(H[1+2(T)],
with @ being given by Eqgs(13) and(15).

(23

Ill. RESULTS AND DISCUSSION

desired precision. Now we increaseand use the solution at
T=0 as inputs and so on. Figure&Band 3b) display the
general phase diagram in the spaeg,) and (e, T), re-
spectively. There are four phases in each application. Phase |
corresponds to the collinear “ferrimagnetic” ordek Epins

and B spins are antiparallgl Phase II(lll) is the canted
ordering whereA (B) spins are parallel an& (A) spins
form an angle® g with A (B) spins and an angl®gg:
(®4ar) between two neighborin® (A) spins[see the de-
scription of zone 1I(lll) in Fig. 2@)]. PhaseP is the para-
magnetic phase. Phase PRO stands for partial orderings

the most interesting phase discovered here for the first time:
While the canted spins are still ordered, the parallel spins

The above formalism can be applied to any set of parambecome disordered. This phenomenon has been seen until
eters €a, €, Sa, Sg, T). We show now two applications now in thelsing frustrated systems but never before in quan-
Sp=1/2, Sg=1, €4=0.2, and d/J;=0.08 with varying tum spin systemésee Ref. 1 It is interesting at this stage to
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FIG. 5. (a) Specific heat per atom v3 for (a) €,=0.2,
eg=0.9 and(b) eg=0.1, e,=2.2(in unit of J; /kg). The values of

from this point is canted to the right at finile This means
that the collinear configuration is favored at finifein the
rangeeg = 1/3—0.6 despite the fact that the spin configuration
at low T is noncollinear in this range a@f;. This may be due

to the entropy effect which has been conjectured by
Henleyl®

Figure 4 shows an example of the local order parameters
and the specific heat of the PO phase. In Fi@p),4the
A-spin order parametécurvea) becomes zero at some tem-
perature well below the temperature where Bigpin order
parametefcurveb) vanishes. However, in Fig.(d), it is the
B-spin order parameter that vanishes at a lower temperature.
Our conclusion is that in the two cases the order parameter of
the “parallel” spins becomes zero at a temperature lower
than that where the order parameter of noncollinear spins
vanishes. In other words, only the sublattice with stronger
interaction will remain ordered at high temperature.

In Fig. 5 we show the specific heat in the case when a
partial disorder exists. The presence of two peaks in the spe-
cific heat in Fig. %a) [Fig. 5(b)] indicates the two transitions
corresponding to the disordering &f spins 8 sping and
B spins (A sping, respectively.

At this stage, we stress that while our formalism presented
here allows us to calculate various physical properties of a
frustrated mixed-spin system, the nature of the phase transi-
tion, i.e., the universality class, cannot be determined by our
method. This is currently a controversial subject in the litera-
ture (see Ref. 1 for recent revieysinally, although we do
not know at present if there are real systems which show
partially disordered phases described by the model of this
paper, we believe that our results can help experimentalists
to understand their observations whenever they encounter

other parameters are the same as in Fig. 3. The two peaks, at log(ch exotic phases. We note that some frustrated spin sys-

and highT, correspond to the disordering of the parallel and cantedems have been recently studied by many pebble.
spins, respectively. Zones I, lll, P, and PO are defined in the cap-

tion of Fig. 3.
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