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Spin ladders with nonmagnetic impurities
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We investigate antiferromagnetic spin ladders with nonmagnetic impurities by variational and numerical
@Lanczos and density matrix renormalization group~DMRG!# methods. The interaction between the two
unpaired spins opposite to the impurities is described by an effective exchange interactionJeff , the magnitude
of which depends on the impurity distance. The magnitude ofJeff is different for unpaired spins at the edges
of an open ladder and in the bulk. This difference is related to the different distributions of the unpaired spin
into the bulk of the ladder. The numerical results are interpreted using matrix product states. Using the DMRG
we calculate the spectrum of low-lying energy levels for up to six impurities and find that these spectra can be
reproduced assuming pair interactions with an accuracy of better than 10%. We discuss the filling of the ladder
gap with impurity states and argue that in the thermodynamic limit the spin ladder with a finite concentration
of impurities always shows a Curie susceptibility at low temperatures.@S0163-1829~97!10905-5#
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I. INTRODUCTION

In the last few years spin systems consisting of two int
acting spin chains withS5 1

2, now usually called~two-
legged! spin ladders, have attracted considerable attentio
recently reviewed by Dagotto and Rice.1 The spin ladder
with isotropic antiferromagnetic interactions exhibits a sp
gap in the excitation spectrum which has been shown to
related to the dimer gap@antiferromagnetic~AF! coupling on
the rungs only# as well as to the Haldane gap~strong ferro-
magnetic coupling on the rungs!. It has been concluded2 that
the isotropic spin ladder is in the same phase as the Hald
chain—this can formally be described using matrix prod
ground states in a generalized spin ladder with additio
diagonal bonds.3

In the Haldane chain, the investigation of magnetic
well as nonmagnetic impurities has contributed substanti
to our understanding of the system: There exist quasi
spinsS5 1

2 at the end of the chain segments created by
impurities as qualitatively predicted by the valence bo
ground state4 and experimentally found in electron spin res
nance~ESR! experiments on NENP doped with Cu.5 We
have investigated nonmagnetic impurities in spin ladders
found that these lead to effects both similar to and differ
from impurities in the Haldane chain. The essential diff
ence is of geometric origin: Impurities in a spin ladder do n
break the sequence of magnetic interactions, but create w
links. One spinS5 1

2 on one leg of the ladder has no cou
terpart on the other leg and mediates between the adja
regular ladder structures. In the following we use the te
‘‘unpaired spin’’ for these spins without a counterpart on t
opposite leg. A typical configuration with three impurities
shown in Fig. 1; neighboring impurities may lead to unpair
spins on the same leg (cis configuration! or on opposite legs
(trans configuration!. This structural effect, that the impu
rities do not break the coupling along the linear arrangem
is analogous to the one of impurities in a chain with neare
550163-1829/97/55~5!/2955~9!/$10.00
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neighbor ~NN! and next-nearest-neighbor~NNN! interac-
tions, which can actually be considered as a generali
ladder.3 For a statistical distribution of impurities both th
sequence ofcis and trans pairs and the distances betwee
these pairs will be statistical. The distance between neigh
ing unpaired spins is conveniently counted by the num
p of complete rungs between them. Assuming a small im
rity concentrationc we neglect the possibility of complet
breaking of the ladder which is proportional toc2.

For a microscopic understanding of the effects of a l
concentration of defects on the spectrum of the spin lad
we present in the following numerical and analytical calc
lations for the properties of the ground state and of low-lyi
excited states of impure ladders withS5 1

2 and all exchange
interactions antiferromagnetic, isotropic, and of equal m
nitude ~which is set equal to unity!. In particular we have
considered~i! two spinsS5 1

2 in either acis or trans con-
figuration at the edges of an open ladder formed byp rungs
~exact diagonalization with the Lanczos algorithm and a
lytical estimates!, ~ii ! two impurities at varying distances i
either acis or trans configuration in the bulk ladder@exact
diagonalization with the Lanzcos algorithm for period
boundary conditions, density matrix renormalization gro
~DMRG! calculations for open boundary conditions, and e

FIG. 1. Structure of a spin ladder with three impurities leadi
to unpaired spins incis and trans configurations, respectively.
2955 © 1997 The American Physical Society
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2956 55H.-J. MIKESKA, U. NEUGEBAUER, AND U. SCHOLLWO¨ CK
timates from matrix product states#, and~iii ! the spin ladder
with many impurities~up to six impurities in DMRG calcu-
lations and arguments based on the Lieb-Mattis theorem!.

Our work is motivated by recent experiments6 on the lad-
der material SrCu2O3 doped with Zn, which show a tendenc
of the ladder gap to vanish with increasing Zn concentrati
Calculations for similar systems which, however, conc
trate on somewhat different aspects have recently been
by Motomeet al.7 and Martinset al.8

II. NUMERICAL METHODS

We have performed exact diagonalizations using
Lanczos technique for spin ladder systems with two defe
and a varying numberp<12 of complete rungs, i.e.
N52p12 spins in total, and have considered both perio
and open boundary conditions. For open boundary co
tions we study a ladder with two impurities at the edges
the system and consequently separated byp rungs in either a
cis or trans configuration. In the case of periodic bounda
conditions we fix one defect on the first rung and vary
distance (p1 ,p1<@p/2# rungs! to the second defect. W
again considercis andtrans configurations withp511 and
p512 rungs. For these configurations we have calculated
energies of the ground state and of low-lying excitations a
for open boundary conditions only, the distribution of t
magnetization.

For the normal ladder system projection of the Hilb
space on the irreducible representation of the correspon
symmetry groups@reflection and mirror symmetry, tota
SU~2! invariance, and, in the case of periodic boundary c
ditions, translational symmetry# drastically reduces the
amount of memory for diagonalization within these su
spaces. As a conseqence of inserting impurities into the
der most of these symmetries, in particular translational
variance, are no longer present and the computational e
is correspondingly larger. It is only the SU~2! invariance of
the model which is preserved.

The calculations were performed on a MPP CRAY T3
SC256 of the Zuse Computing Centre Berlin using a para
implementation of the Lanczos algorithm. The numerical
curacy of these calculations is 10210 or better.

Whereas the accuracy of the exact diagonalizations u
the Lanzcos approach is high, it can only be done for re
tively small systems. To study longer chains we have u
the DMRG.9 Using this method we have studied open la
ders from 2350 up to 23100 spins. As the defects ar
found to behave like spins localized on the bulk correlat
length scale, defects more than 20 sites away from the la
ends behave effectively like in an infinite system.

As a good quantum number we used the totalSz spin; in
configurations with defects distributed symmetrically arou
the ladder center, we also used parity. This allows for a
classification of states.

We typically keptM5100–150 block states. A remark
in order on the precision of the DMRG in this particul
application. For the defect-free spin ladder, truncation err
are very low, forM5100, r52.9310211 and forM5150,
r51.1310212, corresponding to an extremely small error
the energies of the defect-free system for low-energy sta
The effective precision of the DMRG is, however, grea
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reduced, when a defect or defect pair are added. The b
states from the step before are not optimally chosen to
resent the altered system. We find that the introduction
defects effectively reduces the precision of the DMRG by
to several orders of magnitude.

This problem becomes particularly pressing in defect c
figurationsnonsymmetricwith respect to the ladder cente
For any even number of defects, the ground state is the l
est eigenstate in theSz50 sector. A nonsymmetric defec
configuration implies that during the growth process th
will be an odd number of defects present in some DMR
steps. The total number of spins on the ladder changes f
even to odd. Consequently, the ground state jumps to
Sz56 1

2 sector, to which the available block states are n
well adapted, drastically reducing the precision of t
DMRG. However, the error can be greatly reduced by us
the finite-size DMRG algorithm:10,11 The whole chain is re-
calculated in the presence of the complete defect config
tion without any jumps between differentSz sectors. The
gain in precision by far exceeds the one obtained by incre
ing M .

To illustrate this point, let us consider the case of
2350 spin ladder with two defects in atrans configuration
on rungs 24 and 26. We have calculated the lowest eig
states withSz50 andSz51, keepingM540 andM5100
states. In Table I the energies given are for the chain ca
lated by conventional DMRG, and after one and two ite
tions, respectively, applying the finite-size algorithm. Ob
ously, even forM5100 the unmodified DMRG~first line!
gives results of the order of 0.01 away from the converg
result, whereas the finite-size algorithm produces highly p
cise results even forM540 ~compare the results in the se
ond and third lines!.

All DMRG calculations were performed on a PentiumP
200MHz machine running under Linux.

III. TWO UNPAIRED SPINS

In this section we discuss the spectra and spin config
tions for two unpaired spins in ladders with both open a
periodic boundary conditions, presenting and comparing
merical results from both Lanczos and DMRG calculatio
and from analytical approaches.

A. Numerical results for the spectrum of unpaired edge spins

We consider the configuration withp rungs connecting
two spinsSW ,SW 8 in either acis or trans configuration at the
ends. Using the Lanczos algorithm we have exactly dia
nalized systems withp<12. We find that there is an energ

TABLE I. Energies calculated by the DMRG before~first line!
and after one~second line! and two~third line! applications of the
finite-size algorithm.

Sz50 Sz51

M540 M5100 M540 M5100
-65.495 857 -65.505 486 -65.089 740 -65.103 673
-65.518 368 -65.518 391 -65.118 436 -65.120 279
-65.518 388 -65.518 391 -65.120 622 -65.120 652
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55 2957SPIN LADDERS WITH NONMAGNETIC IMPURITIES
gap of the order of the known ladder gap (D'0.53) but the
ground state is split into a singlet and a triplet state. A
consequence of the Lieb-Mattis theorem the lowest state
our configuration is a singlet if the two unpaired spins are
different sublattices (p even for cis spins andp odd for
trans spins! and a triplet if they are on the same sublatti
(p odd forcis spins andp even fortransspins! as discussed
in Ref. 12. We interpret this splitting as resulting from
effective interaction between the unpaired spinsSW ,SW 8 at the
ladder boundaries and we derive an effective coupling
writing a Hamiltonian in the subspace of these lowest t
states as

H6
~p!5E0,61Jeff,6

edge~p!SW •SW 8. ~1!

The index6 refers to the sign ofJeff , i.e., antiferromag-
netic and ferromagnetic effective interactions, respectiv
Jeff
edge,6(p) is given in Table II and is also plotted in Fig. 2 t
show its dependence onp. Jeff,6

edge actually is identical to the
singlet-triplet splitting of the ground state. An excellent
for p>5 is obtained as

E0,1~p!521.157p, Jeff,6
edge~p!5J0,6e

2p/j, ~2!

with

J0,1'0.674, J0,2'0.714, andj'3.1.

TABLE II. Effective exchange energies for two unpaired spi
at the edge and in the bulk of a ladder withp rungs in between.
Two energies are given for eachp, corresponding to the two posi
tions on each rung.

Jeff ~ED!

Rungs (p) Antiferromagnetic Ferromagnetic

2 0.4134342076 0.3332389325
3 0.2808007550 0.2790132929
4 0.1944368705 0.2010576140
5 0.1379125645 0.1459181428
6 0.0990135730 0.1051339920
7 0.0717149472 0.0759464504
8 0.0522047020 0.0549482466
9 0.0381181864 0.0398361954
10 0.0278774960 0.0289263601
11 0.0204037286 0.0210324667
12 0.0149374382 0.0153089483

Jeff ~DMRG!

0 0.471
1 0.398 0.249
2 0.255 0.170
3 0.181 0.154
4 0.126 0.115
5 0.090 0.087
6 0.065 0.064
7 0.047 0.047
8 0.034 0.035
9 0.025 0.025
10 0.018
a
or
n

y
o

.

The uncertainty in these data as determined from a le
squares fit is 1026 for J0,6 and better forE0,1 . Due to the
finite size of the open chain,E0,2 ('21.161p) cannot be
determined with equal accuracy. We draw attention to
fact that the best fit is purely exponentially decaying and t
a behavior}exp(2p/j)/Ap can be excluded. This is in par
allel to the behavior of an open Haldane chain.9

B. Spectrum of unpaired spins in the bulk ladder:
Numerical results

Contrary to the Lanczos approach the DMRG allows o
to deal with sufficiently long ladders so that the two unpair
spins can be at some rather large distance and at the s
time sufficiently far from the boundaries to identify the
bulk interaction. The splitting of the ground state for tw
unpaired spins is again described by a Hamiltonian as ab
with Jeff,6

edge(p) replaced byJeff,6
bulk (p). The latter quantity is

also given in Table II and shown in Fig. 2. We find~for
p>5)

Jeff,6
bulk ~p!5J0,6

bulke2p/j, with J0,1
bulk'0.43 and j'3.1.

~3!

J0,2
bulk is approximately equal toJ0,1

bulk , but determined less ac
curately. We notice thatJeff

bulk(p) is reduced with respect to
Jeff
edge(p) by a reduction factorr exc,6 ,

Jeff,6
bulk ~p!5r exc,6~p!Jeff,6

edge~p!. ~4!

For an effectively antiferromagnetic interaction the redu
tion factor r exc is p independent,r exc'0.65, and for an ef-
fectively ferromagnetic interaction it approaches this va
asymptotically. This reduction will be explained quantit
tively below; qualitatively it is due to the fact that the un
paired spin projection delocalizes both into its right and l
neighborhoods in the bulk case whereas there are neigh
on one side only in the boundary case. The dependenc
the effective exchange on distance is again purely expon
tial and the prediction in Ref. 12, which includes an ad
tional factor 1/Ap, is not verified from our data. The ‘‘best’
fit enforcing the factor 1/Ap ends up withj'4, i.e., a cor-
relation length which is not appropriate.

FIG. 2. Effective exchange interactions for two unpaired sp
at the edges and in the bulk of a spin ladder. Exchange energie
effective ferromagnetic and antiferromagnetic interactions are p
ted separately.



tively, are

2958 55H.-J. MIKESKA, U. NEUGEBAUER, AND U. SCHOLLWO¨ CK
FIG. 3. Low-lying energy levels for ladders with periodic boundary conditions and two unpaired spins with a distance ofp1 and p2
complete rungs, respectively. Spectra for unpaired spins with effective antiferromagnetic and ferromagnetic interactions, respec
shown separately.~a!, ~b! p11p2512 rungs;~c!, ~d! p11p2511.
a
ry

.

W

le
p
ge
or
t
f

io

tio

ed
ap
e
ate
r
let

i-
d
ates

or
ave
ith

em
a

Using the Lanczos algorithm, we have also done ex
diagonalizations for configurations with periodic bounda
conditions ~PBC’s! and two spinsSW ,SW 8 in a cis or trans
configuration separated byp1 and p2 rungs, respectively
The spectra are shown in Figs. 3~a! and 3~b! for
p11p2512 and in Figs. 3~c! and 3~d! for p11p2511; their
qualitative structure is the same as for the open ladder.
find that the smaller of the two valuesp1 ,p2 determines
whether the ground state is singlet or triplet when the ru
given above for the open ladder are used. From the gra
presented in Fig. 3 it is also evident that a much lar
singlet-triplet splitting of the ground state is obtained f
p11p2 even than forp11p2 odd. The obvious reason is tha
the two exchange interactions which have to be added
PBC’s have equal~different! signs forp11p2 even ~odd!.
Using again the concept of an effective exchange interact
Jeff
PBC(p1 ,p2), we expect for two unpaired spins~resulting
from two impurities in a periodic ladder!

Jeff
PBC~p1 ,p2!5Jeff

bulk~p1!1Jeff
bulk~p2!. ~5!

Inserting the results as given before, we find that this rela
is obeyed to within 10%.
ct
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s
hs
r

or
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In Fig. 3 we also show the results for the lowest excit
states, i.e., in particular the splitting of the regular ladder g
with energy'D. For most of the defect configurations th
effective interactions have different signs for the ground st
and for the first excited state~energy of the regular ladde
gap!. For example, a singlet ground state is related to a trip
as the lower one of the states of energy'D, as follows from
a simple coupling of the impurities to the lowest bulk exc
tation with S51. This rule, however, is not strictly obeye
and a detailed discussion of the structure of the excited st
in the impure ladder has to be reserved for future work.

C. Analytical approaches to unpaired spins
on the ladder edges

A qualitative understanding of our numerical results f
the open ladder can be obtained using matrix product w
functions as described in Ref. 3. We consider a system w
two spins at the ladder edges in atrans configuration andp
rungs in between; a wave function describing this syst
with four degrees of freedom can be written down as
232 matrix product~MP! wave function
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55 2959SPIN LADDERS WITH NONMAGNETIC IMPURITIES
uc&s,s85F )
j51

p11

gj G
s,s8

, ~6!

gj5S aut0& j1bus& j 2aA2ut1& j

aA2ut2& j 2~aut0& j2bus& j !
D .

Here the matrixgj describes the coupling of spins situated
diagonal sites on two adjacent rungs to singlets and trip
respectively; the boundary spins are coupled likewise to
neighboring rung. The value ofb25123a2 is determined by
minimization of the energy; for the numerical estimates
low we take the result for the infinite ladder,3 b'0.1735. We
have chosen the two edge spins in atrans configuration
where a MP wave function is easily written down, where
this is more difficult for two spins in acis configuration
~with, e.g., two more spins on the upper leg than on
lower leg!; the latter case requires a more detailed analy
which will be published separately. Instructive limiting cas
of the wave function of Eq.~6! are the following.

~i! For a5b5 1
2 it is the wave function forp singlets on

the p rungs and truly free boundary spinsSW ,SW 8. This wave
function actually is an eigenfunction to the Majumdar-Gho
Hamiltonian for a finite chain with 2p spins and one addi
tional free spin at each open end. Their spin projections
be identified with the matrix indicess,s8.

~ii ! For b50, a51/A3, uc&s,s8 describesp11 units
with S51 on the diagonals of the ladder; i.e., it is identic
to the four eigenfunctions for the Affleck-Kennedy-Lie
Tasaki ~AKLT ! chain with open ends.4 In this limit it is
known that at the edges there exist quasifreeS5 1

2 spins
which extend somewhat into the bulk of the ladder. Note t
the matrix indicess,s8 now can no longer be identified wit
the spin projections of the edge spins.

~iii ! The general case will be intermediate and the bou
ary spins extend into the adjacent bulk ladder to an ex
determined by the correlation length. This correlation len
is underestimated by the MP ansatz but the tendency of
variation is given correctly: It decreases with increasingb,
i.e., from the AKLT limit via the ladder configuration to th
Majumdar Ghosh limit.

For a more quantitative treatment we couple the four M
wave functions@) jg#s,s8, s,s8561, to singlet and triplet
states, respectively, and calculate the effective exchange
ergy from the energy difference of these states. This lead
the following results for a configuration withp complete
rungs in between:

Jeff,MP
edge ~p!56J0e

2p/j, ~7!

with J0'0.77 andj21'1.23. This gives the correct sign o
Jeff ~i.e., ferromagnetic or antiferromagnetic ifs,s8 are on
the same or on different sublattices, respectively! and a re-
markably good numerical value forp50; the decay with
distance, however, is too strong, due to the fact that the
relation length is underestimated in MP states.
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We notice that the low-energy structure of the spectrum
the generalization to spin ladders of the Kennedy triplet
served in Haldane chains with open boundary condition13

The latter is obtained~in the AKLT limit ! by takingb→0 in
our wave function. In the ladder the wave function is mo
general than just a resonating valence bond~RVB! ansatz,
but the effect of the quasifree boundary spins is the same
this sense our results are related to the results of Hida14 who
investigated the ladder with ferromagnetic couplingl on the
rungs. This coupling connects two spins which in our an
ferromagnetic ladder are not coupled directly but as NNN
two AF bonds; from our calculations we see that this leads
the same effects.

An alternative approach to arrive at a theoretical estim
for Jeff,6

edge is to integrate out the spin degrees of freedom
the rungs between the boundary spins. For this purpose
write the general Hamiltonian with boundary spinsSW 0 and
SW 2p11 as

H5H ladder~1,2, . . . ,2p!1h0,11h2p,2p11 . ~8!

We eliminateh0,1 and h2p,2p11 to first order by a suitable
canonical transformation and average over the eigenstate
the complete rungs forming the intermediate part of the l
der to end up with an effective low-energy Hamiltonian
the form

H6
~p!5E0,6~p!1Jeff,6~p!SW 0•SW 2p11 . ~9!

The explicit results for two and three intermediate rungs
tween the boundary spins are

E0,6~2!52 5
16 , Jeff,1

edge~2!5 1
3 ,

Jeff,2
edge~2!52 1

4 , E0,6~3!520.344,

Jeff,1
edge~3!520.2377, Jeff,2

edge~3!50.2248. ~10!

These results agree with the numerical data within 20
For two isolated spins, higher-order contributions to the
nonical transformation will change the numbers towards
correct values, but due to isotropy and to the fact that we
dealing withS5 1

2, the form of the Hamiltonian will not be
affected. Although this approach gives only rough estima
it serves to illustrate that for more than two unpaired sp
higher-order terms in the canonical transformation will le
to pair interactions between unpaired spins which are
nearest neighbors and tom-spin interactions (m>4). The
difference between the above analytical result and the
merical results should be considered as an indication
these higher-spin interactions cannot be neglected at the
set and a description of the impure chain in terms of
effective pair Hamiltonian for unpaired spins as in Ref.
needs justification. We will return to this question in Sec. I

D. Spin configurations in the presence of two unpaired spins

We now discuss in more detail the spin configuration
the presence of two unpaired spins separated by a numb
rungs larger than the correlation length. Then the spin p
jection will spread into the adjacent part of the ladder, i.
into the rungs to the right and to the left of its site~or into the
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2960 55H.-J. MIKESKA, U. NEUGEBAUER, AND U. SCHOLLWO¨ CK
rungs on one side only in the case of edge spins!. In order to
demonstrate this effect for an unpaired spin with a giv

projection^Sz&56 1
2 we consider the quantitŷSm,6

z &, where
m is the distance from the unpaired spin (m50 denotes the
unpaired spin! and 6 distinguishes between spins on th
same~1!, and opposite (2) sublattices, respectively, as th
unpaired spin. When the two unpaired spins are sufficie
separated we obtain a clear picture of the situation in
neighborhood of a single unpaired spin coupling the t
unpaired spins toStot51 and considering states wit
Stot
z 511. Results from the DMRG and Lanczos metho
which illustrate this redistribution of the spin projection a
shown in Fig. 4; all data are of the following form:

^Sm,a
z &5scenter

z ~ for m50!

5stail
z e2umu/j ~ for umu.0, a51!

52stail
z e2umu/j1dm ~ for umu.0, a52!.

When the two unpaired spins are sufficiently far apart,

total spin projection1 1
2 has to be recovered, i.e.,

scenter
z 12(

m51

`

dp5
1
2

for an unpaired spin in the bulk and

scenter
z 1 (

m51

`

dp5
1
2 ~11!

for an unpaired spin at the edge.dp is a correction which
approaches zero rapidly forp.5. Quantitative results from
the two approaches are the following.

For an unpaired spin in the bulk~from the DMRG!,

j53.1, scenter
z 50.294, stail

z 50.247, ~12!

and for an unpaired spin at the edge~from the Lanczos
method, after corrections for the finite size of the system,
the contributions of the second impurity!,

j53.1, scenter
z 50.348, stail

z 50.308. ~13!

FIG. 4. Distribution of the excessz component of spin~magni-
tude 1/2! resulting from the unpaired spin opposite to an impur
into the adjacent rungs of the ladder~the positive and negative
contributions for each rungp are alternating between the two legs!.
n

ly
e
o

s

e

.,

The amplitudestail
z characterizes the redistribution of th

spin projection into the adjacent rungs and is seen to
rather large. The total excess spin on the positive sublattic
0.894~bulk! and 1.117~edge!, respectively, and on the nega
tive sublattice20.792 ~bulk! and 20.965 ~edge!, respec-
tively. We notice that the asymptotic exponential behav
governed by the correlation length is correct for all sites
the sublattice of the unpaired spin whereas it is approac
within typically five rungs on the opposite sublattice.

The numbers given above are consistent with the diff
ence between the effective exchange constantsJedge and
Jbulk noticed above and give a microscopic understanding
this difference as seen in the following. For an unpaired s
in the bulk of the ladder the magnitudes of bothscenter

z and
stail
z are reduced by a factor of'0.8 as compared to an un
paired spin at the ladder edge. Since the effective interac
of two unpaired spins will be determined by the tails of t
spin distribution,Jeff will be smaller for unpaired spins in th
bulk ladder by

S stailz,bulk

stail
z,edgeD 2'0.64, ~14!

consistent with the valuer exc'0.65 found from the analysis
of the energy levels above.

A redistribution ofSz in the neighborhood of an unpaire
edge spin is also obtained from the MP wave function abo
which gives

scenter
z 5a21ab'0.422. ~15!

The behavior on the adjacent rungs is different in de
from the numerical results:Sp

z decays with alternating sign
and purely exponential with different amplitudes on the l
of the unpaired edge spin (s̃ tail

z 5a21ab'0.422) and on the
opposite leg (s̃ tail

z 52a/(a1b)'20.767). Again, the MP
approach gives a reasonable qualitative picture but f
quantitatively.

IV. MANY IMPURITIES

It is natural to assume that the results obtained for t
unpaired spins can be generalized to give results for the l
energy properties of the general impure ladder with impu
concentrationc by using pair exchange interactions betwe
unpaired spins which are nearest neighbors only and de
mining the sign and magnitude of these interactions from
results in Sec. III. For a random distribution of impuritie
this means that the impure ladder reduces to a spin c
with exchange constants which are random with respec
both sign and magnitude. This is the model used in Ref.

In this section we will investigate this assumption mo
closely by comparing exact~DMRG! spectra for various con
figurations with four and six impurities to spectra obtain
from the assumption above. We have restricted ourselve
an even number of impurities in order to facilitate the co
parison between different impurity concentrations~for an
odd number of impurities the spin of the ground state will
a half integer!. A similar approach to the case of the spi
Peierls substance CuGeO3 with impurities has been done i
Ref. 8.
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55 2961SPIN LADDERS WITH NONMAGNETIC IMPURITIES
Before presenting these numerical results we want to
cuss some aspects of the general impure ladder with ant
romagnetic exchange interactions only andL rungs, i.e.,
2L sites, of whichN sites are occupied by nonmagnetic im
purities. The ground state of the remaining 2L2N spins
S5 1

2 can take valuesStot of the total spin between 0 an
N/2, depending on the distribution of the impurities on t
two sublattices. For a random distribution of the impuriti
the distribution ofStot is easily obtained from the theorem o
Lieb and Mattis which statesStot5

1
2uNA2NBu, whereNA

andNB are the numbers of defects on theA andB sublat-
tices, respectively~for configurations with two defects on th
same rung, which break the ladder, this givesStot only for
one out of a number of degenerate ground states!. Thus for a
random distribution of defects the probabilityg(Stot) for a
ground state to have total spinStot is, for

Stot50, g~Stot!5S N

N/2D ,
and for

Stot.0, g~Stot!52S N

N/22Stot
D . ~16!

For N@1 we obtain from Stirling’s formula the relativ
weight of states withStot50 andStot51 (2N is the total
number of defect induced states!:

g~Stot50!

2N
5A 2

pN
,

g~Stot51!

2N
52A 2

pN
. ~17!

The ground-state spin value with the largest probabi
therefore isS51. Of particular interest are the average v
ues of the ground-state spin for a random distribution
N@1 impurities. They are calculated using Eq.~16! to give

^Stot&5A N

2p
, ^Stot

2 &5
N

4
. ~18!

Thus the result obtained in Ref. 12 from a random w
argument is seen to be an exact consequence of the L
Mattis theorem. For a discussion of the low-temperature s
ceptibility in some given defect configuration we useS0 to
denote the total spin of the ground state~with zero energy!
and characterize the remaining statesa51,2, . . . ,
am52N21 by their total spinSa and excitation energy
Da.0. The limiting susceptibility for low magnetic fields i
then given by

x5
~gmB!2

3kBT

z~S0!1(a51
am z~Sa!e2bDa

~2S011!1(a51
am ~2Sa11!e2bDa

, ~19!

with

z~Sa!52Sa~Sa1 1
2 !~Sa11!. ~20!

If the ground state of the impure ladder is not a singlet, i
S0.0, leading toz(S0).0, a Curie susceptibility results in
the low-temperature limit. ForS050, leading toz(S0)50,
the susceptibility shows an activated temperature dep
dence characteristic of a gapped system (D1 finite!; if the
low-lying states become dense with an asymptotic densit
s-
r-

y
-
f

k
b-
s-

.,

n-

of

statesr(e);e2a, the low-temperature behavior of the su
ceptibility changes to x(T);T2a. In particular a
temperature-independent susceptibility results fora50, i.e.,
a constant density of states~this is the case of theS5 1

2

Heisenberg antiferromagnetic chain—actually it should
realized in this context that a concentration ofc5 1

4 is suffi-
cient to turn the ladder geometry into that of a single cha!.
All these deviations from a Curie behavior require a sing
ground state, which according to Eq.~17! occurs with negli-
gible weight in the limit of a macroscopic system. We the
fore conclude that the low-temperature susceptibility of
impure ladder always follows a Curie law. This confirm
from a different point of view the resulta51 which has
been obtained from a renormalization group approach.15

When the limiting value of the Curie constant forT→0 is
calculated on the basis of the above expressions, we find
due to the random positions of the defects the factor3

4 @re-
sulting fromS(S11) for S5 1

2# is replaced by
1
4. The experi-

mentally interesting behavior at finite temperatures involv
the transition between these two limiting cases, i.e., a cha
in the Curie constant by a factor of 3. It will be determine
to a large extent by the density of states. This is not ea
accessible, and in the remainder of this section we pre
what can be learned from numerical calculations.

In Fig. 5 and Table III we present a number of spec
with levels classified according to total spinS and corre-
sponding results from the effective pair model. We have c
sen the parameters under the following aspects:~1! We want
to control the effective model,~2! we want to illustrate the
filling of the gap with defect states, and~3! we want to
present the effects of the different sign combinations for
fects on a given sequence of rungs.

For the comparison between the complete ladder spe
as obtained from the DMRG and the spectra of the effec
model we refer to Table III. We see that the agreemen
very satisfying, and deviations are generally below 10% w
a tendency of better accuracy for low energies. We note
all DMRG energy spectra overestimate the true energ

FIG. 5. Low-energy spectra of the ladder with four and s
impurities from DMRG~black lines! and from the effective mode
~light gray lines, only when DMRG data are not available! for dif-
ferent configurations characterized by the sign~F, AF! and the num-
ber of complete rungs between the unpaired spins as indicate
the graphs.~a!–~g! four unpaired spins:~a! F4-F3-F5,~b! AF4-F3-
AF5, ~c! F4-AF3-AF5, ~d! F4-F3-AF5,~e! AF4-AF3-AF5, ~f! F5-
AF4-F5, ~g! F3-AF4-F3.~h! Six unpaired spins: AF5-F4-AF6-F4
AF5.
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Further corrections will therefore rather improve the agr
ment between effective model and DMRG calculations.

Since the spectra obtained by the two approaches agre
well, in Fig. 5 DMRG spectra~solid lines! only are given
when these are available. However, the higher singlets
triplets were not accessible at reasonable computationa
pense as the respective states are already quite high lyin

TABLE III. Low-energy spectra of the ladder with four and s
impurities for different configurations as in Fig. 5: comparison
DMRG and effective Hamiltonian results.

A~4! F~3! A~5! A~4! A~3! A~5!

Stot Ladder Eff. model Stot Ladder Eff. model

0 0.000 0.000 0 0.000 0.000

1 0.079 0.07776 1 0.047 0.04730

1 0.131 0.12681 1 0.197 0.19146

2 0.198 0.19196 0 0.204 0.20080

1 0.30932 1 0.269 0.26093

0 0.32193 2 0.310 0.29890

F~4! A~3! A~5! F~4! F~3! A~5!

1 0.000 0.000 1 0.000 0.000

0 0.030 0.02582 2 0.075 0.07296

1 0.156 0.15188 0 0.094 0.09089

2 0.208 0.20117 1 0.134 0.12860

0 0.22053 0 0.23404

1 0.302 0.29564 1 0.26930

F~4! F~3! F~5! F~5! A~4! F~5!

2 0.000 0.000 0 0.000 0.000

1 0.036 0.03474 1 0.010 0.010

0 0.094 0.08660 2 0.109 0.107

1 0.108 0.10041 1 0.168 0.164

2 0.22085 1 0.201 0.194

0 0.26940 0 0.273 0.261

F~3! A~4! F~3! A~5! F~4! A~6! F~4! A~5!

0 0.000 0.000 0 0.000 0.000

1 0.017 0.017 1 0.051 0.049

2 0.109 0.104 1 0.088 0.081

1 0.225 0.216 1 0.095 0.091

1 0.271 0.257 2 0.128 0.126

0 0.403 0.387 2 0.148 0.133

0 0.161

1 0.166

2 0.196 0.182

3 0.216 0.202

1 0.219

1 0.223

0 0.226

0 0.235

2 0.298 0.281

1 0.309

2 0.325 0.311

0 0.398

1 0.401
-

so

nd
x-
in

the Stot
z 50,1 sectors. It is only in these cases that we ha

included in Fig. 5 the spectra obtained in the effective mo
~light gray lines!.

In Figs. 5~a!–5~e! we show spectra for four unpaired spin
with four, three, and five complete rungs in between. T
possible combinations of the signs are seen to lead to q
different spectra and the general tendency to fill the regu
ladder gap is evident. Figs. 5~a! and 5~e! result from each
other qualitatively by an overall sign change. Although t
magnitudes of the interactions are somewhat different~com-
pare Table II!, this is clearly evident in these spectra. W
therefore present only three out of the remaining six spe
for this combination of distances in Figs. 5~c!–5~e!. Figures
5~f! and 5~g! present two examples of symmetric configur
tions of four spins~here levels are characterized by the a
ditional quantum number parity which we have not ind
cated!. The six-defect spectrum shown in Fig. 5~h! again is
for a symmetric configuration. In particular these data illu
trate, beyond related calculations, which have been done
the case of two impurities,7 how the density of states with
S51 may increase at low energies with the number of i
purities. However, a much larger number of impurities w
be required to obtain a reliable numerical estimate for
low-energy density of statesr(e).

V. CONCLUSIONS

We have demonstrated that interacting impurities dra
cally change the low-energy spectrum of an antiferrom
netic spin ladder. A statistical distribution of impurities r
duces the ladder, as far as its low-energy spectrum

concerned~energy range of the pure ladder gap!, to aS5 1
2

chain with random interactions, a model which has recen
been used to discuss the expected low-temperature prope
of the impure ladder.12 From our calculations precise infor
mation on the parameters of the effective interactions
available. For large distances between defects the effec
coupling strength is found to decay purely exponentially. W
have found that it is sufficient to use two-spin interactions
describe the spectrum of the effectively random chain
within 10%. The spectra which we have calculated also
lustrate the beginning of the process that a random distr
tion of impurities with concentrationc produces a large num
ber ~of the order of 2cL) of low-lying states which will fill
the ladder gap as observed experimentally.6 Applying the
Lieb-Mattis theorem to the impure ladder with antiferroma
netic interactions only we argue that forT→0 the suscepti-
bility is characterized by a 1/T divergence with finite Curie
constant. Our numerical results, however, are not sufficie
accurate to draw conclusions about the change in Curie c
stant with increasing temperature.

From our results it becomes also clear that interacti
between unpaired spins which are not nearest neighbors
m-spin interactions are present and cannot be neglecte
the effective model at the outset. They have, however, tur
out not quantitatively relevant for the low-energy spec
which we have computed.

The effects of impurities on the spin distribution whic
we have presented show some similarity to what has b
discussed in the context of impure Haldane chains5 and it is
useful to qualitatively compare these two phenomena o

f
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55 2963SPIN LADDERS WITH NONMAGNETIC IMPURITIES
more: In both systems the unpaired spin at the position of
impurity shares its magnetic moment with the adjacent p
of the system, and the degree of this mixing, i.e., its spa
extent, is determined by the correlation length. In t
Haldane case, one deals with a physically different magn
impurity spin; it interacts with that part of the unpaire
boundary spin which remains localized, leading to the
perimentally observed splitting of the ESR spectra. In
spin ladder a nonmagnetic impurity is present and the co
sponding unpaired spin shares its magnetic moment with
adjacent parts of the ladder; the tails of this magnetic m
e

tt.
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ment introduce an effective interaction leading to the exp
mentally observable splitting of the low-energy spectrum
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