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We investigate antiferromagnetic spin ladders with nonmagnetic impurities by variational and numerical
[Lanczos and density matrix renormalization gro{ipMRG)] methods. The interaction between the two
unpaired spins opposite to the impurities is described by an effective exchange intedggtitimee magnitude
of which depends on the impurity distance. The magnitudé.gfs different for unpaired spins at the edges
of an open ladder and in the bulk. This difference is related to the different distributions of the unpaired spin
into the bulk of the ladder. The numerical results are interpreted using matrix product states. Using the DMRG
we calculate the spectrum of low-lying energy levels for up to six impurities and find that these spectra can be
reproduced assuming pair interactions with an accuracy of better than 10%. We discuss the filling of the ladder
gap with impurity states and argue that in the thermodynamic limit the spin ladder with a finite concentration
of impurities always shows a Curie susceptibility at low temperat(i&&163-182@07)10905-5

I. INTRODUCTION neighbor (NN) and next-nearest-neighbdNNN) interac-
tions, which can actually be considered as a generalized
In the last few years spin systems consisting of two interdadder® For a statistical distribution of impurities both the
acting spin chains withS=31, now usually called(two-  sequence otis andtrans pairs and the distances between
legged spin ladders, have attracted considerable attention @fese pairs will be statistical. The distance between neighbor-
recently reviewed by Dagotto and Riterhe spin ladder ing unpaired spins is conveniently counted by the number
with isotropic antiferromagnetic interactions exhibits a spinp of complete rungs between them. Assuming a small impu-
gap in the excitation spectrum which has been shown to bty concentrationc we neglect the possibility of complete
related to the dimer gaj@ntiferromagneti¢AF) coupling on  breaking of the ladder which is proportional ¢8.
the rungs only as well as to the Haldane gdgtrong ferro- For a microscopic understanding of the effects of a low
magnetic coupling on the rungst has been concludédhat ~ concentration of defects on the spectrum of the spin ladder
the isotropic spin ladder is in the same phase as the Haldawee present in the following numerical and analytical calcu-
chain—this can formally be described using matrix productations for the properties of the ground state and of low-lying
ground states in a generalized spin ladder with additionaéxcited states of impure ladders wiis 3 and all exchange
diagonal bonds. interactions antiferromagnetic, isotropic, and of equal mag-
In the Haldane chain, the investigation of magnetic asitude (which is set equal to unily In particular we have
well as nonmagnetic impurities has contributed substantiallgonsideredi) two spinsS=3 in either acis or trans con-
to our understanding of the system: There exist quasifrefiguration at the edges of an open ladder formedhyngs
spinsS=3 at the end of the chain segments created by théexact diagonalization with the Lanczos algorithm and ana-
impurities as qualitatively predicted by the valence bondlytical estimate} (ii) two impurities at varying distances in
ground stattand experimentally found in electron spin reso- either acis or trans configuration in the bulk ladddexact
nance (ESR experiments on NENP doped with CuWe  diagonalization with the Lanzcos algorithm for periodic
have investigated nonmagnetic impurities in spin ladders antoundary conditions, density matrix renormalization group
found that these lead to effects both similar to and differen{DMRG) calculations for open boundary conditions, and es-
from impurities in the Haldane chain. The essential differ-
ence is of geometric origin: Impurities in a spin ladder do not

break the sequence of magnetic interactions, but create weak Trans configuration

links. One spinS= 3 on one leg of the ladder has no coun- i :
terpart on the other leg and mediates between the adjacent_, . o
regular ladder structures. In the following we use the term I—
“unpaired spin” for these spins without a counterpart on the ° ® ~——o

opposite leg. A typical configuration with three impurities is .
shown in Fig. 1; neighboring impurities may lead to unpaired === ==--====7=======--
spins on the same legis configuration or on opposite legs Cis configuration
(trans configuration. This structural effect, that the impu-

rities do not break the coupling along the linear arrangement, FIG. 1. Structure of a spin ladder with three impurities leading
is analogous to the one of impurities in a chain with nearestto unpaired spins iis andtrans configurations, respectively.
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timates from matrix product stafpsnd (iii ) the spin ladder TABLE I. Energies calculated by the DMRG pefq(rrust line)
with many impurities(up to six impurities in DMRG calcu- and after ongsecond ling and two(third line) applications of the
lations and arguments based on the Lieb-Mattis theprem finite-size algorithm.

Our work is motivated by recent experimehts the lad-

der material SrC30, doped with Zn, which show a tendency §=0 S=1

of the ladder gap to vanish with increasing Zn concentrationy, _ 4 M =100 M =40 M =100
Calculations for similar systems which, however, concen-gs 495 857 -65.505 486 -65.089 740 -65.103 673
trate on somewhat different aspects have recently been dong: -, 369 -65.518 391 -65.118 436 -65.120 279

7 H 8
by Motomeet al.” and Martinset al. -65.518 388 65518391  -65.120622  -65.120 652

Il. NUMERICAL METHODS )
reduced, when a defect or defect pair are added. The block

We have performed exact diagonalizations using thestates from the step before are not optimally chosen to rep-
Lanczos technique for spin ladder systems with two defectgesent the altered system. We find that the introduction of
and a varying numbemp<12 of complete rungs, i.e., defects effectively reduces the precision of the DMRG by up
N=2p-+2 spins in total, and have considered both periodicto several orders of magnitude.
and open boundary conditions. For open boundary condi- This problem becomes particularly pressing in defect con-
tions we study a ladder with two impurities at the edges offigurationsnonsymmetriavith respect to the ladder center.
the system and consequently separateg byngs in either a  For any even number of defects, the ground state is the low-
cis or trans configuration. In the case of periodic boundary est eigenstate in th€?=0 sector. A nonsymmetric defect
conditions we fix one defect on the first rung and vary theconfiguration implies that during the growth process there
distance p;,p;=<[p/2] rung9 to the second defect. We will be an odd number of defects present in some DMRG
again considecis andtrans configurations wittp=11 and  steps. The total number of spins on the ladder changes from
p=12 rungs. For these configurations we have calculated theven to odd. Consequently, the ground state jumps to the
energies of the ground state and of low-lying excitations andS?= + 1 sector, to which the available block states are not
for open boundary conditions only, the distribution of thewell adapted, drastically reducing the precision of the
magnetization. DMRG. However, the error can be greatly reduced by using

For the normal ladder system projection of the Hilbertthe finite-size DMRG algorithm®*! The whole chain is re-
space on the irreducible representation of the correspondingalculated in the presence of the complete defect configura-
symmetry groups[reflection and mirror symmetry, total tion without any jumps between differei® sectors. The
SU(2) invariance, and, in the case of periodic boundary congain in precision by far exceeds the one obtained by increas-
ditions, translational symmetfydrastically reduces the ing M.
amount of memory for diagonalization within these sub- To illustrate this point, let us consider the case of a
spaces. As a consegence of inserting impurities into the lad? x 50 spin ladder with two defects in teans configuration
der most of these symmetries, in particular translational inon rungs 24 and 26. We have calculated the lowest eigen-
variance, are no longer present and the computational effostates withS?’=0 and S*=1, keepingM =40 andM =100
is correspondingly larger. It is only the $2) invariance of  states. In Table | the energies given are for the chain calcu-
the model which is preserved. lated by conventional DMRG, and after one and two itera-

The calculations were performed on a MPP CRAY T3Dtions, respectively, applying the finite-size algorithm. Obvi-
SC256 of the Zuse Computing Centre Berlin using a parallebusly, even forM =100 the unmodified DMRGfirst line)
implementation of the Lanczos algorithm. The numerical acgives results of the order of 0.01 away from the converged
curacy of these calculations is 18 or better. result, whereas the finite-size algorithm produces highly pre-

Whereas the accuracy of the exact diagonalizations usingjse results even fav =40 (compare the results in the sec-
the Lanzcos approach is high, it can only be done for relapnd and third lines
tively small systems. To study longer chains we have used All DMRG calculations were performed on a PentiumPro
the DMRG? Using this method we have studied open lad-200MHz machine running under Linux.
ders from 250 up to 2100 spins. As the defects are
found to behave like spins localized on the bulk correlation
length scale, defects more than 20 sites away from the ladder
ends behave effectively like in an infinite system. In this section we discuss the spectra and spin configura-

As a good quantum number we used the t&abpin; in  tions for two unpaired spins in ladders with both open and
configurations with defects distributed symmetrically aroundperiodic boundary conditions, presenting and comparing nu-
the ladder center, we also used parity. This allows for a fastnerical results from both Lanczos and DMRG calculations
classification of states. and from analytical approaches.

We typically keptM =100-150 block states. A remark is
in order on the precision of the DMRG in this particular A Nymerical results for the spectrum of unpaired edge spins
application. For the defect-free spin ladder, truncation errors . i ) . .
are very low, forM =100, p=2.9x 10~ and for M = 150, We corlsper the configuration with rungs connecting
p=1.1x10"*2 corresponding to an extremely small error in two spinsS,S’ in either acis or trans configuration at the
the energies of the defect-free system for low-energy stategnds. Using the Lanczos algorithm we have exactly diago-
The effective precision of the DMRG is, however, greatly nalized systems witp<12. We find that there is an energy

[ll. TWO UNPAIRED SPINS
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TABLE Il. Effective exchange energies for two unpaired spins

at the edge and in the bulk of a ladder withrungs in between. ¢ O--OAFM (boundary)
Two energies are given for eagh corresponding to the two posi- oao | Q e
tions on each rung. ’ 5 A—ARM (pulk)
Jesr (ED) I
Rungs 6) Antiferromagnetic Ferromagnetic e‘;
2 0.4134342076 0.3332389325 1
3 0.2808007550 0.2790132929
4 0.1944368705 0.2010576140 ser o
5 0.1379125645 0.1459181428 g
6 0.0990135730 0.1051339920 o000 > 1 P 3 10
7 0.0717149472 0.0759464504 P
8 0.0522047020 0.0549482466 FIG. 2. Effecti h int " for t ired soi
9 00381181864 0.0398361954 - 2. Effective exchange interactions for two unpaired spins
10 0.0278774960 0.0289263601 at the edges and in the bulk of a spin ladder. Exchange energies for
: : effective ferromagnetic and antiferromagnetic interactions are plot-
11 0.0204037286 0.0210324667
ted separately.
12 0.0149374382 0.0153089483
Jett (DMRG) The uncertainty in these data as determined from a least
squares fit is 10° for J,.. and better forlE, ., . Due to the
0 0.471 L . = :
finite size of the open chairk,_ (=~—1.161p) cannot be
1 0.398 0.249 . . ' .
determined with equal accuracy. We draw attention to the
2 0.255 0.170 " . .
fact that the best fit is purely exponentially decaying and that
3 0.181 0.154 . T
4 0.126 0.115 a behaviorcexp(— p/£)//p can be excluded. This is in par-
5 0.090 0.087 allel to the behavior of an open Haldane chain.
6 0.065 0.064 B. Spect f ired spins in the bulk ladder:
7 0.047 0.047 . opectrum O l'ilnpalrg IS|I)II’]S |Itn e bu aaader:
8 0.034 0.035 umerical results
9 0.025 0.025 Contrary to the Lanczos approach the DMRG allows one
10 0.018 to deal with sufficiently long ladders so that the two unpaired

gap of the order of the known ladder gafp~€0.53) but the

spins can be at some rather large distance and at the same
time sufficiently far from the boundaries to identify their
bulk interaction. The splitting of the ground state for two

ground state is split into a singlet and a triplet state. As aunpaired spins is again described by a Hamiltonian as above

consequence of the Lieb-Mattis theorem the lowest state fowith Jgi

(p) replaced byJ2%% (p). The latter quantity is

edge
v

our configuration is a singlet if the two unpaired spins are oraelso given in Table Il and shown in Fig. 2. We firftbr

different sublattices [f even forcis spins andp odd for
trans sping and a triplet if they are on the same sublattice
(p odd forcis spins and even fortranssping as discussed
in Ref. 12. We interpret this splitting as resulting from an

effective interaction between the unpaired s;ﬁmé’ at the

p=5)

2K (p)=JFe PE, with J9%~0.43 and ¢~3.1.

€)
JoU* is approximately equal tdg-\, but determined less ac-

ladder boundaries and we derive an effective coupling byrately. We notice thal2i(p) is reduced with respect to

ff

writing a Hamiltonian in the subspace of these lowest twoJe?fge(p) by a reduction factor
€ exc,t »

states as

The index=* refers to the sign o, i.e., antiferromag-

HP=E,. +J5%(p)S-S'.

@

JZK (D) =T exe= (P)IEFE(p). (4)

For an effectively antiferromagnetic interaction the reduc-
tion factorr,. is p independentr.,-~0.65, and for an ef-

netic and ferromagnetic effective interactions, respectivelyfectively ferromagnetic interaction it approaches this value
Jedee=(p) is given in Table Il and is also plotted in Fig. 2 to asymptotically. This reduction will be explained quantita-

show its dependence gn Jg;". actually is identical to the

edge

tively below; qualitatively it is due to the fact that the un-

singlet-triplet splitting of the ground state. An excellent fit Paired spin projection delocalizes both into its right and left
for p=5 is obtained as

Eo+(p)=—1.15%, J&%(p)=Jo.e "¢ (2

with

Jo ~0.674, Jo_~0.714,

andé~3.1.

neighborhoods in the bulk case whereas there are neighbors
on one side only in the boundary case. The dependence of
the effective exchange on distance is again purely exponen-
tial and the prediction in Ref. 12, which includes an addi-
tional factor 1A/p, is not verified from our data. The “best”

fit enforcing the factor 1yp ends up withé~4, i.e., a cor-
relation length which is not appropriate.
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FIG. 3. Low-lying energy levels for ladders with periodic boundary conditions and two unpaired spins with a distgacandfp,
complete rungs, respectively. Spectra for unpaired spins with effective antiferromagnetic and ferromagnetic interactions, respectively, are
shown separatelya), (b) p;+p,=12 rungs;(c), (d) p;+p,=11.

Using the Lanczos algorithm, we have also done exact In Fig. 3 we also show the results for the lowest excited
diagonalizations for configurations with periodic boundarystates, i.e., in particular the splitting of the regular ladder gap
conditions (PBC'’S and two spinsS,S’ in a cis or trans  With energy~A. For most of the defect configurations the
configuration separated by, and p, rungs, respectively. effective interactions have different signs for the ground state
The spectra are shown in Figs.(aB and 3b) for and for the first excited stat@nergy of the regular ladder
p:+p,=12 and in Figs. &) and 3d) for p,+p,=11; their ~ gap. For example, a singlet ground state is related to a triplet
qualitative structure is the same as for the open ladder. Was the lower one of the states of energy, as follows from
find that the smaller of the two valugs,,p, determines a simple coupling of the impurities to the lowest bulk exci-
whether the ground state is singlet or triplet when the rulesation with S=1. This rule, however, is not strictly obeyed
given above for the open ladder are used. From the graphgnd a detailed discussion of the structure of the excited states

presented in Fig. 3 it is also evident that a much largeiin the impure ladder has to be reserved for future work.
singlet-triplet splitting of the ground state is obtained for

p;+ p, even than foip, + p, odd. The obvious reason is that

the two exchange interactions which have to be added for C. Analytical approaches to unpaired spins
PBC'’s have equaldiffereny signs forp,+p, even (odd. on the ladder edges
Using again the concept of an effective exchange interaction,
JEE(P1.P2), we expect for two unpaired spin@esulting A qualitative understanding of our numerical results for
from two impurities in a periodic ladder the open ladder can be obtained using matrix product wave
functions as described in Ref. 3. We consider a system with
IEB%p1.,po) =32 (py) + 32K (py). (5  two spins at the ladder edges irtrans configuration ang

rungs in between; a wave function describing this system
Inserting the results as given before, we find that this relationvith four degrees of freedom can be written down as a
is obeyed to within 10%. 2X 2 matrix product(MP) wave function
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p+1

|¢>0’,o” = |: 11;[1 g]

We notice that the low-energy structure of the spectrum is
, (6) the generalization to spin ladders of the Kennedy triplet ob-
0.0’ served in Haldane chains with open boundary conditidns:
The latter is obtaine¢in the AKLT limit) by takingb—0 in
our wave function. In the ladder the wave function is more
alto);+bls); —a\/§|t+>j general than just a resonating valence bo?RwB) ansatz,
gj= . but the effect of the quasifree boundary spins is the same. In
a2|t.);  —(alto)j—bls);) this sense our results are related to the results of Higho
investigated the ladder with ferromagnetic couplign the
. . . . . rungs. This coupling connects two spins which in our anti-
Here the matmgj descr|b¢s the coupling of.spms sﬂuateql Onferrgé:])magnetic Ia%degr are not coupledpdirectly but as NNN by
diagonal sites on two adjacent rungs to singlets and tripletg,, AF honds; from our calculations we see that this leads fo
respectively; the boundary spins are coupled likewise t0 thg,a same effects.

. - _ 2 . . A . . .
neighboring rung. The value &f = 1—3a® is determined by An alternative approach to arrive at a theoretical estimate
minimization of the energy; for the numerical estimates betq, jedge

or off = IS t0 integrate out the spin degrees of freedom on
low we take the result for the infinite laddeh~0.1735. We  the rungs between the boundary spins. For this purpose we
have chosen the two edge spins irtrans configuration

9T . . write the general Hamiltonian with boundary spifig and
where a MP wave function is easily written down, whereasx as

this is more difficult for two spins in a&is configuration p+i
(with, e.g., two more spins on the upper leg than on the _
lower leg; the latter case requires a more detailed analysis H=Hiagoef 1.2, - )+ NoatNop zp1. ®
which will be published separately. Instructive limiting casesWe eliminatehg ; and h,, 5,1 to first order by a suitable
of the wave function of Eq(6) are the following. canonical transformation and average over the eigenstates of
(i) Fora=b=1 it is the wave function fop singlets on the complete rungs forming the intermediate part of the lad-
the p rungs and truly free boundary spiésé’. This wave der to end up with an effective low-energy Hamiltonian of
function actually is an eigenfunction to the Majumdar-Ghoshthe form
Hamiltonian for a finite chain with @ spins and one addi- ) . o
tional free spin at each open end. Their spin projections can HY'=Eg - (P)+ Jefr, = (P)So- Spp+1- ©)
be identified with the matrix indices,o”’.
(i) For b=0, a=1/\/3, | )y o describesp+1 units
with S=1 on the diagonals of the ladder; i.e., it is identical

The explicit results for two and three intermediate rungs be-
tween the boundary spins are

to the four eigenfunctions for the Affleck-Kennedy-Lieb- Eo.(2)=—=, J%9€(2)=1,

Tasaki (AKLT) chain with open endd.In this limit it is " '

known that at the edges there exist quasif@ei spins Jegfgg(z):_%, Eo.(3)=—0.344,

which extend somewhat into the bulk of the ladder. Note that & -

the matrix indicesr,o’ now can no longer be identified with Jgﬂ?f(3)= ~0.2377, J§#9€(3)=0.2248. (10)

the spin projections of the edge spins.

(iii) The general case will be intermediate and the bound-  Thege results agree with the numerical data within 20%.
ary spins extend into the adjacent bulk ladder to an extengqr wwo isolated spins, higher-order contributions to the ca-
determined by the correlation length. This correlation length, nica) transformation will change the numbers towards the
is underestimated by the MP ansatz but the tendency of theyrrect values, but due to isotropy and to the fact that we are
variation is given correctly: It decreases with increasing  gealing withS=1, the form of the Hamiltonian will not be
ie., from the AKLT I|m|t via the ladder configuration to the tracted. Although this approach gives only rough estimates,
Majumdar Ghosh limit. it serves to illustrate that for more than two unpaired spins

For a more quantitative treatment we couple the four MPhigher_order terms in the canonical transformation will lead
wave functiond I1;g],,,, o,0"=*1, to singlet and triplet " nair interactions between unpaired spins which are not
states, respectively, and calculate the effective exchange efgagrest neighbors and ta-spin interactions fi=4). The
ergy from the energy difference of these states. This leads {gitference between the above analytical result and the nu-
the following results for a configuration witp complete  arical results should be considered as an indication that
rungs in between: these higher-spin interactions cannot be neglected at the out-

set and a description of the impure chain in terms of an
edge B g effectiv_e p_a_ir Hamiltonian for unpaire_d spins_as .in Ref. 12
Jeitmp(P) == Jge ™ P'%, () needs justification. We will return to this question in Sec. IV.

with J,~0.77 and§‘1%1.23. This gives the correct sign of D. Spin configurations in the presence of two unpaired spins

Jeis (i.e., ferromagnetic or antiferromagneticdf, o’ are on We now discuss in more detail the spin configuration in
the same or on different sublattices, respectivelyd a re- the presence of two unpaired spins separated by a number of
markably good numerical value fqw=0; the decay with rungs larger than the correlation length. Then the spin pro-
distance, however, is too strong, due to the fact that the cojection will spread into the adjacent part of the ladder, i.e.,
relation length is underestimated in MP states. into the rungs to the right and to the left of its it into the



2960 H.-J. MIKESKA, U. NEUGEBAUER, AND U. SCHOLLW@K 55

0.40 . . . . . , The amplitudest,; characterizes the redistribution of the
Obulk spin projection into the adjacent rungs and is seen to be
Anoundary rather large. The total excess spin on the positive sublattice is

A 0.894(bulk) and 1.117edge, respectively, and on the nega-

o A T tive sublattice—0.792 (bulk) and —0.965 (edge, respec-

tively. We notice that the asymptotic exponential behavior

governed by the correlation length is correct for all sites on
the sublattice of the unpaired spin whereas it is approached
within typically five rungs on the opposite sublattice.

The numbers given above are consistent with the differ-

o ence between the effective exchange constdfif¢® and

oz , , , , , , JPUk noticed above and give a microscopic understanding of

oo 8 s 7 this difference as seen in the following. For an unpaired spin
in the bulk of the ladder the magnitudes of bafh,., and

FIG. 4. Distribution of the excesscomponent of spifimagni- Stit are reduced by a factor 6#0.8 as compared to an un-
tude 1/3 resulting from the unpaired spin opposite to an impurity Paired spin at the ladder edge. Since the effective interaction
into the adjacent rungs of the laddéhe positive and negative Of two unpaired spins will be determined by the tails of the
contributions for each rung are alternating between the two legs  spin distribution J¢ will be smaller for unpaired spins in the

bulk ladder by

0.20 -

s(p)
(o]
o

>
>

___________e_.b._

0.00

> OO0 P>

(e}
>0
>o

> o

>O

rungs on one side only in the case of edge 9gpimsorder to 2 bulk. 2
demonstrate this effect for an unpaired spin with a given (Stéu ) ~064
projection(S?) = = 3 we consider the quantis}, ..), where spod0e o
m is the distance from the unpaired spim 0 denotes the

unpaired spip and = distinguishes between spins on the
same(+), and opposite { ) sublattices, respectively, as the
unpaired spin. When the two unpaired spins are sufficientl%dge spin is also obtained from the MP wave function above
separated we obtain a clear picture of the situation in th%vhich gives '
neighborhood of a single unpaired spin coupling the two
unpaired spins toS;=1 and considering states with oo 82+ab~0.422, (15)
S,=*+1. Results from the DMRG and Lanczos methods comet

which illustrate this redistribution of the spin projection are  The behavior on the adjacent rungs is different in detail
shown in Fig. 4, all data are of the following form: from the numerical resultsS] decays with alternating sign
and purely exponential with different amplitudes on the leg
of the unpaired edge spiE(a”=a2+ ab~0.422) and on the

(14)

consistent with the value,,~0.65 found from the analysis
of the energy levels above.
A redistribution ofS* in the neighborhood of an unpaired

(Srzn,a> = S(Z:enter (for m=0)

—s, e Imie (for |m|>0, a=+) opposite leg’§ ;,;= —a/(a+b)~—0.767). Again, the MP
A approach gives a reasonable qualitative picture but fails
=—&, e Mér 5 (for |m>0, a=-). quantitatively.

When the two unpaired spins are sufficiently far apart, the

. L 1 . IV. MANY IMPURITIES
total spin projectiont+ 3 has to be recovered, i.e.,

% It is natural to assume that the results obtained for two
oot 2 2 5.=1 unpaired spins can be generalized to give results for the low-
=1 © energy properties of the general impure ladder with impurity
concentratiorc by using pair exchange interactions between
unpaired spins which are nearest neighbors only and deter-
o mining the sign and magnitude of these interactions from the
S Z 5p=% (11) results in Sec. Ill. For a random distribution of impurities
m=1 this means that the impure ladder reduces to a spin chain
with exchange constants which are random with respect to
both sign and magnitude. This is the model used in Ref. 12.
In this section we will investigate this assumption more
closely by comparing exa¢DMRG) spectra for various con-
figurations with four and six impurities to spectra obtained
£=3.1, s%,,=0.294, si,=0.247, (12  from the assumption above. We have restricted ourselves to
an even number of impurities in order to facilitate the com-
and for an unpaired spin at the edgieom the Lanczos parison between different impurity concentratiotier an
method, after corrections for the finite size of the system, i.e.odd number of impurities the spin of the ground state will be
the contributions of the second impupity a half integer. A similar approach to the case of the spin-

) 5 Peierls substance CuGe@ith impurities has been done in
£=3.1, Sine=0.348, sp;=0.308. (13 Ref. 8.

for an unpaired spin in the bulk and

for an unpaired spin at the edge, is a correction which
approaches zero rapidly f@r>5. Quantitative results from
the two approaches are the following.

For an unpaired spin in the bullirom the DMRG,
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Before presenting these numerical results we want to dis- a b . a
cuss some aspects of the general impure ladder with antifer-
romagnetic exchange interactions only ahdrungs, i.e.,
2L sites, of whichN sites are occupied by nonmagnetic im-

0.2 —_ —

energy

purities. The ground state of the remaining. 2N spins el PR & sa e 0 sz
S=1} can take values,, of the total spin between 0 and B >
N/2, depending on the distribution of the impurities on the 04 e ! _ B "

two sublattices. For a random distribution of the impurities - =
the distribution ofS,,; is easily obtained from the theorem of 02} — — - = ==
Lieb and Mattis which state§,,;=3|Na—Ng|, where N, - =
and Ng are the numbers of defects on theand B sublat- = e o = =0 L =2 = L,
tices, respectivelyfor configurations with two defects on the
same rung, which break the ladder, this giv&g only for
one out of a number of degenerate ground sjafidwus for a
random distribution of defects the probabilitfS,,) for a
ground state to have total sp8 is, for

energy
|

FIG. 5. Low-energy spectra of the ladder with four and six
impurities from DMRG(black lineg and from the effective model
(light gray lines, only when DMRG data are not availgtfier dif-
ferent configurations characterized by the signAF) and the num-

N ber of complete rungs between the unpaired spins as indicated in
Sii=0, 9(Se) :( ) , the graphs(a)—(g) four unpaired spins(a) F4-F3-F5,(b) AF4-F3-

N/2 AF5, (c) F4-AF3-AF5, (d) F4-F3-AF5,(e) AF4-AF3-AF5, (f) F5-
and for AF4-F5, (g) F3-AF4-F3.(h) Six unpaired spins: AF5-F4-AF6-F4-
AF5.,

(16 statesp(e)~ e~ ¢, the low-temperature behavior of the sus-

ceptibility changes to x(T)~T ¢ In particular a
temperature-independent susceptibility resultsderO, i.e.,
a constant density of statdthis is the case of th&=13
Heisenberg antiferromagnetic chain—actually it should be
9(Se=0) \/7 9(Ser=1) \/7 rgalized in this context that a con_centrationcof %_is suffi- _
N =V o 2V (@7 cientto turn the ladder geometry into that of a single chain
All these deviations from a Curie behavior require a singlet
The ground-state spin value with the largest probabilityground state, which according to Ed.7) occurs with negli-
therefore isS=1. Of particular interest are the average val- g|b|e Weight in the limit of a macroscopic system. We there-
ues of the ground-state spin for a random distribution offore conclude that the low-temperature susceptibility of the
N>1 impurities. They are calculated using Efi6) to give  impure ladder always follows a Curie law. This confirms
from a different point of view the resulr=1 which has
(S = /ﬁ (5502 E (18) been obtaine(_j f_rc_)m a renormalizatio_n group apprdéch_.
27’ v 4 When the limiting value of the Curie constant fbr0 is
Thus the result obtained in Ref. 12 from a random Walkcalculated on the basis of the above expressions, we find that

argument is seen to be an exact consequence of the Liegye to the random positions of the defects the fagtbre-

. _ 17 i-
Mattis theorem. For a discussion of the low-temperature susS-UItIng fromS(S+1) for S= 3] is replaced by;. The experi

cepbity i some guen cefectconfuraton v gto 12118 IESIng behavior tfnte emperaures nuohes
denote the total spin of the ground statath zero energy in the Curie constant by a factor of 3 gI;twill bé (lale-t’erminedg
and characterize the remaining states=1,2,..., y )

am=2N—1 by their total spinS, and excitation energy to a large extent by the density of states. This is not easily

I AN e . accessible, and in the remainder of this section we present
A ,>0. The limiting susceptibility for low magnetic fields is h be | df ical calculati
then given by what can be learned from numerical calculations.

In Fig. 5 and Table Il we present a nhumber of spectra
2 am -BA, with levels classified according to total sp@ and corre-
- (gue) 2Sp+2,2,2S.)e (19) sponding results from the effective pair model. We have cho-
BkgT (2Sp+1)+2m (2S,+1)e Fra’ sen the parameters under the following aspedjswe want
to control the effective model2) we want to illustrate the
filling of the gap with defect states, an@) we want to
2(S,)=25,(S,+1)(S,+1). (20) present the _effects of the different sign combinations for de-
fects on a given sequence of rungs.
If the ground state of the impure ladder is not a singlet, i.e., For the comparison between the complete ladder spectra
So>0, leading toz(Sy)>0, a Curie susceptibility results in as obtained from the DMRG and the spectra of the effective
the low-temperature limit. FoBy,=0, leading toz(S;)=0, model we refer to Table Ill. We see that the agreement is
the susceptibility shows an activated temperature depervery satisfying, and deviations are generally below 10% with
dence characteristic of a gapped systef (inite); if the  a tendency of better accuracy for low energies. We note that
low-lying states become dense with an asymptotic density odll DMRG energy spectra overestimate the true energies.

N
N/2_ S[Ot ‘

For N>1 we obtain from Stirling’s formula the relative
weight of states withS,,,=0 and S,;=1 (2N is the total
number of defect induced stajes

Stor> 0, 9(Se) = 2(

with
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_ TABLE Ill. Low-energy spectra of the ladder with four and six the §Z =0,1 sectors. It is only in these cases that we have

impurities for different configurations as in Fig. 5: comparison of j¢|yded in Fig. 5 the spectra obtained in the effective model

DMRG and effective Hamiltonian results. (light gray lines.

In Figs. 5a)—5(e) we show spectra for four unpaired spins
A F@) AB) Al4) AG) AB) with four, three, and five complete rungs in between. The

St Ladder Eff. model S  Ladder  Eff. model  POsSsible combinations of the signs are seen to lead to quite

0.000 0.000 different spectra and the general tendency to fill the regular

0 0.000 0.000 0 - ! .
1 0.079 007776 1 0.047 0.04730 ladder gap is evident. Figs(& anq He) result from each
1 0.131 0.12681 1 0.197 0.19146 other .qualltatlvely py an qverall sign change. Although the
magnitudes of the interactions are somewhat diffeeoin-
B 0.198 0.19196 0 0.204 0.20080 pare Table I), this is clearly evident in these spectra. We
1 0.30932 1 0.269 0.26093  therefore present only three out of the remaining six spectra
0 0.32193 2 0.310 0.29890  for this combination of distances in Figs(c5-5(e). Figures
F(4) A(3) A(5) F(4) F(3) A(5) 5(f) and §g) present two examples of symmetric configura-
tions of four spins(here levels are characterized by the ad-
L 0.000 0.000 L 0.000 0.000 ditional quantum number parity which we have not indi-
0 0.030 0.02582 2 0.075 0.07296 cated. The six-defect spectrum shown in Fighbagain is
1 0.156 0.15188 0 0.094 0.09089  for a symmetric configuration. In particular these data illus-
2 0.208 0.20117 1 0.134 0.12860 trate, beyond related calculations, which have been done for
0 0.22053 0 0.23404 the case of two impuritie§how the density of states with
1 0.302 0.29564 1 0.26930 S=1 may increase at low energies with the number of im-
F(4) F(3) F(5) F(5) A(4) F(5) purities. However, a much larger number of impurities will
be required to obtain a reliable numerical estimate for the
2 0.000 0.000 0 0.000 0.000 low-energy density of statgs(e).
1 0.036 0.03474 1 0.010 0.010
0 0.094 0.08660 2 0.109 0.107 V. CONCLUSIONS
1 0.108 0.10041 1 0.168 0.164 _ o N _
2 0.22085 1 0.201 0.194 We have demonstrated that interacting impurities drasti-
0 0.26940 0 0273 0261 caII_y ch:finge the Iow—en_ergy spectrum of an antlf(_a_rromag-
netic spin ladder. A statistical distribution of impurities re-
F(3) A(4) F@) AS) F(4) A(6) F(4) AGS) duces the ladder, as far as its low-energy spectrum is
0 0.000 0.000 0 0.000 0.000 concernedenergy range of the pure ladder gam aS=3
1 0.017 0.017 1 0.051 0.049 chain with random interactions, a model which has recently
2 0.109 0.104 1 0.088 0.081 been used to discuss the expected low-temperature properties
1 0.225 0.216 1 0.095 0.091 of the impure laddet? From our calculatio_ns p'recise i_nfor-'
1 0.271 0.257 2 0.128 0.126 mation on the parameters of the effective interactions is
0 0.403 0.387 5 0.148 0.133 avalla_ble. For Iarge distances between defects the_ effective
0 0.161 coupling strength is foun_d_to decay purely exppnenna!ly. We
have found that it is sufficient to use two-spin interactions to
1 0.166 describe the spectrum of the effectively random chain to
2 0.196 0.182 within 10%. The spectra which we have calculated also il-
3 0.216 0.202 lustrate the beginning of the process that a random distribu-
1 0.219 tion of impurities with concentration produces a large num-
1 0.223 ber (of the order of 24) of low-lying states which will fill
0 0.226 the ladder gap as observed experimentalApplying the
0 0.235 Lieb-Mattis theorem to the impure ladder with antiferromag-
2 0.298 0.281 netic interactions only we argue that for~0 the suscepti-
1 0.309 bility is characterized by a T/ divergence with finite Curie
5 0.325 0311 constant. Our numerical results, however, are not sufficiently
0 0.398 accurate to draw (_:onclu5|ons about the change in Curie con-
1 0.401 stant with increasing temperature.

From our results it becomes also clear that interactions
between unpaired spins which are not nearest neighbors and
m-spin interactions are present and cannot be neglected in
Further corrections will therefore rather improve the agreethe effective model at the outset. They have, however, turned
ment between effective model and DMRG calculations.  out not quantitatively relevant for the low-energy spectra

Since the spectra obtained by the two approaches agree shich we have computed.
well, in Fig. 5 DMRG spectrgsolid lineg only are given The effects of impurities on the spin distribution which
when these are available. However, the higher singlets amde have presented show some similarity to what has been
triplets were not accessible at reasonable computational exliscussed in the context of impure Haldane chaarsl it is
pense as the respective states are already quite high lying irseful to qualitatively compare these two phenomena once
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more: In both systems the unpaired spin at the position of thenent introduce an effective interaction leading to the experi-
impurity shares its magnetic moment with the adjacent partmentally observable splitting of the low-energy spectrum.
of the system, and the degree of this mixing, i.e., its spatial

extent, is determined by .the corrglaﬂon 'Iength. In theT ACKNOWLEDGMENTS
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