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We study phase segregation in a model alloy undergoing both ordering and decomposition, using computer
simulations of Kawasaki exchange dynamics on a square lattice. Following a quench into the miscibility gap
we observe an early stage in which ordering develops while the composition remains almost uniform. Then
decomposition starts with segregation into ordered and disordered phases. The two spherically averaged struc-
ture functions, related to decomposition and to ordering, were both observed to obey scaling rules in the late
coarsening stage where the time increase of the characteristic lengths was consisterit{#ittb). While
a was similar for ordering and decomposition at low concentration of the minority component, it showed an
increase(decreasewith concentration for orderingdecomposition The domain morphology was found to
depend on the concentration of the minority component, in a way that suggests a wetting of antiphase bound-
aries in the ordered domains by the disordered pH&¥163-1827)03005-1

I. INTRODUCTION phology, like the cuboidal shape of the precipitates and their
predominant alignment along certain crystallographic direc-
The kinetics of alloy decomposition is a theoretically tions, are clearly due to the elastic misfit interactions, some
challenging and technologically important problem that hasther features are probably due to the ordering of the precipi-
attracted much attention over many yearSFor alloy sys- tates. Indeed, it is usually found in these alloys that close
tems where the lattice spacings in matrix and precipitate araeighboring precipitates do not merge even though this
the same, and the two-phase structure coarsens with time twould reduce the total surface enerdy'®A possible expla-
reduce its interfacial energy, both the morphology and thenation, proposed in Ref. 20, is that these precipitates belong
growth rate of the domains seem to have a universalo different variants of the same ordered structure so that
behavior! In such systems, the typical domain size growstheir merging would lead initially to an antiphase boundary
asymptotically with time like a powert®, a=1/38°and the  (APB), whose energy is higher than that of the interfaces
essential features of the morphology depend only on the volbetween the ordered precipitates and the disordered matrix.
ume fractionf of precipitates:*° In order to address this issue and to gain a better under-
This “universal” morphology is known to break down in standing of the influence of atomic ordering on the coarsen-
cases where the lattice spacings are different in matrix antghg kinetics and morphology, we have carried out computer
precipitates. The so-induced elastic misfit interactions magimulations of an Ising model on a square lattice with
change the morphology as well as the kinetics of the deconnearest- and next-nearest-neighbor interactions, which does
position. Such systems have been the subject of numeroumt include elastic misfit interactions. There will now be two
experimentdft—*6and theoretical ~2%studies in recent years. variants of the ordered phase depending on which sublattice
It has been found that anisotropic elastic constants lead to tHe occupied by which type of atoms and if a wetting of
formation of very anisotropic, mostly platelike precipitates. APB’s by the disordered phase reduces the total energy, then
Nevertheless, their typical size still grows in many cases likehe domain morphology will be very different from the case
t32415 remaining so even under externally appliedwhere none of the phasésiinority or majority is ordered.
stresse$® In particular, at larger volume fractions of the ordered
An interesting situation occurs in cases where the precipiphase, e.g., whefi>0.5, APB’s are to be expected between
tates are ordered intermetallic alloys, such as in Al-Li or inthe differently ordered domains. It is unclear whether the
nickel-based superalloys. Here the decomposifd@scribed length scale of precipitates in such a system will still grow
by the conserved order parameterthat is the local concen- like t¥ or will behave liket?, the typical growth law for
tration of A atoms in theA-B alloy) couples to an ordering nonconserved quantities.
transition(described by a nonconserved order parameber The model we investigate was studied previously by
Ni-based superalloys both the ordering of the precipitateSahniet al?® Their conclusions were mainly qualitative. In
and the elastic misfit interactions will be preséht®Recent  the present work we extend their simulations and obtain
computer work®?%2627is devoted to the study of models more quantitative information about the joint kinetics of or-
that include both effects. While some features of the mordering and segregation. We concentrate on comparing the
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growth kinetics and morphology at<0.5, f=0.5 and
f>0.5 with those obtained for an alloy where none of the
phases has an ordered intermetallic structure. While¥Re
law appears to hold in all cases, the coefficianhas very
different dependence on concentration for the ordering and
segregation, the former growing much faster for higher con-
centrations. We also find, in the case of high volume fraction disordered
of ordered precipitates, clear evidence of the wetting of
APB’s. This may explain some of the results in Al-Li
system&>° where ordered domains with little lattice mis-
match are formed and supports the interpretation of non-
merging precipitates given in Refs. 29 and 30. We plan to
extend our work to include elastic interactions, present in
Ni-based alloys!~*®* mentioned earlier.

ordered
+++++

Il. THE MODEL 0 ' 05

We consider an Ising model on a two-dimensiof®D)
square lattice with nearest-neighbor interactidref the an-
tiferromagnetic type and next-nearest-neighbor interactions FIG. 1. Schematic equilibrium phase diagréponcentration of
of the ferromagnetic type, which in our simulations we tookB atomsc vs temperaturd) for the modelA-B alloy. The circles
to be —J/2. The total energy of this system, wrapped on a show the conditions at which our computer experiments were per-
torus containingN=L? sites, is formed.

1 =min[1,exg —AU/KT)],
u=J > ooy =5 J > oo, J>0, () N e .
(LI (L1 whereAU is the change in the total energy given by Eq.
whereo =1 if there is anA atom ando=—1 if there is a @). _ _ N
B atom, on the lattice sité=(l,,l,) and the first and the In our simulations we start the realizatiofsomputer

second sums are over all nearest- and next-nearest-neighd’d from randomly generated “infinite” temperature con-

pairs, respectively. The average concentratiosf minority figurations. _Time is then measured in Monte Carlo Steps
(MCS), that is the number of attempted nearest-neighbor ex-

B atoms is . .
changes per lattice site.

c=(1-0)/2,

where lll. CHARACTERIZATION OF CONFIGURATIONS
Since there are two sublattices within the ordered “anti-
— i 2 ferromagnetic” structure on the square lattice, there will also
= a. . .
N 9 be two possible variants for the ordered phase, one where the

i ) . A atoms are on the even sublattigehich we call for short
The phase d'laglrgzm of this system obtained from Montghe eyen variantand one where thé atoms are on the odd
Carlo 5|mglat|oﬁ ““is shown schematically in Fig. 1. The g pattice(odd variant. To represent “snapshot” pictures of
critical point for the ordering transition is a&.=0.5 and  he configurations in a way that clearly differentiates be-

T.=3.8)/k and there is a tricritical point atj=0.27 and  yeen the two variant ordered phases as well as the disor-
T;=1.30/k. Above T, the transition between the disordered yered phase, we use the following variable:

A-rich phase and the ordered phase is of second order, while

below T, the transition is of first order. Figure 1 shows the 1 1
miscibility gap between the ordered phaséth practically m=s op+ ZE o'ls, , 2
stoichiometricA-B composition and the disordered phase. any

Our simulations were performed on a square lattice,
128x 128, with periodic boundary conditions, &=0.9J/k  where the sum is over nearest-neighboring sites, and
at three values for the compositiors=0.15, 0.25, and 0.35.
These are all well within the two-phase region of Fig. 1 oi=(—1)1*2g,
between the ordered intermetallic alloy with stoichiometric
composition AB and the disorderedd-rich phase; corre- is the staggered spin. The variabjgtakes the value-1 at
sponding approximately to volume fractions of orderedsites within ordered domains of the odd variant andi on
phase of abouf=0.3, 0.5, and 0.7, respectively. The dy- sites within ordered domains of the even variant. In the dis-
namics of the ordering/decomposition process, which arerdered phase, where almost all atoms are of the same kind,
our main concern, were followed using Kawasaki dynamicsy=0. Intermediate values==*1/4, =1/2, +3/4 appear
with the Metropolis rule, that is by choosing a nearest-on the interfaces between ordered and disordered domains
neighbor pair at random and then exchanging the atoms witand at isolated atoms dissolved in thA-rich (disordered
probability phase. Translating this into a gray scale, the two variants of
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From these definitions it is apparent that the long-range order
parameterp, for decomposition is conservegince c is
fixed) while 7, is nonconserved. One may further notice that
an alternative way to write, is

1 1
n5=1-ps=5— 75 2 o01=2c(1-c)(1-a). (6)
2 AN
This expression shows thaf, is related linearly to the first
Warren-Cowley short-range order parametgr generally
used in crystallograph?

a;=1-p*B/c,

wherep”8 is the density oB atoms at nearest-neighbor sites
of anA atom. To characterize the decomposition kinetics, we
use the structure function

2

, (7)

1
SKZNZ expik-1) o

c¢=0.15

©=03 where k=(k;,k,) is a reciprocal-lattice vector, with

] . kj=27K;/L andK;=1,2,... L for j=1,2. For the system
FIG. 2. Plots of configurations of the local order paramejer  yndergoing both ordering and decomposition, the structure

(by means of b'rlghtne_s$,= —1 being w_hne anep=+1 being  fynction (shown in Fig. 3 by means of brightnéss local-

black), at three time pointg3=5, 20, 40(time, t in units of MCS, izing in two areas, around the pointr(w) (related to order-

from top to bottom for each of three concentratiorss= 0.15, 0.25, . : s

ing) and around the poir©®,0) (related to decompositigrof
and 0.35. The disordered phase has-0 and appears gray. The re?:)i rocal space chr)(te, ) (thatS — Np2 {End ()that
lattice size is 128 128. P , Space. ’ (0.0~ NPir

S(7T,’77): N M -

the ordered phases appear black and white, respectively, 10 Study kinetics and scaling properties of the two pro-
while the disordered phase appears in gray, see Fig. 2.  cesses we divide thisquare-shapedrillouin zone in recip-

The staggered spin-local averaggcan be interpreted as ocal space in two equal aredsold lines in Fig. 3: the
local order parameter for ordering and its absolute value av8guare for ordering,

eraged over the lattice, Q.= {k:|ky — 7| + kot 7| < 77} ®)
=t (that is inside that boundary in Fig) 8nd the remaining four
75171 = N2| (71 @ guarters of the square for decomposition. Using the period-

icity of the reciprocal lattice, the latter can be put together as

can be considered as a short-range order pararffetethe a square,

atomic ordering, as opposed to decomposijtidinrepresents
the relative amount of ordered phase, irrespective of whether Qo={k:|k¢| +|ko| =7} (9

the order corresponds to the odd or the even variant.

The average over the entire lattice of the staggered spiilOWn separately in Fig. 3 with higher resolution for values
local average, of the structure function. To test scaling behavior of the

structure function, we sphericalize it within the two squares

1 1 s Q, related to ordering k=) and to decomposition
Me=n= NEI ﬂIZNEl gy (4) (v=0), separately. We define
is equal to the global average of the staggered spin variable _
and can be considered as a long-range order parameter. It Si(k)= %) S A%) L (10

corresponds to twice the difference in the concentration of
A atoms between the odd and the even sublattice. Simila¢here
order parameters may also be defined for decomposition, al- e ,
though their interpretation is more ambiguous now, Ay(K)={k" k= ok<[k’ = (v, »)[<k+ ok}
1 1 is a ring of width 2k and median radius
— _ (1,2 2\1/2 7 H
pe= NE lol, = NE p=1-2c, (5) k—|k|—(k1+k2_) , centered at %,v). The sphericalized
I [ structure function was actually computed for the values
k=2xK/L, K being an integerk=1,2, ... [L/2y2], and

where
choosingdk= /L. Since the configurations on the lattice

1 1 are evolving with time, we are also using the notation
PI=3 o+ ZZ+ oy . S,(k,t) for the sphericalized structure function computed for
U the configuration at time.
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ks therefore had to find a way which minimizes distortions of
the time dependence of the, due to the finite size of the
system. To achieve this we defined the moments

Ky Kp
k()= KIS, (kt) / X KS,(kt) (12
Ko Ka

with rg=1 andr =2, where the limits of summatiork,
andk, , were themselves scaled in accordance Wift), by
settingk, ,(t) =(1xh)k,(t); so at different times the mo-
ments are calculated from similar intervals. Takimg 0.7,
the interval aroundk, was large enough to give sufficient
statistics for the summation, but still small enough to avoid
any contribution from the structure function at very small or
very largek, which might be affected by finite-size effects.
Thek,(t) so obtained appeared to follow the position of the
maximum ofk'+S,(k,t) in Eq. (12).

With the procedure described above, finite-size effects on
k,(t) could be minimized. Indeed, additional runs performed
on a smaller lattice (6464) gave consistent results for the
time evolution ofk,(t). Of course this still leaves consider-
able uncertainties in determinirig(t). For the size of sys-
tem we are dealing with, the gaps in tkis, which are equal
to 2#/L, limit any finer resolution independent of the num-
ber or duration of the runs.

(0,7)

(m,0)

IV. RESULTS

FIG. 3. Plot(by means of brightness, black meaning high val-  Snapshot pictures of typical configurations obtained at
ues of the structure functionS, , in the entire Brillouin zondtop) T=0.9/k for alloy compositionsc=0.15, 0.25, and 0.35
and in its parts related to decompositidyottom, with higher con-  with lattice sizeL =128 are shown in Fig. 2. The value for
trasp att¥3=5 (time, t is given in units of MC$, for the concen-  the locally averaged spim,, defined in Eq(2) is shown at
trationc=0.25. 125, 8000, and 64 000 MCS. Three different types of do-

. ) . mains appear in these pictures in white, black, and gray cor-

The scaling hypothesis for the late stages of coarsening, ifssponding to ordered phases on the even and the odd sub-
systems undergoing either phase segregation or ordering, jigitice and the disordere@i-rich phase, respectively. In the
that the system is characterized by a single s&#t¢. This casec=2.5, the gray phase covers about half of the speci-
means in particular that for values kf ! which are large men volume, while at=0.35 it covers less and at=0.15
compared to the lattice spacing and small compared 1o thg\gre, This is, as already mentioned, in qualitative agreement
size of the systen§(k,t) should (up to a time-dependent \yith the equilibrium phase diagraff?:32where the pre-
facton be a function of only one variabla(t)k. In our case (icted volume fractions of black or whitéhat is ordered
we needa priori two characteristic lengths,,(t), v=0,7. hase aré=0.3, 0.5, and 0.7 foc=0.15, 0.25, and 0.35,
We therefore hypothesize that for the system under CO”SKJ%Spectively, see Fig. 1. In the case of decomposition without
eration ordering, when the miscibility gap is symmetric around the

~ critical composition, the behavior of an alloy with=0.3

S (kD)=A,(DF (kA (1)) as t—x, (1D \would be identical to the one #&t=0.7, with the two phases
whereS,(k,t) is the macroscopic, formally the infinite vol- €Xchanged in their respective role. In the present case, how-
ume limit, for fixedk+0, of the corresponding sphericalized €V€l: it becomes clear from looking at Fig. 2 that there is a

structure function at time:® completely different behavior on different sides of the tric-
ritical composition. Atc=0.15 the pictures show isolated
S,(k,)—S,(k,t) as L—x. ordered droplets within a disordered matrix, while for

) ) . ) ¢=0.35 they show the disordered phase surrounding the or-
We shall ShOW, in Sec. IV, that this generallZEd Scallng hy'dered domainsy i_e.’ we see an ordered a”oy with the an-

pothesis is indeed consistent with our simulation data.  tiphase boundaries between the two ordered variants wetted
One of the common ways of defining a characteristichy the disordered phase.

length is to use inverse moments of the structure function.
Since we are restricted in simulations to systems which are
very small on the macroscopic scale, great care has to be
taken in computing from the available data quantities rel- We observe that the short-range order paramejgr
evant for macroscopic systems. This is doubly so for ourcomes rapidly to the steady value,Zorresponding to com-
system where we have both ordering and segregation. Welete ordering. We find that the relative deviation becomes

A. Early stage behavior
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FIG. 4. (a) Plots of the spherically averaged structure function  [iG. 5. Dependence of the characteristic wave length(#r
for ordering,S,(k), att"*=2, 5, 10(time, t is given in units of ordering,\,, and (b) decomposition), on time,t (in units of
MCS) for concentratiore=0.25.(b) So(k) at timest**=5, 10, 20.  MCs) at three concentrations=0.15 (diamonds, 0.25(star3, and

0.35(triangles.
small,| 7s/2c—1|<10"2, by the timet~10?, indicating that
local ordering is well developed by that time. At the same
time a domain structure starts to be visildee Fig. 2 Or- NSO=E Sk (14
dered domains of both kindgven and odd varianbccur in Q
about equal fractions. Domains of pure minority component
are practically not observe@n the original spin configura- also reaches a steady valiésy, with sg=(1—2c)2c,
tion) after timet~ 107. Then segregation of ordered and ma-which was to be expected, since there is a general relation

jority phases develops. betweensy ands,.:
We further observe that the sphericalized structure func-
tion for ordering,S,(k), develops a maximum localized at Sy+S=1—So/N=4c(1—-c). (15

k~0 by the timet~10 (starting from timest~1) which

grows sharper asincreasegFig. 4a)], while the spherical- The relative deviation ofs, from its equilibrium value,

ized structure function for decompositioB,(k), develops a  |so/s§— 1|, becomes smaller than 18, for timest> 107,

maximum atk~k, later, starting at~ 10 [Fig. 4b)]. This

shows, in agreement with.whgt was found in Refs. 29, 30, B. Scaling analysis

and 34, that, initially, ordering is much faster than decompo- ) )

sition. As already mentioned, both spherical averages of the
Moreover, the sum of the structure function componentstructure functionsS.(k), and So(k) defined in Eq.(10),

related to ordering
TABLE |. Parameters, andb, characterizing the growth Eq.

(16) of the characteristic lengths defined in E42), at different

Ns,= g‘, S (13 concentrationg of minority component.
. a, b, ag bg
approaches the constant valud € which corresponds to the
area of ordered phase at complete phase separation. Singi415 0.78 9.0 0.77 7.0
larly, the sum of the structure function components related t@. 25 0.94 11.0 0.67 5.5
decompositior(that is, within the squar€, with exclusion .35 1.7 10.0 0.475 9.0

of the origin,
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FIG. 6. (a) Scaling of the structure function spherical average for ordefingk/k,) wherek,=a’(t¥*+b,), for c=0.15, 0.25, and
0.35. The full line is a fit with Eq.(22). (b) Scaling of the structure function spherical average for decomposiigk/k,), where
ko=a,(t¥*+by) (at the same three concentratipriEhe full line is a fit with Eq.(21), with the parameters given in Table II.

have a well defined single maximum by the time10° or  k,(t) by a time-independentbut composition-dependent
10* [see Figs. @) and 4b)]. Using these functions to com- factor, i.e.,

pute the moments defined in E@.2) we find that the two

characteristic dimensions related to ordering and decomposi- 2m/k)(t)=a,(t*3*+Db,). (18)

tion, A (t), satisfy’>° .
® v A standard way to choose the constamfsand By is to

13 require that the scaling functidf, satisfy the normalization
N (D) =2m/k,(t)~a,(t"*+b,) (16)  condition

for times greater than £0This can be seen in Figs(d and maq Fo(x)]=Fg(1)=1. (19
5(b), for ordering and decomposition, respectively. The con-_ _ . o _
stantsa, andb, are given in Table I. Equatiofl6) shows This permits comparison of characteristic parameters at dif-
that the growth of all characteristic dimensions is consistenferent concentrations. _ .
with the fimiliart“3 growth law?3° although an unambiguous 10 better locate the maximum of the functién(x), we
determination of the growth law exponent would only petried various empirical fits starting with a one-parameter fit-
possible with much longer runs on a considerably largefing expression proposed for decomposition in two dimen-
lattice. sions, Eq.(14) in Ref. 9. While this works well for pure

We now investigate the scaling hypothesis for bothSegregation and gave a reasonable fit to our data, it appeared

functions which requires thas,(k,t) can be written in the to miss the stronger asymmetry, about the maximum, present
form in our system. This was particularly apparentcat0.35

when the morphology is indeed very different from the pure

)2 , segregation case. We found by trial and error that the follow-
Sv(k:t)Nkay(t) Fv(k/ky(t))a (17) mg formula:

where we have used the constancy of the sums in @&. Fo(X)=ax¥(y+xH[ B+ (x*—1+6)?]", a,B,y>0,
and (14); k,(t) may differ from the previously defined (20
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TABLE Il. Parametersa, and B, used for the scaling of the 1.3
structure functions, Eqq17) and (18), and parameterg and &
used for the fitting ofFo(x) with Eq. (21), as a function of the L2 1
concentration of minority atoms,. 11l |
c a,. B, ay Bo B é 1f .
FWHM
0.15 0.82 31 0.97 0.53 1.47 0.13 0.9 .
0.25 1.01 5.1 0.79 0.75 0.98 0.065 08 k- i
0.35 1.75 6.7 0.65 0.37 3.5 0.55
07 | J
r=23/4, gave a good fit. The forr20) with 3/4 replaced by 0'60 0.2 0.4 0.6 0.8 1

(d+1)/4 is a generalization, satisfying Porod’'s law f

[Fo(X)~x"@*1) at x—],%® of a heuristic formula sug- FIG. 7. Full width at half maxi tth lina function f
gested in Ref. 10 for 3D alloyévhered=3). Definition of - /. Full widih at hall maximum ol the scallng function tor

the standard form functioffo(x) yields two relations be- 4ecomPposition normalized according to E@9), as a function of
the volume fractiorf of the B-rich phase(crosses Data obtained
tween parameters

with a two-dimensional Ising model with attractive nearest-
oy ) neighbor interaction between like atonftaken from Ref. 9 are
a=(1+y)(B+69)", y=rdl(B—ro+5) (21)  aso shown for comparisofdiamonds.

so, two of the four parameters, preferalgiyand 8, are inde-
pendent. These were fitted from the data. V. DISCUSSION
For F, the situation was more difficult, because there
was no scaling close ton(,7v). The reason for this is that
S(7r,7) is related to the(nonconservedlong-range order
parameter[S(rr,Tr)anﬁ], which depends strongly on
how the ordered phase is distributed over the two sublattice
Further away from the #,#) point, the structure function
describes the short-range order, which is not sensitive t
the difference between the two sublattices. Because of thaf, -, corresponds to the coarsening of domains by long-

a, andB, were determined by fitting of (x) in the re- 40 giffusion, much like in a situation where decomposi-
gion .where scaling holds, to the square of the Lorentziag;;n"into two pure(or disorderell phases occurs. The fact
function, that ordering appears prior to decomposition has been ob-
served experimentaffy°11-1°and can be explained by the
Fo(0)=1(1+x?)2. (22 fact that the diffusion oB atoms is required only over short
distances for the development of atomic order but needs to
As shown in Fig. 6, we observe scaling of both structurecover long distances for the decomposition into phases with
functions (for ordering and for decompositiprfor times  different amounts oB atoms.
t~10* throught~ 10°. The obtained values for the constants The coarsening kinetics of the domains, measured by
B, & a,, andB, are given in Table Il. We find thaa_, the correlation lengths for decompositid, X, and for or-
giving the rate of ordering kinetics, increases while the ratejering,k_*, is consistent with a growth of domain size pro-
a, of decompositior(coarseningdecreases with the amount portional tot', in agreement with experiments on ordered
of ordered phase at equilibrium. This is presumably due tqrecipitate$®3811-15This growth law, as well as the ob-
the very different morphologies at high and low concentra-served time scaling of the structure function, are a signature
tions discussed earlier. of the coarsening of two-phase structures under the influence
Finally, the dependence of full width at half maximum of interfacial energy:*=’The most striking difference be-
(FWHM) of the scaling function on the volume fraction of tween the present case and a conventional coarsening process
B-rich phase is given in Fig. 7 where it is compared with (with two disordered or pure phasds the composition de-
the FWHMeg,, obtained from simulations on the two- pendence of the morphology.
dimensional Ising model with attractive nearest-neighbor in- In particular, the lack in symmetry between the cases
teraction between like atonisThe FWHMe,, is practically  ¢=0.15 (with volume fractionf~0.3) andc=0.35 (with
temperature independefior 0.34<T/T.<0.8, T, being the  volume fractionf~0.7) may be related to the presence of
critical temperatureand symmetric around the volume frac- ordered domains of two kind®n the two sublatticeswith
tion f=0.5. In the present model, however, the scaling funcsome additional positive energy appeari@s pointed out,
tion is wider in all cases, indicating a smaller amount ofe.g., in Refs. 29, 30, and Bén their interface when they are
regularity in the positions of the precipitates. Moreover,coming in contact due to their growtlantiphase boundayy
there is a clear asymmetry betwelern 0.3 andf ~0.7, which  These antiphase boundarigsPB’s) appear to be wetted by
is not surprising since the morphologies of the two-phasehe disordered phase which reduces the overall energy of the
mixtures are also quite different at these compositi@@is  system. Hence, even though the ordered phase is the majority
Fig. 2. at c=0.35, individual ordered droplets do not join up but

The general picture emerging for the ordering/
decomposition process in the present model is that the phase
transformation starts with the development(short-rangg
order followed by the appearance of well-ordered domains
Thside a disordered matrix. At this stage, the ordelfing
characterized by the short-range order parametgr Eq.

)] has reached its maximum value and the further develop-
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