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Kinetics of joint ordering and decomposition in binary alloys
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We study phase segregation in a model alloy undergoing both ordering and decomposition, using computer
simulations of Kawasaki exchange dynamics on a square lattice. Following a quench into the miscibility gap
we observe an early stage in which ordering develops while the composition remains almost uniform. Then
decomposition starts with segregation into ordered and disordered phases. The two spherically averaged struc-
ture functions, related to decomposition and to ordering, were both observed to obey scaling rules in the late
coarsening stage where the time increase of the characteristic lengths was consistent witha(t1/31b). While
a was similar for ordering and decomposition at low concentration of the minority component, it showed an
increase~decrease! with concentration for ordering~decomposition!. The domain morphology was found to
depend on the concentration of the minority component, in a way that suggests a wetting of antiphase bound-
aries in the ordered domains by the disordered phase.@S0163-1829~97!03005-1#
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I. INTRODUCTION

The kinetics of alloy decomposition is a theoretica
challenging and technologically important problem that h
attracted much attention over many years.1–6 For alloy sys-
tems where the lattice spacings in matrix and precipitate
the same, and the two-phase structure coarsens with tim
reduce its interfacial energy, both the morphology and
growth rate of the domains seem to have a unive
behavior.7 In such systems, the typical domain size gro
asymptotically with timet like a powerta, a51/3,8,9 and the
essential features of the morphology depend only on the
ume fractionf of precipitates.9,10

This ‘‘universal’’ morphology is known to break down i
cases where the lattice spacings are different in matrix
precipitates. The so-induced elastic misfit interactions m
change the morphology as well as the kinetics of the dec
position. Such systems have been the subject of nume
experimental11–16and theoretical17–26studies in recent years
It has been found that anisotropic elastic constants lead to
formation of very anisotropic, mostly platelike precipitate
Nevertheless, their typical size still grows in many cases
t1/3,24,15 remaining so even under externally appli
stresses.25

An interesting situation occurs in cases where the prec
tates are ordered intermetallic alloys, such as in Al-Li or
nickel-based superalloys. Here the decomposition~described
by the conserved order parameterc, that is the local concen
tration ofA atoms in theA-B alloy! couples to an ordering
transition~described by a nonconserved order parameter!. In
Ni-based superalloys both the ordering of the precipita
and the elastic misfit interactions will be present.11–15Recent
computer work19,20,26,27 is devoted to the study of mode
that include both effects. While some features of the m
550163-1829/97/55~5!/2912~8!/$10.00
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phology, like the cuboidal shape of the precipitates and th
predominant alignment along certain crystallographic dir
tions, are clearly due to the elastic misfit interactions, so
other features are probably due to the ordering of the prec
tates. Indeed, it is usually found in these alloys that clo
neighboring precipitates do not merge even though
would reduce the total surface energy.11–15A possible expla-
nation, proposed in Ref. 20, is that these precipitates bel
to different variants of the same ordered structure so
their merging would lead initially to an antiphase bounda
~APB!, whose energy is higher than that of the interfac
between the ordered precipitates and the disordered ma

In order to address this issue and to gain a better un
standing of the influence of atomic ordering on the coars
ing kinetics and morphology, we have carried out compu
simulations of an Ising model on a square lattice w
nearest- and next-nearest-neighbor interactions, which d
not include elastic misfit interactions. There will now be tw
variants of the ordered phase depending on which subla
is occupied by which type of atoms and if a wetting
APB’s by the disordered phase reduces the total energy,
the domain morphology will be very different from the ca
where none of the phases~minority or majority! is ordered.
In particular, at larger volume fractionsf of the ordered
phase, e.g., whenf.0.5, APB’s are to be expected betwee
the differently ordered domains. It is unclear whether t
length scale of precipitates in such a system will still gro
like t1/3 or will behave liket1/2, the typical growth law for
nonconserved quantities.

The model we investigate was studied previously
Sahniet al.28 Their conclusions were mainly qualitative. I
the present work we extend their simulations and obt
more quantitative information about the joint kinetics of o
dering and segregation. We concentrate on comparing
2912 © 1997 The American Physical Society
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55 2913KINETICS OF JOINT ORDERING AND . . .
growth kinetics and morphology atf,0.5, f50.5 and
f.0.5 with those obtained for an alloy where none of t
phases has an ordered intermetallic structure. While thet1/3

law appears to hold in all cases, the coefficienta has very
different dependence on concentration for the ordering
segregation, the former growing much faster for higher c
centrations. We also find, in the case of high volume fract
of ordered precipitates, clear evidence of the wetting
APB’s. This may explain some of the results in Al-L
systems29,30 where ordered domains with little lattice mis
match are formed and supports the interpretation of n
merging precipitates given in Refs. 29 and 30. We plan
extend our work to include elastic interactions, present
Ni-based alloys,11–15mentioned earlier.

II. THE MODEL

We consider an Ising model on a two-dimensional~2D!
square lattice with nearest-neighbor interactionsJ of the an-
tiferromagnetic type and next-nearest-neighbor interacti
of the ferromagnetic type, which in our simulations we to
to be2J/2. The total energyU of this system, wrapped on
torus containingN5L2 sites, is

U5J (
^ l,l8&1

s ls l82
1

2
J (

^ l,l8&3

s ls l8, J.0, ~1!

wheres l51 if there is anA atom ands l521 if there is a
B atom, on the lattice sitel5( ll ,l2) and the first and the
second sums are over all nearest- and next-nearest-neig
pairs, respectively. The average concentrationc of minority
B atoms is

c5~12s̄ !/2,

where

s̄5
1

N (
l

s l .

The phase diagram of this system obtained from Mo
Carlo simulation31,32 is shown schematically in Fig. 1. Th
critical point for the ordering transition is atcc50.5 and
Tc.3.8J/k and there is a tricritical point atci.0.27 and
Tt.1.3J/k. AboveTt the transition between the disordere
A-rich phase and the ordered phase is of second order, w
below Tt the transition is of first order. Figure 1 shows th
miscibility gap between the ordered phase~with practically
stoichiometricA-B composition! and the disordered phase

Our simulations were performed on a square latti
1283128, with periodic boundary conditions, atT50.9J/k
at three values for the composition,c50.15, 0.25, and 0.35
These are all well within the two-phase region of Fig.
between the ordered intermetallic alloy with stoichiomet
compositionAB and the disorderedA-rich phase; corre-
sponding approximately to volume fractions of order
phase of aboutf50.3, 0.5, and 0.7, respectively. The d
namics of the ordering/decomposition process, which
our main concern, were followed using Kawasaki dynam
with the Metropolis rule, that is by choosing a neare
neighbor pair at random and then exchanging the atoms
probability
d
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v5min@1,exp~2DU/kT!#,

whereDU is the change in the total energyU given by Eq.
~1!.

In our simulations we start the realizations~computer
runs! from randomly generated ‘‘infinite’’ temperature con
figurations. Time is then measured in Monte Carlo Ste
~MCS!, that is the number of attempted nearest-neighbor
changes per lattice site.

III. CHARACTERIZATION OF CONFIGURATIONS

Since there are two sublattices within the ordered ‘‘an
ferromagnetic’’ structure on the square lattice, there will a
be two possible variants for the ordered phase, one where
A atoms are on the even sublattice~which we call for short
the even variant! and one where theA atoms are on the odd
sublattice~odd variant!. To represent ‘‘snapshot’’ pictures o
the configurations in a way that clearly differentiates b
tween the two variant ordered phases as well as the di
dered phase, we use the following variable:

h l5
1

2 S s l
s1

1

4 (
^ l8& l

1
s l8
s D , ~2!

where the sum is over nearest-neighboring sites, and

s l
s5~21! l11 l2s l

is the staggered spin. The variableh l takes the value21 at
sites within ordered domains of the odd variant and11 on
sites within ordered domains of the even variant. In the d
ordered phase, where almost all atoms are of the same k
h l50. Intermediate valuesh l561/4, 61/2, 63/4 appear
on the interfaces between ordered and disordered dom
and at isolatedB atoms dissolved in theA-rich ~disordered!
phase. Translating this into a gray scale, the two variant

FIG. 1. Schematic equilibrium phase diagram~concentration of
B atomsc vs temperatureT) for the modelA-B alloy. The circles
show the conditions at which our computer experiments were
formed.
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2914 55V. I. GORENTSVEIG, P. FRATZL, AND J. L. LEBOWITZ
the ordered phases appear black and white, respecti
while the disordered phase appears in gray, see Fig. 2.

The staggered spin-local averageh l can be interpreted a
local order parameter for ordering and its absolute value
eraged over the lattice,

hsr[uh̄u5
1

N(
l

uh lu ~3!

can be considered as a short-range order parameter~for the
atomic ordering, as opposed to decomposition!. It represents
the relative amount of ordered phase, irrespective of whe
the order corresponds to the odd or the even variant.

The average over the entire lattice of the staggered
local average,

h lr[h̄5
1

N(
l

h l5
1

N(
l

s l
s , ~4!

is equal to the global average of the staggered spin vari
and can be considered as a long-range order paramet
corresponds to twice the difference in the concentration
A atoms between the odd and the even sublattice. Sim
order parameters may also be defined for decomposition
though their interpretation is more ambiguous now,

rsr[
1

N(
l

ur lu, r lr[
1

N(
l

r l5122c, ~5!

where

r l5
1

2 S s l1
1

4 (
^ l8& l

1
s l8D .

FIG. 2. Plots of configurations of the local order parameterh l

~by means of brightnessh l521 being white aneh l511 being
black!, at three time points,t1/355, 20, 40~time, t in units of MCS,
from top to bottom! for each of three concentrations,c50.15, 0.25,
and 0.35. The disordered phase hash l'0 and appears gray. Th
lattice size is 1283128.
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From these definitions it is apparent that the long-range o
parameterr lr for decomposition is conserved~since c is
fixed! while h lr is nonconserved. One may further notice th
an alternative way to writehsr is

hsr512rsr5
1

2
2

1

4N (
^ l,l8&1

s ls l852c~12c!~12a1!. ~6!

This expression shows thathsr is related linearly to the first
Warren-Cowley short-range order parametera1 generally
used in crystallography,33

a1512pAB/c,

wherepAB is the density ofB atoms at nearest-neighbor site
of anA atom. To characterize the decomposition kinetics,
use the structure function

Sk5
1

N U(
l
exp~ ik• l!s lU2, ~7!

where k5(k1 ,k2) is a reciprocal-lattice vector, with
kj52pKj /L andKj51,2, . . . ,L for j51,2. For the system
undergoing both ordering and decomposition, the struct
function ~shown in Fig. 3 by means of brightness! is local-
izing in two areas, around the point (p,p) ~related to order-
ing! and around the point~0,0! ~related to decomposition! of
reciprocal space. Note, thatS(0,0)5Nr lr

2 and that
S(p,p)5Nh lr

2 .
To study kinetics and scaling properties of the two p

cesses we divide the~square-shaped! Brillouin zone in recip-
rocal space in two equal areas~bold lines in Fig. 3!: the
square for ordering,

Vp5$k:uk12pu1uk21pu<p% ~8!

~that is inside that boundary in Fig. 3! and the remaining four
quarters of the square for decomposition. Using the peri
icity of the reciprocal lattice, the latter can be put together
a square,

V05$k:uk1u1uk2u<p% ~9!

shown separately in Fig. 3 with higher resolution for valu
of the structure function. To test scaling behavior of t
structure function, we sphericalize it within the two squar
Vn related to ordering (n5p) and to decomposition
(n50), separately. We define

Sn~k!5 (
Dn~k!

Sk8Y (
Dn~k!

1, ~10!

where

Dn~k!5$k8:k2dk,uk82~n,n!u<k1dk%

is a ring of width 2dk and median radius
k5uku5(k1

21k2
2)1/2, centered at (n,n). The sphericalized

structure function was actually computed for the valu
k52pK/L, K being an integer:K51,2, . . . ,@L/2A2#, and
choosingdk5p/L. Since the configurations on the lattic
are evolving with time, we are also using the notati
Sn(k,t) for the sphericalized structure function computed
the configuration at timet.
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55 2915KINETICS OF JOINT ORDERING AND . . .
The scaling hypothesis for the late stages of coarsenin
systems undergoing either phase segregation or orderin
that the system is characterized by a single scalel(t). This
means in particular that for values ofk21 which are large
compared to the lattice spacing and small compared to
size of the systemS(k,t) should ~up to a time-dependen
factor! be a function of only one variable,l(t)k. In our case
we needa priori two characteristic lengths,ln(t), n50,p.
We therefore hypothesize that for the system under con
eration

S̃n~k,t !'An~ t !Fn„kln~ t !… as t→`, ~11!

whereS̃n(k,t) is the macroscopic, formally the infinite vo
ume limit, for fixedkÞ0, of the corresponding sphericalize
structure function at timet:9

Sn~k,t !→S̃n~k,t ! as L→`.

We shall show, in Sec. IV, that this generalized scaling
pothesis is indeed consistent with our simulation data.

One of the common ways of defining a characteris
length is to use inverse moments of the structure funct
Since we are restricted in simulations to systems which
very small on the macroscopic scale, great care has to
taken in computing from the available data quantities r
evant for macroscopic systems. This is doubly so for
system where we have both ordering and segregation.

FIG. 3. Plot~by means of brightness, black meaning high v
ues! of the structure function,Sk , in the entire Brillouin zone~top!
and in its parts related to decomposition~bottom, with higher con-
trast! at t1/355 ~time, t is given in units of MCS!, for the concen-
tration c50.25.
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therefore had to find a way which minimizes distortions
the time dependence of theln due to the finite size of the
system. To achieve this we defined the moments

kn~ t !5(
ka

kb

k11r nSn~k,t !Y (
ka

kb

kr nSn~k,t ! ~12!

with r 051 and rp52, where the limits of summation,ka
andkb , were themselves scaled in accordance withkn(t), by
settingka,b(t)5(16h)kn(t); so at different times the mo
ments are calculated from similar intervals. Takingh50.7,
the interval aroundkn was large enough to give sufficien
statistics for the summation, but still small enough to avo
any contribution from the structure function at very small
very largek, which might be affected by finite-size effect
Thekn(t) so obtained appeared to follow the position of t
maximum ofkr nSn(k,t) in Eq. ~12!.

With the procedure described above, finite-size effects
kn(t) could be minimized. Indeed, additional runs perform
on a smaller lattice (64364) gave consistent results for th
time evolution ofkn(t). Of course this still leaves conside
able uncertainties in determiningkn(t). For the size of sys-
tem we are dealing with, the gaps in thek’s, which are equal
to 2p/L, limit any finer resolution independent of the num
ber or duration of the runs.

IV. RESULTS

Snapshot pictures of typical configurations obtained
T50.9J/k for alloy compositionsc50.15, 0.25, and 0.35
with lattice sizeL5128 are shown in Fig. 2. The value fo
the locally averaged spinh l , defined in Eq.~2! is shown at
125, 8000, and 64 000 MCS. Three different types of d
mains appear in these pictures in white, black, and gray
responding to ordered phases on the even and the odd
lattice and the disorderedA-rich phase, respectively. In th
casec52.5, the gray phase covers about half of the spe
men volume, while atc50.35 it covers less and atc50.15
more. This is, as already mentioned, in qualitative agreem
with the equilibrium phase diagram,28,31,32 where the pre-
dicted volume fractions of black or white~that is ordered!
phase aref50.3, 0.5, and 0.7 forc50.15, 0.25, and 0.35
respectively, see Fig. 1. In the case of decomposition with
ordering, when the miscibility gap is symmetric around t
critical composition, the behavior of an alloy withf50.3
would be identical to the one atf50.7, with the two phases
exchanged in their respective role. In the present case, h
ever, it becomes clear from looking at Fig. 2 that there i
completely different behavior on different sides of the tr
ritical composition. Atc50.15 the pictures show isolate
ordered droplets within a disordered matrix, while f
c50.35 they show the disordered phase surrounding the
dered domains, i.e., we see an ordered alloy with the
tiphase boundaries between the two ordered variants we
by the disordered phase.

A. Early stage behavior

We observe that the short-range order parameterhsr
comes rapidly to the steady value 2c, corresponding to com-
plete ordering. We find that the relative deviation becom
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2916 55V. I. GORENTSVEIG, P. FRATZL, AND J. L. LEBOWITZ
small, uhsr/2c21u<1022, by the timet'102, indicating that
local ordering is well developed by that time. At the sam
time a domain structure starts to be visible~see Fig. 2!. Or-
dered domains of both kinds~even and odd variant! occur in
about equal fractions. Domains of pure minority compon
are practically not observed~in the original spin configura-
tion! after timet;102. Then segregation of ordered and m
jority phases develops.

We further observe that the sphericalized structure fu
tion for ordering,Sp(k), develops a maximum localized a
k;0 by the timet;10 ~starting from timest;1) which
grows sharper ast increases@Fig. 4~a!#, while the spherical-
ized structure function for decomposition,S0(k), develops a
maximum atk;k0 later, starting att;102 @Fig. 4~b!#. This
shows, in agreement with what was found in Refs. 29,
and 34, that, initially, ordering is much faster than decom
sition.

Moreover, the sum of the structure function compone
related to ordering

Nsp5(
Vp

Sk ~13!

approaches the constant value 2Nc, which corresponds to the
area of ordered phase at complete phase separation. S
larly, the sum of the structure function components relate
decomposition~that is, within the squareV0 with exclusion
of the origin!,

FIG. 4. ~a! Plots of the spherically averaged structure functi
for ordering,Sp(k), at t

1/352, 5, 10 ~time, t is given in units of
MCS! for concentrationc50.25.~b! S0(k) at timest

1/355, 10, 20.
t

-

-

,
-

s

mi-
to

Ns05(
V08

Sk ~14!

also reaches a steady valueNs0
c , with s0

c.(122c)2c,
which was to be expected, since there is a general relat
betweens0 andsp :

sp1s0512S~0,0! /N54c~12c!. ~15!

The relative deviation ofs0 from its equilibrium value,
us0 /s0

c21u, becomes smaller than 1022, for timest.102.

B. Scaling analysis

As already mentioned, both spherical averages of t
structure functions,Sp(k), and S0(k) defined in Eq.~10!,

TABLE I. Parametersan andbn characterizing the growth Eq.
~16! of the characteristic lengths defined in Eq.~12!, at different
concentrationsc of minority component.

c ap bp a0 b0

0.15 0.78 9.0 0.77 7.0
0.25 0.94 11.0 0.67 5.5
0.35 1.7 10.0 0.475 9.0

FIG. 5. Dependence of the characteristic wave length for~a!
ordering,lp , and ~b! decomposition,l0, on time, t ~in units of
MCS! at three concentrations:c50.15~diamonds!, 0.25~stars!, and
0.35 ~triangles!.
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FIG. 6. ~a! Scaling of the structure function spherical average for ordering,Fp(k/kp) wherekp5ap8 (t
1/31bp), for c50.15, 0.25, and

0.35. The full line is a fit with Eq.~22!. ~b! Scaling of the structure function spherical average for decomposition,F0(k/k0), where
k05a08(t

1/31b0) ~at the same three concentrations!. The full line is a fit with Eq.~21!, with the parameters given in Table II.
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have a well defined single maximum by the timet;103 or
104 @see Figs. 4~a! and 4~b!#. Using these functions to com
pute the moments defined in Eq.~12! we find that the two
characteristic dimensions related to ordering and decomp
tion, ln(t), satisfy

35,9

ln~ t !52p/kn~ t !'an~ t1/31bn! ~16!

for times greater than 103. This can be seen in Figs. 5~a! and
5~b!, for ordering and decomposition, respectively. The co
stantsan andbn are given in Table I. Equation~16! shows
that the growth of all characteristic dimensions is consist
with the fimiliar t1/3 growth law8,35although an unambiguou
determination of the growth law exponent would only
possible with much longer runs on a considerably lar
lattice.

We now investigate the scaling hypothesis for bo
functions which requires thatSn(k,t) can be written in the
form

Sn~k,t !'Bnkn8~ t !
22Fn„k/kn8~ t !…, ~17!

where we have used the constancy of the sums in Eqs.~13!
and ~14!; kn8(t) may differ from the previously defined
si-

-

t

r

kn(t) by a time-independent~but composition-dependent!
factor, i.e.,

2p/kn8~ t !5an8~ t
1/31bn!. ~18!

A standard way to choose the constantsa08 and B0 is to
require that the scaling functionF0 satisfy the normalization
condition

max@F0~x!#5F0~1!51. ~19!

This permits comparison of characteristic parameters at
ferent concentrations.

To better locate the maximum of the functionF0(x), we
tried various empirical fits starting with a one-parameter
ting expression proposed for decomposition in two dime
sions, Eq.~14! in Ref. 9. While this works well for pure
segregation and gave a reasonable fit to our data, it appe
to miss the stronger asymmetry, about the maximum, pre
in our system. This was particularly apparent atc50.35
when the morphology is indeed very different from the pu
segregation case. We found by trial and error that the follo
ing formula:

F0~x!5ax4/~g1x4!@b1~x2211d!2# r , a,b,g.0,
~20!
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2918 55V. I. GORENTSVEIG, P. FRATZL, AND J. L. LEBOWITZ
r53/4, gave a good fit. The form~20! with 3/4 replaced by
(d11)/4 is a generalization, satisfying Porod’s la
@F0(x);x2(d11) at x→`],36 of a heuristic formula sug-
gested in Ref. 10 for 3D alloys~whered53). Definition of
the standard form functionF0(x) yields two relations be-
tween parameters

a5~11g!~b1d2!r , g5rd/~b2rd1d2! ~21!

so, two of the four parameters, preferablyb andd, are inde-
pendent. These were fitted from the data.

For Fp the situation was more difficult, because the
was no scaling close to (p,p). The reason for this is tha
S(p,p) is related to the~nonconserved! long-range order
parameter @S(p,p)5Nh lr

2#, which depends strongly on
how the ordered phase is distributed over the two sublatti
Further away from the (p,p) point, the structure function
describes the short-range order, which is not sensitive
the difference between the two sublattices. Because of
ap8 andBp were determined by fitting ofFp(x) in the re-
gion where scaling holds, to the square of the Lorentz
function,

Fp~x!51/~11x2!2. ~22!

As shown in Fig. 6, we observe scaling of both structu
functions ~for ordering and for decomposition! for times
t;104 throught;105. The obtained values for the constan
b, d, an8 , andBn are given in Table II. We find thatap8 ,
giving the rate of ordering kinetics, increases while the r
a08 of decomposition~coarsening! decreases with the amoun
of ordered phase at equilibrium. This is presumably due
the very different morphologies at high and low concent
tions discussed earlier.

Finally, the dependence of full width at half maximu
~FWHM! of the scaling function on the volume fraction o
B-rich phase is given in Fig. 7 where it is compared w
the FWHMferro obtained from simulations on the two
dimensional Ising model with attractive nearest-neighbor
teraction between like atoms.9 The FWHMferro is practically
temperature independent~for 0.34<T/Tc<0.8, Tc being the
critical temperature! and symmetric around the volume fra
tion f50.5. In the present model, however, the scaling fu
tion is wider in all cases, indicating a smaller amount
regularity in the positions of the precipitates. Moreov
there is a clear asymmetry betweenf'0.3 andf'0.7, which
is not surprising since the morphologies of the two-ph
mixtures are also quite different at these compositions~cf.
Fig. 2!.

TABLE II. Parametersan8 and Bn used for the scaling of the
structure functions, Eqs.~17! and ~18!, and parametersb and d
used for the fitting ofF0(x) with Eq. ~21!, as a function of the
concentration of minority atoms,c.

c ap8 Bp a08 B0 b d

0.15 0.82 3.1 0.97 0.53 1.47 0.13
0.25 1.01 5.1 0.79 0.75 0.98 0.065
0.35 1.75 6.7 0.65 0.37 3.5 0.55
s.
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V. DISCUSSION

The general picture emerging for the orderin
decomposition process in the present model is that the p
transformation starts with the development of~short-range!
order followed by the appearance of well-ordered doma
inside a disordered matrix. At this stage, the ordering@as
characterized by the short-range order parameterhsr, Eq.
~3!# has reached its maximum value and the further deve
ment corresponds to the coarsening of domains by lo
range diffusion, much like in a situation where decompo
tion into two pure~or disordered! phases occurs. The fac
that ordering appears prior to decomposition has been
served experimentally29,30,11–15and can be explained by th
fact that the diffusion ofB atoms is required only over sho
distances for the development of atomic order but need
cover long distances for the decomposition into phases w
different amounts ofB atoms.

The coarsening kinetics of the domains, measured
the correlation lengths for decomposition,k0

21, and for or-
dering,kp

21 , is consistent with a growth of domain size pr
portional to t1/3, in agreement with experiments on order
precipitates.29,38,11–15This growth law, as well as the ob
served time scaling of the structure function, are a signa
of the coarsening of two-phase structures under the influe
of interfacial energy.9,35,37 The most striking difference be
tween the present case and a conventional coarsening pro
~with two disordered or pure phases! is the composition de-
pendence of the morphology.

In particular, the lack in symmetry between the cas
c50.15 ~with volume fraction f'0.3) andc50.35 ~with
volume fractionf'0.7) may be related to the presence
ordered domains of two kinds~on the two sublattices! with
some additional positive energy appearing~as pointed out,
e.g., in Refs. 29, 30, and 34! on their interface when they ar
coming in contact due to their growth~antiphase boundary!.
These antiphase boundaries~APB’s! appear to be wetted by
the disordered phase which reduces the overall energy o
system. Hence, even though the ordered phase is the ma
at c50.35, individual ordered droplets do not join up b

FIG. 7. Full width at half maximum of the scaling function fo
decomposition normalized according to Eq.~19!, as a function of
the volume fractionf of theB-rich phase~crosses!. Data obtained
with a two-dimensional Ising model with attractive neare
neighbor interaction between like atoms~taken from Ref. 9! are
also shown for comparison~diamonds!.
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stay separated by narrow channels of disordered phase@see
Fig. 2~c!#. The composition-dependent morphology may a
be at the origin of the dramatically different behavior of t
typical length scales for orderinglp and for decomposition
l0, when the alloy composition is changed.
s,

.
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n
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