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Phase diagram of magnetic ladders constructed from a composite-spin model
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White’s density matrix renormalization group method has been applied to anS51/211/2 composite-spin
model, which can also be considered as a two-leg ladder model. By appropriate choices of the coupling
constants this model allows one not only to study how the gap is opened around the gapless integrable models,
but also to interpolate continuously between models with different spin lengths. We have found indications for
the existence of several different massive phases.@S0163-1829~97!02301-1#
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I. INTRODUCTION

The recent discovery of several families of ne
materials,1–3 such as (VO)2P2O7, Srn21CunO2n21

(n52,3,. . . ), and La414nCu812nO1418n , where the spin
chains are coupled in a special way to form ladders, gav
new impetus to the study of the properties of lo
dimensional magnetic systems. This field had already b
intensively studied both experimentally and theoretically
the last decade due to a large extent to the proposa
Haldane4 that antiferromagnetic spin chains described by
isotropic Heisenberg model develop a gap in their excitat
spectrum for integer spin, while for half-integer spin t
spectrum is gapless.

The spin-ladder models, beside their relevance to th
materials, are of special interest for theorists5–15 because by
appropriate choice of the couplings they can describe b
spin-1/2 and effective spin-1 models, and they are also
lated to the models proposed to understand the behavio
the so-called high-Tc materials. Experimental studies16,17

confirm that two-leg ladders behave like integer-spin mod
and have a finite gap, while materials with three-leg ladd
have a gapless magnetic excitation spectrum.

A particular way to construct ladder models is to put
composite spin on every site of a single chain and to cou
the individual spins in various ways.18,19 This model has al-
ready been studied numerically using the Lanczos algori
to calculate the low-lying energy levels. This method cou
however, be applied to relatively short chains only, a
therefore the conclusions were sometimes contradictory.

Recently White20 has proposed a procedure, the dens
matrix renormalization group~DMRG! method, which al-
lows one to calculate the energy of low-lying levels and
lated physical quantities on much longer chains. This led
great progress in the application of the finite-size scal
method and allowed the investigation of more complex s
tems in a larger parameter space.

A natural extension of the usual Heisenberg model of s
550163-1829/97/55~1!/291~8!/$10.00
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chains forS.1/2 is to include higher-order polynomials o
the bilinear exchange term. In the spin-1 case, where biq
dratic exchange can be taken into account, generically
spectrum remains massive,21 but at some special values o
the couplings22,23 the gap might disappear and the model c
be studied by Bethe’s ansatz. The opening of the gap aro
these critical integrable points is, however, not quite settl

The aim of this paper is to extend the earlier calculatio
on the composite-spin model to longer chains using
DMRG procedure, and to clarify the phase diagram of
corresponding ladder model.

The setup of the paper is as follows. In Sec. II we give
short description of the composite-spin and ladder mod
and their relationship to the integrable models for approp
ate choices of the parameters. The DMRG method and
numerical procedures are discussed in Sec. III. The resul
our numerical calculations are presented in Sec. IV. Fina
Sec. V contains a brief summary.

II. COMPOSITE-SPIN AND LADDER MODELS

In a composite-spin model the spinSi at the lattice site
i is composed of two or more spin operato
s ia (a51,2, . . . ). In themost general case the model co
tains on-site and nearest-neighbor interactions among all
species with different coupling constants. In this paper
will focus on a model where twos51/2 spin species, from
which anS51 spin can be constructed, are put on eve
lattice site.

The model is defined by starting from the most gene
isotropic spin-1 model, the bilinear-biquadratic model, whi
usually is written in the form

H5(
i

@cosu~SW i•SW i11!1sinu~SW i•SW i11!
2#. ~1!

In the composite-spin representation, whereSW i can be ob-
tained by adding up the two spin-1/2 species denoted bysW i
291 © 1997 The American Physical Society
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andtW i , SW i5sW i1tW i , the Hamiltonian takes the form

H5S cosu2
1

2
sinu D ~H01H1!12sinu~H21H3!

1
3~N21!

4
sinu, ~2!

whereN is the number of lattice sites in the chain, and

H05(
i

@sW i•sW i111tW i•tW i11#, ~3a!

H15(
i

@sW i•tW i111tW i•sW i11#, ~3b!

H25
1

2(i @sW i•tW i1sW i11•tW i11#, ~3c!

H35(
i

@~sW i•sW i11!~tW i•tW i11!1~sW i•tW i11!~tW i•sW i11!#.

~3d!

We will generalize Eq.~2! and consider the model describe
by the Hamiltonian

H5l0H01l1H11l2H21l3H3 , ~4!

with arbitrary couplingsl i .
Alternatively, instead of consideringsW i and tW i as spins

sitting on the same site, we can treat them as sitting on
parallel chains, or on the legs of a ladder, thesW i spins on one
leg and thetW i spins on the other. As shown in Fig. 1,H0
couples spins on the same leg only; the others contain in
leg couplings.H2 is the usual coupling between spins on t
same rung, andH1 couples spins on neighboring rungs of t
legs, whileH3 describes four-spin couplings on a plaquet

Usually the ladder models are constructed to includeH0
andH2 only. When a strong ferromagnetic coupling is a

FIG. 1. Schematic plot of the spin couplings inH0,H1,H2, and

H3 between the spinssW i andtW i on the two legs of a ladder.
o

r-

.

-

plied across the rungs (l2→2`), the two spins form a trip-
let and the properties of theS51 Heisenberg chain are
recovered.5,8 In another approach Barneset al.9 allowed for
strong antiferromagnetic interchain couplings and trea
H0 as perturbation. They have shown the existence of a s
gap for any finite interchain coupling.

In the composite-spin model, on the other hand,H1 is
also necessarily included. A special feature of the mode
that for arbitrary values ofl2 andl3 the model is invariant
under the interchange ofl0 andl1; i.e., the energy levels o
the full Hamiltonian satisfy

E~l0 ,l1 ,l2 ,l3!5E~l1 ,l0 ,l2 ,l3!. ~5!

This can be shown by interchanging thesW i and tW i spins on
every second site. This relationship allows one to connect
weak- and strong-coupling limits of the model by a dual
transformation. To show this let us denote by« the energies
of the Hamiltonian in which the coupling strength ofH0 is
chosen to be unity:

E~l0 ,l1 ,l2 ,l3!5l0«S l1

l0
,
l2

l0
,
l3

l0
D . ~6!

From Eq.~5! it follows that

l0«S l1

l0
,
l2

l0
,
l3

l0
D5l1«S l0

l1
,
l2

l1
,
l3

l1
D . ~7!

Introducing the couplingsl̃i5l i /l0 ( i51,2,3), we get

«~ l̃1 ,l̃2 ,l̃3!5 l̃1«S 1
l̃1
,
l̃2

l̃1
,
l̃3

l̃1
D . ~8!

In what follows we will always work with the Hamiltonian
in which l051 and will drop the tilde over the couplings.

Forl25l350 this relationship reduces to a usual dual
relationship, which connects the energies in the 0,l1<1
region to those in 1<l1,`,

«~l1!5l1«~1/l1!. ~9!

Whenl1,0, the above deduced duality relationship co
nects the lowest-lying levels of one region to the highe
lying levels in the other region. Since in the numerical c
culations a few low-lying levels can only be calculated w
sufficient precision, a more useful relation can be derived
this case by comparing the energies ofH defined by Eq.~4!
with l051 to that of H852H. Denoting by
«8(l1 ,l2 ,l3) the energies of this model,

«8~l1 ,l2 ,l3!52l1«S 1l1
,
l2

l1
,
l3

l1
D . ~10!

We used these relations to check the accuracy of the num
cal calculations.

According to Eq.~2! the spin-1 model can be reproduce
whenH0 andH1 are taken with equal coupling strengt
l05l1. When this coupling is antiferromagnetic, it give
rise to a valence-bond configuration24 of the neighboring
spins, which is a characteristic feature of the Haldane ph
When no direct coupling exists between thesW i andtW i spins,
nothing ensuresa priori that these spins appear in the sym
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55 293PHASE DIAGRAM OF MAGNETIC LADDERS . . .
metricS51 configuration only. When, however,l2 andl3

are small compared tol05l1, the level structure of the true
spin-1 model and that of the composite-spin model is s
that their low-lying parts coincide, and thus their behavior
similar. Therefore the phase diagram of our ladder mo
will contain phases characteristic to the bilinear-biquadra
model, but also new phases may appear.

The normalizationl051 is equivalent to considering th
region2p/2,u,p/2 only. The bilinear-biquadratic mode
has a rich phase structure in that region. It has been t
oughly investigated both analytically21,25 by using, e.g., the
mapping to the Wess-Zumino-Witten model, or to the nin
state Potts model and numerically.26–29 The region
p/2,u,3p/2 is somewhat less interesting, since the mo
is ferromagnetic forp/2,u,5p/4. Beyond that a new
phase might appear, as predicted by Chubukov,31 although so
far its existence has not been confirmed by numer
calculations.32 This problem is, however, outside the sco
of this paper.

uTB52p/4 corresponds to the Takhtajan-Babujian22 in-
tegrable model with gapless excitation spectrum. This po
is the critical point of a second-order Ising-type phase tr
sition with a gap opening linearly around the transition poi
In a chain with periodic boundary condition~PBC! the
ground state is doubly degenerate foru,2p/4, producing a
dimerized phase, while for2p/4,u,p/4 the Haldane
phase appears with a nondegenerate singlet ground s
This latter region includes the isotropic Heisenberg poin
u50 and the exact nearest-neighbor valence-bond sta24

~VBS! at uVBS5arctan(1/3).
uLS5p/4 is another integrable point related to th

Lai-Sutherland23 model, where the gap vanishes again. F
u.p/4 a trimerized massless phase appears.28–30 In the
composite-spin representation these points lie on the
l151, at l25l3524/3 for the Takhtajan-Babujian, a
l25l350 for the Heisenberg, atl25l354/5 for the VBS,
and atl25l354 for the Lai-Sutherland points.

Furthermore, the composite-spin Hamiltonian can
transformed into a nonlinears model and the results ob
tained in field theory can be related to our model.
l15l25l350, when the model reduces to two decoupl
spin-1/2 chains, the field theory possesses a gapless ex
tion spectrum because the topological angle is an odd m
tiple of p. According to the field-theoretical calculations21

the perturbations around this multicritical point are gene
cally relevant and give rise to the opening of an energy g
except for special points or lines. The Takhtajan-Babuj
and Lai-Sutherland models belong to such exceptions. C
sequently, it is expected that by varying thel i parameters
the gap vanishes only at the critical points and on the ph
boundaries between the various phases.

In order to simplify the calculations, first we study th
effect ofH1, H2, andH3 separately for fixedl051. Then
the calculation will be extended to a two-parameter pla
(l1 ,l2) by choosingl35l2. In order to determine the
phase diagram we examine the low-lying energy levels al
different paths connecting those points in parameter sp
where the model is integrable. The ground-state configu
tions will also be investigated by calculating the local ene
of a bond, the two-point correlation functions, and a sho
range order parameter.
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III. NUMERICAL PROCEDURES

We have performed numerical calculations by applyi
the DMRG method20 on the model defined by the Hami
tonian in Eqs.~3! and ~4!. This is a real-space renormaliza
tion method where the lattice is built up gradually to t
desired length, systematically truncating in the meantime
Hilbert space by keeping only the most probable states.

Since the DMRG method works best for systems w
free ends, we will consider our composite-spin model w
an open boundary condition~OBC!. An unfavorable conse-
quence of the OBC for the spin-1 model and conseque
for the ladder models as well is that the degeneracies in
spectrum may be different from that obtained for a clos
ring. In the nearest-neighbor valence-bond configurati
e.g., frees51/2 spins remain at the ends of the chain, givi
rise to a fourfold-degenerate ground state. In the dimeri
state, on the other hand, the twofold degeneracy of
ground state is lifted if the number of sites is an even nu
ber. This makes the analysis of the spectrum more diffic

Moreover, in the case of the OBC the total momentum
not a good quantum number. Therefore, only the total s
ST and its projection to the quantization axis,ST

z , can be
used to classify the energy levels. Since in the isotropic c
the SU~2! symmetry is satisfied, the spectrum was analyz
by calculating a few low-lying levels of the differentST

z sec-
tors.ST was determined from the degeneracy of the leve

Because our aim is to determine the overall behavior
the energy spectrum and to identify from it the possib
phases, in most of the calculations we have used the
accurate version of DMRG, the so-calledinfinite-lattice
method. In this algorithm the lattice is built up by adding tw
lattice sites in each step. The results obtained for chains w
N54,8,16,32,48,64 sites were used in a finite-size sca
procedure to extrapolate to an infinite lattice. On the ot
hand, close to the critical points and in those regions wh
the gap is small, thefinite-lattice methodwas applied with
two or three iteration cycles to determine the energies m
precisely.

In some cases, before doing the DMRG calculation
long chains, the energy spectrum was determined by e
diagonalization on short chains withN54,6,8. This gave an
idea of the sequence of the levels for different choices of
couplings and allowed us to determine which states hav
be targeted in the DMRG procedure.

Considering our limited computational resources, we h
to restrict rather drastically the number of states,M , to be
kept in the DMRG algorithm. A number that can be used
characterize the numerical accuracy of the DMRG metho
the discarded density-matrix weight~truncation error!.20 In
the calculation of the ground-state energy for ladders w
N52364 (N52332) sites it was largest close to the crit
cal points with values of the order 1025–1026 (1027–
1028), while around the VBS point, where the gap is large
was as small as 10210–10211 (10211–10212). For the excited
states the truncation error was worse by one order of ma
tude.

The real error in the DMRG procedure can, however,
much worse.33 It was estimated by comparing the energi
obtained for the ladder model using the DMRG procedure
those of the spin-1 bilinear-biquadratic model or the spin-
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294 55ÖRS LEGEZA, GÁBOR FÁTH, AND JENŐSÓLYOM
chain, where much better accuracy can be achieved.
chains withN52332 sites an agreement up to three or fo
decimal places has been achieved after the second iter
cycle of the finite-lattice method, ifM was chosen to be
M564, while for chains withN52364 sites the same ac
curacy required us to retainM576 or 84 states. At the VBS
point the infinite-lattice algorithm without the iteratio
cycles provided almost the same accuracy.

In the extrapolation procedure theN→` limit of the gap
was determined by fitting a formDE(N)5D1a/N or
DE(N)5D1b/N2 to the energy differences measured b
tween the energy levels of the variousST sectors. In principle
the first has to be used when the gap vanishes,D50, while
the second gives the correct asymptotic behavior when
gap is finite.34 When the gap is finite but the chain length
not long enough to observe the correct parabolic behav
the linear fit gives a lower-bound estimate.35 We have used
the parabolic fit whenever deviation from the linear dep
dence on 1/N was observed.

IV. NUMERICAL RESULTS

In this section we present our numerical results for
low-lying levels of the model for various choices of the co
plings. For a finite ladder the ground state is always a s
singlet. Above this level there are two low-lying triplet e
citations, which atl15l25l350 have equal energy. A
this point, they correspond to independent excitations on
two decoupled legs. These levels are followed by sev
ST50,1,2,. . . , excitations. The energy differences betwe
all these levels scale as 1/N, indicating a gapless excitatio
spectrum.

For finite values ofl1 ,l2, andl3 the degeneracy of the
two low-lying triplet levels is in general lifted. This is show
along thel1 axis in Fig. 2. In a finite chain withN sites the
energy difference between the lowest triplet and the grou
state singlet levels will be denoted byDE10(N). When this
quantity scales to a finite value, the ground state is a non
generate singlet with a finite gap. When, however, it scale
zero, we have to consider the next level. This is either
second triplet or it may have been crossed by the low
ST52 level. The energy difference between this quintup
and the ground-state singlet levels will be denoted

FIG. 2. Low-lying energy spectrum of the Hamiltonian as
function ofl1 (l25l350) for chain lengthN56.
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DE20(N), while DE21(N) denotes the energy difference b
tween this quintuplet and the lowest triplet levels.

A. Gap opening due toH1

Let us consider first the effect ofH1, since earlier
calculations18 by exact diagonalization on relatively sho
chains could not determine satisfactorily the way the gap
opened. Forl1.0 the energy of the lowest triplet states a
that of the singlet ground state come exponentially close
each other and become degenerate in the thermodyn
limit (N→`). This gives the well-known fourfold degen
eracy of the VBS-like state in a finite chain with OBC.

Therefore the relevant energy gap can be obtained m
easily by measuring the energy differenceDE21(N) between
the lowest-lying levels of theST52 andST51 sectors. This
energy difference as a function ofl1 is shown in Fig. 3 for
l1.0. The lines connecting the values calculated at sev
distinct points are only guides to the eye. The inset in
figure shows in more detail the behavior of the gap close
the integrable point.

In the extrapolation toN→` a 1/N fit was applied close
to the critical point, because the chain lengths were not lo
enough to observe the parabolic behavior. As an indica
of the accuracy of our calculation we mention that
l151, where the Haldane gap should be recovered, we
tainedD2150.41(1), in reasonable agreement to three de
mal places with its best estimate.34,36 The ground-state en
ergy divided by the chain length converges
E0 /N51.401 484(0), in agreement to six decimal place
with earlier calculations.36

As a further check we have also performed calculatio
for large values ofl1 and used the self-duality relationsh
in Eq. ~9! to obtain the gap for weak couplings. The resu
obtained in this way are shown in the inset. From this
could also conclude that our finite-size calculations are c
rect to at least four decimal places. Even though the accu
of our calculations is limited, we have found a linearly ope
ing energy gap forl1.0. This is the first calculation where
this could be demonstrated numerically.

FIG. 3. The energy difference between the low-lying levels
our model as a function ofl1 at l25l350 for chain lengths
8<N<64. Forl1.0 DE21, while for l1,0 DE10 is shown. The
dotted line is the gap extrapolated forN→`. The inset shows the
behavior for small values ofl1.
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For negative values ofl1 the coupling between the chain
is ferromagnetic, while the ‘‘on-chain’’ coupling remains a
tiferromagnetic. The low-lying part of the spectrum is ess
tially different from that of thel1.0 regime. The degen
eracy of the twoST51 triplet levels is again lifted, but eve
the lowest of them will remain separated from the sing
ground state. So the energy difference to be studied
DE10(N). This quantity is shown on the left-hand side
Fig. 3 for l1,0. As can be seen, the ground state is a n
degenerate singlet with a small, but finite gap to the lowe
lying excitations.

Since the gap is small, the value ofD10 has been calcu
lated using the finite-lattice method. This procedure w
three iteration cycles and a 1/N fit gave atl1521, e.g.,
D1050.11(4) as a lower-bound estimate for the singl
triplet gap. Furthermore, the lowest quintuplet level has b
found to become degenerate with the lowest triplet state
the thermodynamic limit. Thus a gap separates the gro
state from the continuum of excitations.

For small values ofl1 the accuracy of the calculation
has been checked using the relationship in Eq.~10!. The gap
is found to open linearly. ThusH1 is relevant for both signs
of l1.

On the other hand, for large negative values, in the reg
l1,210, we have found the vanishing of bothD10 and
D20. This indicates that a new phase with a gapless spect
may appear there. However, due to the smallness of the
aroundl1521, we were unable to locate the point whe
the transition occurs.

B. Effect ofH2 andH3

The effect of the interleg couplingH2 on the decoupled
chains described byH0 for l15l350 has been considere
by several authors.5,8,10Hida5 found that the gap is finite fo
l2,l2c520.6, while Dagottoet al.7 showed some evi-
dence that the critical coupling is closer to zero, perh
l2c'20.4. On the other hand, Watanabeet al.8 and Hsu and
Anglès d’Auriac10 argued that the interchain coupling d
fined byH2 is always relevant andl2c50.

We repeated some of these calculations to confirm
this coupling is in fact relevant for both signs of the coupli
l2. For l2.0 the ground state is a nondegenerate sin
even in the thermodynamic limit with a rather large gap.
l254/3, e.g., a singlet-triplet gap withD1050.72(9), and a
singlet-quintuplet gap withD2051.43(4) has been found.

For l2,0 the spectrum is similar to that forl1.0,
where the ground state becomes fourfold-degenerate in
thermodynamic limit. The gap, however, is rather small.
l2524/3 the calculation with the finite-lattice method and
1/N fit gave D2150.11(3), in agreement with previous
results.8

The plaquette couplingH3 also turned out to be relevan
for both signs of the coupling, but in some sense its effec
opposite to that ofH2. A fourfold, degenerate ground state
obtained with a finite quintuplet-singlet gap forl3.0. At
l354/3, e.g.,D2050.28(5) has been found. Forl3,0 the
ground state remains singlet. Atl3524/3 the triplet-singlet
gap isD1050.26(8).

Because of this opposing effect of these couplings, n
we considered the competition ofH2 andH3 by choosing
-
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l25l3. For negative values ofl2 the low-lying part of the
energy spectrum resembles very much that found above
small negativel1. A finite gap develops between the singl
and triplet levels as shown in Fig. 4. Atl2524/3 the finite-
lattice algorithm and a 1/N fit gaveD1050.17(5). Close to
the critical point the extrapolated lower-bound values of
gap are even smaller; therefore the available chain len
are still not long enough to determine the character of
opening of the gap.

On the other hand, forl25l3.0 the analysis of the low-
lying energy spectrum has shown that bothD10 andD20 scale
to zero; i.e., the spectrum is gapless. Since the system
mains critical in an extended region forl25l3.0, a
Kosterlitz-Thouless-like transition may occur
l15l25l350 to the massive phase atl25l3,0. This
could explain the slow opening of the gap in that region.

These results are only partially consistent with the fie
theoretical prediction, which states that the spin-1/2 in
grable point is unstable against all perturbations. Our ca
lations indicate that although bothH2 andH3 are relevant
operators in the ladder model for both signs of the couplin
l2 and l3, the model remains critical at least along th
l25l3.0 half line.

To summarize our findings, three types of the spectr
have been found. An asymptotically fourfold-degener
ground state, charateristic of a VBS-like state, is obtained
l1.0, l25l350, for l2,0, l15l350, and forl3.0,
l15l250. A truly nondegenerate singlet ground state
found for l1,0, l25l350, for l2.0, l15l350, for
l3,0, l15l250, and also forl25l3,0, l150. Finally
the spectrum is gapless forl25l3.0, l150.

C. Competition ofH1,H2, andH3

After having determined the spectrum along thel i axes
and thel25l3 line, next we consider the phase diagram
the parameter space spanned byl i . To simplify the calcula-
tions we restrict ourselves in the remaining part of the pa
to a two-parameter plane by choosingl25l3. We will study
especially the neighborhood of thel151 line, which corre-
sponds to the bilinear-biquadratic Hamiltonian.

FIG. 4. The energy differenceDE10 as a function ofl2 at
l15l350 . The symbol3 shows the extrapolated value of the ga
for l2524/3.
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In the Takhtajan-Babujian point of the bilinea
biquadratic model, which corresponds tol151,
l25l3524/3 in our model, the spectrum is gapless in t
thermodynamic limit. Both the singlet-triplet@DE10(N)# and
the triplet-quintuplet@DE21(N)# energy differences vanish a
1/N. They behave, however, quite differently as we mo
away from the critical point. This is shown in Figs. 5 and

Forl2.24/3 the lowest triplet level becomes asympto
cally degenerate with the ground-state singlet, and so
relevant gap is between the triplet and quintuplet lev
(D21). This level structure is the same as along thel1.0
line; thus a VBS-like state is obtained in this part of t
phase space. The opening of the gap is very slow; even
longest chains are too short to obtain a reliable estimat
the gap close to the critical point. The error of the extrap
lated value close to the critical point is indicated in Fig. 5
the size of the symbol.

For l2,24/3 a finite gap develops between the groun
state singlet and the lowest triplet levels, in the same wa
for l25l3,0. A lower-bound estimate of the gap obtain
by a 1/N fit is shown in Fig. 6. The results are in agreeme
with a linearly opening extrapolated gapD10.

FIG. 5. The quintuplet-triplet energy differenceDE21(N) as a
function ofl25l3 at l151. Close to the critical point the size o
the symbol for the extrapolated gap indicates the error.

FIG. 6. The same as Fig. 5 for the triplet-singlet energy diff
enceDE10(N).
e
.

e
s

ur
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-

-
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t

It is known, however, that thel2,24/3 region corre-
sponds to a dimerized phase, where instead of a sin
ground state, a doubly degenerate ground state would ha
be found. Therefore, we have considered several hig
lying levels to search for the other singlet level that wou
become degenerate with the ground state. We have not fo
any such level. This can be understood by recalling tha
the case of OPB the dimerized phase gives a truly twof
degenerate ground state only if the number of sites is o
i.e., if the number of bonds is even. For chains with an ev
number of sites the energy of the dimerized state depend
whether the bonds at the ends are strong or weak. Inspec
of the low-lying levels is therefore not sufficient to distin
guish a real nondegenerate singlet ground state from a dim
ized state. We will return to this problem later, when t
dimer order parameter will be discussed.

One of the two kinds of behavior found fo
l25l3.24/3 and l25l3,24/3 appears whenever on
moves away from the Takhtajan-Babujian integrable poin
any direction in the (l1 ,l25l3) plane. Varying, e.g.,l1
around l151 at l25l3524/3, a nondegenerate single
ground state is found forl1,1, while forl1.1 the singlet-
triplet gap disappears, forming a fourfold-degenerate gro
state. This result is in agreement with the assumption that
Takhtajan-Babujian point is generically unstable against p
turbations, except along the phase boundaries.

Our calculation is, however, not accurate enough to loc
this critical line in the phase space that separates the
kinds of behavior. In the schematic phase diagram show
Fig. 7 the boundaries are therefore indicated by wavy lin
That the phase boundary between the VBS-like Hald
phase and the supposedly dimerized phase connects
l15l25l350 and the Takhtajan-Babujian points has be
confirmed by looking at the energy spectrum of our mo
along the trajectory parametrized byl1512l,
l25l3524l/3, wherel varies between 0 and 1. For sma
values ofl a fourfold-degenerate ground state is recover
while for l close to unity a nondegenerate singlet grou
state is found.

As mentioned before, this singlet ground state was fou
along thel1,0, l25l350 line as well. Whether this axis
-

FIG. 7. Schematic phase diagram of the model in
(l1 ,l25l3) plane. The wavy lines between the four differe
phases indicate that the location of the phase boundaries ha
been determined accurately.
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also belongs to the dimerized phase or not cannot be d
mined from the low-lying spectrum alone. We will return
this problem later.

Extending the calculations tol25l3.0 on the line
l151 the VBS-like state survives in a finite range, includi
the pointl25l354/5, where the exact nearest-neighbor v
lence bond state is recovered. At this point the lowest sin
and triplet levels are degenerate for any finite chain leng
The gap reaches its maximum value withD2150.8404(7),
which, after including the appropriate scaling factors due
our normalization tol051, agrees to five digits with the
known result.37

For larger values ofl2 along thel151 line the Lai-
Sutherland model and the trimerized phase of the biline
biquadratic model cannot be reached by this ladder mo
The extra levels introduced by the composite-spin repres
tation will be low lying and will lead to a gapless new phas
as has already been found forl150. This massless phas
has been found for large positivel25l3 values also for
l1,0. Thus it is stable in an extended range of the c
plings.

D. Dimer order

Even though the structure of the low-lying part of th
energy spectrum indicates the existence of various phase
knowledge, as discussed above, is not sufficient to cla
unambiguously the character of the ground state. We h
therefore, calculated several quantities in the ground s
like the local magnetization̂SW i&[^sW i&1^tW i&, the two-point
correlation function̂ SW iSW j&[^(sW i1tW i)(sW j1tW j )&, and the lo-
cal energyEloc[^H( i ,i11)&, whereH( i ,i11) contains the
couplings between spins on sitesi and i11.

The correlation function falls off exponentially both in th
Haldane and the dimerized phases, turning to power law
on the phase boundary, but the chains are still too shor
distinguish clearly between these two possibilities. A be
procedure could be to look at the local magnetization in
lowest triplet state. Due to the free end spins of the ex
nearest-neighbor valence-bond configuration, the local m
netization is finite close to the chain ends in the VBS-li
Haldane phase. Approaching the phase boundary, the e
spin becomes less and less localized and it spreads ou
mogeneously in the dimerized and gapless phases.

The most useful procedure is, however, to consider
so-called short-range dimer order parameter. It can be
fined by taking the difference of the local energy on neig
boring bonds in the middle of the ladder,

Rsrdo5
^H~ i ,i11!&2^H~ i11,i12!&

1
2 @^H~ i ,i11!&1^H~ i11,i12!&#

. ~11!

It is expected to have different behavior if the ground stat
unique, fourfold degenerate, or twofold degenerate as in
dimerized state with spontaneously broken translational s
metry.

A simpler quantity can be defined by taking the biline
part of the coupling only:

Ssrdo5
^SW i•SW i11&2^SW i11•SW i12&

1
2 @^SW i•SW i11&1^SW i11•SW i12&#

. ~12!
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In Fig. 8 we present our results for the short-range dim
order parameterSsrdomeasured in the middle of the ladder
a function of the inverse of the chain length for a few poin
of the (l1 ,l25l3) phase space. The parameterRsrdo not
shown in the figure gives the same kind of behavior.

There is clearly an extended region in the parame
space, where the short-range order parameter scales to
in the thermodynamic limit. At the VBS point itselfSsrdowas
found to be zero for short finite chains already. The vani
ing of Ssrdo happens not only in the Haldane phase, but a
along the negativel1 axis and in a neighborhood of it, wher
the spectrum was indistinguishable from the spectrum of
supposedly dimerized state.

For large negative values ofl2, however, both for posi-
tive and negative values ofl1, a transition was found to the
state whereRsrdoandSsrdohave nonzero values and the loc
magnetization at the ends of the chain vanishes. Thus, in
region where the ground state was found to be a nonde
erate singlet, the short-range dimer order allows us to dis
guish two regimes. In the region denoted as ‘‘dimeriz
phase’’ in Fig. 7, bothRsrdo andSsrdo scale to a finite value.
In this phase the local magnetization at the ends of the ch
is also absent. In the other region marked as ‘‘massive,’’
dimer order disappears. The boundary between them
drawn schematically only in Fig. 7, and its exact shape co
not be determined, except that it has to go through
l15l25l350 point.

V. CONCLUSIONS

In the present paper we have considered a two-leg lad
model constructed from a composite-spin model. Besides
usual Heisenberg coupling between the spins on the
interleg coupling between spins on the same and neighbo
rungs have been introduced, as well as four-spin plaqu
couplings.

For special values of these couplings this ladder mode
equivalent to the spin-1/2 Heisenberg model or the spi
bilinear-biquadratic model in the sense that the low-lyi
parts of the spectra are identical. Thus massless, VBS-
and dimerized phases are expected to appear, but the p
diagram can be even richer.

FIG. 8. The short-range dimer order parameterSsrdo calculated
in the middle of the chain vs the inverse of the chain length at a
points of the phase space (l1 ,l25l3).
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The behavior of the energy differences between low-lyi
levels has been calculated using the DMRG method and
gap extrapolated to the thermodynamic limit (N→`) was
obtained with the method of finite-size scaling. We have a
considered the short-range dimer order parameter.

It has been found that the spin-1/2 Heisenberg ladde
unstable against most of the perturbations that couple the
legs, but there is a small range of the parameters where
combination of the perturbing operators is irrelevant.

Four different kinds of behavior was observed, as sho
in Fig. 7. In a region along and near to the linel150,
l25l3.0 the spectrum remains gapless. Everywhere els
gap is developed in the spectrum. Three regions can, h
ever, be distinguished depending on whether the ground s
is nondegenerate or twofold or fourfold degenerate. The
case is easily detected by studying the asymptotic deg
eracy of the spectrum. This phase is present around
l151, l25l354/5 point, where the exact nearest-neighb
valence-bond state is recovered. The extras51/2 spins at the
ends of the chains become more and more delocalized a
move away from the VBS point and disappear at the ph
g
he
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o
he

n

a
w-
te
st
n-
he
r

we
se

boundary, where the transition is either to the gapless ph
or to a dimerized one.

The Takhtajan-Babujian point atl151, l25l3524/3
lies on the phase boundary between the VBS-like and
dimerized phases. The transition here could be detected
only in the change of the character of the spectrum, but a
by the appearance of a finite short-range dimer order para
eter. This quantity was used to distinguish the dimer pha
also from the ‘‘massive’’ phase with a nondegenerate sing
ground state, where the dimer order disappears again, in
much faster than 1/N.

Unfortunately, our limited computational resources d
not allow us to determine the precise location of the critic
lines separating the various phases.

ACKNOWLEDGMENTS

This research was supported in part by the Hungarian R
search Fund~OTKA! Grant No. 15870, by the Swiss Na
tional Science Foundation Grant No. 20-37642.93, the
Foundation ~Torino!, and the EU PECO Network
ERBCIPDCT940027.
.

v.

.

*On leave from the Research Institute for Solid State Physi
Budapest, Hungary.

1D. C. Johnston, J. W. Johnson, D. P. Goshorn, and A. J. Jacob
Phys. Rev. B35, 219 ~1987!.

2Z. Hiroi, M. Azuma, M. Takano, and Y. Bando, J. Solid Stat
Chem.95, 230 ~1991!.

3R. J. Cavaet al., J. Solid State Chem.94, 170 ~1991!.
4F. D. M. Haldane, Phys. Rev. Lett.50, 1153~1983!; Phys. Lett.
93A, 464 ~1983!.

5K. Hida, J. Phys. Soc. Jpn.60, 1347~1991!; 60, 1939~1991!.
6S. P. Strong and A. J. Millis, Phys. Rev. Lett.69, 2419~1992!.
7E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B45, 5744

~1992!.
8S. Takada and H. Watanabe, J. Phys. Soc. Jpn.61, 39 ~1992!; H.
Watanabe, K. Nomura, and S. Takada,ibid. 62, 2845~1993!; H.
Watanabe, Phys. Rev. B50, 13 442~1994!.

9T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev
47, 3196~1993!; T. Barnes and J. Riera,ibid. 50, 6817~1994!.

10T. Hsu and J. C. Angle`s d’Auriac, Phys. Rev. B47, 14 291
~1993!.

11R. M. Noack, S. R. White, and D. J. Scalapino, Phys. Rev. Le
73, 882 ~1994!; S. R. White, R. M. Noack, and D. J. Scalapino
ibid. 73, 886 ~1994!.

12S. Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev. B49, 8901
~1994!; M. Sigrist, T. M. Rice, and F. C. Zhang,ibid. 49, 12 058
~1994!.

13H. Tsunetsugu, M. Troyer, and T. M. Rice, Phys. Rev. B49,
16 078~1994!; M. Troyer, H. Tsunetsugu, and D. Wu¨rtz, ibid.
50, 13 515~1994!.

14K. Totsuka and M. Suzuki, J. Phys. Condens. Matter7, 6079
~1995!.

15S. R. White, Phys. Rev. B53, 52 ~1996!.
16R. S. Eccleston, T. Barnes, J. Brody, and J. W. Johnson, Ph

Rev. Lett.73, 2626~1994!.
cs,

son,

e

. B

tt.
,

ys.

17M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys
Rev. Lett.73, 3463~1994!.
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