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Phase diagram of magnetic ladders constructed from a composite-spin model
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White’s density matrix renormalization group method has been applied ®=ai2+ 1/2 composite-spin
model, which can also be considered as a two-leg ladder model. By appropriate choices of the coupling
constants this model allows one not only to study how the gap is opened around the gapless integrable models,
but also to interpolate continuously between models with different spin lengths. We have found indications for
the existence of several different massive phas$8163-182807)02301-1

[. INTRODUCTION chains forS>1/2 is to include higher-order polynomials of
the bilinear exchange term. In the spin-1 case, where biqua-

The recent discovery of several families of newdratic exchange can be taken into account, generically the
materials; such as (VO)P,0;, Sh_,Cuy,0,, ,  SPectrum remains massi¢eput at some special values of
(n=2,3,...), and La,4,Cls,2,O0wssan, Where the spin the coupling%z’23the gap might disappear and the model can
chains are coupled in a special way to form ladders, gave f€ studied by Bethe’s ansatz. The opening of the gap around
new impetus to the study of the properties of low- these cnfucal mtggrable points is, however, not quite set.tled.
dimensional magnetic systems. This field had already been The aim of this paper is to extend the earlier calculations
intensively studied both experimentally and theoretically inO" the composite-spin model to longer chains using the
the last decade due to a large extent to the proposal byMRG procedure, and to clarify the phase diagram of the
Haldané that antiferromagnetic spin chains described by arforresponding ladder model. .
isotropic Heisenberg model develop a gap in their excitation 1he setup of the paper is as follows. In Sec. Il we give a
spectrum for integer spin, while for half-integer spin the Short dgscrlptllon of the composite-spin and ladder mode_ls
spectrum is gapless. and the!r relationship to the integrable models for appropri-

The spin-ladder models, beside their relevance to thes@t® choices of the parameters. The DMRG method and the
materials, are of special interest for theofist§ because by numerical procedures are discussed in Sec. lll. The res_ults of
appropriate choice of the couplings they can describe botRUr numenca} calculgtlons are presented in Sec. IV. Finally
spin-1/2 and effective spin-1 models, and they are also re>€C. V contains a brief summary.
lated to the models proposed to understand the behavior of
the so-called highF, materials. Experimental studiés’ Il. COMPOSITE-SPIN AND LADDER MODELS
confirm that two-leg ladders behave like integer-spin models
and have a finite gap, while materials with three-leg ladders . i
have a gapless magnetic excitation spectrum. I is composed of two or more spin operators

A particular way to construct ladder models is to put aZi« (@=1,2,...). In themost general case the model con-
composite spin on every site of a single chain and to coupléa'ns on-site and nearest-neighbor interactions among all spin

the individual spins in various way&:3 This model has al- Species with different coupling constants. In this paper we

ready been studied numerically using the Lanczos algorithrﬁv'rlll. fﬁcus OE a deEI whEre twe=1/2 sdpln species, from
to calculate the low-lying energy levels. This method could,Which anS=1 spin can be constructed, are put on every

. ; ; lattice site.
however, be applied to relatively short chains only, and . , .
therefore the conclusions were sometimes contradictory. The model is defined by starting from the most general

Recently Whit&° has proposed a procedure, the densit isotropic spin-1 model, the bilinear-biquadratic model, which
matrix renormalization grougDMRG) method, which al- usually is written in the form
lows one to calculate the energy of low-lying levels and re-
lated physical quantities on much longer chains. This led to H=> [coH(S-S 1) +sind(S-S 1) (1)
great progress in the application of the finite-size scaling [
method and allowed the investigation of more complex sys- ) . ) .
tems in a larger parameter space. In the composite-spin representation, wh&ecan be ob-

A natural extension of the usual Heisenberg model of spirtained by adding up the two spin-1/2 species denoted-by

In a composite-spin model the sp# at the lattice site

0163-1829/97/54)/291(8)/$10.00 55 291 © 1997 The American Physical Society



292 ORS LEGEZA, GABOR FATH, AND JENO SOLYOM 55

O GOy Oi Oy
@ g ---0-- B TYITT e e
Hy +
[ P N [P P PN
T T T Tin
Ci Oy Ci O
@@= --@---0-: B L LEEY TR o-.
H, \ + /
-®---0---N---0-- P . > ----.
T Ttn T Tin
Ci O Gi Oy
--@---@----@---0-- B LT i P
Ha I +
[T PP \pup, Y [N W
T T T Tn
G O Gi Oy
gt ---0-- PP R
Hs +
C @t ---0-- PSP i .-
T Ya T Tin

FIG. 1. Schematic plot of the spin couplingstiy, H,, H,, and
Hs between the sping; and 7; on the two legs of a ladder.

and ;i , S = (;i-i- ;i , the Hamiltonian takes the form

1
H= ( cosh— Esin&) (Ho+Hq)+2SiN0(Ho+ H3)

3(N—1)

2 sing, 2

whereN is the number of lattice sites in the chain, and

Ho=2i [0 Fiva+ 7 Tival, (3@

H1:Ei [0 Tir1+ 7 0t (3b)
1 . -

Hz=52i Lo T+ 0ir1 Tival, (30

H3:§i: (0011 )(Ti-Tis 1) (05 T4 ) (7 012 1)]

(3d)

plied across the rungs\— —), the two spins form a trip-

let and the properties of th&=1 Heisenberg chain are
recovered:® In another approach Barnes al® allowed for
strong antiferromagnetic interchain couplings and treated
'H, as perturbation. They have shown the existence of a spin
gap for any finite interchain coupling.

In the composite-spin model, on the other haf, is
also necessarily included. A special feature of the model is
that for arbitrary values ok, and\ ;3 the model is invariant
under the interchange af, and\ q; i.e., the energy levels of
the full Hamiltonian satisfy

E(NosN1,A2,M3) =E(N1, g, 2,N3). (5)

This can be shown by interchanging tﬁe and ;i spins on
every second site. This relationship allows one to connect the
weak- and strong-coupling limits of the model by a duality
transformation. To show this let us denote dyhe energies

of the Hamiltonian in which the coupling strength Hf, is
chosen to be unity:

E(hghy hg hg)=hge| 22,22 Re 6
(NosN1,A 2, A3)=Noe o' No'No) (6)
From Eq.(5) it follows that
A Ao A3 Ao A A3
St R

Introducing the coupling®;=\;/\, (i=1,2,3), we get
(XXX)X(1X2X3) @®
> l 1] = El =, =, =|.
172,13 1 )\1 )\1 )\1

In what follows we will always work with the Hamiltonian
in which A\y=1 and will drop the tilde over the couplings.

ForA,=\3=0 this relationship reduces to a usual duality
relationship, which connects the energies in theNQ<1
region to those in £\ ,;<o,

e(N1)=N1&8(1/\y). 9

WhenA <0, the above deduced duality relationship con-
nects the lowest-lying levels of one region to the highest-
lying levels in the other region. Since in the numerical cal-
culations a few low-lying levels can only be calculated with
sufficient precision, a more useful relation can be derived in

We will generalize Eq(2) and consider the model described this case by comparing the energiestotlefined by Eq(4)

by the Hamiltonian

H:7\0H0+)\1H1+)\2H2+)\3H3, (4)
with arbitrary couplings\; .

Alternatively, instead of considering; and 7; as spins

that of H'=-—H. Denoting by
e’ (N1,N\2,\3) the energies of this model,

1 Ny Ag

8/()\1’)\21)\3):_)\18<

sitting on the same site, we can treat them as sitting on twQye ysed these relations to check the accuracy of the numeri-

parallel chains, or on the legs of a ladder, Ehe;pins on one

leg and ther; spins on the other. As shown in Fig. X,

cal calculations.
According to Eq.(2) the spin-1 model can be reproduced

couples spins on the same leg only; the others contain intewhen H, and H, are taken with equal coupling strength,

leg couplings, is the usual coupling between spins on theho=A1. When this coupling is antiferromagnetic, it gives

same rung, and{, couples spins on neighboring rungs of the fise to a valence-bond configuratfénof the neighboring

|egS, Wh||e’]—(3 describes four-spin Coup”ngs on a p|aquette_spin5, which is a characteristic feature of Ehe HaLdane phase.
Usually the ladder models are constructed to incli}e  When no direct coupling exists between theand 7; spins,

and H, only. When a strong ferromagnetic coupling is ap- nothing ensures priori that these spins appear in the sym-
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metric S=1 configuration only. When, howevex, and\; Ill. NUMERICAL PROCEDURES
are small compared ;=\ 1, the level structure of the true

spin-1 model and that of the composite-spin model is such ! 0
that their low-lying parts coincide, and thus their behavior isthe. DMRG method’ on the.m_odel defined by the Har_ml
similar. Therefore the phase diagram of our ladder model.Onlan in Eqs(3) and(4). This is a real-space renormaliza-

will contain phases characteristic to the bilinear-biquadrati lon method where the ]attlce IS bu[lt up gradually f[o the
model, but also new phases may appear. desired length, systematically truncating in the meantime the

The normalization,=1 is equivalent to considering the Hilbert space by keeping only the most probable states.
region — m/2< §< /2 only. The bilinear-biquadratic model  Since the DMRG method works best for systems with
has a rich phase structure in that region. It has been thofl€€ ends, we will consider our composite-spin model with
oughly investigated both analyticaf§?® by using, e.g., the a@n open boundary conditiof©BC). An unfavorable conse-
mapping to the Wess-Zumino-Witten model, or to the nine-quence of the OBC for the spin-1 model and consequently
state Potts model and numericaif7?® The region for the ladder models as well is that the degeneracies in the
m/2< 9<3w/2 is somewhat less interesting, since the modebpectrum may be different from that obtained for a closed
is ferromagnetic form/2<6<5w/4. Beyond that a new ring. In the nearest-neighbor valence-bond configuration,
phase might appear, as predicted by ChubuRa@kthough so  e.g., frees=1/2 spins remain at the ends of the chain, giving
far its existence has not been confirmed by numericatise to a fourfold-degenerate ground state. In the dimerized
calculations’? This problem is, however, outside the scopestate, on the other hand, the twofold degeneracy of the
of this paper. ground state is lifted if the number of sites is an even num-

6+5= — 74 corresponds to the Takhtajan-Babuffaim- ber. This makes the analysis of the spectrum more difficult.
tegrable model with gapless excitation spectrum. This point Moreover, in the case of the OBC the total momentum is
is the critical point of a second-order Ising-type phase tranhnot a good quantum number. Therefore, only the total spin
sition with a gap opening linearly around the transition point.S; and its projection to the quantization axi;, can be
In a chain with periodic boundary conditiofPBC) the used to classify the energy levels. Since in the isotropic case
ground state is doubly degenerate ot — /4, producing a the SU2) symmetry is satisfied, the spectrum was analyzed
dimerized phase, while for-7/4<6<m/4 the Haldane by calculating a few low-lying levels of the differe6§ sec-
phase appears with a nondegenerate singlet ground staters. S; was determined from the degeneracy of the levels.
This latter region includes the isotropic Heisenberg point at Because our aim is to determine the overall behavior of
#=0 and the exact nearest-neighbor valence-bond %tatethe energy spectrum and to identify from it the possible
(VBS) at 6gs=arctan(1/3). phases, in most of the calculations we have used the less

0. s=ml/4 is another integrable point related to the accurate version of DMRG, the so-callédfinite-lattice
Lai-Sutherlan@ model, where the gap vanishes again. Formethod In this algorithm the lattice is built up by adding two
6>ml/4 a trimerized massless phase appé&r® In the lattice sites in each step. The results obtained for chains with
composite-spin representation these points lie on the lind&l=4,8,16,32,48,64 sites were used in a finite-size scaling
N=1, at No=A3=—4/3 for the Takhtajan-Babujian, at procedure to extrapolate to an infinite lattice. On the other
N>=A3=0 for the Heisenberg, at,=\;=4/5 for the VBS, hand, close to the critical points and in those regions where
and at\,=A3=4 for the Lai-Sutherland points. the gap is small, thénite-lattice methodvas applied with

Furthermore, the composite-spin Hamiltonian can bewo or three iteration cycles to determine the energies more
transformed into a nonlinear model and the results ob- precisely.
tained in field theory can be related to our model. At In some cases, before doing the DMRG calculation on
A1=A,=A3=0, when the model reduces to two decoupledlong chains, the energy spectrum was determined by exact
spin-1/2 chains, the field theory possesses a gapless excitiagonalization on short chains with=4,6,8. This gave an
tion spectrum because the topological angle is an odd muldea of the sequence of the levels for different choices of the
tiple of 7. According to the field-theoretical calculatidhs couplings and allowed us to determine which states have to
the perturbations around this multicritical point are generi-be targeted in the DMRG procedure.
cally relevant and give rise to the opening of an energy gap, Considering our limited computational resources, we had
except for special points or lines. The Takhtajan-Babuijiarto restrict rather drastically the number of statlk, to be
and Lai-Sutherland models belong to such exceptions. Corkept in the DMRG algorithm. A number that can be used to
sequently, it is expected that by varying the parameters characterize the numerical accuracy of the DMRG method is
the gap vanishes only at the critical points and on the phasiae discarded density-matrix weigftruncation error?° In
boundaries between the various phases. the calculation of the ground-state energy for ladders with

In order to simplify the calculations, first we study the N=2X64 (N=2X32) sites it was largest close to the criti-
effect of H;, H,, andH; separately for fixedo=1. Then cal points with values of the order 18-10"¢ (10 '—
the calculation will be extended to a two-parameter planel08), while around the VBS point, where the gap is large, it
(A1,\,) by choosinghz=X\,. In order to determine the was as small as 10°-10 1! (10" **-10"1?). For the excited
phase diagram we examine the low-lying energy levels alongtates the truncation error was worse by one order of magni-
different paths connecting those points in parameter spadede.
where the model is integrable. The ground-state configura- The real error in the DMRG procedure can, however, be
tions will also be investigated by calculating the local energymuch worse? It was estimated by comparing the energies
of a bond, the two-point correlation functions, and a short-obtained for the ladder model using the DMRG procedure to
range order parameter. those of the spin-1 bilinear-biquadratic model or the spin-1/2

We have performed numerical calculations by applying
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FIG. 2. Low-lying energy spectrum of the Hamiltonian as a  FIG. 3. The energy difference between the low-lying levels of

function of A; (A\,=A3=0) for chain lengtiN=6. our model as a function ok, at A,=N3=0 for chain lengths
8<N=64. ForA,>0 AE,,, while for ;<0 AE,qis shown. The

chain, where much better accuracy can be achieved. Falotted line is the gap extrapolated fdr— . The inset shows the

chains withN=2x 32 sites an agreement up to three or fourbehavior for small values of;.

decimal places has been achieved after the second iteration

cycle of the finite-lattice method, iM was chosen to be AE,yN), while AE,;(N) denotes the energy difference be-

M = 64, while for chains withN=2X 64 sites the same ac- tween this quintuplet and the lowest triplet levels.

curacy required us to retai =76 or 84 states. At the VBS

point the infinite-lattice algorithm without the iteration

cycles provided almost the same accuracy.

In the extrapolation procedure tie— limit of the gap Let us consider first the effect of{,, since earlier
was determined by fitting a form\E(N)=A+a/N or calculation$® by exact diagonalization on relatively short
AE(N)=A+b/N? to the energy differences measured be-chains could not determine satisfactorily the way the gap is
tween the energy levels of the varioBssectors. In principle opened. Foi ;>0 the energy of the lowest triplet states and
the first has to be used when the gap vanishes0, while  that of the singlet ground state come exponentially close to
the second gives the correct asymptotic behavior when théach other and become degenerate in the thermodynamic
gap is finite3* When the gap is finite but the chain length is limit (N—2). This gives the well-known fourfold degen-
not long enough to observe the correct parabolic behavio€racy of the VBS-like state in a finite chain with OBC.
the linear fit gives a lower-bound estimdfeWe have used Therefore the relevant energy gap can be obtained most
the parabolic fit whenever deviation from the linear depen-£asily by measuring the energy differentE,,(N) between
dence on ™M was observed. the lowest-lying levels of th&;=2 andS;=1 sectors. This
energy difference as a function &f is shown in Fig. 3 for
N1>0. The lines connecting the values calculated at several
distinct points are only guides to the eye. The inset in the

In this section we present our numerical results for thefigure shows in more detail the behavior of the gap close to
low-lying levels of the model for various choices of the cou- the integrable point.
plings. For a finite ladder the ground state is always a spin In the extrapolation ttN— a 1N fit was applied close
singlet. Above this level there are two low-lying triplet ex- to the critical point, because the chain lengths were not long
citations, which at\;=XN,=A3=0 have equal energy. At enough to observe the parabolic behavior. As an indication
this point, they correspond to independent excitations on thef the accuracy of our calculation we mention that at
two decoupled legs. These levels are followed by several;=1, where the Haldane gap should be recovered, we ob-

A. Gap opening due toH;

IV. NUMERICAL RESULTS

$:=0,1,2,. .., excitations. The energy differences betweentainedA,;=0.41(1), in reasonable agreement to three deci-
all these levels scale asNl/indicating a gapless excitation mal places with its best estimate3® The ground-state en-
spectrum. ergy divided by the chain length converges to

For finite values of\ ,\,, and\ 5 the degeneracy of the E;/N=1.401 4840), in agreement to six decimal places
two low-lying triplet levels is in general lifted. This is shown with earlier calculations®
along the\, axis in Fig. 2. In a finite chain witlN sites the As a further check we have also performed calculations
energy difference between the lowest triplet and the groundfor large values of\; and used the self-duality relationship
state singlet levels will be denoted E (N). When this in Eqg. (9) to obtain the gap for weak couplings. The results
guantity scales to a finite value, the ground state is a nondesbtained in this way are shown in the inset. From this we
generate singlet with a finite gap. When, however, it scales toould also conclude that our finite-size calculations are cor-
zero, we have to consider the next level. This is either theect to at least four decimal places. Even though the accuracy
second triplet or it may have been crossed by the lowestf our calculations is limited, we have found a linearly open-
S;=2 level. The energy difference between this quintupleting energy gap foi;>0. This is the first calculation where
and the ground-state singlet levels will be denoted bythis could be demonstrated numerically.
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tiferromagnetic. The low-lying part of the spectrum is essen- AN Rt
tially different from that of thex ;>0 regime. The degen- 1or \\ %* N=64 T
eracy of the twdS;=1 triplet levels is again lifted, but even osl e X N=e
the lowest of them will remain separated from the singlet R AN I
ground state. So the energy difference to be studied is Wosl g ‘\\ |
AE;(N). This quantity is shown on the left-hand side of ' T RN
Fig. 3 forA;<<0. As can be seen, the ground state is a non- 0.4 ‘f«\x.* e \'\\\' i
degenerate singlet with a small, but finite gap to the lowest- g R AN
lying excitations. 02l AN '\.\k i
Since the gap is small, the value af, has been calcu- **v-a‘\’fﬁ'&fg:}jg‘j
lated using the finite-lattice method. This procedure with 0.0 ' ' o T
; . . — -15  -1.0 -0.5 0.0 0.5
three iteration cycles and aN/fit gave at\;=-1, e.g., Ay

A,=0.11(4) as a lower-bound estimate for the singlet-

triplet gap. Furthermore, the lowest quintuplet level has been 5 4 The energy differencAE,, as a function ofx, at
found to become degenerate with the lowest triplet state iR —) .—o . The symbolx shows the extrapolated value of the gap
the thermodynamic limit. Thus a gap separates the groungh ) = —4/3.
state from the continuum of excitations.

For small values oh; the accuracy of the calculations ) ,
has been checked using the relationship in®@). The gap  \2=Ms- For negative values of; the low-lying part of the
is found to open linearly. Thug/, is relevant for both signs €N€rgy spectrum resembles very much that found above for
of Ay. small negative\ . A finite gap develops between the singlet

On the other hand, for large negative values, in the regiond triplet levels as shown in Fig. 4. Ap=—4/3 the finite-
N,<—10, we have found the vanishing of botky, and Iatt|ce_ glgonthm and a N fit gave A,;=0.175). Close to
A,o. This indicates that a new phase with a gapless spectruﬁl?e critical point the extrapolated lower-bound values of the

may appear there. However, due to the smallness of the g&JftP are even smaller; therefore the available chain lengths
around\,;=—1, we were un,able to locate the point where &€ still not long enough to determine the character of the

the transition occurs. opening of the gap. _
On the other hand, fat,=\3>0 the analysis of the low-

lying energy spectrum has shown that batfy andA 5y scale
B. Effect of H, and H; to zero; i.e., the spectrum is gapless. Since the system re-

The effect of the interleg couplingt, on the decoupled Mains critical in an extended region for,=A3>0, a
chains described b?’fg for \,=A\3=0 has been considered Kosterlitz-Thouless-like trgnsmon may  occur at
by several author3®1°Hida® found that the gap is finite for A1=X2=A3=0 to the massive phase ag=\3<0. This
A,<\,.= —0.6, while Dagottoet al” showed some evi- could explain the slow opening of the gap in that region.
dence that the critical coupling is closer to zero, perhaps These results are only partially consistent with the field
e~ —0.4. On the other hand, Watanakteal® and Hsu and theoretlca_l p_redlctlon, Whlch states that th(_a spin-1/2 inte-
Anglés d’Auriac® argued that the interchain coupling de- grgble pomt is unstable against all perturbations. Our calcu-
fined by, is always relevant anil,,=0. lations |nd_|cate that although botH, anq Hs are reIevanF

We repeated some of these calculations to confirm thagPerators in the ladder mode_l for bp_th signs of the couplings
this coupling is in fact relevant for both signs of the coupling 2 @nd A3, the model remains critical at least along the
N,. For A\,>0 the ground state is a nondegenerate singlet2=Xs>0 half line.
even in the thermodynamic limit with a rather large gap. At 10 Summarize our findings, three types of the spectrum
\,=4/3, e.g., a singlet-triplet gap with,,=0.729), and a have been found. A_n _asymptotlca_lly fourfol_d-dege_nerate
singlet-quintuplet gap with ,,= 1.43(4) has been found. ground state, charateristic of a VBS-like state, is obtained for

For A\,<O the spectrum is similar to that fox,>0, M1=~0, A2=A3=0, for A;<<0, A\;=A3=0, and forAs>0,
where the ground state becomes fourfold-degenerate in tHg=*2=0. A truly nondegenerate singlet ground state is
thermodynamic limit. The gap, however, is rather small. Atfound for A; <0, A;=X5=0, for A;>0, A;=\3=0, for
\,= —4/3 the calculation with the finite-lattice method and a*3<0, A1=\>=0, and also foh;=\5<0, A;=0. Finally
1N fit gave A,,=0.11(3), in agreement with previous the Spectrum is gapless fap=»\3>0, \;=0.
results®

The plaquette coupling{; also turned out to be relevant »
for both signs of the coupling, but in some sense its effect is C. Competition of H;, H, and Hs
opposite to that of{,. A fourfold, degenerate ground state is  After having determined the spectrum along theaxes
obtained with a finite quintuplet-singlet gap fag>0. At  and thex,=\3 line, next we consider the phase diagram in
N3=4/3, e.g.,A,;=0.28(5) has been found. Fa<0 the the parameter space spanned\by To simplify the calcula-
ground state remains singlet. Ag= —4/3 the triplet-singlet tions we restrict ourselves in the remaining part of the paper
gap isA1p=0.268). to a two-parameter plane by choosixg= \ ;. We will study

Because of this opposing effect of these couplings, nexéspecially the neighborhood of thg=1 line, which corre-
we considered the competition @f, and H; by choosing sponds to the bilinear-biquadratic Hamiltonian.
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FIG. 5. The quintuplet-triplet energy differenceE,,(N) as a FIG. 7. Schematic phase diagram of the model in the
function of A\,=\5 at \;=1. Close to the critical point the size of (A1,A2=\3) plane. The wavy lines between the four different
the symbol for the extrapolated gap indicates the error. phases indicate that the location of the phase boundaries has not
been determined accurately.
In the Takhtajan-Babujian point of the bilinear- |t is known, however, that tha,<—4/3 region corre-

biquadratic model, which corresponds ta\;=1, sponds to a dimerized phase, where instead of a singlet
Ao=MN3=—4/3 in our model, the spectrum is gapless in theground state, a doubly degenerate ground state would have to
thermodynamic limit. Both the singlet-tripleAE;o(N)] and  be found. Therefore, we have considered several higher-
the triplet-quintuplef AE,;(N) ] energy differences vanish as lying levels to search for the other singlet level that would
1/N. They behave, however, quite differently as we movebecome degenerate with the ground state. We have not found
away from the critical point. This is shown in Figs. 5 and 6.any such level. This can be understood by recalling that in

For \,> —4/3 the lowest triplet level becomes asymptoti- the case of OPB the dimerized phase gives a truly twofold
cally degenerate with the ground-state singlet, and so thdegenerate ground state only if the number of sites is odd,
relevant gap is between the triplet and quintuplet leveld.e., if the number of bonds is even. For chains with an even
(A,y). This level structure is the same as along khe>=0  number of sites the energy of the dimerized state depends on
line; thus a VBS-like state is obtained in this part of thewhether the bonds at the ends are strong or weak. Inspection
phase space. The opening of the gap is very slow; even o@f the low-lying levels is therefore not sufficient to distin-
longest chains are too short to obtain a reliable estimate ajuish a real nondegenerate singlet ground state from a dimer-
the gap close to the critical point. The error of the extrapoized state. We will return to this problem later, when the
lated value close to the critical point is indicated in Fig. 5 bydimer order parameter will be discussed.
the size of the symbol. One of the two kinds of behavior found for

For \,<<—4/3 a finite gap develops between the ground-A;=X3>—4/3 and \,=\;<—4/3 appears whenever one
state singlet and the lowest triplet levels, in the same way agioves away from the Takhtajan-Babujian integrable point in
for A,=\3<0. A lower-bound estimate of the gap obtainedany direction in the X;,A,=\3) plane. Varying, e.g.\;
by a 1N fit is shown in Fig. 6. The results are in agreementaround A;=1 at A,=X3=—4/3, a nondegenerate singlet
with a linearly opening extrapolated gan,. ground state is found fox, <1, while forA,>1 the singlet-

triplet gap disappears, forming a fourfold-degenerate ground

state. This result is in agreement with the assumption that the
' Takhtajan-Babujian point is generically unstable against per-
turbations, except along the phase boundaries.

Our calculation is, however, not accurate enough to locate
this critical line in the phase space that separates the two
1.0 e AN e kinds of behavior. In the schematic phase diagram shown in

* " Fig. 7 the boundaries are therefore indicated by wavy lines.
oY N \ That the phase boundary between the VBS-like Haldane
. phase and the supposedly dimerized phase connects the
< 1 N1=A,=A3=0 and the Takhtajan-Babujian points has been
. ~ confirmed by looking at the energy spectrum of our model
ol N along the trajectory parametrized byr;=1—\,

. s'f*%Q R S No,=A\3=—4\/3, where\ varies between 0 and 1. For small
00—l D ioala.ing values of\ a fourfold-degenerate ground state is recovered,
Ay while for A close to unity a nondegenerate singlet ground
state is found.

FIG. 6. The same as Fig. 5 for the triplet-singlet energy differ- ~As mentioned before, this singlet ground state was found

enceAEqo(N). along thex 1<0, A,=A3=0 line as well. Whether this axis

AEyo
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also belongs to the dimerized phase or not cannot be deter- Y S —
mined from the low-lying spectrum alone. We will return to [ o A=, Memt/3
this problem later. [& M=0, X=-4/3

Extending the calculations ta,=\3>0 on the line oy 222:25*;//33 ]
A1=1 the VBS-like state survives in a finite range, including :g ;f;-f" x%z_=_—://§> ]
the point\ ,=\;=4/5, where the exact nearest-neighbor va- 1.5 [+ A=, dom—514/3 . ]
lence bond state is recovered. At this point the lowest singlet i [® M==1, A=0 . N ]
and triplet levels are degenerate for any finite chain lengths. v [, ¢ %
The gap reaches its maximum value wik;=0.84047), or A 2 ® ]
which, after including the appropriate scaling factors due to A +
our normalization tony=1, agrees to five digits with the o5 % § 3
known result’ o 9

For larger values of, along thek;=1 line the Lai- ool
Sutherland model and the trimerized phase of the bilinear- 000 005 010 015 020 025 0.30
biguadratic model cannot be reached by this ladder model. 1/N

The extra levels introduced by the composite-spin represen- _

tation will be low lying and will lead to a gapless new phase, FIG- 8. The short-range dimer order paramegg, calculated

as has already been found fag=0. This massless phase in the middle of the chain vs the inverse of the chain length at a few
has been found for large positive,=\; values also for points of the phase spacky(,\,=As).

A,<0. Thus it is stable in an extended range of the cou- In Fig. 8 we present our results for the short-range dimer

plings. order paramete$,4, measured in the middle of the ladder as
] a function of the inverse of the chain length for a few points
D. Dimer order of the (\;,A,=\3) phase space. The parameRyq, not
Even though the structure of the low-lying part of the shown in the figure gives the same kind of behavior.
energy spectrum indicates the existence of various phases, its There is clearly an extended region in the parameter
knowledge, as discussed above, is not sufficient to clarifjgpace, where the short-range order parameter scales to zero
unambiguously the character of the ground state. We havé) the thermodynamic limit. At the VBS point itseff; 4, was
therefore, calculated several quantities in the ground statéound to be zero for short finite chains already. The vanish-
like the local magnetizationS)=(a)+(7,), the two-point N9 Of Ssao happens not only in the Haldane phase, but also
. B N N along the negative ; axis and in a neighborhood of it, where
correlation function( ;) =((o; + 7)(o;+ 7)), and the lo- 0 o0 41 y\as indistinguishable from the spectrum of the
cal energyE, .= (H(i,i +1)), whereH(i,i +1) contains the P 9 P

couplings between spins on siteandi+1. supposedly dimerized state.

The correlation function falls off exponentially both in the . For large negative values af, hoy\{ever, both for posi-
o : - tive and negative values of;, a transition was found to the
Haldane and the dimerized phases, turning to power law like

on the phase boundary, but the chains are still too short tgtate whereRs;4, and Srqo have nonzero values and the local

distinguish clearly between these two possibilities. A bettermagnetlzatmn at the ends of the chain vanishes. Thus, in the
region where the ground state was found to be a nondegen-

procedure could be to look at the local magnetization in the . . e

lowest triplet state. Due to the free end spins of the exac?rf.ite singlet, the short-range dlmer order allows us to d_|st|n-

nearest-neighbor valence-bond configuration, the local ma juish ,FV.VO regimes. In the region denoted as. dimerized
hase” in Fig. 7, botfR4, and S, Scale to a finite value.

netization is finite close to the chain ends in the VBS-like this phase the local maanetization at the ends of the chain
Haldane phase. Approaching the phase boundary, the extPg P gneti: . -
IS also absent. In the other region marked as “massive,” the

spin becomes less and less localized and it spreads out h sner order disapoears. The boundary between them is
mogeneously in the dimerized and gapless phases. pp ' Y

The most useful procedure is, however, to consider thgrawn schematically only in Fig. 7, and its exact shape could

so-called short-range dimer order parameter. It can be d -Ot_ )tze_d)\etirgnlggi?{t except that it has to go through the
1= 27 A3 .

fined by taking the difference of the local energy on neigh-

boring bonds in the middle of the ladder,
V. CONCLUSIONS

O (HGL 1) —(H(i+1i+2))

srdo—

) 11) In the present paper we have considered a two-leg ladder
SHHGL,i+1)+{(H(i+1i+2))] model constructed from a composite-spin model. Besides the

usual Heisenberg coupling between the spins on the legs

It i; expected to have different behavior if the ground state i‘cinterleg coupling between spins on the same and neighboring
unique, fourfold d_egenerate, or twofold degenerate_: as in th ngs have been introduced, as well as four-spin plaguette
dimerized state with spontaneously broken translational Symc':ouplings '

metry. . . . .
. . ) . - For special values of these couplings this ladder model is
A simpler quantity can be defined by taking the blllnearequivalent to the spin-1/2 Heisenberg model or the spin-1

part of the coupling only: bilinear-biquadratic model in the sense that the low-lying

<*..§ >_<§i §1 ) parts of the spectra are identical. Thus massless, VBS-like,
S — R A 12)  and dimerized phases are expected to appear, but the phase
(S-S +(S+1-S12)] diagram can be even richer.
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The behavior of the energy differences between low-lyingboundary, where the transition is either to the gapless phase
levels has been calculated using the DMRG method and ther to a dimerized one.

gap extrapolated to the thermodynamic limki--~) was ~ The Takhtajan-Babujian point at; =1, A;=A3=—4/3
obtained with the method of finite-size scaling. We have alsdies on the phase boundary between the VBS-like and the
considered the short-range dimer order parameter. dimerized phases. The transition here could be detected not

It has been found that the spin-1/2 Heisenberg ladder i@nly in the change of the character of the spectrum, but also
unstable against most of the perturbations that couple the twiy the appearance of a finite short-range dimer order param-
legs, but there is a small range of the parameters where tHer- This quantity was used to distinguish the dimer phase
combination of the perturbing operators is irrelevant. also from the “massive” phase with a nondegenerate singlet

Four different kinds of behavior was observed, as showrg"ound state, where the dimer order disappears again, in fact

in Fig. 7. In a region along and near to the ling=0, Much faster than N. = . .
N>=2A3>0 the spectrum remains gapless. Everywhere else a Unfortunately, our I_|m|ted computatlongl resources .d'd
gap is developed in the spectrum. Three regions can, ho not allow us to determlne the precise location of the critical
ever, be distinguished depending on whether the ground stal es separating the various phases.
is nondegenerate or twofold or fourfold degenerate. The last
case is easily detected by studying the asymptotic degen-
eracy of the spectrum. This phase is present around the This research was supported in part by the Hungarian Re-
N1=1, N,=A3=4/5 point, where the exact nearest-neighborsearch FundOTKA) Grant No. 15870, by the Swiss Na-
valence-bond state is recovered. The extrd /2 spins at the tional Science Foundation Grant No. 20-37642.93, the ISI
ends of the chains become more and more delocalized as viundation (Torino), and the EU PECO Network
move away from the VBS point and disappear at the phaseRBCIPDCT940027.

ACKNOWLEDGMENTS

*On leave from the Research Institute for Solid State Physics'’M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phys.

Budapest, Hungary. Rev. Lett.73, 3463(1994.
1D. C. Johnston, J. W. Johnson, D. P. Goshorn, and A. J. Jacobso#]. Sdyom and J. Timonen, Phys. Rev.3, 487(1986); 38, 6832
Phys. Rev. B35, 219 (1987). (1988; 39, 7003(1989.
27. Hiroi, M. Azuma, M. Takano, and Y. Bando, J. Solid State 194, J. Schulz, Phys. Rev. B4, 6372(1986.
Chem.95, 230(1997). 203, R. White, Phys. Rev. Let69, 2863(1992; Phys. Rev. B48,
3R. J. Caveet al, J. Solid State Chen®4, 170(199). 10 345(1993.
4 .
F. D. M. Haldane, Phys. Rev. Lefi0, 1153(1983; Phys. Lett. 21| Affleck, Phys. Rev. Lett55, 1355(1985; Nucl. Phys.B265
93A, 464(1983. 409 (1986.

5K. Hida, J. Phys. Soc. JpB0, 1347(1991); 60, 1939(1991).

6s. P. Strong and A. J. Millis, Phys. Rev. Le9, 2419(1992.

"E. Dagotto, J. Riera, and D. Scalapino, Phys. Revd5335744
(1992.

8S. Takada and H. Watanabe, J. Phys. Soc. 8hn39 (1992; H.
Watanabe, K. Nomura, and S. Takailag. 62, 2845(1993; H.
Watanabe, Phys. Rev. B0, 13 442(1994.

9T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev.

22|, Takhtajan, Phys. LetB7A, 479(1982; H. M. Babuijian,ibid.
90A, 479(1982.

23C. K. Lai, J. Math. Phys15, 1675(1974; B. Sutherland, Phys.
Rev. B12, 3795(1975.

241 Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.
Lett. 59, 799(1987; Commun. Math. Physl15 477 (1988.

ZBSJ. B. Parkinson, J. Phys. Z1, 3793(1988; M. N. Barber and M.

47, 3196(1993, T. Barnes and J. Rlermld 50, 6817(1994) T. BaCheIOr, Phys Rev. BO, 4621(1989, A. Klumper, J. Phys
10T Hsu and J. C. Ange d’Auriac, Phys. Rev. BA7, 14 291 A 23, 809(1990.
(1993. 5D. Kung (unpublishegt J. Oitmaa, J. B. Parkinson, and J. C.

1R M. Noack, S. R. White, and D. J. Scalapino, Phys. Rev. Lett. Bonner, J. Phys. @9, L595(1986; H. W. J. Blde and H. W.
73, 882(1994; S. R. White, R. M. Noack, and D. J. Scalapino,  Capel, Physicd 39A, 387 (1986.
ibid. 73, 886 (1994. 273, Sdyom, Phys. Rev. B36, 8642 (1987.

125 Gopalan, T. M. Rice, and M. Sigrist, Phys. Rev4® 8901  2®K. Nomura and S. Takada, J. Phys. Soc. 5#).389 (1991).
(1994); M. Sigrist, T. M. Rice, and F. C. Zhanihid. 49, 12058  2°G. Fah and J. Slyom, Phys. Rev. B4, 11 836(1991); 47, 872
(19949. (1993.

13H. Tsunetsugu, M. Troyer, and T. M. Rice, Phys. Rev4®  3°C. Itoi and M. H. Kato(unpublishegl
16 078(1994; M. Troyer, H. Tsunetsugu, and D. \Mta, ibid. 31A. V. Chubukov, Phys. Rev. B3, 3337(199).

50, 13 515(1994. %2G. Fh and J. Styom, Phys. Rev. B51, 3620(1995.
K. Totsuka and M. Suzuki, J. Phys. Condens. Mafteis079  320. Legeza and G. T, Phys. Rev. B3, 14 349(1996.
(1995. 34E. S. Sorensen and |. Affleck, Phys. Rev. L&t, 1633(1993.
155, R. White, Phys. Rev. B3, 52 (1996. 35y. Schollwak and T. Jolicoeur, Europhys. Le80, 493 (1995.

18R, S. Eccleston, T. Barnes, J. Brody, and J. W. Johnson, Phys®S. R. White and D. A. Huse, Phys. Rev.4B, 3844(1993.
Rev. Lett.73, 2626(1994. %7G. Fah and J. Styom, J. Phys. Condens. Mattgr 8983(1993.



