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Perfect self-similarity of energy spectra and gap-labeling properties
in one-dimensional Fibonacci-class quasilattices
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One-dimensional Fibonacci-class quasilattices are proposed and studied, which are constructed by the sub-
stitution rulesB→Bn21A, A→Bn21AB. We have proved that this class of binary lattices is self-similar and
also quasiperiodic. By the use of the renormalization-group technique, it has been proved that for all Fibonacci-
class lattices the electronic energy spectra are perfect self-similar, and the branching rules of spectra are
obtained. We analytically prove that each energy gap can be simply labeled by a characteristic integer, i.e., for
the Fibonacci-class lattices there is a universal gap-labeling theorem@Phys. Rev. B46, 9216 ~1992!#.
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I. INTRODUCTION

Quasiperiodic systems have received extensive inte
since the experimental discovery of fivefold symmetry in t
diffraction pattern of metallic alloys.1 In particular, much
attention has been devoted to the electronic properties o
Fibonacci lattice, which provides a prototype model f
studying the quasiperiodic systems.2–9The distinguished fea
ture lies in the fact that the energy spectrum is neither ab
lutely continuous nor purely pointed, but singular contin
ous, and the eigenstates are critical between the extende
localized ones. On the other hand, many non-Fibonacci m
els have been studied, mainly by generalizing the Fibona
substitution rulesB→A, A→AB. Among them, so-called
generalized Fibonacci sequences, which are given by
substitutions A→AmBn, B→A, have been extensivel
studied.10–17 Investigations have revealed their many simi
properties as those of the Fibonacci lattice. Howev
whether these models can be called ‘‘quasiperiodic’’ or o
‘‘aperiodic’’ is a interesting question. In an earlier wor
Bombieri and Taylor18 pointed out that any infinite chain
obtained by a substitution rule possessing the Pisot prop
can be constructed with a projection method, so the qua
eriodicity is preserved. According to this criterion, a fam
of generalized Fibonacci sequences generated byA→AnB,
B→A are quasiperiodic,12 for which the same properties a
in the Fibonacci case can be expected to exist. This con
sion has been confirmed by a lot of work.

To study an aperiodic system, one will face two problem
self-similarity and quasiperiodicity. In general, a self-simi
structure is produced by the substitution rule, and a qua
eriodic lattice is constructed by the projection method.19 The
550163-1829/97/55~5!/2882~8!/$10.00
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former reflects the inflation symmetry, while the latter cha
acterizes that its Fourier spectrum consists of Bragg pe
The relationship between these two sides has been stu
recently.20–25

In this paper, we restrict ourselves to the binary s
quences. A binary substitutiont is formally defined by its
simultaneous action on two lettersA andB, which replaces
each letter with a finite word, of the form

t: HA→t~A!5a1a2•••aa1b

B→t~B!5b1b2•••bg1d
. ~1!

In this expression, eachai or bi stands for a letter,a andb
denote the number of letters ofA andB in t(A), andg and
d are the number ofA andB in t(B). The substitution matrix
associated witht is defined as follows:

M t5S a g

b d D . ~2!

HereM t only describes the contents oft(A) and t(B) in
letters of each type, irrespective of the order in which the
letters occur.

Repeatedly using the substitution~1!, a finite word is de-
veloped to an infinite sequenceS, and we haveS5t~S!.
Thus an infinite abstract sequence is obtained, which is s
similar. A physical structure corresponding toS can be pro-
duced by regarding the two lettersA andB as two kinds of
atomic spacingl A and l B in a one-dimensional chain.
2882 © 1997 The American Physical Society
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Luck et al.20 have shown that a chain generated by
substitution~1! is quasiperiodic if and only if the associate
substitution matrix~2! fulfills two conditions: Pisot property
and unit determinant. The structure thus obtained can be
ternatively built as sections of periodic patterns in a tw
dimensional space. Along the same line, Wenet al.24 have
proposed following a class of substitution rules to gener
quasiperiodic chains which share some typical proper
with the Fibonacci chain. The substitution matrix is

M t5S f k211n fk22 f k22

f k221n fk23 f k23
D , ~3!

where f k is the Fibonacci number with the initial conditio
f215 f 051 and f k50 for all k<22, defined by the recur
sion relationf k125 f k111 f k , andn is a non-negative inte
ger. They have also argued that the condition under whic
quasiperiodic chain can be obtained with the standard
jection method is that the substitution rule is invertible.

On the other hand, Odagaki and Kaneko23 have studied
the self-similarity of a quasiperiodic sequence given by

Fk~a!5 b~k11!a c2 bka c ~k51,2,3, . . .!, ~4!

wherebxc denotes the integer part ofx, anda is an irrational
parameter in~0,1!. The sequence thus obtained consists
two elements 1 and 0, which can be replaced with two len
units l A and l B to construct a one-dimensional chain. Th
have proven that the structure given by Eq.~4! is self-similar
if and only if a is a quadratic irrational number. Linet al.25

have also confirmed this result. By establishing the co
spondence between a substitution rule and a transforma
on the value ofa, they have concluded that the necess
condition for a self-similar sequence that is generated by
substitution rule and can be obtained by the project
method is that the substitution rule is a simple composit
of the general transformationsA→AnB, B→A.

Although the above sequences are quasiperiodic and
metrically self-similar, the electronic spectral structure m
vary a lot. Unlike the Fibonacci chain, their regular se
similarity does not show up definitely in the energ
spectra.11–17 An appealing question is thus raised: does
regular orperfectself-similarity of the energy spectrum als
exist in other structures as in the Fibonacci lattice? As
answer, Huang, Liu, and Mo26 have by chance found a quas
lattice, called the intergrowth sequence~IS! model by them,
and proved that it has a perfect self-similar spectrum. Es
cially, further investigation displays that in other aspects
electronic properties this model is also same as the Fibon
lattice, such as the gap-labeling properties, localization of
electronic states, multifractal properties of electronic wa
function, even the transmission of light.27 We consider that
the intergrowth sequence should not be a unique mo
which possesses the same electronic properties as th
bonacci lattice, but should there be a class of them. In o
words, in the set of general transformation stated by
et al. there should be a class of special transformation,
electronic properties of which have perfect self-similari
The rest of the set do not have the same properties. M
vated by this idea we have successively found a class
one-dimensional binary lattices, which are both self-sim
and quasiperiodic. The Fibonacci and intergrowth sequen
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become two special cases of the class. By analyzing the s
ting patterns of the energy spectra, we find that the spe
are perfectly self-similar with a regular hierarchical structu
The integrated density of states exhibits a ‘‘devil’s st
case’’ structure and each energy gap can be simply lab
by an unique characteristic integer. All these are the typ
properties of the Fibonacci lattice. Therefore, we can c
sider this class of quasilattices a most intrinsic generaliza
of the Fibonacci lattice, and call it Fibonacci-class~FC!
quasilattices. We organize this paper as follows.

In Sec. II, we introduce this class of sequences and t
mathematical characters. These Fibonacci-class lattices
be obtained by the substitution rules as well as by the p
jection method. Section III is devoted to study the electro
energy spectra of FC lattices. By the use of t
renormalization-group technique we have obtained their s
similar spectra and branching rules. In Sec. IV the g
labeling rules are obtained by calculating the occupat
probabilities of energy levels in every subband. We ha
analytically proved that for FC lattices there exists a univ
sal gap-labeling theorem, i.e., every energy gap of the sp
trum can be labeled by an unique characteristic integer.
nally, a brief summary is given in Sec. V.

II. THE FIBONACCI-CLASS SEQUENCES

A Fibonacci chain is described by the substitutionsB→A,
A→AB, while the IS sequence is generated byB→BA,
A→BAB. By extrapolation, we study the following subst
tution rules:

B→Bn21A, A→Bn21AB, ~5!

wheren is a positive integer andBn denotes a string ofn
B’s. For a specific number ofn, a sequence is obtained b
repeatedly using the substitution rules. If we setn51, the
substitution rules turn back to the Fibonacci caseB→A,
A→AB, and if then52 it is exactly the intergrowth se
quence. Because this class of lattices shares many com
features with the Fibonacci lattice, which will be discuss
below, we suggest calling this class of sequences
Fibonacci-class~FC! sequences, and an individual memb
with certainn is denoted as FC(n). Let Sl denote thel th
finite chain beginning withS15B, S25Bn21A, then we have
the following recursion relations for the FC(n) sequence:

Sl5Sl21
n Sl22 ~ l>3!, ~6!

and Fl , the number of elements contained in thel th se-
quence, satisfy the corresponding relations

F151, F25n, Fl5nFl211Fl22 ~ l>3!. ~7!

There exists an irrational limitation onFl21/Fl ,

sn5 lim
l→`

Fl21

Fl
5
1

2
~An2142n!. ~8!

The associated substitution matrix of Eq.~5! is

Mn5S 1 1

n n21D . ~9!
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2884 55FU, LIU, ZHOU, AND SRITRAKOOL
Its characteristic equationx21nx2150 has two real roots
one greater than 1 in absolute value and another less th
and it is obvious that detMn521. Therefore, both the Piso
condition and the unit determinant requirement are satisfi
thus the sequence is quasiperiodic.18,19 The positive eigen-
value ofMn is exactly

sn5
1

2
~An2142n!, ~10!

which is an irrational quadratic number between~0,1!, and
can also be expressed in the form of continued fraction

sn5
1

n1
1

n1
1

n1
1

n1 • • •

.

~11!

This means the FC sequences can be obtained with the
jection method.24,25

To obtain a FC(n) sequence by the projection method, w
consider a two-dimensional periodic lattice with square u
cells of dimension 131 whose edges are aligned with theX
and Y axes, respectively. Then, construct a projection l
oriented at angleu with respect to theX axis and let
tanu5sn . For only a small subset of unit cells does t
projection line pass through the right-hand vertical edge
the unit. In Fig. 1 the projection method to obtain the FC~3!
and FC~4! sequences is shown. The hollow circles are the
of points corresponding to the lower right-hand corner
each unit cell; their coordinates are~N,bN tanuc!, where
tanu5(A1323)/2 for FC~3!, tanu5(A522) for FC~4!, and
b c denotes the greatest integer function. The projection
these points onto the projection line are indicated by
solid circles, their coordinates along the projection line a

LN5N cosu1sinu bN tanu c. ~12!

The distances between two neighboring sites on the pro
tion line take two valuesl A5~cosu1sinu! and l B5cosu
which are denoted respectively byA andB in Fig. 1. If we
replacel A and l B with 1 and 0, the expression form~4! is
available here witha5sn .

FIG. 1. Illustration for obtaining the FC(n) sequences with the
projection method.~a! FC~3! sequence with tanu5(A1323)/2. ~b!
FC~4! sequence with tanu5A522.
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From their algebraic and geometric features stated ab
we know that the FC sequences are both self-similar
quasiperiodic.

Furthermore it is convenient to introduce another class
sequences which will occur in the renormalization-gro
procedure to analyze the energy spectrum below. Their s
stitution rules are

B→Bn22A, A→Bn22ABn22AB. ~13!

and it is easy to see that for this class of sequences, we

S15B, S25Bn22A, Sl5Sl21
n Sl22 ~ l>3!. ~14!

For the convenience of description, we call these sequen
the relative sequences of FC(n), and denote them asR(n).
We should note that the recursion relations ofR(n) are the
same as those of FC(n) given in Eq.~2! but with different
initial conditions, while the substitution rules ofR(n) are
different from those of FC(n).

III. SELF-SIMILAR SPECTRAL STRUCTURES

To deal with the electronic properties of a on
dimensional FC(n) quasilattice, we consider the tigh
binding Hamiltonian

H5(
i

u i &« i^ i u1(
i , j

8u i &t i j ^ j u, ~15!

where« i is the site energy at sitei , and t i j is the nearest-
neighbor hopping integral. In general, two kinds of mod
are studied. One is the transfer version, for which« i is con-
stant for all i , and t i j take two valuestA and tB arranged
according to the FC(n) sequence. The other is the on-si
version, for whicht i j is constant while« i take two values«A
and«B constructing a FC(n) sequence. In the following, we
will concentrate on the transfer version; the on-site vers
can easily be treated in the same way.6 For the transfer ver-
sion, we choose« i50 for all i , and the corresponding Schro¨-
dinger equation for sitei is

t i21,ic i211t i ,i11c i115Ec i . ~16!

Before going on, let us recall some results given in t
previous literature on the spectral structure of the Fibona
quasilattice. It is well known that the spectrum of a F
bonacci chain constructs a Cantor set, indicating the sp
trum has a hierarchical structure.2–6 In the first hierarchy,
there are three bands, and each band will split into th
subbands in the second hierarchy. This splitting pattern ho
for any hierarchy; thus it turns out to be a perfect self-simi
spectrum. Here, we would like to emphasize again that th
is not any kind of generalized Fibonacci lattices which po
sesses this perfect self-similar spectrum.

Now we turn to analyze the spectral properties of t
FC(n) lattices withn greater than 2. For this purpose we c
use the decomposition-decimation method,7 of which the
main idea is the weak-bond approximation and the reson
coupling based on the perturbation theory, that allows us
obtain the splitting rules of the spectrum in an intuitive wa

As the first example we consider the FC~3!, i.e., then53
case. The bond sequence of the FC~3! is as follows:



55 2885PERFECT SELF-SIMILARITY OF ENERGY SPECTRA . . .
BBABBABBABBBABBABBABBBABBABBABBBABBABBABBABBBA... .
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To begin with, let us assumetA!tB . First, in the absence
of the weak bond, i.e.,tA50, the chain is broken into two
kinds of blocks.5,7 One is composed of four atoms connect
by three consecutivetB bonds, and the other is three atom
connected by twotB bonds. We call themB3 andB2 blocks,
respectively. By solving the corresponding Schro¨dinger
equations, four eigenenergiesE56(A511)tB/2, 6(A5
21)tB/2 for B

3 block and three eigenenergiesE50, 6&tB
for B2 block are obtained. In this case the spectrum cons
of seven main clusters, i.e., there is a seven band gl
structure. If we denote the bands resulting fromB3 andB2

blocks as bands of typeX andY, respectively, then the seve
main bands are arranged by the order ofXYXYXYXin the
spectrum.

To obtain the further splitting rules of the above sev
main bands, as a second step let us take the weak bontA
into account, and calculate the resonant coupling stren
among the states with the same energy. BandX comes from
the B3 block and there are two coupling cases between
neighboringB3 blocks. One is coupled via threeB2 blocks,
and the other is coupled via twoB2 blocks. The correspond
ing strength can be obtained by calculating the Schro¨dinger
equations of the related sites as16

tA8;tA
6/tB

5, tB8;tA
5/tB

4. ~17!

These new bondstA8 andtB8 again construct a FC~3! sequence
and havetA8 /tB8;tA /tB . Therefore, the next hierarchy o
bandX has the same structure as that of the global patter
the spectrum.7

As for theY bands resulting fromB2 blocks, in the sec-
ond stage of the approximation, two coupling strengths
obtained in the same way as above. One is the coup
through oneB3 block and the other is directly coupling. W
have

tA8;tA
3/tB

2, tB8;tA
2/tB . ~18!

ReplacingtA8 andtB8 with A andB, respectively, we have th
following sequence:

BABABABBABABABBABABABBA... ,

which is aR(3) sequence given by Eq.~13! rather than a
FC~3! sequence. In the weak-bond approximation, i.e.,tA8
50, the above ‘‘new lattice’’~or sublattice! is broken into
two clusters:B2 andB. The former has three eigenenergi
E5E0 , E06A2tB8 and the latter has two levelsE5E0

6tB8 , whereE0 represents the corresponding degenerate
els in the other band of typeY. These five subbands altern
tively distribute in the second hierarchy of the spectrum.
investigating the next sublattice, we find thatB2 blocks turn
out to be a FC~3! sequence whileB blocks construct aR(3)
sequence. Therefore, their corresponding subbands ar
typeX andY, respectively.

Summarizing the above results, we are able to outline
whole spectral structure of the FC~3! quasilattice as sche
matically shown in Fig. 2~a!. The global structure is of type
ts
al

th

e

of

re
g

v-

y

of

e

X, which has seven main bands in the first hierarchy, fou
type X, and three of typeY, distributed in the order of
XYXYXYX. EachX band will further split into seven sub
bands as the global spectral structure. A typeY band has five
subbands, of which three belong to typeX and two belong to
type Y, arranged in the order ofXYXYX in the spectrum.
These splitting patterns are always valid for all the hier
chies of the spectrum.7

For the FC~4! lattice, the same analysis as above can
taken. We find that the global spectrum of the FC~4! chain
consists of nine main bands, of which five belong to typeX
and four belong to typeY. Each typeX band will split into
five typeX and four typeY subbands in its next hierarchy
while each typeY band will split into four typeX and three
typeY subbands. For a certain branch in any hierarchy, t
types of subbands are distributed alternatively. Figure 2~b!
schematically shows the two types of band structure for
FC~4! quasilattice.

From the above analysis we can see that the above s
ting patterns hold for all the FC(n) sequences withn larger
than 4. In the spectrum of a FC(n) quasilattice, there are
(2n11) main bands, (n11) of type X and n of type Y,
distributed alternatively. EachX band will further split into
(2n11) subbands as the global spectral pattern. EachY
band will split into (2n21) subbands,n of type X and (n
21) of type Y, distributed alternatively. The spectrum
constructed in this way in all the hierarchies; thus it turns
to be a perfect self-similar structure. This conjecture h
been confirmed by a large amount of numerical calculati
in our work. As examples, the numerical results for FC~3!
and FC~4! lattices will be displayed in next section.

In fact, the trifurcating spectrum of the Fibanacci lattice
also governed by the above splitting rules, provided we m
the following reconsideration. For the Fibonacci lattice t
first hierarchy consists of three bands, two sidebands ar
typeX and the center band is of typeY. In the second and
higher hierarchies, each typeX band splits into three sub
bandsXYX, while each typeY band does not split but be
comes a typeX subband, then splits into three subbands
the next stage. This splitting picture also guarantees that

FIG. 2. Schematically show the splitting patterns of the ene
spectra for the FC(n) quasilattices with~a! n53 and~b! n54. The
spectrum starts from a typeX band, which consists of (n11) sub-
bands of typeX andn subbands of typeY. A typeY band consists
of n subbands of typeX and (n21) subbands of typeY. The
spectrum will split infinitely in this way.
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2886 55FU, LIU, ZHOU, AND SRITRAKOOL
the Fibonacci lattice every subband of any hierarchy w
split into three sub-subbands to form the Cantor spectr
On the other hand, the intergrowth model studied by Hua
Liu, and Mo is exactly the FC~2! case, its spectral propertie
coincident with the conclusion stated above.26

IV. GAP-LABELING RULES

It is a well-known fact that the energy spectrum of t
Fibonacci lattice exhibits a trifurcating structure with infini
number of gaps.2–9 Each gap corresponds to a step in t
integrated density of states~IDOS! picture defined as
I (E)5* 2`

E r(E8)dE8 with r(E) being the density of states9

The infinite number of steps construct a ‘‘devil’s stair cas
pattern. The step heights of the IDOS can be labeled
characteristic integers; this fact has been proven by the n
ber theory8 and also by the renormalization approach.9 In
Sec. III, we have shown that the spectra of the FC(n) lattice
have self-similar and hierarchical structure. In this secti
we will analytically demonstrate that the FC(n) lattices have
a universal gap-labeling rule.

To obtain the number of energy levels in every subba
we first notice that the FC(n) andR(n) sequences have th
same recursion relations

Sl5Sl21
n Sl22 ~ l.2!, ~19!

whereSl denotes thel th finite sequence with the initial con
ditions S15B, S25Bn21A for FC(n) and S15B,
S25Bn22A for R(n). If we denote byFl the number of
elementsA and B contained in thel th sequence, then w
have the corresponding relation

Fl5nFl211Fl22 ~ l.2!, ~20!

with the initial conditionsF151, F25n for FC(n) and
F151,F25n21 forR(n). From Eq.~20! it is easily proven
that the ‘‘golden mean’’

sn5 lim
l→`

Fl21

Fl
. ~21!

We now calculate the number of energy levels in a s
band and its ratio to the total number of levels, which
called the occupation probability~OP!.9 The global structure
of the energy spectrum of a FC(n) quasilattice is of typeX.
For a FC(n) chain of the l th generation, there areFl
eigenenergies totally. In the first hierarchy of the spectru
there are (n11) X bands andn Y bands; the number o
levels in eachX andY bands are, respectively,

NX5Fl22 ,
~22!

NY5Fl212Fl22 ,

which can be proved by the equality (n11)NX1nNY5Fl .
So the OP of theX andY bands in the whole spectrum ar
respectively,
l
.

g,

’
y
m-

,

,

-

,

rX5 lim
l→`

Fl22

Fl
5s2,

~23!

rY5 lim
l→`

Fl212Fl22

Fl
5s2s2.

In Eq. ~23! and hereafter,sn is written ass for the sake of
simplicity.

In the second hierarchy of the spectrum, anX band splits
into (n11) X subbands andn Y subbands; their number o
levels and OP are

NXX5Fl24 ,

NXY5Fl232Fl24 ,
~24!

rXX5 lim
l→`

Fl24

Fl
5s4,

rXY5 lim
l→`

Fl232Fl24

Fl
5s32s4.

A Y band splits inton X subbands and (n21) Y subbands;
their number and OP are

NYX5Fl23 ,

NYY5Fl222Fl23 ,
~25!

rYX5 lim
l→`

Fl23

Fl
5s3,

rYY5 lim
l→`

Fl222Fl23

Fl
5s22s3.

Equations~22!–~25! give an approach to calculate the OP
any hierarchy of the spectrum. Consequently, we can see
the OP for a typeX subband in any hierarchy preserves t
form of s i , and the OP for a typeY subband in any hierarchy
always has the form ofs i2s i11, wherei is a positive inte-
ger.

In addition, we have

s2512ns. ~26!

From this equation together with the recursion relation~20!,
using the deductive method, we obtain the following impo
tant expression:

s i5~21! i~Fi212Fis! ~ i.1!. ~27!

It is easy to prove that the step heights of IDOS can
written as9

I ~En!5(
i51

n

r~ i !, ~28!

wherer( i ) is the occupation probability of thei th subband
in the studied hierarchy, andEn is the highest energy of the
nth sub-subband.I (En) is therefore the IDOS up to the en
ergy En , and corresponds to a step of the IDOS ‘‘stair
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FIG. 3. Numerical calculations for the integrated density of states of the FC~3! sequence with« i50, tA51, andtB52. The splitting
pattern shown in Fig. 2~a! is confirmed. The gap-labeling numberm’s corresponding to the main gaps in the first and second hierarchie
presented.~a! is the whole spectrum and~b!–~e! are the enlarged plots of the four main bands.
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From the above equations~22!–~28!, we can see that the ste
height of IDOS can be expressed as

I5(
i
Kis

i5m81ms, ~29!

whereKi , m8, andm are integers.9 Because of the irratio-
nality of sn ~here the subscriptn is restored! and I,1, Eq.
~31! can be finally expressed as

I5$msn%, ~30!

where$x% represents the fractional part ofx, andsn is the
‘‘Golden mean’’ for the FC(n) lattice. This is a universa
gap-labeling theorem for FC lattices. Becausesn is an irra-
tional number, we can see that the$msn% for different gaps
are absolutely different. Consequently, every gap of any
erarchy of the spectrum, which corresponds to a step
IDOS, is uniquely characterized by a definite integerm. It
means thatm is the characteristic number of a gap, so we c
usem to label the gaps. The gap-labeling indexm can be
easily calculated from the formulas~24!–~30!.

Figures 3 and 4 are the numerical results of the IDOS
the FC~3! and FC~4! quasilattices, by which the branchin
rules analytically obtained in Sec. III and schematica
shown in Fig. 2 are very well confirmed. In the figures t
characteristic numberm’s are presented for the first and se
ond hierarchies of the spectrum, which are in very go
agreement with the above analysis. Because the spectru
symmetric aboutE50, the characteristic numbers are an
symmetric, so it is proper to show only a half of the seco
hierarchy of the spectrum in the figures.
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FIG. 4. Numerical calculations for the FC~4! quasilattice with the same parameters as in Fig. 3. The splitting pattern shown in Fig~b!
is confirmed and the main gap-labeling numbers are given.~a! is the whole spectrum and~b!–~f! are the enlarged plots of the five ma
bands.
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V. BRIEF SUMMARY

A quasiperiodic lattice always has a singular continuo
spectrum, but the perfect self-similarity of the sequence
not definitely reflected in the energy spectrum because in
framework of a tight-binding model the spectral propert
are determinated by the detailed structure of the quasilat
not only by the quasiperiodicity. In this article we have pr
posed a Fibonacci class of one-dimensional structures
studied their spectral properties. First we proved that the
sequences are both self-similar and quasiperiodic. By the
of the real-space renormalization-group technique, we a
lytically show that the energy spectrum of a FC(n) lattice is
perfectly self-similar and obtain its branching rules for all t
hierarchies. This distinguished feature allows us to label
energy gaps in a uniform way and an universal gap-labe
s
is
he
s
e,
-
nd
C
se
a-

e
g

rule is established. The analytical results are very well c
firmed by the numerical calculations. The spectral proper
commonly possessed by the present FC(n) models are typi-
cal in the well studied Fibonacci lattice. We can thus co
clude that the FC lattices are the most intrinsic generaliza
of the original Fibonacci lattice. Other electronic featur
discovered in the Fibonacci lattice, such as the self-sim
critical wave functions and their multifractal spectra, are a
expected to universally exist in the FC quasilattices. T
work is undertaken.

The perfect self-similarity of electronic properties pr
sented in this article, in principle, only exists in the se
similar quasiperiodic chains, since in the framework of
tight-binding model there is a corresponding relationship
tween the constructions of quasiperiodic chains and th
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electronic properties. Therefore, the non-self-similar qua
periodic chains would not possess a same kind of per
similarity of electronic properties. But to what degree th
electronic properties would show self-similarity is an inte
esting problem. It seems to us there are very few pap
devoted to this topic yet.
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