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One-dimensional Fibonacci-class quasilattices are proposed and studied, which are constructed by the sub-
stitution rulesB—B" A, A—B""*AB. We have proved that this class of binary lattices is self-similar and
also quasiperiodic. By the use of the renormalization-group technique, it has been proved that for all Fibonacci-
class lattices the electronic energy spectra are perfect self-similar, and the branching rules of spectra are
obtained. We analytically prove that each energy gap can be simply labeled by a characteristic integer, i.e., for
the Fibonacci-class lattices there is a universal gap-labeling theQdiys. Rev. B46, 9216 (1992].
[S0163-18207)10705-4

[. INTRODUCTION former reflects the inflation symmetry, while the latter char-
acterizes that its Fourier spectrum consists of Bragg peaks.
Quasiperiodic systems have received extensive interedihe relationship between these two sides has been studied
since the experimental discovery of fivefold symmetry in therecently?%~2°
diffraction pattern of metallic alloy$.In particular, much In this paper, we restrict ourselves to the binary se-
attention has been devoted to the electronic properties of th@uences. A binary substitutionis formally defined by its
Fibonacci lattice, which provides a prototype model forSimultaneous action on two lettefsand B, which replaces
studying the quasiperiodic systems.The distinguished fea- each letter with a finite word, of the form
ture lies in the fact that the energy spectrum is neither abso-
lutely continuous nor purely pointed, but singular continu-
ous, and the eigenstates are critical between the extended and - . 1)
localized ones. On the other hand, many non-Fibonacci mod- B—7(B)=b1b;+b, 5
els have been studied, mainly by generalizing the Fibonacci
substitution rulesB—A, A—AB. Among them, so-called | this expression, each or b; stands for a lettere and 3

generalized Fibonacci sequences, which are given by thganote the number of letters 8fandB in 7(A), andy and

subsftitultgogs A—ATB", B—A, have been extensively sgare the number oh andB in 7(B). The substitution matrix
studied.” " Investigations have revealed their many similar yg5gciated with is defined as follows:

properties as those of the Fibonacci lattice. However,

whether these models can be called “quasiperiodic” or only

“aperiodic” is a interesting question. In an earlier work, a vy
Bombieri and Taylo® pointed out that any infinite chain MT:(,B 5)-
obtained by a substitution rule possessing the Pisot property
can be constructed with a projection method, so the quasip-
eriodicity is preserved. According to this criterion, a family Here M . only describes the contents efA) and 7(B) in

of generalized Fibonacci sequences generated-byA"B, letters of each type, irrespective of the order in which these
B—A are quasiperiodit? for which the same properties as letters occur.

in the Fibonacci case can be expected to exist. This conclu- Repeatedly using the substituti¢h), a finite word is de-
sion has been confirmed by a lot of work. veloped to an infinite sequenc® and we havel=7(3).

To study an aperiodic system, one will face two problems:Thus an infinite abstract sequence is obtained, which is self-
self-similarity and quasiperiodicity. In general, a self-similar similar. A physical structure correspondingXocan be pro-
structure is produced by the substitution rule, and a quasipduced by regarding the two lettesandB as two kinds of
eriodic lattice is constructed by the projection methdd@he  atomic spacind, andlg in a one-dimensional chain.

JA—=T(A)=aaz a.+p

@

0163-1829/97/5%)/28828)/$10.00 55 2882 © 1997 The American Physical Society



55 PERFECT SELF-SIMILARITY OF ENERGY SPECTR. .. 2883

Luck et al?® have shown that a chain generated by thebecome two special cases of the class. By analyzing the split-
substitution(1) is quasiperiodic if and only if the associated ting patterns of the energy spectra, we find that the spectra
substitution matrix2) fulfills two conditions: Pisot property are perfectly self-similar with a regular hierarchical structure.
and unit determinant. The structure thus obtained can be aFhe integrated density of states exhibits a “devil's stair
ternatively built as sections of periodic patterns in a two-case” structure and each energy gap can be simply labeled
dimensional space. Along the same line, Watral?* have by an unique characteristic integer. All these are the typical
proposed following a class of substitution rules to generat@roperties of the Fibonacci lattice. Therefore, we can con-
quasiperiodic chains which share some typical propertiesider this class of quasilattices a most intrinsic generalization

with the Fibonacci chain. The substitution matrix is of the Fibonacci lattice, and call it Fibonacci-cladsC)
quasilattices. We organize this paper as follows.
fratnfn fro In Sec. Il, we introduce this class of sequences and their
T fr_otnfe_s fr s/’ (3 mathematical characters. These Fibonacci-class lattices can

be obtained by the substitution rules as well as by the pro-

wheref, is the Fibonacci number with the initial condition jection method. Section Il is devoted to study the electronic
f_1=fy,=1 andf, =0 for all k< —2, defined by the recur- energy spectra of FC lattices. By the use of the
sion relationf,  ,=f,, 1+ f,, andn is a non-negative inte- renormalization-group technique we have obtained their self-
ger. They have also argued that the condition under which gimilar spectra and branching rules. In Sec. IV the gap-
quasiperiodic chain can be obtained with the standard praabeling rules are obtained by calculating the occupation
jection method is that the substitution rule is invertible. probabilities of energy levels in every subband. We have
On the other hand, Odagaki and Kan&kbave studied analytically proved that for FC lattices there exists a univer-
the self-similarity of a quasiperiodic sequence given by  sal gap-labeling theorem, i.e., every energy gap of the spec-
trum can be labeled by an unique characteristic integer. Fi-

Frla)=|(k+1)a]—|ka] (k=1,23..)), (4 nally, a brief summary is given in Sec. V.

where| x| denotes the integer part ®f ande« is an irrational
parameter in(0,1). The sequence thus obtained consists of [l. THE FIBONACCI-CLASS SEQUENCES

two elements 1 and 0, which can be replaced with two length A Fibonacci chain is described by the substituti@ns A,

units |, andlg to construct a one-dimensional chain. TheyA—>AB while the IS sequence is generated By->BA

have proven that the structure given by E4).is self-similar A—BAB. B - . :
, P S . . extrapolation, we study the following substi-
if and only if « is a quadratic irrational number. Liet al?® " y P y 9

. . S tution rules:
have also confirmed this result. By establishing the corre-

spondence between a substitution rule and a transformation B—B"!A, A—B"lAB, (5)

on the value ofa, they have concluded that the necessary

condition for a self-similar sequence that is generated by thevheren is a positive integer an8" denotes a string of

substitution rule and can be obtained by the projectiorB’s. For a specific number af, a sequence is obtained by

method is that the substitution rule is a simple compositiorrepeatedly using the substitution rules. If we setl, the

of the general transformatioms—A"B, B—A. substitution rules turn back to the Fibonacci cderA,
Although the above sequences are quasiperiodic and ged—AB, and if then=2 it is exactly the intergrowth se-

metrically self-similar, the electronic spectral structure mayquence. Because this class of lattices shares many common

vary a lot. Unlike the Fibonacci chain, their regular self- features with the Fibonacci lattice, which will be discussed

similarity does not show up definitely in the energy below, we suggest calling this class of sequences the

spectra’ =" An appealing question is thus raised: does theFibonacci-clasgFC) sequences, and an individual member

regular orperfectself-similarity of the energy spectrum also with certainn is denoted as F@{). Let S, denote thelth

exist in other structures as in the Fibonacci lattice? As arfinite chain beginning witts; =B, S,=B" A, then we have

answer, Huang, Liu, and MBhave by chance found a quasi- the following recursion relations for the FEY sequence:

lattice, called the intergrowth sequen@d8) model by them,

and proved that it has a perfect self-similar spectrum. Espe- S=9,5., (1=3), (6)

cially, further investigation displays that in other aspects of ) i

electronic properties this model is also same as the Fibonacé'd Fi, the number of elements contained in te se-

lattice, such as the gap-labeling properties, localization of thdUence, satisfy the corresponding relations

electronic states, multifractal properties of electronic wave

function, even the transmissio% 0? lightWe consider that Fi=1, Fp=n, F=nF_;+F_, (1=3). ()

the intergrowth sequence should not be a unique modefhere exists an irrational limitation ofy,_4/F,

which possesses the same electronic properties as the Fi-

bonacci lattice, but should there be a class of them. In other OF., 1

words, in the set of general transformation stated by Lin op=lim === (Vn®*+4-n). 8
. . | > |

et al. there should be a class of special transformation, the

electronic properties of which have perfect self-similarity. ) _ ) .

The rest of the set do not have the same properties. Moti- 1he associated substitution matrix of E§) is

vated by this idea we have successively found a class of

one-dimensional binary lattices, which are both self-similar _(1 1 ) 9)

and quasiperiodic. The Fibonacci and intergrowth sequences "\n n-1)°
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i [ EBRRSC i From their algebraic and geometric features stated above,
Y (a) NP ,"* we know that the FC sequences are both self-similar and
i L 2 2 quasiperiodic.
N2 a Furthermore it is convenient to introduce another class of
b P Bda:*{‘ sequences which will occur in the renormalization-group
_helh Pa | procedure to analyze the energy spectrum below. Their sub-
P o W WL = stitution rules are
So .
) L b T B—~B"’A, A—B"?AB"2AB. (13
‘ B2 : - .
BB B2 and it is easy to see that for this class of sequences, we have
A
KB 2 B ' -
22 e [ = $1=B, $,=B"?A, S=S.,5, (1=3). (19
0.0 X

For the convenience of description, we call these sequences

FIG. 1. lllustration for obtaining the F®) sequences with the the relative sequences of F@{, and denote them &8(n).

projection method(a) FC(3) sequence with taf=(13—3)/2. () ~ We should note that the recursion relationsR¢h) are the
FC(4) sequence with taf=1/5— 2. same as those of F@) given in Eq.(2) but with different

initial conditions, while the substitution rules &(n) are
Its characteristic equatiox’+nx—1=0 has two real roots, different from those of FQ).
one greater than 1 in absolute value and another less than 1,

and it is obvious that dé¥l ,= — 1. Therefore, both the Pisot Ill. SELF-SIMILAR SPECTRAL STRUCTURES
condition and the unit determinant requirement are satisfied; . , ,
thus the sequence is quasiperiotfi¢® The positive eigen- To deal with the electronic properties of a one-

dimensional FQf) quasilattice, we consider the tight-

value ofM, is exactly binding Hamiltonian

Un:% (JynZ+4—n), (10

which is an irrational quadratic number betwe@nl), and
can also be expressed in the form of continued fraction =~ wheree; is the site energy at sitg andt;; is the nearest-
neighbor hopping integral. In general, two kinds of models
1 (11) are studied. One is the transfer version, for whighis con-

1 stant for alli, andt;; take two valueg, andtg arranged
n+ 1 according to the FG{() sequence. The other is the on-site
n+ — version, for whicht;; is constant whiles; take two values

1 . X
n+ _ andeg constructing a FQ{) sequence. In the following, we
n+... will concentrate on the transfer version; the on-site version
gan easily be treated in the same Wayor the transfer ver-

H:Z |i>8i<i|+i2j,|i>tij<j|a (15

on=

This means the FC sequences can be obtained with the pr X X .
jection method*? sion, we chopsei =0 fo_r_all i, and the corresponding Schro
To obtain a FCf) sequence by the projection method, we diNger equation for site is
consider a two-dimensional periodic lattice with square unit
cells of dimension X1 whose edges are aligned with tke
andY axes, respectively. Then, construct a projection line
oriented at angled with respect to theX axis and let
tand=o,. For only a small subset of unit cells does the

project.ion Iinfa pass throqgh.the right-hand Vemcal edge o onacci chain constructs a Cantor set, indicating the spec-
the unit. In Fig. 1 the projection method to obtain the(8C trum has a hierarchical structi# In the first hierarchy,

and FG4) sequences is shown. The hollow circles are the Set]here are three bands, and each band will split into three

of points corresponding to the lower right-hand corner Ofsubbands in the second hierarchy. This splitting pattern holds

each_ unit cell; their coordinatgs ai® [N tand)), where for any hierarchy; thus it turns out to be a perfect self-similar
tang=(y/13—3)/2 for FQ?3), tanv=(y/5—2) for FO4), and spectrum. Here, we would like to emphasize again that there

|| denotes the greatest integer function. The projection ofg not any kind of generalized Fibonacci lattices which pos-

these points onto the projection line are indicated by thggagges this perfect self-similar spectrum.
solid circles, their coordinates along the projection line are  now we turn to analyze the spectral properties of the

FC(n) lattices withn greater than 2. For this purpose we can
use the decomposition-decimation metfodf which the
The distances between two neighboring sites on the projeenain idea is the weak-bond approximation and the resonant
tion line take two valued ,=(co9+sing) and Ig=cos¥  coupling based on the perturbation theory, that allows us to
which are denoted respectively ByandB in Fig. 1. If we  obtain the splitting rules of the spectrum in an intuitive way.
replacel , andlg with 1 and 0, the expression forfd) is As the first example we consider the @ i.e., then=3
available here withw=o,. case. The bond sequence of the(8)ds as follows:

G-t tiiviic1=Ed. (16)

Before going on, let us recall some results given in the
previous literature on the spectral structure of the Fibonacci
uasilattice. It is well known that the spectrum of a Fi-

Ly=N cosf+sing| N tand|. (12
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BBABBABBABBBABBABBABBBABBABBABBBABBABBABBABBBA

To begin with, let us assumg<tg. First, in the absence X, which has seven main bands in the first hierarchy, four of
of the weak bond, i.et,=0, the chain is broken into two type X, and three of typeY, distributed in the order of
kinds of blocks>’ One is composed of four atoms connectedX Y XY XY X EachX band will further split into seven sub-
by three consecutive; bonds, and the other is three atomsbands as the global spectral structure. A typeand has five
connected by twag bonds. We call thenB® andB? blocks,  subbands, of which three belong to ty)¢end two belong to
respectively. By solving the corresponding Salinger type Y, arranged in the order ofY XY Xin the spectrum.
equations, four eigenenergie=*(\/5+1)tg/2, +(y5  These splitting patterns are always valid for all the hierar-
—1)tg/2 for B block and three eigenenergiEs=0, v2t;  chies of the spectrurh.
for B block are obtained. In this case the spectrum consists For the FG4) lattice, the same analysis as above can be
of seven main clusters, i.e., there is a seven band globdhken. We find that the global spectrum of the(#Cchain
structure. If we denote the bands resulting frBhandB?  consists of nine main bands, of which five belong to type
blocks as bands of typé andY, respectively, then the seven and four belong to typ&. Each typeX band will split into
main bands are arranged by the ordeXof XY XY Xin the  five type X and four typeY subbands in its next hierarchy,
spectrum. while each typeY band will split into four typeX and three

To obtain the further splitting rules of the above seventypeY subbands. For a certain branch in any hierarchy, two
main bands, as a second step let us take the weak tyond types of subbands are distributed alternatively. Figui® 2
into account, and calculate the resonant coupling strengtichematically shows the two types of band structure for the
among the states with the same energy. Bdrebmes from  FC(4) quasilattice.
the B® block and there are two coupling cases between the From the above analysis we can see that the above split-
neighboringB? blocks. One is coupled via thre&? blocks, ting patterns hold for all the F@{ sequences with larger
and the other is coupled via tw’ blocks. The correspond- than 4. In the spectrum of a F@) quasilattice, there are
ing strength can be obtained by calculating the Sdimger  (2n+1) main bands, r{+1) of type X and n of type Y,

equations of the related sites*as distributed alternatively. EacK band will further split into
6.5 5 4 (2n+1) subbands as the global spectral pattern. Edch
ta~talts,  tg~1tR/tg. (170 band will split into (2n—1) subbandsp of type X and (

—1) of typeY, distributed alternatively. The spectrum is

constructed in this way in all the hierarchies; thus it turns out

to be a perfect self-similar structure. This conjecture has

bandX has the same structure as that of the global pattem qfeen confirmed by a large amount of numerical calculations

the spectruni. _ ) _ in our work. As examples, the numerical results for(8C
As for the'Y bands resulting fron8~ blocks, in the sec- 5y F@4) Jattices will be displayed in next section.

ond stage of the approximation, two coupling strengths are |, ¢act the trifurcating spectrum of the Fibanacci lattice is

obtained in t?e same way as above. One is the couplingis, governed by the above splitting rules, provided we make
through oneB™ block and the other is directly coupling. We ¢ foliowing reconsideration. For the Fibonacci lattice the
have first hierarchy consists of three bands, two sidebands are of
type X and the center band is of typé In the second and
higher hierarchies, each typé band splits into three sub-
Replacingt, andtj with A andB, respectively, we have the bandsXY X while each typeY band does not split but be-
following sequence: comes a typeX subband, then splits into three subbands in
the next stage. This splitting picture also guarantees that for

These new bonds, andtg again construct a @) sequence
and havetp/tg~ta/tg. Therefore, the next hierarchy of

th~t3/t3,  th~taltg. (18)

BABABABBABABABBABABABBA,
which is aR(3) sequence given by E@l3) rather than a

FC(3) sequence. In the weak-bond approximation, itg., i § )é i
=0, the above “new lattice”(or sublattice is broken into X — ¥ '_§ X
two clusters:B? andB. The former has three eigenenergies X v Y X X X Y- Y
E=E,, Eo*\2t; and the latter has two levelE=E, X Yy — X
*+tg, whereE, represents the corresponding degenerate lev- — Y Y Y
els in the other band of typ€. These five subbands alterna- X X X X
tively distribute in the second hierarchy of the spectrum. By (a) (b)
investigating the next sublattice, we find thgft blocks turn

out to be a F(3) sequence whil® blocks construct &(3) FIG. 2. Schematically show the splitting patterns of the energy
sequence. Therefore, their corresponding subbands are §fectra for the FG() quasilattices witht@) n=3 and(b) n=4. The
type X and, respectively. spectrum starts from a typé band, which consists of(+ 1) sub-

Summarizing the above results, we are able to outline th@ands of typeX andn subbands of typ¥. A type Y band consists
whole spectral structure of the E& quasilattice as sche- of n subbands of typeX and (h—1) subbands of type/. The
matically shown in Fig. @). The global structure is of type spectrum will split infinitely in this way.
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the Fibonacci lattice every subband of any hierarchy will _Fia
split into three sub-subbands to form the Cantor spectrum. px= lim T 9
On the other hand, the intergrowth model studied by Huang, I T
Liu, and Mo is exactly the FQ) case, its spectral properties (23
coincident with the conclusion stated abcbe. =i ﬂz g
Py m F| o—0.

| —o

IV. GAP-LABELING RULES In Eqg. (23) and hereafterg, is written aso for the sake of

It is a well-known fact that the energy spectrum of the Simplicity. . _
Fibonacci lattice exhibits a trifurcating structure with infinite [N the second hierarchy of the spectrum,Xaband splits
number of gap&:® Each gap corresponds to a step in theinto (n+1) X subbands and Y subbands; their number of
integrated density of state§iDOS) picture defined as levels and OP are
I(E)=[E..p(E")dE’ with p(E) being the density of statés.

The infinite number of steps construct a “devil’s stair case”
pattern. The step heights of the IDOS can be labeled by
characteristic integers; this fact has been proven by the num-

Nyx=Fi_4,

Nyy=Fi_3—F_4,

ber theor§ and also by the renormalization approdctn = (24)
Sec. lll, we have shown that the spectra of the m)Qéttice pxx= lim =4 _ ot
have self-similar and hierarchical structure. In this section, I~ FI
we will analytically demonstrate that the RQ(lattices have
a universal gap-labeling rule. - Fis=F_4 5
To obtain the number of energy levels in every subband, pxy=lim —F 7%
we first notice that the F@) andR(n) sequences have the =
same recursion relations A'Y band splits intan X subbands andn(—1) Y subbands;
their number and OP are
§=S15-. (1>2), (19 Nyy=F s,
whereS, denotes théth finite sequence with the initial con- Noo=F =
ditions S;=B, S,=B""'A for FC(n) and S,;=B, vyerlmz s 95
S,=B""2A for R(n). If we denote byF, the number of = (25)
elementsA and B contained in thdth sequence, then we pyx=lim %za?
have the corresponding relation = Tl
Fi=nF_;+F_, (1>2), (20) pyy=lim F|-2F—|Fl-3202_03_

| -
with the initial conditionsF;=1, F,=n for FC(n) and
F,=1,F,=n-1 for R(n). From Eq.(20) it is easily proven
that the “golden mean”

Equations22)—(25) give an approach to calculate the OP of
any hierarchy of the spectrum. Consequently, we can see that
the OP for a typeX subband in any hierarchy preserves the
form of ¢', and the OP for a typ¥ subband in any hierarchy

- F, always has the form of' — o' **, wherei is a positive inte-
o= lim —. (21) ger.
In addition, we have

We now calculate the number of energy levels in a sub- o’=1-no. (26)
band and its ratio to the total number of levels, which is
called the occupation probabilitOP).° The global structure
of the energy spectrum of a FQY quasilattice is of typeX.
For a FC@) chain of thelth generation, there ar€,

From this equation together with the recursion relaii@®),
using the deductive method, we obtain the following impor-
tant expression:

cgenenrges ol 1 e st vy of e e, - R (1 @
levels in eachX andY bands are, respectively, It is easy to prove that the step heights of IDOS can be
written as
Nx=F|_2, n
(22) |(En)=2, p(i), (28
Ny=F_1—F_2, |

wherep(i) is the occupation probability of thieh subband
which can be proved by the equalitp¢ 1)Ny+nNy=F,. in the studied hierarchy, arf, is the highest energy of the
So the OP of theX andY bands in the whole spectrum are, nth sub-subband.(E,) is therefore the IDOS up to the en-
respectively, ergy E,,, and corresponds to a step of the IDOS “stair.”
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IDOS

IDOS
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342

341

E

0‘05 C L L 1 1 L
83 32 -31 3 29 -28
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IDOS

0-35 L 1 L L L 1 1 1

FIG. 3. Numerical calculations for the integrated density of states of tH8)FR@quence withs;=0, t,=1, andtg=2. The splitting
pattern shown in Fig. (@) is confirmed. The gap-labeling numhbmts corresponding to the main gaps in the first and second hierarchies are
presented(a) is the whole spectrum anh)—(e) are the enlarged plots of the four main bands.

From the above equatiori22)—(28), we can see that the step are absolutely different. Consequently, every gap of any hi-

height of IDOS can be expressed as

Izz Ki(ri:m’-i-m(r,
I

whereK;, m’, andm are integers.Because of the irratio-

(29

nality of o, (here the subscript is restoregland| <1, Eg.

(31 can be finally expressed as

I={mo,},

(30

where{x} represents the fractional part ®f and o, is the

“Golden mean” for the FCf) lattice. This is a universal

gap-labeling theorem for FC lattices. Becausgis an irra-

tional number, we can see that thmo,} for different gaps

erarchy of the spectrum, which corresponds to a step of
IDOS, is uniquely characterized by a definite integer It
means thain is the characteristic number of a gap, so we can
usem to label the gaps. The gap-labeling indexcan be
easily calculated from the formuld24)—(30).

Figures 3 and 4 are the numerical results of the IDOS for
the FQ3) and FGQ4) quasilattices, by which the branching
rules analytically obtained in Sec. Ill and schematically
shown in Fig. 2 are very well confirmed. In the figures the
characteristic numben’s are presented for the first and sec-
ond hierarchies of the spectrum, which are in very good
agreement with the above analysis. Because the spectrum is
symmetric abouE=0, the characteristic numbers are anti-
symmetric, so it is proper to show only a half of the second
hierarchy of the spectrum in the figures.
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IDOS

IDOS

0.04 I I . I . 0.47 L : : .

36 35 34 33 32 31 E -0.06 -0.04 -0.02 0 0.02 0.04 E

FIG. 4. Numerical calculations for the F4 quasilattice with the same parameters as in Fig. 3. The splitting pattern shown inl#ig. 2
is confirmed and the main gap-labeling numbers are git@ns the whole spectrum an@d)—(f) are the enlarged plots of the five main
bands.

V. BRIEF SUMMARY rule is established. The analytical results are very well con-

A quasiperiodic lattice always has a singular continuousﬁrmed by the numerical calculations. The spectral properties

spectrum, but the perfect self-similarity of the sequence igonjmonly possessgd by_ the pre.sentlrli)OmweIs are typl-
not definitely reflected in the energy spectrum because in thg@! in the well studied Fibonacci lattice. We can thus con-
framework of a tight-binding model the spectral propertiesCIUde tha’F the FC.Iattlces_are t'he most intrinsic ge.neral|zat|on
are determinated by the detailed structure of the quasilattic@f the original Fibonacci lattice. Other electronic features
not only by the quasiperiodicity. In this article we have pro- iscovered in the Fibonacci lattice, such as the self-similar
posed a Fibonacci class of one-dimensional structures arfditical wave functions and their multifractal spectra, are also
studied their spectral properties. First we proved that the F€xpected to universally exist in the FC quasilattices. This
sequences are both self-similar and quasiperiodic. By the uskork is undertaken.

of the real-space renormalization-group technique, we ana- The perfect self-similarity of electronic properties pre-
lytically show that the energy spectrum of a F((attice is  sented in this article, in principle, only exists in the self-
perfectly self-similar and obtain its branching rules for all thesimilar quasiperiodic chains, since in the framework of a
hierarchies. This distinguished feature allows us to label thé¢ight-binding model there is a corresponding relationship be-
energy gaps in a uniform way and an universal gap-labelingween the constructions of quasiperiodic chains and their
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