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We consider bond percolation with a bond probabifitpn alL ;X L, self-dual square lattice with periodic
boundary conditions in the horizontal direction and free boundary conditions in the vertical direction, termi-
nated at the top and bottom by a row of vertical and horizontal bonds, respectively. We define the number
M of alternating percolation clusters as the minimurmgfandn,,, wheren, is the number of independent
percolating clusters connecting sites on the top and bottom edger,, @the number of percolating clusters
in the complementary configuration on the dual lattice, a bond being present in the complementary configu-
ration if and only if it is absent in the original configuration. We evaluate the probabiffifL,,L,,p) for
finding a given value oM and find that, for a given aspect ratig /L, all data of Wi (L4,L,,p) near the
critical point p, fall on the same scaling functid®, which is symmetric with respect to the scaling variable
for all M. [S0163-182897)02705-1

Percolatioh is an active research subject in recentdirection of lengthlL,. Therefore, the left-most bladlopen
years>~8 Important quantities in traditional studies of a per- circle and the right-most blackopen circle of the same
colation problem on a lattic& include the existence prob- horizontal line in Fig. 1 are identical lattice sites. Note that
ability E,(G,p) and the percolation probability(G,p) with  the original lattice is terminated at top and bottom by a row
p being the bond or site occupation probability. Hereof vertical and horizontal bonds, respectively, while the re-
En(G,p) is the probability that the system percolates and verse is true for the dual lattice. We say that a finite square
P(G,p) is the probability that a given lattice site belongs to lattice with these boundary conditions sglf-dual because
a percolating cluster. Other quantities which have been studhe dual lattice is geometrically identical to the original lat-
ied include the probabilityV,(G,p) for finding n indepen-  tice (rotated by 180°). Moreover, when the bond-occupation
dent percolating clusters for a specified set of boundaryprobability on the original lattice i, the complementary
conditions®1® Of particular interest for all these quantities configurations on the dual lattice correspond to the configu-

are their scaling behaviors in the limit—o and p—p,, rations of an identical bond percolation problem with bond-
wherelL is the linear dimension of the lattice apd is the  occupation probability (% p).
percolation threshold for the infinite system. If clusters formed by occupied bonds on the original lat-

In the present paper, we consider the probability distributice are thought of as “conducting regions” and clusters
tion of another quantity, the number afternating percola- formed by occupied bonds of the complementary configura-
tion clusters on self-dual finite square lattices, which will be tion on the dual lattice are thought of as “insulating,” then
described below. We define the numbdr of alternating we see that every bond belongs to either a conducting or an

percolation clusters as insulating cluster, and that conducting and insulating clusters
cannot cross each other. We can now see why the quantity
M=min(ny,n,), (1) M defined by Eq(1) was denoted the number of alternating
wheren, is the number of independent percolating clusters ° ° ° ® °® ®

connecting sites on the top and bottom edges, ranid the
number of percolating clusters in the complementary con-
figuration on the dual lattice, a bond being present in the ®
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complementary configuration if and only if it is absent in the ('P"' q}
&--{--©
o

{9 9o

original configuration.

A typical L; X L, square(sq) (Ref. 1)) lattice considered d e
in this paper is shown in Fig. 1, in which the sites and bonds 1--¢ -----GI>----<?---- 6?-- ---6'}-----0
of the original latticeG are represented by black circles and — o' o+ o+ oo
solid lines, respectively, and the sites and bonds of the dual é) Q:) G:) é) G:)

lattice D are represented by open circles and dotted lines,
respectively. Both the original lattice and the dual lattice
have periodic boundary conditions in the horizontal direction FIG. 1. A typical L; XL, self-dual square lattice. In this ex-
of length L; and free boundary conditions in the vertical ample,L;=6 andL,=4.
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FIG. 2. (@ W (Ly,L,,p) for bond percolation on 12832, FIG. 3. F(R,x) for R=L;/L,=1,2,3...,10.(8) M=0. (b)
256x 64, and 51 128 self-dual square lattices, which are repre-M=1.

sented by dotted, dashed, and solid lines, respectidaiyhe data ) ) )
of (a) are plotted as a function of=(p—p,)L*". The scaling G=M|o,—0,|, whereM is the quantity which we have
function for W3(L,,L,,p) is denoted byF?%(R,x), where denoted here as the number of alternating percolation clus-

R=L,/L,. TheU shape curve is foF3(R,z). TheM shape curve ters which connect the inner and outer contacts. Therefore,
is for F&(R,x). The bell shape curves from top to bottom are for the number of alternating percolation clusters in percolation

F2(R,x) with M being 2, 3, and 4, respectively. problems is an interesting quantity and we will study this
quantity in this paper to know more about its behavior.
clusters. The numbe will take on a value> 0 if and only We begin by recalling some results of previous studies of

if there are preciseliM conductingclusters percolating from the scaling behavior of percolation clusters on two-
the top to the bottom of the sample, occurring in alternatiordimensional lattices. With the free boundary conditions and
with M insulating percolation clusters, as one moves in ain the limit L—, it was found that for site and bond per-
horizontal direction across the sample. colation on theL XL square(sq) lattice, Ep(G,pC)=0.5.2‘5
One motivation for studying the number of alternating It was also proposed by Langlands, Pichet, Pouliot and
percolation clusters comes from a recent analysis by RuzirSaint-Aubir? (LPPS that for bond and site percolation on
Cooper, and Halperii (RCH) of a problem in the quantum the plane triangulafpt) and honeycomlihc) lattices with
Hall effect. They argued that under certain circumstances, aspect ratios,/3/2 and /3, respectively Ey(G,p.) is also
qguantum Hall sample at very low temperatures may be conequal to 0.5.(The aspect ratio is defined & /N, where
sidered to be made up of randomly distributed microscopidN; andN, are the numbers of columns and rows of lattice
regions belonging to two different quantum Hall plateaus. Insites in a rectangular representatjoilsing a histogram
each region, there is a local Hall conductivity,,, which  Monte Carlo simulation meth8dHMCSM) and the aspect
takes one of two values; or o,, while the local diagonal ratios of LPPS,Hu, Lin, and Chef® (HLC) found that for a
conductivity o, is neglibly small. If the macroscopic con- given class of boundary conditions, and a fixed reduced as-
ductivity of such a sample is measured in the annulapect ratioR*, all scaled data oE, andP as a function of
Corbino geometry, the observed value of the two-terminabkcaling variable x fall on the same universal scaling
conductancé will be given, according to RCKRef. 12 by  functions F(x) and S(x), respectively, where
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1.0 . , ‘ : ‘ . . ‘ provided that the inner and outer ra8ii andR, satisfy the
0.9 AN o relation InR,/R,)=2mL,/L,. Therefore, at the critical point,
T i where conformal invariance is valid, results of Hu and*fin

S5 3
o o

0o

=1

08\ - mjﬁ’ for rectangular domains may be applied to an annular geom-
o7 bt etry with appropriate aspect ratio. However, Hu andfin
only calculated the number of percolating clusters, which we
s 06 ¢ denoted in the present paperrgs The number of interest in
o5} the RCH theory? is the number ofalternating percolation
“u_s04 ] clustersdefined by Eq.(1). For the Corbino disk and the
' corresponding lattice just discussed,=n,=M for n,=2
03 | (Ref. 14 and the results of Hu and Lififor n,=2 may be
oo b ! used to compare with experimental data. However, for
; n,=1 it is possible thah,=0 and Hu and Lin’s result for
014, n,=1 is only an upper bound of the result fit=1 alter-
0.0 : : L ‘ ‘ nating percolation cluster.
@ 00 10 20 3.0 4.0 5|.q0 60 70 80 90 100 In the present paper, we use the HMC$Rbe 6'9 to
evaluate the probabilitWy,(L4,L,,p) for the appearance of
5.0 , : ‘ : ‘ ‘ ‘ ‘ ‘ M top-to-bottom alternating percolation clusters of bond per-
o gg(ﬂéog) colation with bond probabilityp on finite L; XL, self-dual
’ sq lattices shown in Fig. 1. We find that, for a given aspect
4.0 ratioL, /L, all scaled data ofV§,(L,,L,,p) near the critical
=) point p. fall on the same scaling functioR§,(L4/L,,X),
%3.0 where x=(p—pc)L1”’, Fu(La/Lo, —X)=Fy(L1/Ls.%),
T and v=4/3 is the correlation-length exponent. In other
bl words, we find the same type of scaling behavior as was
g 20F previously found for the usual cluster numigy. Such scal-
Py ing behavior is, of course, necessary, if we hope to apply
results of a lattice simulation to the continuum percolation
1.0 ¢ problem of experimental interest.
In the bond percolation on B; XL, sq (Ref. 1] lattice
00 G of N sites ande bonds,N=L;XL,, each bond ofG is

0.0 1.0 20 30 40 50 60 70 80 90 100 occupied with a probabilityp, where G<p=<1. If a bond of
() R G is occupied(unoccupied, then the dotted line db cross-
ing this bond is unoccupietbccupied. For every subgraph

FIG. 4. (a) F(R,0) andFy(R,0) as a function oR=L,/L, G’ of G, there corresponds one and only one subgiapbf
for M being 0 and 1(b) CXR,0) andC(R,0) as a function of D. A cluster which extends from the top row Gf(D) to the
R=L,/L,. bottom row is a percolating cluster. Between two neighbor-
ing percolating clusters d& (D), there is one and only one
percolating cluster ob (G). If G has two or more percolat-
ing clusters, the has the same number of percolating clus-
ters, which is the number of alternating percolation clusters.
If G has only one percolating cluster, then the number of
alternating percolation clusters is equal to the number of per-
colating clusters irD, which is 1 or 0.

The subgraph which contains at least one alternating per-
colation cluster is a percolating subgraph and denoted by
an otherwise it is an nonpercolating subgraph. The perco-
lating subgraph withM alternating percolation clusters is
denoted byG;, Now we have the definition

x=D(p—p.)LY", v=4/3 is a correlation length exponent,
and D, is a model-dependent nonuniversal metric fa¢tor.
The reduced aspect rati* for the different lattices may be
defined afk* =gN, /N, whereg= 1, 2//3, and 14/3 for sq,
pt, and hc lattices, respectively. The constantis indepen-
dent of the reduced aspect ratR* and the boundary
conditions!®

In a recent paper, Hu used the HMCSRef. 6 to evalu-
ate the probabilityw,(L,,L,,p) for the appearance af
top-to-bottom percolating clusters of bond percolation with
bond probabilityp on finite L; X L, sq lattices:! When he
plotted W, as a function of the scaling variable
z=(p—p)LY", all data of the same aspect ratig/L , near W3 (Ly,L,,p)= 2 pb<G§,|>(1_p)E—b(Gg,|)' )
the critical pointp,, fall on the same scaling functiohUsing G[,CG
nonuniversal metric factdd, of Ref. 7, Hu and Lin showed
that W, for bond and site percolations on sq, pt, and hcwhereb(Gy,) is the number of occupied bonds @, The
lattices with aspect ratiok;/L,, \3L;/2L,, and3L,/L,  summation in(2) is over all subgraphssj, of G. In the
have universal scaling functions when they are plotted a$iIMCSM, we choosew different values ofp. For a given
functions ofx, wherex=D,z.1° p=p;, 1<j<w, we generateN different subgraphss’.

By a conformal transformatioh'? the L, X L, sq lattice ~ The data obtained from th@Ng different G’ are then used
mentioned above may be mapped into the annular Corbint construct arrays of numbers with elemenit,(b),
geometry used in many experiments of quantum Hall effectdN¢(b), and N,(b), O<b<E, which are, respectively, the
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total numbers of percolating subgraphs wibh occupied present paper is smaller than that(R,0) of Ref. 10 as one
bonds, nonpercolating subgraphs whitloccupied bonds, and would expect.

the number of percolating subgraphs witloccupied bonds We may define the average number of alternating perco-
andM alternating percolation clusters. In the large numbedation clustersCR,x) via CYR,x)=2y_;FR(RX)M. A

of simulations, the probabilityV3, at any value op can then  plot of C3(R,0) as a function oR is shown as a solid curve

be calculated approximately from the following equatidh: in Fig. 4(b). Results for the mean cluster numb@(R,0)
defined in Ref. 10 are also shown for comparison. Please

E Ny (b) note thatC}R,0) andC(R,0) approach each other for large
W2 (L;.L,.p)= b(1— p)E-PCE M (@3 R, and are nearly identical fdR=4. _
m(LiLa.p) bZO p(1=p) b Np(b)+N¢(b) © We note that our results are obtained from a random per-
colation model. Comparisons with experimental results on
where CE: E//(E-b)!b!. It is obvious that quantum Hall samples may be complicated, however, by the
Ep=Sho W . fact that there may be long-range correlations in the experi-

mental system, such as a long-wave-length density gradient,
128x 32, 256<64 and 51X 128 sq(Ref. 11 lattices. The which can dgstroy the expected universal!ty qf behgvior near

- a . the percolation threshold. Another complication arises from
results are shown in F'g'(l@’ Wherewoil—Ep. Usmg the the fact that unknown variations in the parent wafers from
exact values/ofv andp.,” we obtainWy as a function of  \hjch samples are made mean that the actual valpenody
x=(p—pc)L'". The results are shown in Fig(i8), where  pe different for different samples measured at a given value
very good scaling behavior a#/; is observed and the cor- of the applied magnetic field, even if the samples have nomi-
responding scaling function is denoted B{,(R,x) with  nally the same electron density and other characteristics.
R=L,/L,=4. Figure Zb) shows thaF(R,x) foranyM is  These issues are discussed further in Ref. 12.

a symmetric function oX. This is different from the function This work was supported by the National Science Council
Fn(R,x) studied in Ref. 10. _ _of the Republic of ChingTaiwan under Grants No. NSC
We have also calculateefy, (R,x) for sq lattices for vari- 85-2112-M-001-007 Y and No. NSC 85-2112-M-001-045
ous other values oR. Plots of Fg and F] as a function of  and National Science Foundation of U.S.A. under Grant No.
x, for various values oR are shown in Figs.@) and 3b). A DMR 94-16910. The authors are grateful for helpful conver-
plot of F§;(R,0) as a function ofR, for M=0 and 1, is sations with Nigel Cooper and Igor Ruzin. We thank Jau-
shown in Fig. 4a). Corresponding results of Ref. 10 are also Ann Chen for drawing Fig. 1 and Chai-Yu Lin for improving

We first use(3) to evaluateWs, for bond percolation on

shown for comparison. Please note tR&({R,0) of the a computer program.
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