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Scaling function for the number of alternating percolation clusters
on self-dual finite square lattices
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We consider bond percolation with a bond probabilityp on aL13L2 self-dual square lattice with periodic
boundary conditions in the horizontal direction and free boundary conditions in the vertical direction, termi-
nated at the top and bottom by a row of vertical and horizontal bonds, respectively. We define the number
M of alternating percolation clusters as the minimum ofnp andnn , wherenp is the number of independent
percolating clusters connecting sites on the top and bottom edges, andnn is the number of percolating clusters
in the complementary configuration on the dual lattice, a bond being present in the complementary configu-
ration if and only if it is absent in the original configuration. We evaluate the probabilityWM

a (L1 ,L2 ,p) for
finding a given value ofM and find that, for a given aspect ratioL1 /L2 all data ofWM

a (L1 ,L2 ,p) near the
critical pointpc fall on the same scaling functionFM

a which is symmetric with respect to the scaling variable
for all M . @S0163-1829~97!02705-7#
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Percolation1 is an active research subject in rece
years.2–8 Important quantities in traditional studies of a pe
colation problem on a latticeG include the existence prob
ability Ep(G,p) and the percolation probabilityP(G,p) with
p being the bond or site occupation probability. He
Ep(G,p) is the probability6 that the system percolates an
P(G,p) is the probability that a given lattice site belongs
a percolating cluster. Other quantities which have been s
ied include the probabilityWn(G,p) for finding n indepen-
dent percolating clusters for a specified set of bound
conditions.9,10 Of particular interest for all these quantitie
are their scaling behaviors in the limitL→` and p→pc ,
whereL is the linear dimension of the lattice andpc is the
percolation threshold for the infinite system.

In the present paper, we consider the probability distri
tion of another quantity, the number ofalternating percola-
tion clusters, on self-dual finite square lattices, which will b
described below. We define the numberM of alternating
percolation clusters as

M5min~np ,nn!, ~1!

wherenp is the number of independent percolating clust
connecting sites on the top and bottom edges, andnn is the
number of percolating clusters in the complementary c
figuration on the dual lattice, a bond being present in
complementary configuration if and only if it is absent in t
original configuration.

A typical L13L2 square~sq! ~Ref. 11! lattice considered
in this paper is shown in Fig. 1, in which the sites and bon
of the original latticeG are represented by black circles a
solid lines, respectively, and the sites and bonds of the d
lattice D are represented by open circles and dotted lin
respectively. Both the original lattice and the dual latti
have periodic boundary conditions in the horizontal direct
of length L1 and free boundary conditions in the vertic
550163-1829/97/55~5!/2705~4!/$10.00
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direction of lengthL2. Therefore, the left-most black~open!
circle and the right-most black~open! circle of the same
horizontal line in Fig. 1 are identical lattice sites. Note th
the original lattice is terminated at top and bottom by a r
of vertical and horizontal bonds, respectively, while the
verse is true for the dual lattice. We say that a finite squ
lattice with these boundary conditions isself-dual, because
the dual lattice is geometrically identical to the original la
tice ~rotated by 180°). Moreover, when the bond-occupat
probability on the original lattice isp, the complementary
configurations on the dual lattice correspond to the confi
rations of an identical bond percolation problem with bon
occupation probability (12p).

If clusters formed by occupied bonds on the original l
tice are thought of as ‘‘conducting regions’’ and cluste
formed by occupied bonds of the complementary configu
tion on the dual lattice are thought of as ‘‘insulating,’’ the
we see that every bond belongs to either a conducting o
insulating cluster, and that conducting and insulating clus
cannot cross each other. We can now see why the qua
M defined by Eq.~1! was denoted the number of alternatin

FIG. 1. A typical L13L2 self-dual square lattice. In this ex
ample,L156 andL254.
2705 © 1997 The American Physical Society



a

g
i

,

I

a
a

r

2706 55BRIEF REPORTS
clusters. The numberM will take on a value. 0 if and only
if there are preciselyM conductingclusters percolating from
the top to the bottom of the sample, occurring in alternatio
with M insulating percolation clusters, as one moves in
horizontal direction across the sample.

One motivation for studying the number of alternatin
percolation clusters comes from a recent analysis by Ruz
Cooper, and Halperin12 ~RCH! of a problem in the quantum
Hall effect. They argued that under certain circumstances
quantum Hall sample at very low temperatures may be co
sidered to be made up of randomly distributed microscop
regions belonging to two different quantum Hall plateaus.
each region, there is a local Hall conductivitysxy , which
takes one of two valuess1 or s2, while the local diagonal
conductivitysxx is neglibly small. If the macroscopic con-
ductivity of such a sample is measured in the annul
Corbino geometry, the observed value of the two-termin
conductanceG will be given, according to RCH~Ref. 12! by

FIG. 2. ~a! WM
a (L1 ,L2 ,p) for bond percolation on 128332,

256364, and 5123128 self-dual square lattices, which are repre
sented by dotted, dashed, and solid lines, respectively.~b! The data
of ~a! are plotted as a function ofx5(p2pc)L

1/n. The scaling
function for WM

a (L1 ,L2 ,p) is denoted by FM
a (R,x), where

R5L1 /L2. TheU shape curve is forF0
a(R,z). TheM shape curve

is for F1
a(R,x). The bell shape curves from top to bottom are fo

FM
a (R,x) with M being 2, 3, and 4, respectively.
n
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G5M us12s2u, whereM is the quantity which we have
denoted here as the number of alternating percolation clus-
ters which connect the inner and outer contacts. Therefore,
the number of alternating percolation clusters in percolation
problems is an interesting quantity and we will study this
quantity in this paper to know more about its behavior.

We begin by recalling some results of previous studies of
the scaling behavior of percolation clusters on two-
dimensional lattices. With the free boundary conditions and
in the limit L→`, it was found that for site and bond per-
colation on theL3L square~sq! lattice,Ep(G,pc)50.5.2–5

It was also proposed by Langlands, Pichet, Pouliot and
Saint-Aubin3 ~LPPS! that for bond and site percolation on
the plane triangular~pt! and honeycomb~hc! lattices with
aspect ratiosA3/2 andA3, respectively,Ep(G,pc) is also
equal to 0.5.~The aspect ratio is defined asN1 /N2 where
N1 andN2 are the numbers of columns and rows of lattice
sites in a rectangular representation.! Using a histogram
Monte Carlo simulation method6 ~HMCSM! and the aspect
ratios of LPPS,3 Hu, Lin, and Chen7,8 ~HLC! found that for a
given class of boundary conditions, and a fixed reduced as-
pect ratioR* , all scaled data ofEp andP as a function of
scaling variable x fall on the same universal scaling
functions F(x) and S(x), respectively, where

-
FIG. 3. FM

a (R,x) for R5L1 /L251,2,3, . . . ,10. ~a! M50. ~b!
M51.
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x5D1(p2pc)L
1/n, n54/3 is a correlation length exponent

andD1 is a model-dependent nonuniversal metric factor.13

The reduced aspect ratioR* for the different lattices may be
defined asR*5gN1 /N2 whereg5 1, 2/A3, and 1/A3 for sq,
pt, and hc lattices, respectively. The constantD1 is indepen-
dent of the reduced aspect ratioR* and the boundary
conditions.7,8

In a recent paper, Hu used the HMCSM~Ref. 6! to evalu-
ate the probabilityWn(L1 ,L2 ,p) for the appearance ofn
top-to-bottom percolating clusters of bond percolation wi
bond probabilityp on finite L13L2 sq lattices.11 When he
plotted Wn as a function of the scaling variable
z5(p2pc)L

1/n, all data of the same aspect ratioL1 /L2 near
the critical pointpc fall on the same scaling function.

9 Using
nonuniversal metric factorD1 of Ref. 7, Hu and Lin showed
that Wn for bond and site percolations on sq, pt, and h
lattices with aspect ratiosL1 /L2, A3L1/2L2, andA3L1 /L2
have universal scaling functions when they are plotted
functions ofx, wherex5D1z.

10

By a conformal transformation,4,12 the L13L2 sq lattice
mentioned above may be mapped into the annular Corb
geometry used in many experiments of quantum Hall effec

FIG. 4. ~a! FM
a (R,0) andFM(R,0) as a function ofR5L1 /L2

for M being 0 and 1.~b! Ca(R,0) andC(R,0) as a function of
R5L1 /L2.
c

s

o
s,

provided that the inner and outer radiiR1 andR2 satisfy the
relation ln(R2 /R1)52pL2 /L1. Therefore, at the critical point
where conformal invariance is valid, results of Hu and Lin10

for rectangular domains may be applied to an annular ge
etry with appropriate aspect ratio. However, Hu and Lin10

only calculated the number of percolating clusters, which
denoted in the present paper asnp . The number of interest in
the RCH theory12 is the number ofalternating percolation
clustersdefined by Eq.~1!. For the Corbino disk and the
corresponding lattice just discussed,nn5np5M for np>2
~Ref. 14! and the results of Hu and Lin10 for np>2 may be
used to compare with experimental data. However,
np51 it is possible thatnn50 and Hu and Lin’s result for
np51 is only an upper bound of the result forM51 alter-
nating percolation cluster.

In the present paper, we use the HMCSM~Refs. 6,9! to
evaluate the probabilityWM

a (L1 ,L2 ,p) for the appearance o
M top-to-bottom alternating percolation clusters of bond p
colation with bond probabilityp on finite L13L2 self-dual
sq lattices shown in Fig. 1. We find that, for a given asp
ratioL1 /L2 all scaled data ofWM

a (L1 ,L2 ,p) near the critical
point pc fall on the same scaling functionFM

a (L1 /L2 ,x),
where x5(p2pc)L

1/n, FM
a (L1 /L2 ,2x)5FM

a (L1 /L2 ,x),
and n54/3 is the correlation-length exponent. In oth
words, we find the same type of scaling behavior as w
previously found for the usual cluster numbernp . Such scal-
ing behavior is, of course, necessary, if we hope to ap
results of a lattice simulation to the continuum percolati
problem of experimental interest.

In the bond percolation on aL13L2 sq ~Ref. 11! lattice
G of N sites andE bonds,N5L13L2, each bond ofG is
occupied with a probabilityp, where 0<p<1. If a bond of
G is occupied~unoccupied!, then the dotted line ofD cross-
ing this bond is unoccupied~occupied!. For every subgraph
G8 of G, there corresponds one and only one subgraphD8 of
D. A cluster which extends from the top row ofG (D) to the
bottom row is a percolating cluster. Between two neighb
ing percolating clusters ofG (D), there is one and only one
percolating cluster ofD (G). If G has two or more percolat
ing clusters, thenD has the same number of percolating clu
ters, which is the number of alternating percolation cluste
If G has only one percolating cluster, then the number
alternating percolation clusters is equal to the number of p
colating clusters inD, which is 1 or 0.

The subgraph which contains at least one alternating
colation cluster is a percolating subgraph and denoted
Gp8 otherwise it is an nonpercolating subgraph. The per
lating subgraph withM alternating percolation clusters i
denoted byGM8 Now we have the definition

WM
a ~L1 ,L2 ,p!5 (

GM8 #G

pb~GM8 !~12p!E2b~GM8 !, ~2!

whereb(GM8 ) is the number of occupied bonds inGM8 The
summation in~2! is over all subgraphsGM8 of G. In the
HMCSM, we choosew different values ofp. For a given
p5pj , 1< j<w, we generateNR different subgraphsG8.
The data obtained from thewNR differentG8 are then used
to construct arrays of numbers with elementsNp(b),
Nf(b), andNM(b), 0<b<E, which are, respectively, the
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total numbers of percolating subgraphs withb occupied
bonds, nonpercolating subgraphs withb occupied bonds, and
the number of percolating subgraphs withb occupied bonds
andM alternating percolation clusters. In the large numb
of simulations, the probabilityWM

a at any value ofp can then
be calculated approximately from the following equation:6,9

WM
a ~L1 ,L2 ,p!5 (

b50

E

pb~12p!E2bCb
E NM~b!

Np~b!1Nf~b!
, ~3!

where Cb
E5E!/(E2b)!b!. It is obvious that

Ep5(M51
` WM

a .
We first use~3! to evaluateWM

a for bond percolation on
128332, 256364 and 5123128 sq~Ref. 11! lattices. The
results are shown in Fig. 2~a!, whereW0

a512Ep . Using the
exact values ofn and pc ,

1 we obtainWM
a as a function of

x5(p2pc)L
1/n. The results are shown in Fig. 2~b!, where

very good scaling behavior ofWM
a is observed and the cor

responding scaling function is denoted byFM
a (R,x) with

R5L1 /L254. Figure 2~b! shows thatFM
a (R,x) for anyM is

a symmetric function ofx. This is different from the function
Fn(R,x) studied in Ref. 10.

We have also calculatedFM
a (R,x) for sq lattices for vari-

ous other values ofR. Plots ofF0
a andF1

a as a function of
x, for various values ofR are shown in Figs. 3~a! and 3~b!. A
plot of FM

a (R,0) as a function ofR, for M50 and 1, is
shown in Fig. 4~a!. Corresponding results of Ref. 10 are al
shown for comparison. Please note thatF1

a(R,0) of the
,

r

present paper is smaller than thatF1(R,0) of Ref. 10 as one
would expect.

We may define the average number of alternating per
lation clustersCa(R,x) via Ca(R,x)5(M51

` FM
a (R,x)M . A

plot of Ca(R,0) as a function ofR is shown as a solid curve
in Fig. 4~b!. Results for the mean cluster numberC(R,0)
defined in Ref. 10 are also shown for comparison. Ple
note thatCa(R,0) andC(R,0) approach each other for larg
R, and are nearly identical forR>4.

We note that our results are obtained from a random p
colation model. Comparisons with experimental results
quantum Hall samples may be complicated, however, by
fact that there may be long-range correlations in the exp
mental system, such as a long-wave-length density gradi
which can destroy the expected universality of behavior n
the percolation threshold. Another complication arises fro
the fact that unknown variations in the parent wafers fro
which samples are made mean that the actual value ofp may
be different for different samples measured at a given va
of the applied magnetic field, even if the samples have no
nally the same electron density and other characterist
These issues are discussed further in Ref. 12.
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