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Electromagnetic field generated by a charged particle moving slowly through a conducting media

A. A. Krokhin, G. A. Luna-Acosta, and J. Madrigal-Melchor
Instituto de Fı´sica, ‘‘Luis Rivera Terrazas,’’ Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla, Pue., 72570, Me´xico

~Received 14 May 1996; revised manuscript received 19 August 1996!

We calculate the spatial distribution of the electromagnetic~EM! field generated by the motion of a charged
particle in a metal. Regimes of weak and strong spatial dispersion are considered analytically, and in the
intermediate case we give numerical results. It is shown that the spatial distribution of the EM field is
characterized by a certain length which plays the same role as the skin depth in the theory of the skin effect in
metals. In the region behind the moving particle the distribution of the EM field has the form of a ‘‘wake.’’
Inside this wake the strength decays by a power law, and outside it decays exponentially.
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I. INTRODUCTION

The electromagnetic~EM! fields generated by the motio
of a charged point particle depend essentially upon the t
of media in which the motion of the particle takes place.
vacuum, the generated fields are given by the Liena
Wiechert potential and, as a result of the invariant princi
of special relativity, particles moving with constant veloci
produce no radiation.1 In dielectric media, polarization give
rise to phenomena such as energy loss transition and C
enkov radiation.1–3 In plasmas, instead of polarization of th
media the passage of the particle induces currents whic
turn produce strong screening.4 The screening radius de
pends on the speed of the particles and for s50 it is the
Debye radius which limits the range of the Coulomb int
action. The dielectric polarization of the medium gives
considerable contribution to the energy losses only for re
tivistic particles.1–3 In contrast, in plasmas with a high con
centration of carriers, even nonrelativistic particles could
viously induce correspondingly strong fields and curren
For example, in Ref. 5 the distribution of electrostatic pote
tial and nonequilibrium electron density in the wake pr
duced by a charge moving in electron gas has been ca
lated. The speed of the charge was assumed to be o
order of the Fermi velocityv. For such high speeds the prin
ciple contribution to the induced field comes from the pla
mon excitations; therefore the field in the wake is a poten
field and decays rather slowly. For the electrons in the w
the typical value of the transfer momentum is of the order
the Fermi momentumpF . Therefore the spatial distributio
of the wake potential is determined by Fourier compone
with large value of the wave vectorq;pF /\. Such large
values ofq require a quantum approach for the calculatio
of dielectric constant. In Ref. 5 the Lindhard dielectric fun
tion which accounts for electron transitions withq;pF /\
has been used.

In the present paper we consider the charge particle m
ing slowly, i.e., with speeds, much less than the Fermi ve
locity. In this case, the electron plasma behaves like a typ
metal, where any electromagnetic excitation decays at a s
distance. In the case of slowly moving particle the typic
transfer momentum isDp!pF and the classical kinetic
equation can be used to calculate the response func
550163-1829/97/55~1!/268~10!/$10.00
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Now, unlike the case considered in Ref. 5, the relevant
sponse function is the conductivity and not the dielect
function. The latter is meaningless in the electrodynamics
metals at frequencies less than plasma frequency.6,7

The distribution of the EM field produced by a slow
moving charge is important, for example, in radiative a
acoustoelectric phenomena in metals and also in the th
of quasilinear Landau damping.6 The charged particle mov
ing slowly through the metal can be injected from an ext
nal source. All radiative losses are negligible at low speed
this particle is a heavy ion, it can propagate with a const
velocity due to the channeling effect. There are also t
important cases where light particles~electrons! move slowly
with constant velocities through the metal. The first case
that of conduction electrons trapped by an acoustic wave
sufficiently large amplitude.8 It is an important example o
nonlinear Landau damping which gives rise to acous
‘‘enlightenment.’’9 The second is the motion of charged di
locations in plastic deformation processes of metals
semiconductors.10 The registration and analysis of EM field
generated by the mobile dislocations may be applicable
the control of the mechanical properties of materials. T
would complement the sound control methods already u
extensively.11

We shall show that the spatial distribution of the vort
EM field is characterized by a certain length which plays
same role as the skin depth in the theory of the skin effec
metals. Two different regimes of wave propagation can
realized in metals. The regime of weak spatial dispersion
relevant at room temperatures, whereas the regime of st
spatial dispersion occurs at low temperatures. Our calc
tions for the distribution of the generated EM field consid
these two regimes, which correspond, respectively, to nor
and anomalous skin effects.7,12

In the next section, we give the solution for the EM fie
in the form of Fourier integrals. In Secs. III and IV, respe
tively, we calculate these integrals in the limits of weak a
strong spatial dispersion and analyze the spatial distribu
of the EM field. In the weak dispersion case the EM fie
decays exponentially, just as in the case of normal skin
fect. For the strong dispersion case the distribution is m
complicated. It decays according to the power law in a c
tain region behind the particle and exponentially outside t
268 © 1997 The American Physical Society
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55 269ELECTROMAGNETIC FIELD GENERATED BYA . . .
region. For intermediate dispersion, the distribution is cal
lated numerically. This is done in Sec. V. Finally, in Sec.
we summarize our conclusions.

II. SOLUTION OF MAXWELL EQUATIONS

Let us consider a point particle with chargeq moving in
the metal along thex axis with speeds. The distribution of
electricE and magneticH fields is given by the solution o
the Maxwell equations

¹3H5
4p

c
@ j1qnxsd~x2st!d~r'!#,

¹3E52
1

c

]H

]t
. ~1!

Here,c is the speed of light andr is the radius vector in the
plane perpendicular to the unit vectornx . The current den-
sity j is the linear response of the media to the motion of
charged particle. The second current density term~contain-
ing thed function! is the charged particle in motion.

In general, because of the effects of spatial dispersion,
connection between the currentj and the electric fieldE is
nonlocal. Thus, it is convenient to solve the set of equati
~1! in the Fourier representation,

E~r ,t !5~2p!24E
2`

`

dkdvE~k,v!exp@ i ~k•r2vt !#, ~2!

where the connection between field and current is local,

j i~k,v!5s ik~k,v!Ek~k,v! ~ i ,k5x,y,z!. ~3!

In the isotropic medium the conductivity tensors ik(k,v)
has two independent components.4 The components i (s')
characterizes the conductivity in the direction parallel~per-
pendicular! to the direction of the wave vectork. These are
given by

s i~k,v!5
3Ne2

2m

n2 iv

~kv !2 F21
v1 in

kv
ln
in1v2kv
in1v1kvG ~4!

and

s'~k,v!5
3Ne2

4m

i

kv H 2v1 in

kv
2F12

~v1 in!2

~kv !2 G
3 ln

in1v2kv
in1v1kv J . ~5!

Here,N is the concentration of the conduction electrons
the metal,v is the Fermi velocity,m is the effective mass o
the electron, andn is the electron relaxation frequency. W
have defined the branch of the logarithm as ln(21)5ip.

It is convenient to separate all vectors into parallel a
perpendicular~with respect to vectork) components:
-

e

he

s

d

E5Ei1E' ,

nx5
~nx•k!

k2
k1

k@nxk#

k2
.

After Fourier transforming Eqs.~1! and eliminatingH we
obtain the following two equations forEi andE' :

s iEi12pd~v2kxs!qs~kxk/k
2!50,

k2E'5
4p iv

c2
$s'E'12pd~v2kxs!qsk22@k@nxk##%.

~6!

After substituting the formal solution ofEi andE' into Eq.
~2!, one can then obtain the solution in the coordinate rep
sentation

Ex~x,r' ,t !5 i
qs

~2p!3
]

]xE2`

` kxdkxdk'

k2s i~k,kxs!

3exp@ ikx~x2st!1 ik'•r'#1
2q

~2p!2
s2

c2
]

]x

3E
2`

` k'
2dkxdk'

k2
exp@ ikx~x2st!1 ik'•r'#

k22~4p ikxs/c
2!s'~k,kxs!

~7!

and

E'~x,r' ,t !5
iqs

~2p!3
]

]r'
E

2`

` kxdkxdk'

k2

3Fs i
21~k,kxs!1

4p ikxs/c
2

k22~4p ikxs/c
2!s'~k,kxs!G

3exp@ ikx~x2st!1 ik'•r'#. ~8!

Here,E'5E2Exnx andk'5k2kxnx are the components o
the electric field and wave vector in the plane perpendicu
to the velocity of the test particle. These formulas are
formal solution for the spatial distribution of the electric fie
generated in the metal by the test particle.

In order to get the analytical expressions for the elec
field it is necessary to perform the integration over the wa
vector. This integration is not trivial. Obviously, it is no
possible to integrate, in general, Eqs.~7! and~8! analytically.
Therefore, below we shall consider two limiting case
namely, weak and strong spatial dispersion. For the inter
diate regime, we calculate the integrals numerically.

III. WEAK SPATIAL DISPERSION

Weak spatial dispersion means that the following inequ
ity is valid for typical values of the wave vector:

kv!n. ~9!

For slowly moving particles (s!v) weak spatial dispersion
implies, of course, weak temporal dispersion also:

kxs!n. ~10!
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In the absence of spatial and temporal dispersions the
ductivity of metals is given by the Drude formula

s i5s'5s5
Ne2

mn
, ~11!
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le
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n-which can be obtained from Eqs.~4! and ~5! in the limits
expressed in Eqs.~9! and ~10!. Substitution of expression
~11! into Eqs.~7! and~8! allows, after cumbersome calcula
tions, for closed-form integration, and we obtain the follo
ing formulas forE:
Ex52
qs

s
d~x2st!d~r'!1

qs

8ps

expF2
1

2
kw~x2st!2

1

2
kwA~x2st!21r'

2 G
@~x2st!21r'

2 #3/2

3F ~21kwA~x2st!21r'
2 !S 3r'

2

~x2st!21r'
2 21D 2

~kwr'!2

2 G , ~12!

E'5
qs

4ps

kwr'expF2
1

2
kwA~x2st!21r'

22
1

2
kw~x2st!G

@~x2st!21r'
2 #3/2

3H 11
1

2
kwA~x2st!21r'

21
1

2
kw~x2st!F11

6dw
A~x2st!21r'

2
1

12dw
2

~x2st!21r'
2 G J . ~13!
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s
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m

From these formulas it follows that the electric field d
cays exponentially with the distance from the test partic
The decay length is characterized by

dw[kw
215

c2

4pss
. ~14!

In the physics of metals, the weak spatial dispersion cas
termed the normal skin effect. The skin depth for the norm
skin effect is given by~see, e.g., Ref. 2!

dn5
c

~2psv!1/2
. ~15!

Herev is the frequency of the monochromatic EM fie
impinging on the metal surface. Formulas~15! and~14! give,
respectively, the decay length of the EM field generated
the external radiation impinging on the surface and by
particle moving in the bulk of the metal. These two lengt
manifest the same physical property of the metal, nam
the screening of the EM field. Therefore, there is an intrin
connection between the two lengths. In order to see this c
nection we take into account the fact that the test part
generates not a monochromatic wave but a wave packet
a frequency centered atv052ps/dw . Then, the decay
length~14! can be obtained from the formula~15! by substi-
tuting v0→v in Eq. ~15! and solving fordn5dw .
.
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It is easy to see thatEx andE' decay more rapidly in
front of the particle ~i.e., x2st.0) than behind it
(x2st,0). This difference is more drastic the closer t
observation point is to the line of motion (r'!ux2stu). Ex-
actly on the line (r'50) the decay length of the EM field i
dw for x2st.0 ~ahead!. For x2st,0 ~behind! the decay
length vanishes and in this region the field decays by a po
law.

IV. STRONG SPATIAL DISPERSION

The case of strong spatial dispersion,

kv@n, kl@1, l5v/n, ~16!

is realized in pure single-crystal metal samples at low te
peratures. Under this condition we can calculate analytic
only the asymptotics of the integrals, Eqs.~7! and ~8!. It is
helpful to note that also in the case of the anomalous s
effect only the asymptotic solution can be calculat
analytically.13

Each integral in Eqs.~7! and~8! contains two terms. The
contribution of the longitudinal~transversal! component of
the conductivity appears solely in the first~second! term. Let
us first calculate the contribution of the longitudinal ter
which requires us to calculate the integral
I ~x2st,r'!5E
2`

` ikxdk

n2 ikxs

exp@ ikx~x2st!1 ik'•r'#

21@~ in1kxs!/kv# ln~ in1kxs2kv !/~ in1kxs1kv !]
, ~17!
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which arises when Eq.~4! is substituted into Eqs.~7! and~8!.
The inequality~16! allows us to simplify the integrand in Eq
~17!. Then the integration can be performed analytically:

I ~x2st,r'!'
i

2E2`

`

eik'•r'dk'E
2`

`

exp@ ikx~x2st!#
kxdkx

n2 ikxs

52
8p4

s
d~r'!H d~x2st!1

n

s
Q~st2x!

3expF2
n

s
~st2x!G J . ~18!

Here,Q(x) is the step function. Because of thed function
appearing in Eq.~18!, the contribution of the longitudina
part is nonzero only at the site of the test particle. Thus in
case of strong spatial dispersion the distribution of the e
tric field is due mainly to the transversal component of co
ductivity. In Sec. V this conclusion will be confirmed also b
numerical calculations.

In order to calculate this contribution it is convenient
change variables from Cartesian to cylindrical coordina
(kx ,k' ,w) in Eqs.~7! and~8!. After performing the integra-
tion with respect to the anglew we obtain

Ex5
q

p

s2

c2
]

]xE0
`

k'
3Jo~k'r'!Z0~k'!dk' ~19!

and

E'52
q

p

s2

c2
]

]r'
E
0

`

k'J0~k'r'!Z2~k'!dk' , ~20!

whereJ0 is the Bessel function of order 0 and

Zn~k'![E
2`

` kx
ndkx

k'
21kx

2

exp@ i ~kxx2st!

kx
21k'

22~4p ikxs/c
2!s'

,

j[x2st, n50,1,2. ~21!

According to the Cauchy theorem the integral~21! is de-
termined by the contribution of the poles and the bran
point. The branch point is related to the presence of the lo
rithm appearing in Eq.~5! for the transversal conductivity
The position of this branch point is

kx
~b!5 i

ns6vAk'
2 ~v22s2!1n2

v22s2
. ~22!

The positions of the poles are the solutions of the ‘‘d
persion relation’’14

k'
21kx

25
4pkxs

c2
s'~k,kxs!. ~23!

In the limit of strong spatial dispersion, Eq.~16!, relation
~23! reduces to the algebraic equation

kx52 ids
2~kx

21k'
2 !3/2. ~24!

Here,
e
c-
-

s

h
a-

-

ds[ks
215S c2

3p2sn

v
sD

1/2

~25!

is the typical decay length of the electric field in the stro
spatial dispersion limit. Just as in the case of weak spa
dispersion treated above, this decay length can be obta
~to within a numerical factor! from the formula for the skin
depth in the anomalous skin-effect conditions,6,7,12,13

da5S c2l

4pvs D 1/3,
by replacingv→v052ps/ds and solving forda5ds . We
would like to note thatds ~as well asda) does not depend on
the relaxation frequencyn and, thus, corresponds to the ca
of collisionless Landau damping.

To solve Eq.~24! it is necessary to select a single bran
of the multivalued function (kx

21k'
2 )1/2. We do this by cut-

ting the complex planekx as shown in Fig. 1. After squaring
both sides of Eq.~24! we obtain a cubic equation fo
(kxds)

2. Its solution is, ignoring superfluous roots,

kx
~1!52 iksAa2A2B,

kx
~2!52ksA2a2

1

2
~A1B!2

iA3
2

~A2B!,

kx
~3!52kx*

~2! . ~26!

Here,

FIG. 1. The complexkx plane with the position of the pole
~nearest to the real axis! and two branch points.
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A5S a21A 1

27
1
a2

4 D 1/3, B52S 2
a

2
1A 1

27
1
a2

4 D 1/3,
a5k' /ks . ~27!

In all formulas the roots are arithmetic.A, B, anda obey the
obvious relations:

0,A1B,a, AB521/3, a5A1B1~A1B!3.

We use the Cauchy theorem to integrate Eq.~21!. The
st

n-

re
he
er
-
ra

ex
contour of integration is a semicircle on the upper~lower!
complex plane forx2st.0 (x2st,0). Since the poles are
situated only in the lower plane, it then follows that the sp
tial pattern of the EM field is very different for the regions
front of (x2st.0) and behind (x2st,0) the moving par-
ticle.

The EM field in front of the particle is due to the contr
bution of the branch point~22!. The integral along the path
surrounding the upper branch point is, after replacingkx by
iz,
Zn~k'!52i ImE
kx

~b!

`

dz~z22k'
2 !21znexp@2~x2st!z#

3H k'
22z21

ks
2z

pAz22k'
2 F2 sz1n

vAz22k'
2

2F12
~zs1n!2

v2~z22k'
2 !G S ip1 ln

vAz22k'
22sz2n

vAz22k'
21sz1n

D G J 21

. ~28!
for

d

f
he

by
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After substituting Eq.~28! into Eqs. ~19! and ~20! for the
electric field, we obtain a double integral in which we fir
change the order of integration,

E
0

`

dk'E
kx

~b!

`

dz•••[E
n/~v2s!

`

dzE
0

Az22~n1sz!2/v2
dk'•••

and then change the variables,

k'5zA12u2, z5
n

v2s
~11z8!.

Further simplification is achieved using the following i
equalities:

x2st@ l , l /ds@1. ~29!

The first inequality implies that our analytical results a
valid for distances rather far from the moving particle. T
second inequality is the condition of strong spatial disp
sion, Eq.~16!. Conditions~29! allow us to calculate the as
ymptote of the integral. The main contribution to the integ
comes from the vicinity of the point (z850,u51). Expand-
ing the integrand around this point gives the asympotic
pression
-

l

-

Ex52
4p

~ksl!2
q

l 2
s2

c2
exp@2~x2st!/ l #

3E
0

`

z3expS 2
x2st

l
zDdz

3E
0

1

dyy3~12y2!J0S r'l yA2zD . ~30!

For the sake of brevity we do not give here the formula
E'. The integration variabley is related to u by
12u5z8y2. Integrals in Eq.~30! can be calculated in close
form, yielding

Ex5
2pq

~ksl !
2

s2

c2
l 2

~x2st!4
expF2

x2st

l
2

r'
2

2l ~x2st!G
3F r'

2

2l ~x2st! S 12
r'
2

2~x2st!2D 21G ~31!

and

E'52
pq

~ksl !
2

s2

c2
r'l

~x2st!4
expF2

x2st

l
2

r'
2

2l ~x2st!G .
~32!

Formulas~31! and~32! describe the electric field in front o
the test particle. Note that it decays exponentially with t
distancex2st and also with distancer' .

The branch point in the lower complex plane gives,
symmetry, the same contribution forx2st,0. However, in
this region, the contribution of the poles dominates that
the branch point. The principal contribution to the integ
~21! comes from the pole nearest to the real axis,kx

(1) . Con-
sidering the contribution of only this pole, we obtain
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Ex52
2q

ks
3

s2

c2
]

]xE0
`k'

3J0~k'r'!~a2A2B!1/2exp@2ksux2stuAa2A2B#dk'
~A1B!~2A12B23a!

. ~33!
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The dependence ofa, A, andB on k' is given by Eq.~27!.
After changing to the new variables,

y5A1B, k'dk'5 1
2ks

2~113y2!dy,

Eq. ~33! becomes

Ex5qks
s2

c2
]

]x
E
0

`
Ay~11y2!J0~ksr'Ay1y3!

3exp~2ksux2stuy3/2!dy. ~34!

Now we distinguish two different cases corresponding
two different asymptotics of the integral~34!.

Case I:

1!ksr'!~ksux2stu!1/3!ksl . ~35!

Case II:

1!~ksux2stu!1/3!ksr'!ksux2stu!~ksl !
2ksr' . ~36!

In case I the main contribution to integral~34! comes from
small values ofy „y;@ks(x2st)#22/3

…. Hence the argumen
of the Bessel function can be taken as zero. After this s
plification, the integral can be easily calculated and we
tain the following result for the electric fieldEx :

Ex5
2

3

s2

c2
q

~x2st!2
. ~37!

Returning to the variables (kx ,k') we find that

ukxu;ux2stu21 and k';ksuksx2stu21/3 ~38!

give the main contribution to the asymptotic formula~37!.
Note that because of inequalities~35! the condition of strong
spatial dispersion is satisfied for the values~38!.

For case II, the principal contribution is due again
small values ofy but now the argument of the Bessel fun
tion is much greater than one@cf., Eq. ~36!#. Hence, substi-
tuting the asymptotic expression for the Bessel function,

J0~ksr'Ay!'A 2

pksr'
y21/4cosS ksr'Ay2

p

4 D , ~39!

into integral ~34!, and changing the variable (y5z2), we
obtain

Ex52qks
2s

2

c2 S 2

pksr'
D 1/2ReE

0

`

z9/2

3expS 2ksUx2stUz31 iksz2
p

4 Ddz. ~40!

The asymptote of Eq.~40! is calculated by the method o
steepest descent. The result is
o

-
-

Ex52
2A2
9A3

q
s2

c2
~x2st!22S ka

3r'
3

ksux2stu D
1/2

3expS 2
ksr'
3
A 2r'

3ux2stu D
3cosS ksr'3 A 2r'

3ux2stu
2

p

4 D , ~41!

which shows that the electric field decays exponentially a
with fast oscillations. Ink space the main contribution to th
asymptote~41! is due to

kx'ks~r' /ux2stu!3/2, k''ks~r' /ux2stu!1/2. ~42!

Again, these values satisfy the condition of strong spa
dispersion for case II. In summary, results~37! and ~41!
show that there are two different regions in the space beh
the particle. These two regions are separated by a cubic
rabola

ksux2stu5~2/27!~ksr'!3. ~43!

Inside this parabola the field decays by a power law@cf. Eq.
~37!#, with ux2stu, whereas outside it decays exponential
Eq. ~41!, with r' . This pattern defines the wake produced
the charged particle moving in the conducting media.

The method for calculating the perpendicular compon
of the electric field,E', and is exactly the same as the o
detailed above for the fieldEx , so we simply give the final
result.

Case I:

E'52
2

3
q
s2

c2
r'

ux2stu3
,

1!ksr'!~ksux2stu!1/3!ksl . ~44!

Case II:

E'5
qks

12ux2stu S 2r'
3ux2stu D

5/2s2

c2
expS 2

ksr'
3
A 2r'

3ux2stu D
3cosS ksr'3 A 2r'

3ux2stu
2

p

4 D r'r' , ~45!

1!~ksux2stu!1/3!ksr'!ksux2stu!~ksl !
2ksr' .

The magnetic field generated by the moving particle c
now be calculated immediately using the second equatio
Eq. ~1!. Because of the cylindrical symmetry of the proble
the magnetic field consists only of theHw component. In
front of the particle it is
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uHwu5
pq

3~ksl !
2

s

c

r'
~x2st!3

expS 2
x2st

l
2

r'
2

2l ~x2st! D ,
~46!

x2st@ l .

Behind the moving particle, the magnetic field is given
the following.

Case I:

uHwu5 2
9G~ 2

3 !qks
3s

c

r'
@ks~x2st!#5/3

, ~47!

1!ksr'!~ksux2stu!1/3!ksl .

Case II:

uHwu5S 23D
3/2

q
s

c

ks
ux2stuA

r'
ux2stu

expS 2
ksr'
3
A 2r'

3ux2stu D
3cosS ksr'3 A 2r'

3ux2stu
2

p

4 D , ~48!

1!~ksux2stu!1/3!ksr'!ksux2stu!~ksl !
2ksr' .

These two cases are the same as the ones introduced b
@cf. Eqs.~35! and ~36!#.
pa

ro
d

s o
e

fore

V. NUMERICAL RESULTS

In the intermediate region of parameters,

ds;dw; l . ~49!

It is necessary to recur to numerical calculations for the e
tric field Ex , Eq. ~7!. Two terms contribute to the electri
field: One is related to the longitudinal conductivitys i and
another to the transversal conductivitys' . The transversal
part can be calculated directly without any transformatio
due to the good convergence of the integrals. On the o
hand, the longitudinal part is singular@see Eq.~18!#. The
singularity comes from the region of large values ofk. To
calculate the contribution ofk@1/l we expand the function
1/s i , Eq. ~4!, with respect to the large paramet
kv/(kxs1 in):

1

s i~`!
'
ikxs2n

3sn F ~kv !2

~kxs1 in!2
2 ip

kv
2~kxs1 in!

2S p2

4
21D G . ~50!

The first ~quadratic! term of this expansion gives a singula
contribution to the electric field which is nonzero only at t
site of the test particle@see Eq.~18!#. A smooth contribution
to the electric field comes from the last two terms in t
expansion~50!. Substituting these two terms in the integr
~7! and performing the integration we obtain
Ex
~1!~x2st,r'!52

qsv
6psn

]

]x H x2st

@~x2st!21r'
2 # J 1S p2

4
21D qs2

12psn
sng~x2st!

3
]

]x H @~x2st!21r'
2 #23/2Fn

s
~x2st!1

r'
222~x2st!2

~x2st!21r'
2 G J . ~51!

Now the electric fieldEx , Eq. ~7!, can be written as a sum of three nonsingular terms:

Ex~x2st,r'!5Ex
~1!2

qs

~2p!2
E
0

`

k'J0~k'r'!dk'E
2`

` F 1

s i~k' ,kxs!
2

1

s i~`!Gkx
2exp@ ikx~x2st!#

kx
21k'

2 dkx

1
iqs2

p E
0

`

k'
3J0~k'r'!dk'E

2`

` kxdkx
kx
21k'

2

exp@ ikx~x2st!#

k2c224p ikxss'~k' ,kxs!
. ~52!
ider-
ot
This is the equation that is to be calculated numerically.
We consider degenerate metallic plasma with typical

rametersN51023 cm23, andv5108 cm/s. The charge and
the mass of the test particle are those of the free elect
The velocity s5105 cm/s, which is of the order of soun
velocity in metals. In this case the screening length, Eq.~25!,
is equal tods53.4631025 cm. It is interesting to compare
ds with the skin depthd ir5c/vp (vp is the plasma fre-
quency! in the infrared region. For the selected parameter
metal, d ir50.1731025 cm; i.e., it is less, but of the sam
-

n.

f

order of magnitude, than the screening lengthds . Hence
d ir is the minimum value of the skin depth in metal,6,7 and it
is clear that the limiting value of screening lengthds cannot
be less thanc/vp . This minimum value is realized for the
test particle moving with Fermi velocityv @see Eq.~25!#. For
higher velocities the plasma effects~excitation of plasmons!
become important and thus again we see that our cons
ation is correct if the velocity of the test particle does n
exceed the Fermi velocity.

Two different values for the parameterkwl were used in
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our calculations:kwl51 andkwl53. They correspond, re
spectively, to the relaxation frequenciesn151.8831012

s21 and n251.0831012 s21, and screening lengthsdw
(1)

55.7131025 cm anddw
(2)53.0831025 cm. Such relaxation

frequencies are typical for nitrogen temperatures. Note
condition ~49! is satisfied.

Figure 2 shows the normalized electric fieldEx /E0 in
front of the charges a function of the dimensionless dista
(x2st)/ds . The electric field is normalized to the value
E05(s2/c2)e/ds

2'4.45310212 ~cgs units!. Solid lines are
for the electric field given by Eq.~52! and dashed lines ar
for the electric field calculated in the limit of weak spati
dispersion.15 The difference between solid and dashed lin
results from the effects of spatial dispersion. Even
kwl51 ~thin lines! spatial dispersion is important and it b
comes more so with the increase of the parameterkwl ~thick
lines!. In Fig. 2 the solid and open circles represent the c
tribution of the transversal part to the electric field@the last
term in Eq.~52!# for kwl51 andkwl53, respectively. It can
be readily seen that the transversal part gives a good app
mation for the electric field. When parameterkwl increases
the contribution of the longitudinal part vanishes. Therefo
in the limit of strong spatial dispersion, Eq.~16!, this part
can be neglected~see Sec. IV!.

The electric field behind the test particle for the sa
values of the parameterskwl andr /ds is shown in Fig. 3. In
this region the contribution of the longitudinal part to th
electric field becomes even less than in the region in fron
the particle. Thus, this part can be neglected even for va
of parameterskwl as large as 1. Behind the test particle, t
electric field decays slowly, in qualitative agreement with t
power law in Eq.~37!. The domain which appears in Fig.
lies inside the parabola, Eq.~43!, where we predict nonex

FIG. 2. Normalized electric field in front of the charge as
function of dimensionless distance forkwl51 and r' /ds51.65
~thin lines! and for kwl53 and r' /ds52.67 ~thick lines!. Solid
lines are for the electric field, Eq.~52!, dashed lines are for the limi
of weak spatial dispersion, Eq.~12!, and circles are for the trans
versal part@the last term in Eq.~52!#.
at
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ponential decay. To check this, we plot in Fig. 4 the elect
field evaluated at a distance far from the test parti
(ux2stu/ds;102) but still inside the wake. We see that th
field fluctuates withux2stu/ds , but the amplitude does no
decay exponentially. Moreover, forux2stu/ds5200 the am-
plitude noticeably increases. In these regions we were
able to calculate the asymptotic behavior and the nature
these oscillations is unknown.

Our analytical and numerical calculations show that in
limit of strong spatial dispersion the electromagnetic fie
has a complicated spatial distribution. The asymptotics of
distribution can be obtained for distances which are mu
larger than the screening lengthds only. Within the sphere of
radiusds , where the electric field is the same order of ma

FIG. 3. Normalized electric field in the wake behind the partic
The parameters are the same as in Fig. 2.

FIG. 4. Normalized electric field forkwl53 andr' /ds52.67 in
the wake far away from the particle.
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FIG. 5. The parabolic wake behind the te
particle in the regime of strong spatial dispersio
In shaded region the analytical approach is val
In region 1 the field decays by power law, E
~37!, and in region 2 it decays exponentially, E
~41!.
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nitude as in vacuum, the screening effects start to mani
themselves. In the theory of an anomalous skin effect13 the
situation is very similar: Asymptotics of the field can b
calculated far away from the metal surface at the distan
which are larger than the skin depthda . However, similar
though these two problems appear to be, there is an im
tant difference.

In the skin-effect geometry the field in the metal depen
only on the distance from the surface, and the field genera
by the test particle has a cylindrical symmetry; i.e., it d
pends on two coordinates (x-st and r'). Because of this
complication, the analytical results for the induced field c
be obtained only for two domains in space. In Fig. 5 the
important domains are shaded. They are separated by
cubic parabola, Eq.~43!. The location of domains 1 and 2 i
given by inequalities~35! and ~36!, respectively. For ex-
ample, domain 1 is located in the region bounded by
cubic parabola and the horizontal lineksux2stu5(ksl )

3.
Outside the shaded region the field should be calculated
merically. We mention here that the calculations are com
tationally very intensive if the parameterksl is large. To
calculate the field outside domain 2 for values ofksl larger
than 10 or so, parallel computing would be desirable.

Fortunately, for physical applications these regions sho
not be important because the field there is rather we
Therefore we hope that the asymptotics obtained in this
per are sufficient to estimate the induced field in the imp
tant region around the moving charge.

VI. CONCLUSIONS

We have calculated the EM fields generated by a slow
moving (s!v) charged particle in a metal. Unlike the usu
approach which considers only the energy loss, here we h
calculated the whole distribution of the EM field, taking in
s
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account the effects of spatial dispersion. In the case of w
spatial dispersion we demonstrated that the EM field dec
exponentially with the distance from the moving particl
This behavior is typical for weak spatial dispersion; for e
ample, the EM field also decays exponentially in metals u
der normal skin-effect conditions. In contrast, we ha
found, for the case of strong spatial dispersion, that the d
tribution of the EM field has a much more complicated stru
ture. The distribution of the EM field in front of the moving
particle is different than behind the particle. Not only are t
fields weaker in front of it but they also decay exponentia
faster than those behind it. The fields behind the parti
have a ‘‘wake’’ structure; the fields’ intensity is stronge
inside the wake. The equation of the profile of the wake
given by Eq.~43!.

The electric field is oriented primarily along the directio
of the particle motion (Ex@E'). We remark that such a
pattern is true for rather large distances behind the particle
least larger than a scaling lengthds which we have intro-
duced here@cf. Eq. ~25!#. ds plays the same role in the dis
tribution of the EM field as does the skin depth in the theo
of the skin effect in metals. For typical metals with conce
tration N51023 sec23, Fermi velocityv'108 cm/sec, and
particle speeds'105 cm/sec~speed of sound in metals! the
scaling length isds'1025 cm. Since the electron mean fre
path l in pure metals at low temperatures exceeds 1022 cm,
the condition of strong spatial dispersion, Eq.~16!, is ful-
filled.
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