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Electromagnetic field generated by a charged particle moving slowly through a conducting media
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We calculate the spatial distribution of the electromagn@id) field generated by the motion of a charged
particle in a metal. Regimes of weak and strong spatial dispersion are considered analytically, and in the
intermediate case we give numerical results. It is shown that the spatial distribution of the EM field is
characterized by a certain length which plays the same role as the skin depth in the theory of the skin effect in
metals. In the region behind the moving particle the distribution of the EM field has the form of a “wake.”
Inside this wake the strength decays by a power law, and outside it decays exponentially.
[S0163-182606)09345-9

I. INTRODUCTION Now, unlike the case considered in Ref. 5, the relevant re-
sponse function is the conductivity and not the dielectric
The electromagnetiEM) fields generated by the motion function. The latter is meaningless in the electrodynamics of
of a charged point particle depend essentially upon the typmetals at frequencies less than plasma frequéncy.
of media in which the motion of the particle takes place. In  The distribution of the EM field produced by a slowly
vacuum, the generated fields are given by the Lienardmoving charge is important, for example, in radiative and
Wiechert potential and, as a result of the invariant principleacoustoelectric phenomena in metals and also in the theory
of special relativity, particles moving with constant velocity of quasilinear Landau dampirigrhe charged particle mov-
produce no radiatiohIn dielectric media, polarization gives ing slowly through the metal can be injected from an exter-
rise to phenomena such as energy loss transition and Chatal source. All radiative losses are negligible at low speed. If
enkov radiatior"2 In plasmas, instead of polarization of the this particle is a heavy ion, it can propagate with a constant
media the passage of the particle induces currents which ipelocity due to the channeling effect. There are also two
turn produce strong screenifigthe screening radius de- important cases where light particl@ectrony move slowly
pends on the speed of the partidleand fors=0 it is the  with constant velocities through the metal. The first case is
Debye radius which limits the range of the Coulomb inter-that of conduction electrons trapped by an acoustic wave of
action. The dielectric polarization of the medium gives asufficiently large amplitud.It is an important example of
considerable contribution to the energy losses only for relanonlinear Landau damping which gives rise to acoustic
tivistic particles'™ In contrast, in plasmas with a high con- “enlightenment.’”® The second is the motion of charged dis-
centration of carriers, even nonrelativistic particles could obdocations in plastic deformation processes of metals or
viously induce correspondingly strong fields and currentssemiconductor®’ The registration and analysis of EM fields
For example, in Ref. 5 the distribution of electrostatic poten-generated by the mobile dislocations may be applicable for
tial and nonequilibrium electron density in the wake pro-the control of the mechanical properties of materials. This
duced by a charge moving in electron gas has been calcwould complement the sound control methods already used
lated. The speed of the charge was assumed to be of thextensively'!
order of the Fermi velocity. For such high speeds the prin-  We shall show that the spatial distribution of the vortex
ciple contribution to the induced field comes from the plas-EM field is characterized by a certain length which plays the
mon excitations; therefore the field in the wake is a potentiakame role as the skin depth in the theory of the skin effect in
field and decays rather slowly. For the electrons in the wakenetals. Two different regimes of wave propagation can be
the typical value of the transfer momentum is of the order ofrealized in metals. The regime of weak spatial dispersion is
the Fermi momentunpr . Therefore the spatial distribution relevant at room temperatures, whereas the regime of strong
of the wake potential is determined by Fourier componentspatial dispersion occurs at low temperatures. Our calcula-
with large value of the wave vectar~pg/f. Such large tions for the distribution of the generated EM field consider
values ofq require a quantum approach for the calculationsthese two regimes, which correspond, respectively, to normal
of dielectric constant. In Ref. 5 the Lindhard dielectric func-and anomalous skin effects?
tion which accounts for electron transitions with- pg /% In the next section, we give the solution for the EM field
has been used. in the form of Fourier integrals. In Secs. Il and IV, respec-
In the present paper we consider the charge particle mowively, we calculate these integrals in the limits of weak and
ing slowly, i.e., with speed, much less than the Fermi ve- strong spatial dispersion and analyze the spatial distribution
locity. In this case, the electron plasma behaves like a typicadf the EM field. In the weak dispersion case the EM field
metal, where any electromagnetic excitation decays at a shottecays exponentially, just as in the case of normal skin ef-
distance. In the case of slowly moving particle the typicalfect. For the strong dispersion case the distribution is more
transfer momentum isAp<pg and the classical kinetic complicated. It decays according to the power law in a cer-
equation can be used to calculate the response functiotain region behind the particle and exponentially outside this
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region. For intermediate dispersion, the distribution is calcu- E=E+E,,
lated numerically. This is done in Sec. V. Finally, in Sec. VI
we summarize our conclusions. (ne-k)  K[nyK]

Ny= k2 + k2
Il SOLUTION OF MAXWELL EQUATIONS After Fourier transforming Eqs(1l) and eliminatingH we
Let us consider a point particle with chargemoving in  obtain the following two equations fdf; and¢, :
the metal along the axis with speeds. The distribution of
electricE and magnetidd fields is given by the solution of o1&+ 278 w—K,s)qs(kek/k?) =0,
the Maxwell equations

) d7iw s
ar ke& = v {0, E, +278(w—k,s)gsk k[ nk]]}.
V><H=?[j+qnxsé(x—st)5(rl)], (6)
After substituting the formal solution ofj and &, into Eq.
1 gH (2), one can then obtain the solution in the coordinate repre-
VXE=-— R (1)  sentation
o

o gqs d (= kdkdk,
Here,c is the speed of light and is the radius vector in the  Ex(X,r, ,t)=i (27)3 5[ m
plane perpendicular to the unit vectog. The current den- —en IR

sity j is the linear response of the media to the motion of the 2q s% 9
charged particle. The second current density tézomtain- Xex;{ikx(x—st)+iki~ri]+(27)2 2 x
ing the 6 function) is the charged particle in motion.

In general, because of the effects of spatial dispersion, the o ka_dkxdkL exfiky(x—st)+ik, -r,]
connection between the currgnaind the electric fielE is fﬁw k2 K2—(4mik,s/cP) o, (kK s)

nonlocal. Thus, it is convenient to solve the set of equations
(1) in the Fourier representation, @)

and
E(r,t)=(27r)’4f dkdwé&(k,w)exdi(k-r—wt)], 2

igs 9 (= kdk.dk
E, (x,r, ,t)= q f DXL

2mBa, ) . K
where the connection between field and current is local,
| o ks + 47rik,s/c?
ks -
ji(k o) =0y (ko) &k o) (i k=xy,2). (3 7 K2 (Amik,s/c?) o (K, Kys)
Xexdiky(x—st)y+ik, -r,]. (©)]

In the isotropic medium the conductivity tensoty (K, )

has two independent componefithe component (o) Here,E, =E—E,n, andk, =k—k,n, are the components of

characterizes the conductivity in the direction paralf@r-  the electric field and wave vector in the plane perpendicular

pendiculay to the direction of the wave vectdr. These are to the velocity of the test particle. These formulas are the

given by formal solution for the spatial distribution of the electric field
generated in the metal by the test particle.

3NE v—iw o+iv iv+o—ko In order to get the analytical expressions for the electric
o|(k,w)= > Y 2+ el " (4) field it is necessary to perform the integration over the wave
m (k) v lvtoetke vector. This integration is not trivial. Obviously, it is not

possible to integrate, in general, EG8. and(8) analytically.
and Therefore, below we shall consider two limiting cases,
namely, weak and strong spatial dispersion. For the interme-

3NE i [ w+iv (w+iv)? diate regime, we calculate the integrals numerically.
Ko)= — — 1=
o (k)= k|2 ke (kv)2
) Il. WEAK SPATIAL DISPERSION
iv+w—kv o _ o
n————. ) Weak spatial dispersion means that the following inequal-
iv+wt+kv o . .
ity is valid for typical values of the wave vector:
Here,N is the concentration of the conduction electrons in kp<uv. 9)

the metaly is the Fermi velocitym is the effective mass of
the electron, and is the electron relaxation frequency. We For slowly moving particlesg<v) weak spatial dispersion
have defined the branch of the logarithm as-hf=i. implies, of course, weak temporal dispersion also:
It is convenient to separate all vectors into parallel and
perpendiculafwith respect to vectok) components: k,s<wv. (10
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In the absence of spatial and temporal dispersions the convhich can be obtained from Eg&) and (5) in the limits

ductivity of metals is given by the Drude formula expressed in Eqg9) and (10). Substitution of expression
(12) into Eqgs.(7) and(8) allows, after cumbersome calcula-
=0 = o= E (11) tions, for closed-form integration, and we obtain the follow-
=L my’ ing formulas forE:

L L x=s07Er?
qs ex 3 W(x—st)—z wV(X—st)+r7

gs
Eu=—— 8(x—s0a(r,) + 5 — [(x—st2+r2]%?
3r? (kar 1)?
x| (2+ky\(x—st)Z+r? 1| -
2k (x=sO™ )| E= sz ) 2 | -
1 2 2 1
g -9 Kul 1 €XR = Sk V(X=S)7H 17 = Sk(X=S1)
L Ano [(X_St)2+rf]3/2
xd 1+ Sk X SHTF 7+ ok gl 14—, 2, e
g KX SO RS I e T sz 2| -

From these formulas it follows that the electric field de- It is easy to see thaE, and E;, decay more rapidly in
cays exponentially with the distance from the test particlefront of the particle (i.e., x—st>0) than behind it
The decay length is characterized by (x—st<0). This difference is more drastic the closer the

observation point is to the line of motiom (<|x—st|). Ex-
_ _ (14) actly on the line (, =0) the decay length of the EM field is
Amos Sy for x—st>0 (aheadl. For x—st<0 (behind the decay
gngth vanishes and in this region the field decays by a power

2

In the physics of metals, the weak spatial dispersion case
termed the normal skin effect. The skin depth for the normal aw.
skin effect is given by(see, e.g., Ref.)2

c IV. STRONG SPATIAL DISPERSION
T y— T (19 o _
(2mow) The case of strong spatial dispersion,
Here w is the frequency of the monochromatic EM field kv>v. ki1 l=vlv (16)

impinging on the metal surface. Formuld$) and(14) give,

respectively, the decay length of the EM field generated bys realized in pure single-crystal metal samples at low tem-
the external radiation impinging on the surface and by theperatures. Under this condition we can calculate analytically
particle moving in the bulk of the metal. These two lengthsonly the asymptotics of the integrals, E¢g) and (8). It is
manifest the same physical property of the metal, namelyhelpful to note that also in the case of the anomalous skin
the screening of the EM field. Therefore, there is an intrinsiceffect only the asymptotic solution can be calculated
connection between the two lengths. In order to see this coranalytically*®

nection we take into account the fact that the test particle Each integral in Eqs.7) and(8) contains two terms. The
generates not a monochromatic wave but a wave packet wittontribution of the longitudinaltransversal component of

a frequency centered aby=2ws/é,,. Then, the decay the conductivity appears solely in the fitsecond term. Let
length(14) can be obtained from the formu(a5) by substi- us first calculate the contribution of the longitudinal term
tuting wg— w in Eq. (15) and solving fors,= 4, . which requires us to calculate the integral

| ‘F ik, dk exiky(x—st)+ik, -, ] .
(XSU)= | ks 2+ [+ ko) ko TIn(i v+ Kes—ko) (1 0+ ks + k)] w
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which arises when Ed4) is substituted into Eqs7) and(8).

The inequality(16) allows us to simplify the integrand in Eq. Imks
(17). Then the integration can be performed analytically:

i[= o
|(X—St,rl)”Ej_me'ki"LdkLJ’_ exiky(x— st)] IkXS

g4 v Im(k2 +k3)12 <0 Im(k2 +k2)12 >0
=— —5(rL)[ S(X—st)+ =0 (st—x)
S S
14
X ex;{ —5(st=x) } . (18 ko

Here, ®(X) is the step function. Because of tl#efunction Reks

appearing in Eq(18), the contribution of the longitudinal
part is nonzero only at the site of the test particle. Thus in the
case of strong spatial dispersion the distribution of the elec- —tky
tric field is due mainly to the transversal component of con-
ductivity. In Sec. V this conclusion will be confirmed also by
numerical calculations.

In order to calculate this contribution it is convenient to
change variables from Cartesian to cylindrical coordinates
(_kx,ki.,cp) in Egs.(7) and(8). After perf_orming the integra- Im(R2 + K2)2 > 0 Im(k2 +k2)12 < 0
tion with respect to the angle we obtain

kY

E =ﬂs—— k3 Jo(k 1 1)Zo(k, )dk, (19
X T 2 IX o] 1/)40
and
FIG. 1. The complexk, plane with the position of the pole
qs? a (= (nearest to the real ajisnd two branch points.
Ef———z—J k Jo(kyr)Zo(k )dk,,  (20)
T C°dr Jo 5 12
cc v
: . S=k 1= - (25)
whereJ, is the Bessel function of order 0 and s s 3720V S
= K'dk exifi (kx—st) is the typical decay length of the electric field in the strong
a(k )—f s ——— a — spatial dispersion limit. Just as in the case of weak spatial
—ok? + kg ki+kT —(4mik,s/co)o ; ; : ;
LT P PR X L dispersion treated above, this decay length can be obtained
(to within a numerical factgrfrom the formula for the skin
é=x-st, n=0,1,2. (21)  depth in the anomalous skin-effect conditi§ris->*3
According to the Cauchy theorem the integi2l) is de- c?l |\
termined by the contribution of the poles and the branch G 7y B

point. The branch point is related to the presence of the loga- _ _
rithm appearing in Eq(5) for the transversal conductivity. by replacingo— wo=2ms/ s and solving fors,= 6s. We

The position of this branch point is would like to note tha® (as well asé,) does not depend on
the relaxation frequency and, thus, corresponds to the case
vs+u ke (v2—5%) + 12 of collisionless Landau damping.
kP =i =g . (22) To solve Eq.(24) it is necessary to select a single branch

of the multivalued function K2+ k?)Y2. We do this by cut-
The positions of the poles are the solutions of the «gis-ting the complex plan&, as shown in Fig. 1. After squaring

persion relation* both sides of Eq.(24) we obtain a cubic equation for
(k.84)?. Its solution is, ignoring superfluous roots,
kyS .
K== o (kkss). (23 K= —ikea—A-B,
In the limit of strong spatial dispersion, E¢L6), relation K@= g \/ 1 iV3
(23) reduces to the algebraic equation x s a- §(A+ B)_T(A_ B),

k= —i82(K2+Kk?)%2, (24) kK =—kx@, (26)

Here, Here,
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1/3
’ B=-

2 2

3 contour of integration is a semicircle on the upgkwer)
' complex plane fox—st>0 (x—st<0). Since the poles are
situated only in the lower plane, it then follows that the spa-
a=Kk, /Ks. (27)  tial pattern of the EM field is very different for the regions in
) ) front of (x—st>0) and behind X—st<0) the moving par-
In all formulas the roots are arithmeti, B, anda obey the  jcje.
obvious relations: The EM field in front of the particle is due to the contri-
0<A+B<a, AB=-1/3, a=A+B+(A+B)S. bution of_the branch point22). Tht_e in_tegral along th_e path
surrounding the upper branch point is, after repladindpyy
We use the Cauchy theorem to integrate E2fl). The iz,

a 1 a

2" N7tz

a+ 1+a
2 27 4

Z(k,)=2i Im (b)dz(z —k?)"1z"exd — (x—st)z]
e k2z szt+v (zs+v)? || o -k —sz—v|]] ! 28
-z —|1-—==—>-||i7+In .
- T2—K | vk vi(Z— ki) 2K +szt v
|
After substituting Eq.(28) into Egs.(19) and (20) for the 47 q S°
electric field, we obtain a double integral in which we first Ex=— ksh2i2 &2 exd — (x—st)/l]
change the order of integration,
X—st
f z exp( )dz
o * JTz)Z/U 1 r
JO dk, f@dz fy,(v 5 J k- xfodyf<1—y2>Jo(%yJZ). (30

. For the sake of brevity we do not give here the formula for
and then change the variables, E,. The integration variabley is related to u by
1—u=2z'y?. Integrals in Eq(30) can be calculated in closed
form, yielding

k, =zy1-u?, z=v—is(1+z’). _2mq s 17 F{_X—St rt

B k2 2 x—s0? P T T T2 (x—sp)
X " 1- "L -1 (31)
Further simplification is achieved using the following in- 21(x—st) 2(x—st)?
equalities:
and
2 2
x—st=l, 1161, (29 g m s ol ol oxzst n
L (kd)? c? (x—st)? I 21(x—st) |’
(32)

Formulas(31) and(32) describe the electric field in front of

The first inequality implies that our analytical results arethe test particle. Note that it decays exponentially with the
valid for distances rather far from the moving particle. Thedistancex— st and also with distance, .
second inequality is the condition of strong spatial disper- The branch point in the lower complex plane gives, by
sion, Eq.(16). Conditions(29) allow us to calculate the as- symmetry, the same contribution far-st<0. However, in
ymptote of the integral. The main contribution to the integralthis region, the contribution of the poles dominates that of
comes from the vicinity of the pointz(=0,u=1). Expand- the branch point. The principal contribution to the integral
ing the integrand around this point gives the asympotic ex{21) comes from the pole nearest to the real akj$). Con-
pression sidering the contribution of only this pole, we obtain
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2q s? &Jwkao(kLrL)(a—A—B)l’zexp[—ks|x—st|\/a—A—B]dkl

B3 2, (A+B)(2A+2B—3a) 33
|
The dependence @f, A, andB onk, is given by Eq.(27). 22 & 33 1/2
After changing to th iables, =— ——Q—5(x—st) % —0——
er changing to the new variables E, g\/§q02(x st) (ks|x—st|)
y=A+B, k dk, =3k3(1+3y?dy,
Kor | 2r,
Eq. (33) becomes XEXA T3 Vax—sf
s?2 9 (= Ker 2r T
_ > Y + 2 T 3 st L 1 _ 0
Ex=0ksz &Xfo WL+Y?)Jo(ke VY +Y) ><cos(—3 Ax—si 4/’ (4)
X exp( —ko|x—st|y¥?)dy. (349 which shows that the electric field decays exponentially and

o _ _ with fast oscillations. Irk space the main contribution to the
Now we distinguish two different cases corresponding toasymptote(41) is due to

two different asymptotics of the integréd4).
Case I ke=Kks(r, /|x—st))®% Kk, ~kg(r, /|x—st)¥2 (42

L<kgr | < (kg|x—st])3<kql. (39  Again, these values satisfy the condition of strong spatial
dispersion for case Il. In summary, resul®7) and (41)
show that there are two different regions in the space behind
the particle. These two regions are separated by a cubic pa-
rabola

Case II:
1< (kg|x—st|)Y3<kyr | <kdx—st|<(kd)?ksr, . (36)

In case | the main contribution to integré@4) comes from

small values ofy (y~[ks(x—st)]~%3). Hence the argument k|x—st|=(2/27) (ks | )°. (43
of the Bessel function can be taken as zero. After this sim- ) ]

plification, the integral can be easily calculated and we ob!nside this parabola the field decays by a power [afvEq.

tain the following result for the electric fielfl, : (37)], with |x—st|, whereas outside it decays exponentially,

Eq.(41), with r | . This pattern defines the wake produced by
2 g2 q the charged particle moving in the conducting media.
Ex=§ 2 (x—st?" 37 The method for calculating the perpendicular component

of the electric fieldE,, and is exactly the same as the one

Returning to the variablek(,k,) we find that detailed above for the fiel&,, so we simply give the final
result.

[ky ~|x—st =t andk, ~kJkex—st|~¥® (39 Case I:

give the main contribution to the asymptotic formy@v). 2 2

Note that because of inequaliti€35) the condition of strong E=—=Qup— 1,

spatial dispersion is satisfied for the valugs). 37c [x—st

For case ll, the principal contribution is due again to

small values ofy but now the argument of the Bessel func- 1<kgr | < (k| x—st)3<kl. (44)

tion is much greater than orjef., Eq. (36)]. Hence, substi-

tuting the asymptotic expression for the Bessel function, Case Il

[ 2 ™ ks 2r, |¥?s? K 2r
Jo(kgr ~ —‘1’4c05<kr ——), 39 __1 L 2 _ st L
ok )=\ 7Y Y=g B9 12[x—sf\3lx—sf]] ¥ "3 V3x—sf
into integral (34), and changing the variabley € z%), we Ko | 2r, m\r,
obtain XCOS( 3 Vax—si 2)r,’ (45
2 1/2
25 2 o 1/3 2
EX=2qkS? e Re .z 1< (kg|x—st])3<kyr | <kgx—st|< (kg )?kyr | .

T The magnetic field generated by the moving particle can
><exp( —kKs 2’ +iksz— Z) dz. (40 now be calculated immediately using the second equation in
Eqg. (1). Because of the cylindrical symmetry of the problem,
The asymptote of Eq(40) is calculated by the method of the magnetic field consists only of thé, component. In
steepest descent. The result is front of the particle it is

X— st
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o™ s 1 x—st re V. NUMERICAL RESULTS
[Hl= 3(kd)2c (x=sp3 A T T T 2i(x=sp) )’ In the intermediate region of parameters,

46

(49 05~ 6y~ 1. (49

X—st>1.
_ _ _ S It is necessary to recur to numerical calculations for the elec-
Behind the moving particle, the magnetic field is given bytric field E,, Eq. (7). Two terms contribute to the electric

the following. field: One is related to the longitudinal conductivity and
Case I another to the transversal conductivity . The transversal
part can be calculated directly without any transformations
pra 201 3S r, due to the good convergence of the integrals. On the other
|H¢|:§F(§)qksg Tkax—sO " (47)  hand, the longitudinal part is singulasee Eq.(18)]. The

singularity comes from the region of large valueskofTo
calculate the contribution df>1/1 we expand the function

< — B¢ .
L<<kgry <(ksx—st) <k Loy, Eq. (4), with respect to the large parameter
kv/(kys+iv):
Case Il
1 ikes—v[ (kv)? i kv
IH,|= 2\%s k[ o] K 20 o1(®)  Bov |(ks+in)? T 2(Kkstiv)
#=\3) Yo x=sf Vx=st° 3 V3|x—sf 2
—|—=—1/1]. 50
y S(‘(sh 2r, 77) 48 (4 ) 0
co —, . ) . o .
3 3|x—st 4 “8) The first(quadrati¢ term of this expansion gives a singular

contribution to the electric field which is nonzero only at the
1<(ks|x—st|)1’3< ker | <kg/x—st|<(kd)?kqr . site of the test particlesee Eq(18)]. A smooth contribution
to the electric field comes from the last two terms in the
These two cases are the same as the ones introduced befesgansion(50). Substituting these two terms in the integral
[cf. Egs.(35) and (36)]. (7) and performing the integration we obtain

£ A x—st . w? L
x (X_SI'rl)__Gﬂ'a'va [(x—st)?+r?] 4

] v r2—2(x—st)?

i L ep 2. p27-312 2y -

Xax[[(x st)c+r7] S(x st)+ (x—sOZF 12 (51
Now the electric fieldg,, Eq. (7), can be written as a sum of three nonsingular terms:
qs (= °° 1 1 KCexdiky(x—st)]
_ g _ _
EX(X StlrL) Ex (ZW)ZJO kLJO(kLrL)dkL f_w O'”(kJ_ ,ka) o_ll(oc) ki_f_ki X
|qssz 5 foc K, dk, exdiky(x—st)]

T ) Kidetkuridie —oki+ kS Kec?—A4mik,sa, (K, kyS)” 52

This is the equation that is to be calculated numerically.  order of magnitude, than the screening length Hence

We consider degenerate metallic plasma with typical pad, is the minimum value of the skin depth in metdland it
rametersN=10?% cm™3, andv=10° cm/s. The charge and is clear that the limiting value of screening lengthcannot
the mass of the test particle are those of the free electrome less thare/w,. This minimum value is realized for the
The velocity s=10° cm/s, which is of the order of sound test particle moving with Fermi velocity [see Eq(25)]. For
velocity in metals. In this case the screening length,(B§.,  higher velocities the plasma effedexcitation of plasmons
is equal tos;=3.46x 10" ° cm. It is interesting to compare become important and thus again we see that our consider-
65 with the skin depths;,=c/w, (v, is the plasma fre- ation is correct if the velocity of the test particle does not
guency in the infrared region. For the selected parameters oéxceed the Fermi velocity.
metal, 5,=0.17xX10"° cm; i.e., it is less, but of the same  Two different values for the parametky,| were used in



55 ELECTROMAGNETIC FIELD GENERATED BYA . .. 275

0.05 —

0.11 —

0.08 —

0.04 —

Normalized Electric Field
Normalized Electric Field

0.01 —

-0.10 — ‘ : T

0.00 4.00 8.00 12.00 16.00

-0.03 T I : I
-30.00 -24.00 -18.00 -12.00 -6.00 0.00

(x-st)/ 3,
(x-st)/ 8,

FIG. 2. Normalized electric field in front of the charge as a . P . .
function of dimensionless distance fégi=1 andr, /5,=1.65 FIG. 3. Normalized electric field in the wake behind the particle.

(thin lines and for k| =3 andr, /8,=2.67 (thick lineg, Solid '€ Parameters are the same as in Fig. 2.

lines are for the electric field, E¢52), dashed lines are for the limit onential decav. To check thi e plot in Fia. 4 the electric
of weak spatial dispersion, E@1l2), and circles are for the trans- p ! Y- . IS, we plot In F1g. bk
versal parfthe last term in Eq(52)]. field evaluated at a distance far from the test particle

(|x—st|/ 85~ 10%) but still inside the wake. We see that the
_ field fluctuates with|x—st|/ 8, but the amplitude does not

our calculationsk,l=1 andk,|=3. They correspond, re- decay exponentially. Moreover, f¢x—st|/ 5= 200 the am-
spectively, to the relaxation frequencies=1.88<10"* plitude noticeably increases. In these regions we were not
s ! and »,=1.08x10"? s !, and screening Iength§§vl) able to calculate the asymptotic behavior and the nature of
=5.71X10"° cm ands{?)=3.08x 10" ° cm. Such relaxation these oscillations is unknown.
frequencies are typical for nitrogen temperatures. Note that Our analytical and numerical calculations show that in the
condition (49) is satisfied. limit of strong spatial dispersion the electromagnetic field

Figure 2 shows the normalized electric figig /E, in has a complicated spatial distribution. The asymptotics of the
front of the charges a function of the dimensionless distancgistribution can be obtained for distances which are much
(x—st)/8s. The electric field is normalized to the value of larger than the screening lengdhonly. Within the sphere of
Eoz(sz/cz)e/6§~4.45>< 10" *? (cgs unit3. Solid lines are radiusés, where the electric field is the same order of mag-
for the electric field given by Eq52) and dashed lines are
for the electric field calculated in the limit of weak spatial 3.0 —
dispersiont® The difference between solid and dashed lines
results from the effects of spatial dispersion. Even for
ky! =1 (thin lineg spatial dispersion is important and it be-
comes more so with the increase of the paramiejer(thick
lines). In Fig. 2 the solid and open circles represent the con-
tribution of the transversal part to the electric fi¢tte last
term in Eq.(52)] for k, | =1 andk,I| =3, respectively. It can
be readily seen that the transversal part gives a good approxi-
mation for the electric field. When parametgyl increases
the contribution of the longitudinal part vanishes. Therefore
in the limit of strong spatial dispersion, E(L6), this part 107
can be neglectetsee Sec. IV.

The electric field behind the test particle for the same
values of the parameteks,| andr/é; is shown in Fig. 3. In
this region the contribution of the longitudinal part to the
electric field becomes even less than in the region in front of 3.0 , i . | . i ; |
the particle. Thus, this part can be neglected even for values -280.0 -245.0 2100 175.0 1400
of parameters,,| as large as 1. Behind the test particle, the (x-st/s,
electric field decays slowly, in qualitative agreement with the
power law in Eq.(37). The domain which appears in Fig. 3  FIG. 4. Normalized electric field fok,l =3 andr, /5,=2.67 in
lies inside the parabola, E43), where we predict nonex- the wake far away from the particle.

Normalized Electric Fleld (10 *)
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ko r(k, 1)

FIG. 5. The parabolic wake behind the test
particle in the regime of strong spatial dispersion.
In shaded region the analytical approach is valid.
In region 1 the field decays by power law, Eqg.
(37), and in region 2 it decays exponentially, Eq.
(41).

k.r k,r

nitude as in vacuum, the screening effects start to manifestccount the effects of spatial dispersion. In the case of weak
themselves. In the theory of an anomalous skin effatie  spatial dispersion we demonstrated that the EM field decays
situation is very similar: Asymptotics of the field can be exponentially with the distance from the moving particle.
calculated far away from the metal surface at the distance$his behavior is typical for weak spatial dispersion; for ex-
which are larger than the skin depth. However, similar ample, the EM field also decays exponentially in metals un-
though these two problems appear to be, there is an impoder normal skin-effect conditions. In contrast, we have
tant difference. found, for the case of strong spatial dispersion, that the dis-
In the skin-effect geometry the field in the metal dependdribution of the EM field has a much more complicated struc-
only on the distance from the surface, and the field generateire. The distribution of the EM field in front of the moving
by the test particle has a cylindrical symmetry; i.e., it de-particle is different than behind the particle. Not only are the
pends on two coordinatesx{st andr ). Because of this fields weaker in front of it but they also decay exponentially
complication, the analytical results for the induced field canfaster than those behind it. The fields behind the particle
be obtained only for two domains in space. In Fig. 5 thesehave a “wake” structure; the fields’ intensity is stronger
important domains are shaded. They are separated by tlieside the wake. The equation of the profile of the wake is
cubic parabola, Eq43). The location of domains 1 and 2 is given by Eq.(43).
given by inequalities(35) and (36), respectively. For ex- The electric field is oriented primarily along the direction
ample, domain 1 is located in the region bounded by theof the particle motion E,>E,). We remark that such a
cubic parabola and the horizontal lig|x—st|=(kd)3.  pattern is true for rather large distances behind the particle, at
Outside the shaded region the field should be calculated ndeast larger than a scaling lengtiy which we have intro-
merically. We mention here that the calculations are compueduced herdcf. Eq. (25)]. 5 plays the same role in the dis-
tationally very intensive if the parametdgl| is large. To tribution of the EM field as does the skin depth in the theory
calculate the field outside domain 2 for valueskgf larger  of the skin effect in metals. For typical metals with concen-
than 10 or so, parallel computing would be desirable. tration N= 10 sec 3, Fermi velocityv~10® cm/sec, and
Fortunately, for physical applications these regions shoulgarticle speed~10° cm/sec(speed of sound in metalthe
not be important because the field there is rather wealkscaling length is5;~10"° cm. Since the electron mean free
Therefore we hope that the asymptotics obtained in this pgpathl in pure metals at low temperatures exceeds?1€m,
per are sufficient to estimate the induced field in the importhe condition of strong spatial dispersion, Ed6), is ful-
tant region around the moving charge. filled.

VI. CONCLUSIONS
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¥Note that the singularity a?=k?+k2=0 appearing in each of
the integrands in E(7) cancel out. The same is true for €§).
Therefore, the contribution dé=0 does not have to be calcu-
lated in Eqg.(21). Moreover,k=0 belongs to the case of weak
spatial dispersion where there is no singularity in the integrand.

15T calculate this limit we used E@12) in which we substituted
two values of screening lengths{l) and 5{?)) and relaxation
frequencies ¢, and »,). Note that the decay lengti? is al-
most twice less than!}) therefore the electric field fok,| =3
drops faster than fok,| =1 (dash lineg



