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Scattering and conductance quantization in three-dimensional metal nanocontacts

Mads Brandbyge
CAMP, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

Karsten W. Jacobsen
CAMP, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark,
and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

Jens K. Noskov
CAMP, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 5 August 1996

The transmission through three-dimenstional nanocontacts is calculated in the presence of localized scatter-
ing centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are
used to investigate how robust the observation of quantized conductance is with respect to the scattering. We
find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and
downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will still be
at integer positions. The effect of scattering by surface corrugation depends on the length scale of the corru-
gation. In some cases a significant downshift of the steps without accompanying smearing is observed. In
general, we find that even in the cases where scattering shifts the quantum steps the quantization of the motion
perpendicular to the contacts remains intact. Non-integer steps can therefore also be a signature of quantized
conductance.S0163-18207)05804-9

[. INTRODUCTION ductance. In a typical experiment the contact formation is
initiated by a rapid increase in the conductance seen in both
The electrical and mechanical properties of nanostructureSTM (Refs. 3,4,6,22,23and MCB (Refs. 16,20 experi-
have been studied intensely over the past decade due to theents. This increase can be caused by a mechanical instabil-
possibility of new quantum properties appearing at the smality (“jump to contact”)®* or at higher temperatures by a
scale. One class of nanostructures consists of the nanococascade of diffusion processgsliffusion to contact”).?® As
tacts or quantum point contacts in which the transport bethe contact is established the electron transport goes from the
tween two leads or reservoirs are controlled at the nanoscaltunneling regime to the so-called ballistic regime, where the
These have been synthesized by lithographic techniques aonductance is determined by the elastic quantum transmis-
semiconductor structures, e.g., GaAs@h,;_,As, where sion properties of the contact. The initial rapid contact for-
electrons are confined to move in two dimensibAn three  mation may be followed by a further increase in the contact
dimensions atomic scale metal contacts connecting two metirea because of diffusion processes or because of continued
als have been investigated. Apart from the fundamental inindentation. By reversing the motion of the electrodes the
terest in new quantum effects the understanding of theseontact can be pulled apart in a process where the contact
atomic sized contacts between two materials underlies thgets thinner and more elongated.
understanding of the macroscopic contact phenomena such The most striking feature in the measured conductance vs
as friction, wear, and adhesion. The experimental techniquea®traction distance is a profound step structure. This has been
have in the past few years progressed substantially towardseen using the STM type of experiment at liquid Helium
measuring the electrical and mechanical properties of metatemperature for AgRefs. 7,14, at room temperature for Cu,
lic nanoscale contacts. Two closely related experimental sePt, Ni (Ref. 8, and Au (Refs. 10,14,1f and in ultrahigh
ups have been used in these studies. In one setup a scannivgcuum at liquid nitrogen temperature for ARef. 14. It
tunneling microscope(STM) is used to study contact has also been reported for Au in atmospheric pressure and
formation/breaking between a tip and a sample metatoom temperatur®®®In Fig. 1 we show the conductance
surface>™'® The other techniqdé=2! is the so-called me- measured during the retraction of the STM tip. With the
chanically controllable break junctio@MCB) technique, MCB technique step structure in the conductance has been
where a thin metal wire is broken by piezocontrolled bendingobserved for a range of systems covering the metals Al, Cu,
and subsequently brought back into contact. Pt (Ref. 16 and Na(Ref. 18 at liquid helium temperatures,
Both the STM and the MCB studies give information as well as the semimetallic StRef. 17. Also room-
about the electrical conductance through the contacts. Itfemperature measuremefitsave been performed in vacuum
some recent STM experimeftsthe forces acting between on Cu and Au where a step structure was observed. Recently,
the electrodes have also been measured along with the costeps in the conductance during the breaking of a contact
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FIG. 2. A continuous conductance histogram based on 227 in-
ntations of a STM tip on a AL10 surface. Peaks at 1, 2, and
3 times the quantum unit of conductandB,& 2e?/h) are seen.
The results are taken from Ref.)10
have also been seen in a much simpler type of experiient:
;Vg?aﬁif Z?;s;fa?;dg]ri?gmaig?sggg 'govxltﬁu\’,vict:# ’ezghagfh er!s therefore not reproducible. The positions of the steps will,
and by tapping the table top the contact between the wires in general, also fluctuate. However, for a range of metals the
broken. The measured conductance between the wires shof€asured conductances have been seen to group around in-
a step structure during the last stages of contact, where onffg€r values time&,. This is most clearly seen if a histo-
one single nanocontact is likely to be present. Now techgram of measured conductances during pulloff of many con-
niques derived form this method are emergipin-plat¢’,  tacts (~100 or more is constructed. Peaks at 1, 2, and 3
relay?®). times G, or even higher have been seen in the case of Au
The origin of the conductance steps has been debatedRefs. 10,26,19,14 Pt(Refs. 30,26 and Cu(Refs. 26,19 at
vividly.2>2%0n the one hand it can easily be estimated thatoom temperature. In Fig. 2 we show the histogram based on
the size of the neck/wire structure in the last stages before 27 indentations on a Ai10) surface(see Ref. 10 for fur-
eventually breaks is at the very atomic scale with just a fewther detail$. For Na, peaks in the histogram have been seen
atoms in the contact area. In this regime quantum phenonat 1, 3, and less clear peaks at 5 and 6 tirGgsat low
ena can be expected at room temperature or even higher justmperaturé® These latter findings can be explained based
as the quantum size phenomena seen in the stability of smaih the degeneracy of the quantum modes if the neck in the
metal clusters? If the contacts posses reasonably well-case of Na is preferentially cylindrical.
defined quantum modes perpendicular to the direction of The appearance of integer multiples of the conductance
transport the conductance can be expected to change in stepsit G, strongly suggests the concept of well-defined quan-
of the quantum unit of conductanc&y,=2e?h (1/(12.9 tum modes in the contacts as a starting point. However, the
kQ)). This is in analogy to the experimehfswhere a abrupt atomic rearrangements definitely also play a role.
smooth constriction separating a two-dimensiqi2&)) elec- Combined force and conductance measurements during the
tron gas is varied in diameter and the conductance througtip pulloff shows that the drop in adhesive force is correlated
the system is quantized. Thus the origin of the steps could beith a drop in conductanc€. These observations are in
a true quantum size effect. guantitative agreement with the prediction in Ref. 10. The
On the other hand there are also indications that mechanpicture that emerges is one in which the quantized conduc-
cal instabilities of the atomic structure of the tip play antance at integer values @, is determined by the quantum
active role during the breaking of a contact. It is clear bothmodes but the jumpetweerthe different values are caused
from computer simulatio$~*>%and from recent STM ex- by the abrupt atomic rearrangements. However, there are
periments with force measuremetitshat the atomic neck also exceptions to this scenario. In a situation where the
which constitutes the contact undergoes abrupt structuralross sectional area of a contact is varied smoothly the quan-
changes during the breaking and the area of the cross sectitutim modes could still give rise to quantized conductance but
of the contact will therefore change in a stepwise manner. Ithe transition between the different steps could be expected
has therefore also been suggedtatiat the discontinuous to be less abrupt. A more smooth transition between steps is
change in contact area and atomic structure could be th&ometimes seen at a low temperature using the high stability
main underlying reason for the observed steps in the condud4CB setup, as shown in the first curve for Cu and the last
tance curves. curve for Na in Fig. 3. At higher temperatures and in air the
At the present time there is rather clear experimental evisteps for Au observed with STM are abrupt and accompanied
dence that for some systems the conductance just before thy large steps in the fordg.A special behavior is seen for
breaking of the contact is truly quantized. It is clear that inthe semimetallic antimonySb). With its low conduction
indentation/retraction experiments the detailed atomic strucelectron density, the Fermi wavelength is about an order of
ture will change from one indentation/retraction to anothermagnitude larger than for the other metals studied
and the behavior of the conductance vs stretch of the conta¢h =~ 110 bohj. During the pull of an Sb contact steps are

FIG. 1. The measured conductance of the contact between g\
STM tip and a Au surface during the tip retractidRef. 10. €
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S Sodium A. Simulations of contacts
o . Atomistic molecular dynamic$MD) simulations of the
1 dynamics of the contact breaking process has been carried
out for many different metals: Ni tip and Au surfate?b tip
on a Pb surface with or without a Ir layer and a Ni tip on a

Ag substraté? Ir tip and surfacé? Ni tip and surface€?® Cu
tip and surfacé® and also for Au nanowire®:?’ The forma-
tion of a “neck” (see Fig. 4 is seen in all the simulations
FIG. 3. Conductance curves obtained using the MCB techniqué&nd the evolution of the neck during the stretch of the contact
at helium temperature®Ref. 20. is quite similar for the contacts. The cross-sectional area de-
_— ) creases slowly, while the adhesive force is built up by elastic
observed’ which are a small fraction dB,. These steps can geformation. This goes on until a sudden restructuring of the
only result from atomic rearrangements in the contact. FOheck occurs. During the restructuring, the cross-sectional
bigger Sb contacts the conductance is not found to be quaryea changes along with a rapid drop in the adhesive force
tized possibly because these big contacts do not have &@syiting in a thinner and longer neck. In the simulations the
elongated shape, especially at cryogenic temperaffires.  starting point has been crystalline tip structures with well
In the present paper we report an exact calculation of th@iefined atomic layers. The restructuring in the first part of
electronic transport through idealized small contacts in thene siretch is accomplished by emission of dislocations while
presence of elastic scattering. We investigate the stability of, the later part the restructuring goes on via a highly disor-
the quantum conductance steps when the neck structure dgered stage where the layers in the vicinity of the narrowest
viates from an ideal one with well-defined quantum modespart of the contact cannot be distinguished. Landeiaal 2’
Especially, we will see how different scattering sourcesnaye simulated the process of elongation followed by com-
point scatterers located inside the neck and boundary COMMsyession of a nanowire and compared with experiments.
gation, will influence the conductance. We will use a jelli- They find that the process to a large extend is reversible for
umlike model which is known to describe metals like Na orhe considered size of wirdsonductances higher than about
the noble metals quite well, as has been seen in the case 96@0)- It has been pointed out by Bratkovsky, Sutton and
models for small metal cIustef’é.\_Ne find that a localized  Todoro® that the temperature critically influences the reor-
scatterer will smear and downshift the quantum steps Se|leering processes because these depend on the available ki-
tively depending on its location. In the case of boundarypetic energy to initiate atomic rearrangements.
corrugation steps can be substantially downshifted without A geyvere problem is that only a short time is available in
suffering from severe smearing depending on the lengthhe MD simulations 0.1 n9 compared to the typical ex-
scale of the corrugation. We find that the quantum mod&erimental time scale~1 ms. This means that the very
picture, in general, is quite stable and that the shifted congemperature sensitive diffusion processes cannot be included
ductance steps still can be assigned to a particular quantufj the MD simulations. In experiments on GRef. 19 the
mode. conductance quantization is only prominent at high tempera-

_The paper i_s organized as _follows. In Fhe fir§t section W&yres, whereas in the case of ARef. 14 no significant
will shortly review results obtained from simulations of neck dependence of temperature is seen.

structures to get an atomistic picture of the structures in-
volved. Then the concepts of mesoscopic transport theory are
introduced and in this framework the quantized conductance
is discussed. This is followed in Sec. Il by a short discussion In the simulations it is, in general, seen that the contacts
of models used for calculations of transmission through 3Chave their main variation in shape on a length scale of sev-
constrictions and an outline of the recursion method used foeral atomic interlayer distances due to elastic deformation,
the computations in this paper. In Sec. IV the results of thesee Fig. 4. The one-electron potential therefore has an enve-
computations are presented and discussed. lope with a curvature on this length scale superimposed by a

B. Conductance quantization
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entering the reservoirs are not influencing the reservoir popu-

& 5 5 & lations. The conductanc§, is then determined by the elas-
N 8 B N tic amplitudes,t;;, for transmission from the propagating
s ‘g’ E S incoming state in the first perfect lead to the propagating
g “.é :‘é g outgoing statg in the second lead at the Fermi energy,
H & 2¢?
G= T; Iti; (Ep)]2. D
The adiabatic principle is applied in the same sense as in
a molecule where the Schiinger equation separates into
one part for the electrons and one for the positions of the
- ions which only appear as parameters in the electronic part.
ZlE Fiee Here the fast transverse quantized motion acts as the elec-
g & motion trons while the slow variation of the contact shape acts as the

ions. In the adiabatic case the transverse modes will not mix,
and the corresponding quantum numbers will be conserved
all the way from the first perfect lead to the second. This
conductance channel will experience an effective potential
due to the energy tied up in the transverse motion along the
way, see Fig. 5.

As an example, we could consider a constriction with

%\& rotational symmetry around the axis in the direction of
R —— ropagatior(this will be z in the following) and with a hard-
— Nl propagatior( 9

Fii:

Energy

st R wall boundary at radiuf(z) in the xy direction. The wave

Position functions are expanddtbr eachz) in terms of the transverse
modes® A1, ),

FIG. 5. Upper: The setup where the Landauer formula for bal-
listic quantum transport applies. O.nly qustic; scattgring processes V(z,r,0)= z Cam(2)PmAT, @), 2)
are assumed to occur in the scattering redadhinelastic processes nm
take place in the reservojyao scattering takes place in the perfect
conductors and between the perfect conductors and the reservoirs. ®d2,0) = J (a _) eime 3)
Middle: In the case of slowly varying confining potential the adia- nmz % ¢ Jmr1(anm ™ "R(2) ’
batic principle applies. Lower: To each adiabatic transverse mode . . .
corresponds a potential barrier in the longitudinal direction due tovhereJm is themth Bessel function witnth roota,,. The
the energy taken up by the transverse motion. The finite number opchralinger equation expressed in this basis is
modes with a barrier less thé&} contributes each with the conduc- 52 52
tance quantum &€/h. ~ 5> +e,(2)—E

Cnm(z)y

smaller atomic corrugation from the surface atoms. On top of
this comes internal potential variations, especially in the case _
of internal disorder with large variations in interatomic bond +(n,2m,) Unmn'm (2)Cnrm(2)=0, 4
lengths, and locally big variations in the boundary corruga-
tion due to a single or a few atoms in unfavorable positionswhere
The starting point for the understanding of the conduc- 52 [ o
tance quantization in the atomic scale metal contacts is the snm(z):_( nm (5)
smooth potential with an envelope varying on the length 2m{R(2)
scale of several interlayer distances. With this as the startingigre depends ordR/dz and d2R/dZ2 and couples the
point the quantizedasconductance can be und.er.stood in termferent “channels’/modes with quantum numbers, ).
of the Landguer‘éﬁ‘ _fOFmP'ggf quantum ballistic transport | the adiabatic approximation this coupling is neglected and
combined with theadlabatlc?f ““principle. the electron transport takes place in each “channel” in par-
The Landauer formula is based on the ?‘Ssumﬁms allel. Each mode encounter an effective 1D potential barrier,
that the system can be viewed as a scattering region Wheto‘enm(z), which in the strict adiabatic case will be much
solely elastic scattering takes place, connected to two perfegf.q5qer than\¢ and therefore either completely reflect or

leads (no scattering which define incoming and outgoing yansmit, so the Landauer two-terminal formuia is in that
states. These are then connected to two electron reservoirs @lge simply

infinitesimally different chemical potentials. This setup is de-

picted in Fig. 5. The effect of the reservoirs is to fill the 2e?

states in the perfect leads to the chemical potential of the G= TE Toam(Er), (6)
reservoir, according to the Fermi-Dirac distribution. It is as- (nm)

sumed that electrons entering the reservoirs from the perfegthereT,,, is the corresponding transmission probabiliy-
leads are not reflected at the joining, and that the electronther O or 1). This is the origin of the quantum step structure,

2
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because as the height of the effective bar(tiee width of the  #k,. However, the shapes of the necks will, in general, be
constriction) is reduced, channels will close, changing theelongated, which is known to improve the conductance quan-
conductance by the quantum unit times the degeneracy of thtezation. Many numerical investigations has been carried out.
closing channel. We have taken the limit of vanishing tem-Torres and SanZ"“have modeled the elongated structures
perature since the energy scales involved in the transmissidoy stacking cylindrical layers with a thickness of the atomic
(differences between transverse modes eV) are much interlayer spacing and varying radii. The electrons were con-
larger tharkT in the 3D metal contact experiments. fined in these by a hard-wall potential. The transmissions
The general criteriof?*® for adiabatic transport is were calculated using a generalized scattering-matrix tech-
dR/dz<1/N,(z), N,(2) being the local number of available nique to match the modes between layers. Kasai*® have
transverse modes above the barrier. Real potentials will, imodeled the 3D constriction using a tight-binding model
general, display nonadiabaticity: The width usually growsvarying the on-site energies.
faster towards the end of the constriction potential, while the In a number of studies atomic structures obtained with
local number of transverse modes is growing. However, thenolecular dynamics simulations have formed the basis for
adiabatic condition does not have to be satisfied globallysimple conductance calculatioffs®>'°The conductance cal-
Yacoby and Imry have shovhthat the reflections due to a culations have then been carried out in either free-electron-
sudden opening is highly suppressed if there is a small adidike models with a hard-wall constrictiéh*°or using a tight-
batic widening preceding it. The local reflection amplitudesbinding approximatior®3>We would like here to point out
scale with(1/N,(z))dR/dz explaining the strongly reduced an important difference between the free-electron-like mod-
backscattering whe, grows towards the opening of the els and the tight-binding model if — as is often the case —
constriction. They have also shown that the corrections to the very limited basis set is used in the tight-binding descrip-
adiabatic picture is of the same order as the scattering by tH#n. The systems we have in mind in this context are, for
1D effective potential, i.e., the tunneling and reflection aboveexample, alkali metals or noble metals where a free-electron-
the barrier. This was used in Ref. 10 to estimate the scattetike model is known to describe the states at the Fermi level
ing from the boundary neglecting interchannel scattering. [of the bulk metals reasonably well. The difference between
has been shown in the 2D case by Magteal* that the the free-electron model and the tight-binding model can be
neglect of the coupling terms between channelgleresti- seen already by considering the local density of states in a

matesthe degree of quantization. region of atomic size. In the case of the free-electron gas the
density of states is increasing with energy with a square root
Il. CONDUCTANCE CALCULATIONS dependence but for a tight-binding model with, say, a single

_ . . _ s state per atom, the density of states will have a high value
‘We shall first briefly review some earlier works on trans-around the energy of the orbital and then decrease at higher
mission through restricted geometries in 3D. Then the comenergies. The free electron gas can of course be well de-

putational method used in this paper is introduced. scribed in a given energy window using an atomic tight-
binding basis, but the energy overlap and the hybridization
A. Constriction models and transmission between different bands(p, d . ..) will generally be con-

Exact analytical expressions for the 3D transmission hagiderable and several bands will be necessary to describe the
been obtained for simplified geometries. Bogacletlal*2 states near the Fermi Iev_el In an appropriate way. This point
discussed the case of a hard-wall cone-type rotational Syma_lso carries over to the situation of transmission through an

metric modelpotential. Extending a hyperbolic hard-wal &tomic size neck. If we for simplicity consider transmission
constriction used by Yosefin and Kaafin 2D to the cor- through a single atom and only include one state on this atom

responding 3D case with cylindrical symmetry Torres Ve obtain a resonant tunneling description: The transmission
et al** calculated exactly the transmission as a function otW'” go through a maximum value near the pOS'“Or? of the
width for different opening angles. They show how the con-Stat€.ea (properly renor_mahzed by the leadsnd at hlgher
ductance steps get more smeared when the opening angle‘%@ergl'qesf tge transmission falls off. The conductandeee,
made larger, approaching the semiclassical limit, €.9., Ref. 50

KA keP 4A AR
=G| = FL G=G : 8
G- Go( yyey e b () O(Ep—ea)’+(AL+AR)? ®

This is the Sharvifr formula for ballistic transport with a where the width of the transmission peak is determined by
perimeter @) correction. For a square hard-wall confining the strength of the coupling between the atom and the leads
potential with the transverse modes sipg/ (L andR) expressed in terms of the coupling weighted den-
L)sin(nyy=/L,), this correction subtracts the modes wheresity of state3! of the leads(assumed to be independent of
ny or ny are zero. Scherbakoat al*® have investigated the energywide band limi}. This is a description appropriate for
guantum step structure in a free electronlike model in the situation with weak coupling to the leads. However, if this
presence of a magnetic field. They describe the neck poteroupling is sufficiently strong, so that the width of the trans-
tial by a harmonic saddle point «(—k,z2+ kx>+ mission peak is comparable to the energy difference between
kyyz),forwhich the transmission is exactly known as a func-atomic states, the true transmission will not decrease at
tion of Ex, which is the quantity varied in the paper. In this higher energies but increase until saturation is reached.
model the degeneracy of the quantized steps due to the de- In this one-state case the maximum & glis reached for
generacy of transverse modes may be lifted by chookjng Er=&, andA =Ag. In the case of more sites connecting
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the_ elect_rodes ar)d when only hopping can occur bgtween |EJ_+GL_|2<(2mEcut/ﬁ2)v (10)
neighboring atomic layers, the conductance will be limited to
the minimum number of sites/states in a cross section of thend the numerical calculations will then have to be con-
neck timesG,. This indicates that the scattering of a propa-verged with respect to the cutoff enerdyj;.
gating wave in the tight-binding model is much more severe The next step is to calculate the transmission through one
than in the free-electron model due to the limited basis setunit cell which, for a sufficiently big unit cell, will converge
The sensitivity of the hopping matrix elements on the inter-to the transmission in the non-periodic potential. This is done
atomic distances will be reflected in the conductance, beby a real-space discretization along thdirection. Defining
cause inhomogeneities in the hopping will increase scatterinthe coefficient matrixy',
and give deviations from the quantized values. This can be
seen crudely in the one-state case where different bond (Y (2))ij=¢ij(2), 11
lengths to the two electrodes will maldg different from e Schidinger equation can be written in matrix form as
Agr and the maximum conductance less tizn

The weakness of the simple free-electron-like models is B2 52
that scattering due to internal and boundary disorder is not “om a2y (D +V(2)¥(2)=EY(2), (12
taken into account. These features are naturally accounted
for in the tight-binding models without further complica- with scattering boundary conditions,
tions, whereas a larger numerical effort is required for the L _ _
free-electron models. We will use here a model potential ti,-e"‘zz; Z In exit
with free-electron electrodes as our starting point and include
the scattering effects in the neck structure using an exact
numerical computational scheme.

(Y (2);= 5ijeikizz+rije—ikaz; 7 in entrance (19

The matrixV contains the 2D Fourier transform of the

B. Computational method potential and the kinetic energy in tlxg plane,

Now we shall discuss the numerical method which we 2

_s VR LRi2
have used to calculate the transmission in our jellium like V(2));= 5 2m|ki+Gi|
model where scattering from the individual atomic pseudo-
potentials are neglected. We have employed the recursion- 1 - i(G—Gy.r, 4z
transfer-matrix method of Hirose and TsukadaThis * Auc U_C_V(ri Z)etEL TR dr, (1)

method is an extension of the 1D continued frac- ) ) o

tion/recursion method of Lambin and Vignefdfi*to the 3D~ WhereA, ¢ is thexy area of the unit cell. The Schimger

multichannel case. equation is discretized using the Numerov method which is
For a numerical calculation of the stationary solutions tocorrect to 4. order in the grid division, h;:

Schralingers equation with scattering boundary conditions _

and getting the transmission, we will have to discretize the A(2p) ¥ (Zp+1) ~0(2Zp) ¥ (2p) +¢(2p) ¥ (Zp-1) = O,

problem. This is done in two steps. The first step is to replace (19

the single neck-structure along tkelirection by a periodi- where

cally repeated unit cell in th&y direction each containing )

the neck structure. This allow us to use Bloch’s theorem and _ 1 2mhy

the xy part of the problem can be written in terms of the a(zp)=1= 577 V(1) —LE]L (16)

discrete reciprocal lattice vectoré[) corresponding to the

translational symmetry in thgy plane. Theith stationary 5 2mh§

scattering state can then be written as b(zp) =21+ ¢ —=[V(z)~LE], 17
c(zp)=a(zy o). (18

hi(zr ) =X Y ¢y (2)eC T, ©)
] The trick in the recursion methdtiis to consider the ratio
corresponding to the logarithmic derivative of the wave

wherek, is the conserved Block vector in thexy Brillouin ~ function, i.e., the phase,
zone. Since it is conserved we will take it to be implicit in

N " S(2p) =¥ (2, )W (2,) % (19
the rest. TheG) in this basis define the conductance “chan- ) s -
nels.” However, the plane-wave basis set is very far from theThe reason is tha$ is known on the exit side due to the

adiabatic basis set in the sense that the diffe@nthannels boundary conditiong13), since the unknowi;; cancels out
will mix strongly inside the neck structure. The advantage igh S there (while ri; will not cancel out in the entrange
that they will be decoupled in the free-electron electrodes]aking the potential in the free-electron electrodes to be
Now, we have obtained discrete channels, however, we stifi€"0, We have the solution to E(L5) in the electrodes,

have an infinite number of them and we will have to truncate S—K (20)

the G, set. This is done by including only the set Gf = =

within the energy cutoff sphere: where
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(K)ij=8;(%i+iN1=%)),

(21)
with

1+ & h[|K, + Gl |2~ (2mE/A?)]
11— Shlk, + G2 (2mERD)]

i (22

K is just the discretization of the phase,
5__eihZ\/(sz/hZ)—MZﬁéUZ
ij .

From Eq.(15) a one point recursion relation f@& is ob-
tained,

(23

§(Zp71):[9(2p)—§(Zp)§(2p)]719(2p)- (24)

2643
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The recursion can then be started in the exit electrode and

yield S in the entrance,

S(z-1)=V(z)¥(z-1) " (29

Using the boundary condition for the entrarjésy. (13)] ¥
can be written here as

V(2,)=KP+K L (26)

FIG. 6. Conductance curves for circular shaped envelopes with
different radii of curvature R). The cross section is chosen to be
circular. In the inset the Gy— 3G, step(solid) is plotted together
with the approximate expressigdashed

in the z direction of 1 bohr. The conductance curves are
converged for a plane-wave cutoff of 20.5 eV corresponding
to 408 channels.

From the last two equations, the unknown reflection ampli-

tude matrix can be eliminated, and we can obtain the coeffi-

cient matrix in the entrance,

V(z0)=8(z-)[KS(z-) 11 K=K '], (2D

and from this the transmission amplitude mattixcan be
calculated:

p=N
t=V(zy)= p[[o S(z,) ¥ (20).

-

(28)

A. Smooth 3D contacts

We have here chosen to consider the simplest possible
shapes even though the method is capable of treating general
shapes. The reason for this is that we want to focus primarily
on the effects originating from the scattering which is not
intrinsic to the smooth envelope. Also for simplicity we shall
not take into account the change of shape of the neck during
the elongation but just consider the width of the neck as the
only variable.

We define our neck shapes in the following way:

The transmission amplitude matrix that we have obtained

gives us the amplitude for entering in “channdli.e., in a
plane wave with a transverse wave vecfeij (+I2l), and

exiting in “channel” j in a plane wave with a transverse

WavevectOIGjL (+I2l). To get the flux-normalizet}; enter-

ing the Landauer formula, we will have to multiply our ob-

tainedt;; by kl/k;.

The recursion calculation of the transmission must be per-
formed for a sufficiently large set cb?fL vectors and the av-

erage of conductances must be taken in xiyeBrillouin
zone. For a sufficiently largey-unit cell it will be sufficient

For r>R+gW/2:0(R+2)0(R—2)

V(r,z)=V, otherwise
0{R—VZ2+[r+(R+g-W/2)]%}
(29)
where
r=gvV(x/a)’+(ay)?. (30)

For g=1, R is the radius of curvature of the circular neck
envelope in thez plane andV is the “width” of the neck at

to use onlyk, =0. In the numerical calculations the comput- the thinnest po!nt. We can deform this she_lpe from circular
ing time is mainly spend on 2D Fourier transforms and ma{9=1) to elliptical (9>1). The cross section can be de-
trix inversions which can be performed efficiently by stan-formed from a circle ¢=1) to an ellipse with axis lengths

dard computer library routines.

IV. RESULTS

r«=aW andr,=W/a. Instead of step functionsv] we use
Fermi functions with a width of 0.5 bohr.

In Fig. 6 we show the conductance curves resulting from
necks with circular cross sectiona€ 1) and circular enve-

In this section we present the results of our calculationdopes @=1). The curves correspond to four different radii
using the recursion method. We consider electrons wittof curvature of the envelop®. It is seen how the smearing
Er=5.5 eV and a soft-wall confining potential of height of the steps gets stronger with decreasigThis is illus-
2XEg, as a simplified version of a Au-jellium model. In all trated in Fig. 7, where we plot the contours in tkeplane

calculations we have used a unit cell of 60 bohr in xhand

(cut through the middle of the neck in the direction of the

y directions. Thexy grid used in the numerical Fourier trans- curren} of thez component of the current density,. In the
forms have 6& 60 points and we use a recursion step lengtHeft panel we see the current pattern ®#5 bohr (uppe)
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FIG. 8. The conductance curves for different elliptical shapes
(insed denoted byy. HereR= 15 bohr and the cross section is taken
to havea=0.75 eccentricity. Now stegS=2 Gy andG=4 G, are
seen, buG=3 G, has disappeared. In the case of a cylindrical hole
connecting the electrodeg € o) a resonance structure is seen. The
curves have been shifted (0,1,2,3 bohorizontally for clarity.

-1s|gEziasdd
R

LN

7/
(i

-15 -10 -5 0

B

FIG. 7. Top panel: Contours of current densityzrdirection, merical exact result for the 413G, double step using
j d the directi f t f highl d tricti _ ; ; ;
oo 0§ e and 3 b n™ Py~ s seen that the simple oria desries the sca-
' - gnb. ing of the step withR reasonably well.
contours values are multiplied by 0.5 compared to right. The corre- Now we change the neck shape from a circutge(L) to
zgggg:zﬁngoggéﬁagf ?SS Sirswﬁ/aggsi':f g(’)r:teosfreﬁz;:?{autf an elliptical enveloped>1). The conductance curves are
. |.displayed in Fig. 8. We keep fixed at 15 bohr, i.e., the

Er+0.25E¢). Note the peak structure inside the neck. Lower panel: - . .
The contours for a less curved constrictions wit-15 bohr, 1ength of the neck is fixed atR= 30 bohr. In this calculation

sphericalg=1 (left) and ellipticalg=2 (right) shapes. The conduc- W€ have chosen the cross section to be elliptical with
tance is in both cases 1. a=0.75. This splits the degenerate modes corresponding to
the G=3G, andG=5G, steps and steps aiG) and 4G,
andR=15 Bohr(lower) for a width corresponding to a con- appears insteadve will return to this point latér An in-
ductance of G,. The more symmetric pattern in the latter crease in the quality of the quantization is clearly seen when
case indicates less backscattering. In the upper right panel e flatness g) of the neck side is increased. In the lower
show the pattern foR=5 and a width corresponding to a Panel of Fig. 7 we compare the current pattern of the circular
conductance of 2@,. Here two maxima in the current den- (left) with the g=2 elliptical (right) shaped envelope. The
sity are seen inside the constriction. In the 2D calculationgnore flatg=2 gives a more focused current which is quite
with flat constriction sides it has been pointedduhat an ~ Symmetric in exit and entrance, while tige=1 spreads the
accurate quantization persist even for constrictions witteurrent and backscatters more into the entrance giving rise to
lengths much shorter than the width. the asymmetry. Within the adiabatic mode picture the more
Let us consider the step shape of the opening of a singlgharp transition between steps pr2 compared tg=1 is
conductance step corresponding to a conductanc&ef understood in terms of less tunneling through and reflection
NG, and with degeneracpge, as a function of the neck above the effective barrier for the modes in e 2 case. In

width (W). If we approximate this by a Fermi function, the case ofy=2, corresponding to a cylindric hole with no
gradual opening, resonance structure is seen in the conduc-

tance curve. This is due to backscattering at the exit and

5G(W)%G0ndegm' (B)  entrance of the structure also seen in the 2D
calculationg®=°"* In the 3D case the flat sides with no

K2W2 koW gradual opening is quite unrealistic as seen from molecular

v =( 6 T) —N, (320  dynamics simulations. Next we will turn to the effects of a

single scatterer located inside an otherwise smooth constric-
the smearing of the steps is within the adiabatic picture aption.
proximately given b}’

1 (7TW2/4)0'751<,: B. Scattering center inside a smooth 3D contact
A~ 272 2Ry (33 Localized scattering centers inside confined structures

have been studied theoretically for the 2D systems. A
HereR. is the effective local curvature at the thinnest point. 5-function scatterer has been included in a constriction
In the inset of Fig. 6 this formula is compared with the nu-geometry® in a tight-binding calculation. Tekman and
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covers quite fast, when moving the scatterer towards the
neck opening. When the scatterer is placed close to the
Scatterer in the middle J middle of the neck the electrons will have to tunnel and this
/4 gives an exponential dependence of the transmission on the
width (z=0 bohp. Moving the scatterer towards the channel
exit this goes into a more linear regime=<5 bohp and
eventually a step less tharnd, appearsZ=7.5 bohj which
is followed by a slow increase toward<zh. We note that a
resonance appears fae= 10 for step 1 and is less clear for
step 6. This is presumably due to the reflections of the wave
between the scatterer and the middle of the neck. We obtain

\‘
=}

o
=)

= No

S £ 1]
——1z=5
---z=75
— - z=10
—— z=15

bl
o

w
=)

Conductance (2e2/h)
F-N
o

n
o

10 the same results when the scatterer is placed symmetrically
7 in the entrance4d— —z) due to the symmetric neck potential
70 / (the total transmission is always independent of the side of
’ Scatterer on side J/ incidence.
< 6.0 e The reason for the different influence of the scatterer on
@ 50 the different steps can be understood in a perturbation picture
‘8" using the adiabatic states as a starting point. The change in
€ 40 conductance due to the extra backscattering can be estimated
g 3.0 using the first Born approximation. Born approximafion
g (and neglecting contributions from evanescent modes and the
O 20

z variation of the adiabatic wave functions within the range
of the scattering potentialy),

2¢? m\? 1
10.0 15.0 20.0 5G=_ = il
Width (Bohr) h % (FZ) koK,

fw dzé("n*"'”foc dxfoo dy

2
: (35)

FIG. 9. Upper panel: The scatterer located in the middle of the X
neck (R=15 bohr,g=2) and moved along the axis towards the
exit (entrancg It is seen that step 1 and step 6 are most affected.
Lower panel: The scatterer located on the neck side. The step struc- XD |(x,Y)Vs(X,Y,2) D (X,Y)
ture is maintained but smeared. The effect is reduced fast when

moving the scatterer towards the eféhtrancgdue to the curvature  \herek,(z) ={2m[Er—¢,(2)]1}¥%% is the wave vector for

of the neck. the nth adiabatic mode. Here it is clear that for thah
guantum conductance step, the dominant contributions to
6G comes from the modes with the smallksi.e., from the
backscattering within thenth adiabatic channel. These are
%imply the modes with the least energy left for propagation.

CiracP’ also considered a scatteret function inz and finite
extension in the transverse directjom a 2D constriction
geometry. Scatterers in infinite wires have been dealt with b
BagwelP® who stresses the importance of the evanescenty i< an adiabatic mode with a node whatehas its main
(tunneling modes E,,>Eg) in the confined scattering prob-

| R ly Larig h lculated th q h hweight will suffer less scattering. If we assume that the
em. Recently Lang has calculated the conductance through,,qes inside the neck resembles the modes in a hard-wall

three Al atoms in a line connected to jellium electrodes ”S'”Q:ylinder(see inset in Fig. 10 we see that the first and the
a self-consistent scheme. Substituting one of the Al atom b%ixth modes do not have a node in the middle like the other

a electro-negative sulfur atoms increases the resistance. modes which have quantum numbee:0. It is also seen

In these caIcuIaans We assume the following SImplethat modes 5 and 6 lie close in energy which explains why
form for the change in the effective one-electron potentlalStep 5 is smeared, because as 5 opens 6 will already begin to

due to the presence of a scatterer locater,at contribute to the conductance by tunneling.
. . To substantiate this point a little further, we have fixed the
Vy(r)=Sexp(—|r —ro|?/d?). (34 width of the neck at a given quantum step, 1, 3, or 6, and

We will refer to S as the strength and as the decay length calculated the de\_/iation from the step as_the scatterer is
of the scatterer. moved from the middle of the neck to the si@dong thex

We choose a smooth elliptical constriction with shapeaXis)' This is shown in Fig. 10. It is seen that the dev_iation as
g=2, R=15, and circulary-cross section. The scattering a function of scatterer dlsplacemeqt towards the su;ie of the
potential is taken to be rather strongly repulsive with strengt€cK follows the structure of the cylinder wave functions for
S=2E, and a decay length af=2 bohr. In the upper panel modes 1, 3, anq Bsee |ns.e)t If we now for simplicity as-
of Fig. 9 conductance curves are shown for the scatterefuMe ad scattering potential,
placed in the middle of the neck at differenpositions. It is _ _
seen that, as expected, the effect is largest for the scatterer Vs(x.y.2) = Sdo(x—Xo) 5(y) 5(2), (36)
placed atz=0. It is also seen that step 1 and step 6 areand use the hard-wall potential wave functions in E3§),
almost completely “closed” in contrast to step 3, which re- we obtain
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Deviation from step (2e%/h)
) o
N N

8G in Born Approximation

Scatterer position in units of W/2

FIG. 10. The deviation from the integer quantum number is
shown as a function of position of scatterer when this is moved
from the middle to the side of the neck. This is shown for fixed

widths corresponding to ste=1Gy, G=3G,, and G=6 Gy,

respectively. Below, result for deviation from integer quantum steps _is

-10

from Born approximation result using hard-wall cylinder wave
functions[inset: Bessel functiond,,(amf/R), R is cylinder radius
and a,, the nth root of J,,) as unperturbed transverse adiabatic

states.

2e? (2md® \?(/d\?
. i

%2 R

nm 2mR2 ) JIm+1(anm)
72 Er—anm

(37

This expression is plotted in Fig. 10 as a functionxgffor
widths (=2R) corresponding to steps 1, 3, and 6.

FIG. 11. The contours of the current density in thdirection,
j,, for widths of 8 (left) and 12 bohiright). In the upper panel no
scatterer is present, in the middle the scatterer is located in the
middle, while the scatterer is located on the side in the lower panel.
The corresponding conductances areGh,00.3G,, 0.7G, for the
width of 8 bohr and 3.Gq, 2.7G,, 2.5G, for the width of 12 bohr.
The values on the contours are the same except for the middle left
where they are scaled by 0.5.

We have calculated thg contours and the electron den-
sity contours in thexz plane for the incoming scattering
states aEp, with and without scatterer, for widths of 8 and
12 Bohr corresponding to step 1 and 3, respectively. These
are presented in Figs. 11 and 12. The node structure with one
central peak in the case &= 1G, and two separated peaks
for G=3Gy is clearly reflected in both figures. It is seen that

Now, consider the situation where the scatterer is locatethe node structure persists in both cases of scatterer position.
close to the side of the neck, see lower panel in Fig. 9. In thighis must mean that the intrachannel scattering plays a
case the step structure is maintained somewhat more cordominant role, since otherwise the structure would be
pared to the situation with the scatterer in the middle of thesmeared. The interference pattern between incoming and re-
neck. We see that the steps gets smeared which can [flected waves in the entrance is seen in the density figure
thought of as a decreased effective radius of neck curvaturayhile the diffraction effect is seen in the current density fig-
Re;. The effect reduces quickly as the scatterer is movedire in the case where the scatterer is located on the neck side.

towards the exitentrancg due to the curvature of the neck.

In Fig. 13 we present the conductance curves for the same

This confirms what could be expected, namely, that it isneck just with an elliptical cross section wita=0.75 in-
mainly disorder close to the middle of the neck which mat-stead of a circular one. This eccentricity splits the degen-
ters due to the suppression of the wave function near theracy in angular quantum numben€ *=1) of the second

boundary.

mode corresponding to stefs3 and the mode correspond-
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No scatterer

-—--2z=75

L | —- z=10
5.0 715 /
. /'""'

Conductance (2e /h)

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 5.0 10.0 15.0 20.0
Width (Bohr)
FIG. 12. The contours of the electron density for the incoming
scattering state & for the same situation as in the previous fig- L - -
ure. Thegnode stru';:ture inside the neck and the inter?erence pa%tern FIG. 13.' Same situation as n Fig. 9, but now for a elliptical
between the incoming and reflected waves in the entrance is cleargfOSS sect|om(=0_.75). Step 3 ci_ls_appears and steps 2 and .4 ap-
seen. The persistence of the nodes when the scatterer is introduc gars corresponding to the splitting of the degenerate adiabatic

reflects that intrachannel scattering must play the dominant role. transyerse state; wnh;l andm.iZ.. .In the upper panel the scat-
terer is located in the middle while it is on the side in the two lower

panels(insets show the neck cross-section contpurs
ing to step %5, (m=*=2). The disappearance of ste@gis

due to almost degeneracy of two modes. This can be undef¥,) and on the long axisr(), respectively. Then step 4 will
stood if we take the potential to be harmonic. Then the enhave larger overlap with the scattering potential giving a
ergy level grouping is determined by larger matrix element.
Placing the scatterer on the lorgaxis (middle panel we
see that step 1 survives but is smeared like in the circular
€n,n, S @Mt Ny /a. (38 case. Step 2 is destroyed for0 in this case, but not for the

scatterer on the shoyt axis (lower pane). Here step 1 be-
For «=0.75 this factor yield energies 0., 0.75, 1.33, haves much like the case vyhere the scatterer'is. in the midd.le.
1.5, 2.08, 2.25, 2.67 giving a step sequence for the firs§tep_4 |s_strongly affected in both cases, but itis seen that its
steps of 1, 1, 2, 2 if we group levels close in energy tooPening is more delayed when the scatterer is placed on the

; ; hort y axis (lower panel compared to the long axis
t for the st . For1.0 th ke ;
2?}2?;25 (;rreg Sip Sin eazrmgz Eﬁ; g gﬁ/iﬁ%rfss?gg(yggen(-m'ddle panégl. This we can understand from the node-
eracy Sequence’ of 1 2 3 Trylese, deéeneracies fit well with tchture mentioned before. So in the case of high eccentricity
findings in Fig. 6 anéi F|g 13 a scatterer located on the side will selectively affect the steps

: . . in contrast to the low eccentricity case. We will now turn to
th eV\g:gS Sthze Zﬁzttjr%rl 5 I(t)hc : tfgl E;n Otfh itg]pl)dgkﬁ)rl? etLgaQ aE)S| e o§he effect of a corrugated neck potential on the transmission.
circular (g=1) cross section and are less affected compared
to step 1. Step 2 is less affected compared to 4 which we can
understand if we think of the transverse modes correspond- The effect of boundary roughness has recently been ad-
ing to 2G, and 4G, having a line of nodes on the short axis dressed by Bratkovsky and Rashk€efor the 3D (circular

C. Corrugated 3D contacts
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// FIG. 15. The electron densityuppe)y and current density
1.0 - (lower) for the incoming states &g in the case of a boundary
- corrugation with amplitudeA,=2 bohr and wavelengti\.=7
5.0 10.0 15.0 20.0

bohr. The conductance is @§ for a width of 8 bohr(left) and
2.455, for a width of 12 bohr(right) corresponding to a node

structure with no node and one node, respectively.
FIG. 14. The conductance curves for corrugated boundary. The

upper curvedshifted by +2 G,) correspond to a corrugation am- . . .
plitude A.= 2 bohr, while the lower correspond £g.=1 bohr. The Introducing a scatterer in the middlewer p(’?lne]_we see
corrugation leads to a downshift of the steps for smallwhich ~ the same effect as in the case of no corrugation just with the
decreases with. (\.=6, 7 bohy. For largen, (\.=8.5, 10 bohy ~ Ne€W step positions as the starting point. Thus the two scat-
the steps are smeared corresponding to a smaleof the neck.  tering mechanisms seem to superimpose. When the corruga-
Introducing a scatterer in the midd{lower panel gives a “super-
position” of the corrugation effect and the effect of the localized 1 |
scatterer seen previously. n Boundary corrugation

Width (Bohr)

cross sectioncase within the free-electron model in a per-
turbation framework. They include a random noise in the
position of the hard-wall neck boundary to simulate the
roughness. They conclude that the effect of boundary rough-
ness results in either backscattering destroying conductance
guantization or resonant transmission at the opening of new

channels. Tekman and Ciratipreviously have addressed H’T
the same problem in the 2D case. The tight-binding models
have been widely used to study boundary as well as internal
disorder in 2D°®3Here the disorder is modeled by random-
izing the on-site energies keeping the nearest neighbor hop-
ping matrix elements constant.

Here we study the effect of boundary corrugation on the
conductance curves by modulating the boundary with a term
(A/2)sin(2mz/Ny). In Fig. 14 upper panel we show conduc-
tance curves for a corrugated spherically shapBe- 15
bohn neck with a circular cross section. The conductance {
curves for\. equal to 6, 7, 8.5, and 10 bohr and for two ]

Boundary corrugation + scatterer

Mrerrrrretec LT

) . X 0 1 2 3 4 5 6
different amplitudesA.= 1.0 bohr andA.= 2.0 bohr(shifted Conductance (26%h)
by +2Gg) are shown. In the case of a short corrugation
wavelength A\ <7.0 bohr (compared toAg=10 bohy a FIG. 16. Upper: The histogram obtained from sampling the con-

downshift of all the steps is seen, and a downshift decreasefictance during a variation of the width for the strongly corrugated
with decreasing\.. In the case of strong corrugation neck (A.=2,\.=7 boh). Lower: The same situation as the upper
(A.=2 bohp a resonance starts to build up. histogram but now including the scatterer in the middle.
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tion wavelength is increased furthex &7 bohr in upper shall not go into a discussion of this here. However, we do
pane) the steps are smeared corresponding to a smallewant to point out that the impurity and boundary scattering
Res- In contrast to the effect of the localized scatterer, whichdiscussed above may lead to shifted peaks in a conductance
could smear/close single steps selectively, the scatteringistogram. To illustrate this, we show in the upper panel of
from boundary corrugation downshift all the steps. Fig. 16 the conductance histogram obtained from a strongly
It is remarkable to observe that the step structure remaingorrugated neckN.=7.0 bohr,A.=2 bohj. In the lower

and that the steps are even sharper in the case with highanel we show the histogram for the scatterer positioned in
boundary corrugation and scatterer than in the case with onlfhe middle of this neck. Since we only sample over the neck
the scatterer. Thus we can have a step structure shifted awgydth, W, the histogram is simply inversely proportional to
from integer positions in a model where the width is varyinggG/dw. The histograms clearly exhibit peaks which are
continuously, and these steps can still be associated with thehifted away from the integer positions due to the scattering.
quantum modes in the neck structure. In Fig. 15 we show thejowever, as the analysis above shows the peaked structure is

contour plots of the electron densitypper panglandz  still due to the well-defined quantum modes perpendicular to
current densitylower panel for the case of boundary corru- the direction of the current.

gation. We can again conclude that the node structure per-
sists and correlates with the number of conductance chan-
nels, even though the conductances are downshifted from the
integer positions, see Fig. 15. One can gain further insights
of the nature of the modes and the behavior of the conduc- Stimulating discussions with Flemming Besenbacher,
tance by investigation of the eigenvalves and eigenvectors dim Hansen, Erik Laegsgaard, Horia Metiu, Lars Olesen,
t't andtt’. Ivan Stensgaard, and Mads R/r8esen are gratefully ac-
The quantized conductance is most clearly revealed exknowledged. Martijn Krans is acknowledged for kindly
perimentally by considering conductance histograms fronsending us Fig. 3 taken from his thedief. 20. The Center
big ensembles of contacts. This is necessary because of tha Atomic-scale Materials Physics is sponsored by the Dan-
poor reproducibility of the neck structure as discussed earish National Research Foundation. Further funding is ob-
lier. The detailed shapes of the histograms can depend dained from the Danish Research Councils through the Cen-
several factors including overall neck shape, impurity orter for Nano-Tribology and from National Science
boundary scattering, and also mechanical instabilities but weoundation Grant Nos. DMR-9419506 and 9501775.
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