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Scattering and conductance quantization in three-dimensional metal nanocontacts
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The transmission through three-dimenstional nanocontacts is calculated in the presence of localized scatter-
ing centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are
used to investigate how robust the observation of quantized conductance is with respect to the scattering. We
find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and
downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will still be
at integer positions. The effect of scattering by surface corrugation depends on the length scale of the corru-
gation. In some cases a significant downshift of the steps without accompanying smearing is observed. In
general, we find that even in the cases where scattering shifts the quantum steps the quantization of the motion
perpendicular to the contacts remains intact. Non-integer steps can therefore also be a signature of quantized
conductance.@S0163-1829~97!05804-9#
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I. INTRODUCTION

The electrical and mechanical properties of nanostructu
have been studied intensely over the past decade due t
possibility of new quantum properties appearing at the sm
scale. One class of nanostructures consists of the nano
tacts or quantum point contacts in which the transport
tween two leads or reservoirs are controlled at the nanosc
These have been synthesized by lithographic technique
semiconductor structures, e.g., GaAs-AlxGa12xAs, where
electrons are confined to move in two dimensions.1,2 In three
dimensions atomic scale metal contacts connecting two m
als have been investigated. Apart from the fundamental
terest in new quantum effects the understanding of th
atomic sized contacts between two materials underlies
understanding of the macroscopic contact phenomena
as friction, wear, and adhesion. The experimental techniq
have in the past few years progressed substantially tow
measuring the electrical and mechanical properties of me
lic nanoscale contacts. Two closely related experimental
ups have been used in these studies. In one setup a sca
tunneling microscope~STM! is used to study contac
formation/breaking between a tip and a sample me
surface.3–15 The other technique16–21 is the so-called me-
chanically controllable break junction~MCB! technique,
where a thin metal wire is broken by piezocontrolled bend
and subsequently brought back into contact.

Both the STM and the MCB studies give informatio
about the electrical conductance through the contacts
some recent STM experiments12,13 the forces acting betwee
the electrodes have also been measured along with the
550163-1829/97/55~4!/2637~14!/$10.00
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ductance. In a typical experiment the contact formation
initiated by a rapid increase in the conductance seen in b
STM ~Refs. 3,4,6,22,23! and MCB ~Refs. 16,20! experi-
ments. This increase can be caused by a mechanical inst
ity ~‘‘jump to contact’’!24 or at higher temperatures by
cascade of diffusion processes~‘‘diffusion to contact’’!.25 As
the contact is established the electron transport goes from
tunneling regime to the so-called ballistic regime, where
conductance is determined by the elastic quantum trans
sion properties of the contact. The initial rapid contact fo
mation may be followed by a further increase in the cont
area because of diffusion processes or because of conti
indentation. By reversing the motion of the electrodes
contact can be pulled apart in a process where the con
gets thinner and more elongated.

The most striking feature in the measured conductanc
retraction distance is a profound step structure. This has b
seen using the STM type of experiment at liquid Heliu
temperature for Au~Refs. 7,14!, at room temperature for Cu
Pt, Ni ~Ref. 8!, and Au ~Refs. 10,14,15!, and in ultrahigh
vacuum at liquid nitrogen temperature for Au~Ref. 14!. It
has also been reported for Au in atmospheric pressure
room temperature.6,9,13 In Fig. 1 we show the conductanc
measured during the retraction of the STM tip. With t
MCB technique step structure in the conductance has b
observed for a range of systems covering the metals Al,
Pt ~Ref. 16! and Na~Ref. 18! at liquid helium temperatures
as well as the semimetallic Sb~Ref. 17!. Also room-
temperature measurements19 have been performed in vacuum
on Cu and Au where a step structure was observed. Rece
steps in the conductance during the breaking of a con
2637 © 1997 The American Physical Society
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2638 55BRANDBYGE, JACOBSEN, AND NO”RSKOV
have also been seen in a much simpler type of experime26

Two pieces of ordinary macroscopic wires~Au, Cu, Pt, and
metallic glass! are brought in loose contact with each oth
and by tapping the table top the contact between the wire
broken. The measured conductance between the wires s
a step structure during the last stages of contact, where
one single nanocontact is likely to be present. Now te
niques derived form this method are emerging~pin-plate27,
relay28!.

The origin of the conductance steps has been deb
vividly.29,30 On the one hand it can easily be estimated t
the size of the neck/wire structure in the last stages befo
eventually breaks is at the very atomic scale with just a f
atoms in the contact area. In this regime quantum phen
ena can be expected at room temperature or even highe
as the quantum size phenomena seen in the stability of s
metal clusters.31 If the contacts posses reasonably we
defined quantum modes perpendicular to the direction
transport the conductance can be expected to change in
of the quantum unit of conductance,G052e2/h „1/(12.9
kV)…. This is in analogy to the experiments1,2 where a
smooth constriction separating a two-dimensional~2D! elec-
tron gas is varied in diameter and the conductance thro
the system is quantized. Thus the origin of the steps coul
a true quantum size effect.

On the other hand there are also indications that mech
cal instabilities of the atomic structure of the tip play
active role during the breaking of a contact. It is clear bo
from computer simulations32–35,10and from recent STM ex-
periments with force measurements13 that the atomic neck
which constitutes the contact undergoes abrupt struct
changes during the breaking and the area of the cross se
of the contact will therefore change in a stepwise manne
has therefore also been suggested34 that the discontinuous
change in contact area and atomic structure could be
main underlying reason for the observed steps in the con
tance curves.

At the present time there is rather clear experimental e
dence that for some systems the conductance just befor
breaking of the contact is truly quantized. It is clear that
indentation/retraction experiments the detailed atomic st
ture will change from one indentation/retraction to anoth
and the behavior of the conductance vs stretch of the con

FIG. 1. The measured conductance of the contact betwe
STM tip and a Au surface during the tip retraction~Ref. 10!.
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is therefore not reproducible. The positions of the steps w
in general, also fluctuate. However, for a range of metals
measured conductances have been seen to group aroun
teger values timesG0. This is most clearly seen if a histo
gram of measured conductances during pulloff of many c
tacts (;100 or more! is constructed. Peaks at 1, 2, and
timesG0 or even higher have been seen in the case of
~Refs. 10,26,19,14!, Pt ~Refs. 30,26!, and Cu~Refs. 26,19! at
room temperature. In Fig. 2 we show the histogram based
227 indentations on a Au~110! surface~see Ref. 10 for fur-
ther details!. For Na, peaks in the histogram have been s
at 1, 3, and less clear peaks at 5 and 6 timesG0 at low
temperature.18 These latter findings can be explained bas
on the degeneracy of the quantum modes if the neck in
case of Na is preferentially cylindrical.

The appearance of integer multiples of the conducta
unit G0 strongly suggests the concept of well-defined qu
tum modes in the contacts as a starting point. However,
abrupt atomic rearrangements definitely also play a ro
Combined force and conductance measurements during
tip pulloff shows that the drop in adhesive force is correla
with a drop in conductance.13 These observations are i
quantitative agreement with the prediction in Ref. 10. T
picture that emerges is one in which the quantized cond
tance at integer values ofG0 is determined by the quantum
modes but the jumpbetweenthe different values are cause
by the abrupt atomic rearrangements. However, there
also exceptions to this scenario. In a situation where
cross sectional area of a contact is varied smoothly the qu
tum modes could still give rise to quantized conductance
the transition between the different steps could be expe
to be less abrupt. A more smooth transition between step
sometimes seen at a low temperature using the high stab
MCB setup, as shown in the first curve for Cu and the l
curve for Na in Fig. 3. At higher temperatures and in air t
steps for Au observed with STM are abrupt and accompan
by large steps in the force.13 A special behavior is seen fo
the semimetallic antimony~Sb!. With its low conduction
electron density, the Fermi wavelength is about an orde
magnitude larger than for the other metals stud
(lF'110 bohr!. During the pull of an Sb contact steps a

a FIG. 2. A continuous conductance histogram based on 227
dentations of a STM tip on a Au~110! surface. Peaks at 1, 2, an
3 times the quantum unit of conductance (G052e2/h) are seen.
The results are taken from Ref. 10!.
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55 2639SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .
observed17 which are a small fraction ofG0. These steps can
only result from atomic rearrangements in the contact.
bigger Sb contacts the conductance is not found to be q
tized possibly because these big contacts do not have
elongated shape, especially at cryogenic temperatures.20

In the present paper we report an exact calculation of
electronic transport through idealized small contacts in
presence of elastic scattering. We investigate the stabilit
the quantum conductance steps when the neck structure
viates from an ideal one with well-defined quantum mod
Especially, we will see how different scattering sourc
point scatterers located inside the neck and boundary co
gation, will influence the conductance. We will use a je
umlike model which is known to describe metals like Na
the noble metals quite well, as has been seen in the cas
models for small metal clusters.31 We find that a localized
scatterer will smear and downshift the quantum steps se
tively depending on its location. In the case of bounda
corrugation steps can be substantially downshifted with
suffering from severe smearing depending on the len
scale of the corrugation. We find that the quantum mo
picture, in general, is quite stable and that the shifted c
ductance steps still can be assigned to a particular quan
mode.

The paper is organized as follows. In the first section
will shortly review results obtained from simulations of ne
structures to get an atomistic picture of the structures
volved. Then the concepts of mesoscopic transport theory
introduced and in this framework the quantized conducta
is discussed. This is followed in Sec. III by a short discuss
of models used for calculations of transmission through
constrictions and an outline of the recursion method used
the computations in this paper. In Sec. IV the results of
computations are presented and discussed.

FIG. 3. Conductance curves obtained using the MCB techni
at helium temperatures~Ref. 20!.
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II. ATOMIC SCALE METAL CONTACTS
AND CONDUCTANCE QUANTIZATION

A. Simulations of contacts

Atomistic molecular dynamics~MD! simulations of the
dynamics of the contact breaking process has been ca
out for many different metals: Ni tip and Au surface,32 Pb tip
on a Pb surface with or without a Ir layer and a Ni tip on
Ag substrate,33 Ir tip and surface,34 Ni tip and surface,35 Cu
tip and surface,10 and also for Au nanowires.10,27The forma-
tion of a ‘‘neck’’ ~see Fig. 4! is seen in all the simulations
and the evolution of the neck during the stretch of the con
is quite similar for the contacts. The cross-sectional area
creases slowly, while the adhesive force is built up by ela
deformation. This goes on until a sudden restructuring of
neck occurs. During the restructuring, the cross-sectio
area changes along with a rapid drop in the adhesive fo
resulting in a thinner and longer neck. In the simulations
starting point has been crystalline tip structures with w
defined atomic layers. The restructuring in the first part
the stretch is accomplished by emission of dislocations w
in the later part the restructuring goes on via a highly dis
dered stage where the layers in the vicinity of the narrow
part of the contact cannot be distinguished. Landmanet al.27

have simulated the process of elongation followed by co
pression of a nanowire and compared with experime
They find that the process to a large extend is reversible
the considered size of wires~conductances higher than abo
10G0). It has been pointed out by Bratkovsky, Sutton a
Todorov35 that the temperature critically influences the reo
dering processes because these depend on the availab
netic energy to initiate atomic rearrangements.

A severe problem is that only a short time is available
the MD simulations (;0.1 ns! compared to the typical ex
perimental time scale (;1 ms!. This means that the very
temperature sensitive diffusion processes cannot be inclu
in the MD simulations. In experiments on Cu~Ref. 19! the
conductance quantization is only prominent at high tempe
tures, whereas in the case of Au~Ref. 14! no significant
dependence of temperature is seen.

B. Conductance quantization

In the simulations it is, in general, seen that the conta
have their main variation in shape on a length scale of s
eral atomic interlayer distances due to elastic deformat
see Fig. 4. The one-electron potential therefore has an e
lope with a curvature on this length scale superimposed b

e

FIG. 4. Snapshot from computer simulation of neck formatio
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2640 55BRANDBYGE, JACOBSEN, AND NO”RSKOV
smaller atomic corrugation from the surface atoms. On top
this comes internal potential variations, especially in the c
of internal disorder with large variations in interatomic bo
lengths, and locally big variations in the boundary corrug
tion due to a single or a few atoms in unfavorable positio

The starting point for the understanding of the cond
tance quantization in the atomic scale metal contacts is
smooth potential with an envelope varying on the len
scale of several interlayer distances. With this as the star
point the quantized conductance can be understood in te
of the Landauer’s36–38formula of quantum ballistic transpor
combined with theadiabatic39,40 principle.

The Landauer formula is based on the assumptions37,38

that the system can be viewed as a scattering region w
solely elastic scattering takes place, connected to two pe
leads ~no scattering! which define incoming and outgoin
states. These are then connected to two electron reservo
infinitesimally different chemical potentials. This setup is d
picted in Fig. 5. The effect of the reservoirs is to fill th
states in the perfect leads to the chemical potential of
reservoir, according to the Fermi-Dirac distribution. It is a
sumed that electrons entering the reservoirs from the pe
leads are not reflected at the joining, and that the electr

FIG. 5. Upper: The setup where the Landauer formula for b
listic quantum transport applies. Only elastic scattering proce
are assumed to occur in the scattering region~all inelastic processes
take place in the reservoirs!, no scattering takes place in the perfe
conductors and between the perfect conductors and the reser
Middle: In the case of slowly varying confining potential the ad
batic principle applies. Lower: To each adiabatic transverse m
corresponds a potential barrier in the longitudinal direction due
the energy taken up by the transverse motion. The finite numbe
modes with a barrier less thanEF contributes each with the conduc
tance quantum 2e2/h.
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entering the reservoirs are not influencing the reservoir po
lations. The conductance,G, is then determined by the elas
tic amplitudes,t i j , for transmission from the propagatin
incoming statei in the first perfect lead to the propagatin
outgoing statej in the second lead at the Fermi energy,

G5
2e2

h (
i j

ut i j ~EF!u2. ~1!

The adiabatic principle is applied in the same sense a
a molecule where the Schro¨dinger equation separates in
one part for the electrons and one for the positions of
ions which only appear as parameters in the electronic p
Here the fast transverse quantized motion acts as the e
trons while the slow variation of the contact shape acts as
ions. In the adiabatic case the transverse modes will not m
and the corresponding quantum numbers will be conser
all the way from the first perfect lead to the second. T
conductance channel will experience an effective poten
due to the energy tied up in the transverse motion along
way, see Fig. 5.

As an example, we could consider a constriction w
rotational symmetry around the axis in the direction
propagation~this will be z in the following! and with a hard-
wall boundary at radiusR(z) in the xy direction. The wave
functions are expanded~for eachz) in terms of the transverse
modesFnmz(r ,w),

C~z,r ,w!5 (
~nm!

cnm~z!Fnmz~r ,w!, ~2!

Fnmz~z,w!5
1

Jm11~anm!
JmS anm

r

R~z! Deimw, ~3!

whereJm is themth Bessel function withnth rootanm . The
Schrödinger equation expressed in this basis is

F2
\2

2m

]2

]z2
1«nm~z!2EGcnm~z!,

1 (
~n8m8!

Unm,n8m8~z!cn8m8~z!50, ~4!

where

«nm~z!5
\2

2m S anm

R~z! D
2

. ~5!

Here U depends ondR/dz and d2R/dz2 and couples the
different ‘‘channels’’/modes with quantum numbers (n,m).
In the adiabatic approximation this coupling is neglected a
the electron transport takes place in each ‘‘channel’’ in p
allel. Each mode encounter an effective 1D potential barr
«nm(z), which in the strict adiabatic case will be muc
broader thanlF and therefore either completely reflect
transmit, so the Landauer two-terminal formula is in th
case simply

G5
2e2

h (
~nm!

Tnm~EF!, ~6!

whereTnm is the corresponding transmission probability~ei-
ther 0 or 1). This is the origin of the quantum step structu
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55 2641SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .
because as the height of the effective barrier~the width of the
constriction! is reduced, channels will close, changing t
conductance by the quantum unit times the degeneracy o
closing channel. We have taken the limit of vanishing te
perature since the energy scales involved in the transmis
~differences between transverse modes;1 eV! are much
larger thankT in the 3D metal contact experiments.

The general criterion39,40 for adiabatic transport is
dR/dz!1/Na(z), Na(z) being the local number of availabl
transverse modes above the barrier. Real potentials wil
general, display nonadiabaticity: The width usually gro
faster towards the end of the constriction potential, while
local number of transverse modes is growing. However,
adiabatic condition does not have to be satisfied globa
Yacoby and Imry have shown40 that the reflections due to
sudden opening is highly suppressed if there is a small a
batic widening preceding it. The local reflection amplitud
scale with„1/Na(z)…dR/dz explaining the strongly reduce
backscattering whenNa grows towards the opening of th
constriction. They have also shown that the corrections to
adiabatic picture is of the same order as the scattering by
1D effective potential, i.e., the tunneling and reflection abo
the barrier. This was used in Ref. 10 to estimate the sca
ing from the boundary neglecting interchannel scattering
has been shown in the 2D case by Maao” et al.41 that the
neglect of the coupling terms between channelsunderesti-
matesthe degree of quantization.

III. CONDUCTANCE CALCULATIONS

We shall first briefly review some earlier works on tran
mission through restricted geometries in 3D. Then the co
putational method used in this paper is introduced.

A. Constriction models and transmission

Exact analytical expressions for the 3D transmission
been obtained for simplified geometries. Bogacheket al.42

discussed the case of a hard-wall cone-type rotational s
metric modelpotential. Extending a hyperbolic hard-w
constriction used by Yosefin and Kaveh43 in 2D to the cor-
responding 3D case with cylindrical symmetry, Torr
et al.44 calculated exactly the transmission as a function
width for different opening angles. They show how the co
ductance steps get more smeared when the opening an
made larger, approaching the semiclassical limit,

G`5G0S kF2A4p
2
kFP

4p D . ~7!

This is the Sharvin45 formula for ballistic transport with a
perimeter (P) correction. For a square hard-wall confinin
potential with the transverse modes sin(nxxp/
L)sin(nyyp/Ly), this correction subtracts the modes whe
nx or ny are zero. Scherbakovet al.46 have investigated the
quantum step structure in a free electronlike model in
presence of a magnetic field. They describe the neck po
tial by a harmonic saddle point (}2kzz

21kxx
21

kyy
2), for which the transmission is exactly known as a fun

tion of EF , which is the quantity varied in the paper. In th
model the degeneracy of the quantized steps due to the
generacy of transverse modes may be lifted by choosingkx
he
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Þky . However, the shapes of the necks will, in general,
elongated, which is known to improve the conductance qu
tization. Many numerical investigations has been carried o
Torres and Sa´enz47,48 have modeled the elongated structur
by stacking cylindrical layers with a thickness of the atom
interlayer spacing and varying radii. The electrons were c
fined in these by a hard-wall potential. The transmissio
were calculated using a generalized scattering-matrix te
nique to match the modes between layers. Kasaiet al.49 have
modeled the 3D constriction using a tight-binding mod
varying the on-site energies.

In a number of studies atomic structures obtained w
molecular dynamics simulations have formed the basis
simple conductance calculations.34,35,10The conductance cal
culations have then been carried out in either free-electr
like models with a hard-wall constriction35,10or using a tight-
binding approximation.34,35We would like here to point out
an important difference between the free-electron-like m
els and the tight-binding model if — as is often the case
a very limited basis set is used in the tight-binding descr
tion. The systems we have in mind in this context are,
example, alkali metals or noble metals where a free-electr
like model is known to describe the states at the Fermi le
of the bulk metals reasonably well. The difference betwe
the free-electron model and the tight-binding model can
seen already by considering the local density of states
region of atomic size. In the case of the free-electron gas
density of states is increasing with energy with a square r
dependence but for a tight-binding model with, say, a sin
s state per atom, the density of states will have a high va
around the energy of the orbital and then decrease at hi
energies. The free electron gas can of course be well
scribed in a given energy window using an atomic tig
binding basis, but the energy overlap and the hybridizat
between different bands (s, p, d . . . ) will generally be con-
siderable and several bands will be necessary to describ
states near the Fermi level in an appropriate way. This p
also carries over to the situation of transmission through
atomic size neck. If we for simplicity consider transmissi
through a single atom and only include one state on this a
we obtain a resonant tunneling description: The transmiss
will go through a maximum value near the position of t
state,«a ~properly renormalized by the leads!, and at higher
energies the transmission falls off. The conductance is~see,
e.g., Ref. 50!,

G5G0

4DLDR

~EF2«a!
21~DL1DR!2

, ~8!

where the width of the transmission peak is determined
the strength of the coupling between the atom and the le
(L andR) expressed in terms of the coupling weighted de
sity of states51 of the leads~assumed to be independent
energy,wide band limit!. This is a description appropriate fo
a situation with weak coupling to the leads. However, if th
coupling is sufficiently strong, so that the width of the tran
mission peak is comparable to the energy difference betw
atomic states, the true transmission will not decrease
higher energies but increase until saturation is reached.

In this one-state case the maximum of 1G0 is reached for
EF5«a andDL5DR . In the case of more sites connectin
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2642 55BRANDBYGE, JACOBSEN, AND NO”RSKOV
the electrodes and when only hopping can occur betw
neighboring atomic layers, the conductance will be limited
the minimum number of sites/states in a cross section of
neck timesG0. This indicates that the scattering of a prop
gating wave in the tight-binding model is much more sev
than in the free-electron model due to the limited basis
The sensitivity of the hopping matrix elements on the int
atomic distances will be reflected in the conductance,
cause inhomogeneities in the hopping will increase scatte
and give deviations from the quantized values. This can
seen crudely in the one-state case where different b
lengths to the two electrodes will makeDL different from
DR and the maximum conductance less thanG0.

The weakness of the simple free-electron-like models
that scattering due to internal and boundary disorder is
taken into account. These features are naturally accou
for in the tight-binding models without further complica
tions, whereas a larger numerical effort is required for
free-electron models. We will use here a model poten
with free-electron electrodes as our starting point and incl
the scattering effects in the neck structure using an e
numerical computational scheme.

B. Computational method

Now we shall discuss the numerical method which
have used to calculate the transmission in our jellium l
model where scattering from the individual atomic pseu
potentials are neglected. We have employed the recurs
transfer-matrix method of Hirose and Tsukada.52 This
method is an extension of the 1D continued fra
tion/recursion method of Lambin and Vigneron53,54to the 3D
multichannel case.

For a numerical calculation of the stationary solutions
Schrödingers equation with scattering boundary conditio
and getting the transmission, we will have to discretize
problem. This is done in two steps. The first step is to repl
the single neck-structure along thez direction by a periodi-
cally repeated unit cell in thexy direction each containing
the neck structure. This allow us to use Bloch’s theorem
the xy part of the problem can be written in terms of th
discrete reciprocal lattice vectors (GW '

j ) corresponding to the
translational symmetry in thexy plane. Thei th stationary
scattering state can then be written as

c i~z,rW'!5eik
W
'•r

W
'(

j
f i j ~z!eiG

W
'
j
•rW', ~9!

wherekW' is the conserved Blochk vector in thexy Brillouin
zone. Since it is conserved we will take it to be implicit
the rest. TheGW '

j in this basis define the conductance ‘‘cha
nels.’’ However, the plane-wave basis set is very far from
adiabatic basis set in the sense that the differentGW '

j channels
will mix strongly inside the neck structure. The advantage
that they will be decoupled in the free-electron electrod
Now, we have obtained discrete channels, however, we
have an infinite number of them and we will have to trunc
the GW ' set. This is done by including only the set ofGW '

within the energy cutoff sphere:
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ukW'1GW '
i u2,~2mEcut/\

2!, ~10!

and the numerical calculations will then have to be co
verged with respect to the cutoff energy,Ecut.

The next step is to calculate the transmission through
unit cell which, for a sufficiently big unit cell, will converge
to the transmission in the non-periodic potential. This is do
by a real-space discretization along thez direction. Defining
the coefficient matrixC= ,

„C= ~z!…i j[f i j ~z!, ~11!

the Schro¨dinger equation can be written in matrix form as

2
\2

2m

]2

]z2
C= ~z!1V= ~z!C= ~z!5EC= ~z!, ~12!

with scattering boundary conditions,

„C= ~z!…i j5H t i j eikzj z; z in exit

d i j e
ikz
i z1r i j e

2 ikz
j z; z in entrance ~13!

The matrixV= contains the 2D Fourier transform of th
potential and the kinetic energy in thexy plane,

„V= ~z!…i j5d i j
\2

2m
ukW'1GW '

i u2

1
1

Au.c.
E
u.c.
V~rW' ,z!ei ~G

W
'
j

2GW '
i

!•rW'drW' , ~14!

whereAu.c. is thexy area of the unit cell. The Schro¨dinger
equation is discretized using the Numerov method which
correct to 4. order in thez grid division,hz :

a= ~zp!C= ~zp11!2b= ~zp!C= ~zp!1c= ~zp!C= ~zp21!5 0,
~15!

where

a= ~zp!5I=2
1

12

2mhz
2

\2 @V= ~zp11!2I=E#, ~16!

b= ~zp!52 I=1
5

6

2mhz
2

\2 @V= ~zp!2I=E#, ~17!

c= ~zp!5a= ~zp22!. ~18!

The trick in the recursion method53 is to consider the ratio
corresponding to the logarithmic derivative of the wa
function, i.e., the phase,

S= ~zp!5C= ~zp11!C= ~zp!
21. ~19!

The reason is thatS= is known on the exit side due to th
boundary conditions~13!, since the unknownt i j cancels out
in S= there ~while r i j will not cancel out in the entrance!.
Taking the potential in the free-electron electrodes to
zero, we have the solution to Eq.~15! in the electrodes,

S=5K= , ~20!

where
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~K= ! i j5d i j ~g i1 iA12g i
2!, ~21!

with

g i5
11 5

12 hz
2@ ukW'1GW '

i u22~2mE/\2!#

12 1
12 hz

2@ ukW'1GW '
i u22~2mE/\2!#

. ~22!

K= is just the discretization of the phase,

d i j e
ihzA~2mE/\2!2ukW'1GW '

i u2. ~23!

From Eq.~15! a one point recursion relation forS= is ob-
tained,

S= ~zp21!5@b= ~zp!2a= ~zp!S= ~zp!#
21c= ~zp!. ~24!

The recursion can then be started in the exit electrode
yield S= in the entrance,

S= ~z21!5C= ~z0!C= ~z21!
21. ~25!

Using the boundary condition for the entrance@Eq. ~13!# C=
can be written here as

C= ~zp!5K= p1K= 2pr= . ~26!

From the last two equations, the unknown reflection am
tude matrix can be eliminated, and we can obtain the coe
cient matrix in the entrance,

C= ~z0!5S= ~z21!@K= S= ~z21!2I=#21@K= 2K= 21#, ~27!

and from this the transmission amplitude matrix,t=, can be
calculated:

t=5C= ~zN!5 )
p50

p5N

S= ~zp!C= ~z0!. ~28!

The transmission amplitude matrix that we have obtain
gives us the amplitude for entering in ‘‘channel’’i , i.e., in a
plane wave with a transverse wave vectorGW '

i (1kW'), and
exiting in ‘‘channel’’ j in a plane wave with a transvers
wavevectorGW '

j (1kW'). To get the flux-normalizedt i j enter-
ing the Landauer formula, we will have to multiply our ob
tainedt i j by Akzj /kzi .

The recursion calculation of the transmission must be p
formed for a sufficiently large set ofkW' vectors and the av
erage of conductances must be taken in thexy Brillouin
zone. For a sufficiently largexy-unit cell it will be sufficient
to use onlykW'50. In the numerical calculations the compu
ing time is mainly spend on 2D Fourier transforms and m
trix inversions which can be performed efficiently by sta
dard computer library routines.

IV. RESULTS

In this section we present the results of our calculatio
using the recursion method. We consider electrons w
EF55.5 eV and a soft-wall confining potential of heig
23EF , as a simplified version of a Au-jellium model. In a
calculations we have used a unit cell of 60 bohr in thex and
y directions. Thexy grid used in the numerical Fourier tran
forms have 60360 points and we use a recursion step len
nd

i-
fi-

d

r-

-
-

s
h

h

in the z direction of 1 bohr. The conductance curves a
converged for a plane-wave cutoff of 20.5 eV correspond
to 408 channels.

A. Smooth 3D contacts

We have here chosen to consider the simplest poss
shapes even though the method is capable of treating ge
shapes. The reason for this is that we want to focus prima
on the effects originating from the scattering which is n
intrinsic to the smooth envelope. Also for simplicity we sha
not take into account the change of shape of the neck du
the elongation but just consider the width of the neck as
only variable.

We define our neck shapes in the following way:

V~r ,z!5V0H For r.R1gW/2:u~R1z!u~R2z!

otherwise

u$R2Az21@r1~R1g•W/2!#2%
~29!

where

r5gA~x/a!21~ay!2. ~30!

For g51, R is the radius of curvature of the circular nec
envelope in therz plane andW is the ‘‘width’’ of the neck at
the thinnest point. We can deform this shape from circu
(g51) to elliptical (g.1). The cross section can be d
formed from a circle (a51) to an ellipse with axis lengths
r x5aW andr y5W/a. Instead of step functions (u) we use
Fermi functions with a width of 0.5 bohr.

In Fig. 6 we show the conductance curves resulting fr
necks with circular cross sections (a51) and circular enve-
lopes (g51). The curves correspond to four different rad
of curvature of the envelope,R. It is seen how the smearin
of the steps gets stronger with decreasingR. This is illus-
trated in Fig. 7, where we plot the contours in thexz plane
~cut through the middle of the neck in the direction of t
current! of thez component of the current density,j z . In the
left panel we see the current pattern forR55 bohr ~upper!

FIG. 6. Conductance curves for circular shaped envelopes
different radii of curvature (R). The cross section is chosen to b
circular. In the inset the 1G02 3G0 step~solid! is plotted together
with the approximate expression~dashed!.
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2644 55BRANDBYGE, JACOBSEN, AND NO”RSKOV
andR515 Bohr~lower! for a width corresponding to a con-
ductance of 1G0. The more symmetric pattern in the latte
case indicates less backscattering. In the upper right pane
show the pattern forR55 and a width corresponding to a
conductance of 2.9G0. Here two maxima in the current den
sity are seen inside the constriction. In the 2D calculatio
with flat constriction sides it has been pointed out55 that an
accurate quantization persist even for constrictions w
lengths much shorter than the width.

Let us consider the step shape of the opening of a sin
conductance step corresponding to a conductance ofG5
NG0 and with degeneracyndeg, as a function of the neck
width (W). If we approximate this by a Fermi function,

dG~W!'G0ndeg
1

11e2g~W!/D , ~31!

g~W!5S kF2W2

16
2
kFW

4 D 2N, ~32!

the smearing of the steps is within the adiabatic picture a
proximately given by10

D;
1

2p2

~pW2/4!0.75kF

A2Reff

. ~33!

HereReff is the effective local curvature at the thinnest poin
In the inset of Fig. 6 this formula is compared with the nu

FIG. 7. Top panel: Contours of current density inz direction,
j z , and the direction of current for a highly curved constrictio
R55 bohr, for widths of 8 bohr~left! and 12 bohr~right!. The left
contours values are multiplied by 0.5 compared to right. The cor
sponding conductances are 1.01G0 and 2.92G0, respectively. The
constricting potential is shown by dashed contour lines~contours:
EF60.25EF). Note the peak structure inside the neck. Lower pan
The contours for a less curved constrictions withR515 bohr,
sphericalg51 ~left! and ellipticalg52 ~right! shapes. The conduc-
tance is in both cases 1.0G0.
we

s

h

le

-

.
-

merical exact result for the 123G0 double step using
Reff5R. It is seen that the simple formula describes the sc
ing of the step withR reasonably well.

Now we change the neck shape from a circular (g51) to
an elliptical envelope (g.1). The conductance curves a
displayed in Fig. 8. We keepR fixed at 15 bohr, i.e., the
length of the neck is fixed at 2R530 bohr. In this calculation
we have chosen the cross section to be elliptical w
a50.75. This splits the degenerate modes correspondin
theG53G0 andG55G0 steps and steps at 2G0 and 4G0
appears instead~we will return to this point later!. An in-
crease in the quality of the quantization is clearly seen w
the flatness (g) of the neck side is increased. In the low
panel of Fig. 7 we compare the current pattern of the circu
~left! with the g52 elliptical ~right! shaped envelope. Th
more flatg52 gives a more focused current which is qu
symmetric in exit and entrance, while theg51 spreads the
current and backscatters more into the entrance giving ris
the asymmetry. Within the adiabatic mode picture the m
sharp transition between steps forg52 compared tog51 is
understood in terms of less tunneling through and reflec
above the effective barrier for the modes in theg52 case. In
the case ofg5`, corresponding to a cylindric hole with n
gradual opening, resonance structure is seen in the con
tance curve. This is due to backscattering at the exit
entrance of the structure also seen in the
calculations.55–57,41 In the 3D case the flat sides with n
gradual opening is quite unrealistic as seen from molec
dynamics simulations. Next we will turn to the effects of
single scatterer located inside an otherwise smooth cons
tion.

B. Scattering center inside a smooth 3D contact

Localized scattering centers inside confined structu
have been studied theoretically for the 2D systems.
d-function scatterer has been included in a constrict
geometry55 in a tight-binding calculation. Tekman an

,

-

l:

FIG. 8. The conductance curves for different elliptical shap
~inset! denoted byg. HereR515 bohr and the cross section is take
to havea50.75 eccentricity. Now stepsG52G0 andG54G0 are
seen, butG53G0 has disappeared. In the case of a cylindrical h
connecting the electrodes (g5`) a resonance structure is seen. T
curves have been shifted (0,1,2,3 bohr! horizontally for clarity.
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55 2645SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .
Ciraci57 also considered a scatterer (d function inz and finite
extension in the transverse direction! in a 2D constriction
geometry. Scatterers in infinite wires have been dealt with
Bagwell58 who stresses the importance of the evanesc
~tunneling! modes (En.EF) in the confined scattering prob
lem. Recently Lang59 has calculated the conductance throu
three Al atoms in a line connected to jellium electrodes us
a self-consistent scheme. Substituting one of the Al atom
a electro-negative sulfur atoms increases the resistance.

In these calculations we assume the following sim
form for the change in the effective one-electron poten
due to the presence of a scatterer located atr 0W :

Vs~rW !5Sexp~2urW2r 0W u2/d2!. ~34!

We will refer toS as the strength andd as the decay length
of the scatterer.

We choose a smooth elliptical constriction with sha
g52, R515, and circularxy-cross section. The scatterin
potential is taken to be rather strongly repulsive with stren
S52EF and a decay length ofd52 bohr. In the upper pane
of Fig. 9 conductance curves are shown for the scatt
placed in the middle of the neck at differentz positions. It is
seen that, as expected, the effect is largest for the scat
placed atz50. It is also seen that step 1 and step 6
almost completely ‘‘closed’’ in contrast to step 3, which r

FIG. 9. Upper panel: The scatterer located in the middle of
neck (R515 bohr,g52) and moved along thez axis towards the
exit ~entrance!. It is seen that step 1 and step 6 are most affec
Lower panel: The scatterer located on the neck side. The step s
ture is maintained but smeared. The effect is reduced fast w
moving the scatterer towards the exit~entrance! due to the curvature
of the neck.
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covers quite fast, when moving the scatterer towards
neck opening. When the scatterer is placed close to
middle of the neck the electrons will have to tunnel and t
gives an exponential dependence of the transmission on
width (z50 bohr!. Moving the scatterer towards the chann
exit this goes into a more linear regime (z55 bohr! and
eventually a step less than 1G0 appears (z57.5 bohr! which
is followed by a slow increase towards 1G0. We note that a
resonance appears forz510 for step 1 and is less clear fo
step 6. This is presumably due to the reflections of the w
between the scatterer and the middle of the neck. We ob
the same results when the scatterer is placed symmetric
in the entrance (z→2z) due to the symmetric neck potentia
~the total transmission is always independent of the side
incidence!.

The reason for the different influence of the scatterer
the different steps can be understood in a perturbation pic
using the adiabatic states as a starting point. The chang
conductance due to the extra backscattering can be estim
using the first Born approximation. Born approximation60

~and neglecting contributions from evanescent modes and
z variation of the adiabatic wave functions within the ran
of the scattering potentialVs),

dG52
2e2

h (
nl

S m\2D 2 1

knkl

3F E
2`

`

dzei ~kn1kl !zE
2`

`

dxE
2`

`

dy

3F l~x,y!Vs~x,y,z!Fn~x,y!G2, ~35!

wherekn(z)5$2m@EF2«n(z)#%
1/2/\ is the wave vector for

the nth adiabatic mode. Here it is clear that for themth
quantum conductance step, the dominant contributions
dG comes from the modes with the smallestk, i.e., from the
backscattering within themth adiabatic channel. These a
simply the modes with the least energy left for propagati
Thus an adiabatic mode with a node whereVs has its main
weight will suffer less scattering. If we assume that t
modes inside the neck resembles the modes in a hard-
cylinder ~see inset in Fig. 10!, we see that the first and th
sixth modes do not have a node in the middle like the ot
modes which have quantum numbermÞ0. It is also seen
that modes 5 and 6 lie close in energy which explains w
step 5 is smeared, because as 5 opens 6 will already beg
contribute to the conductance by tunneling.

To substantiate this point a little further, we have fixed t
width of the neck at a given quantum step, 1, 3, or 6, a
calculated the deviation from the step as the scattere
moved from the middle of the neck to the side~along thex
axis!. This is shown in Fig. 10. It is seen that the deviation
a function of scatterer displacement towards the side of
neck follows the structure of the cylinder wave functions f
modes 1, 3, and 6~see inset!. If we now for simplicity as-
sume ad scattering potential,

Vs~x,y,z!5Sd3d~x2x0!d~y!d~z!, ~36!

and use the hard-wall potential wave functions in Eq.~35!,
we obtain

e

d.
uc-
en
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dG~x0!52
2e2

h
S 2md2

\2 SD 2S d
R
D 2

3F(
nm

1

A2mR2

\2 EF2anm
2 S JmS anm

x0

R
D

Jm11~anm! D 2G 2.
~37!

This expression is plotted in Fig. 10 as a function ofx0 for
widths (52R) corresponding to steps 1, 3, and 6.

Now, consider the situation where the scatterer is loca
close to the side of the neck, see lower panel in Fig. 9. In
case the step structure is maintained somewhat more c
pared to the situation with the scatterer in the middle of
neck. We see that the steps gets smeared which ca
thought of as a decreased effective radius of neck curva
Reff . The effect reduces quickly as the scatterer is mo
towards the exit~entrance! due to the curvature of the neck
This confirms what could be expected, namely, that it
mainly disorder close to the middle of the neck which m
ters due to the suppression of the wave function near
boundary.

FIG. 10. The deviation from the integer quantum number
shown as a function of position of scatterer when this is mo
from the middle to the side of the neck. This is shown for fix
widths corresponding to stepG51G0, G53G0, andG56G0,,
respectively. Below, result for deviation from integer quantum st
from Born approximation result using hard-wall cylinder wa
functions@inset: Bessel functions,Jm(amnr /R), R is cylinder radius
and amn the nth root of Jm) as unperturbed transverse adiaba
states.
d
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We have calculated thej z contours and the electron den-
sity contours in thexz plane for the incoming scattering
states atEF , with and without scatterer, for widths of 8 and
12 Bohr corresponding to step 1 and 3, respectively. The
are presented in Figs. 11 and 12. The node structure with o
central peak in the case ofG51G0 and two separated peaks
for G53G0 is clearly reflected in both figures. It is seen tha
the node structure persists in both cases of scatterer positi
This must mean that the intrachannel scattering plays
dominant role, since otherwise the structure would b
smeared. The interference pattern between incoming and
flected waves in the entrance is seen in the density figu
while the diffraction effect is seen in the current density fig
ure in the case where the scatterer is located on the neck si

In Fig. 13 we present the conductance curves for the sam
neck just with an elliptical cross section witha50.75 in-
stead of a circular one. This eccentricity splits the degen
eracy in angular quantum number (m561) of the second
mode corresponding to step 3G0 and the mode correspond-

s
d

s

FIG. 11. The contours of the current density in thez direction,
j z , for widths of 8 ~left! and 12 bohr~right!. In the upper panel no
scatterer is present, in the middle the scatterer is located in t
middle, while the scatterer is located on the side in the lower pane
The corresponding conductances are 1.0G0, 0.3G0, 0.7G0 for the
width of 8 bohr and 3.0G0, 2.7G0, 2.5G0 for the width of 12 bohr.
The values on the contours are the same except for the middle l
where they are scaled by 0.5.
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55 2647SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .
ing to step 5G0 (m562). The disappearance of step 3G0 is
due to almost degeneracy of two modes. This can be und
stood if we take the potential to be harmonic. Then the e
ergy level grouping is determined by

«nx ,ny}anx1ny /a. ~38!

For a50.75 this factor yield energies 0., 0.75, 1.33
1.5, 2.08, 2.25, 2.67 giving a step sequence for the fi
steps of 1, 1, 2, 2 if we group levels close in energy
account for the step smearing. Fora51.0 the corresponding
energies are 0., 1., 1., 2., 2., 2., 3. giving a step dege
eracy sequence of 1,2,3. These degeneracies fit well with
findings in Fig. 6 and Fig. 13.

When the scatterer is located in the middle~upper panel!
the steps 2 and 4 play the role of step 3 in the case
circular (g51) cross section and are less affected compar
to step 1. Step 2 is less affected compared to 4 which we c
understand if we think of the transverse modes correspo
ing to 2G0 and 4G0 having a line of nodes on the short axi

FIG. 12. The contours of the electron density for the incomin
scattering state atEF for the same situation as in the previous fig
ure. The node structure inside the neck and the interference pat
between the incoming and reflected waves in the entrance is cle
seen. The persistence of the nodes when the scatterer is introd
reflects that intrachannel scattering must play the dominant role
r-
-

st

n-
he

of
d
an
d-

(r x) and on the long axis (r y), respectively. Then step 4 wil
have larger overlap with the scattering potential giving
larger matrix element.

Placing the scatterer on the longx axis ~middle panel! we
see that step 1 survives but is smeared like in the circ
case. Step 2 is destroyed forz50 in this case, but not for the
scatterer on the shorty axis ~lower panel!. Here step 1 be-
haves much like the case where the scatterer is in the mid
Step 4 is strongly affected in both cases, but it is seen tha
opening is more delayed when the scatterer is placed on
short y axis ~lower panel! compared to the longx axis
~middle panel!. This we can understand from the nod
picture mentioned before. So in the case of high eccentri
a scatterer located on the side will selectively affect the st
in contrast to the low eccentricity case. We will now turn
the effect of a corrugated neck potential on the transmiss

C. Corrugated 3D contacts

The effect of boundary roughness has recently been
dressed by Bratkovsky and Rashkeev61 for the 3D ~circular

ern
rly
ced

FIG. 13. Same situation as in Fig. 9, but now for a elliptic
cross section (a50.75). Step 3 disappears and steps 2 and 4
pears corresponding to the splitting of the degenerate adiab
transverse states withm61 andm62. In the upper panel the sca
terer is located in the middle while it is on the side in the two low
panels~insets show the neck cross-section contours!.
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2648 55BRANDBYGE, JACOBSEN, AND NO”RSKOV
cross section! case within the free-electron model in a pe
turbation framework. They include a random noise in t
position of the hard-wall neck boundary to simulate t
roughness. They conclude that the effect of boundary rou
ness results in either backscattering destroying conduct
quantization or resonant transmission at the opening of
channels. Tekman and Ciraci57 previously have addresse
the same problem in the 2D case. The tight-binding mod
have been widely used to study boundary as well as inte
disorder in 2D.62,63Here the disorder is modeled by random
izing the on-site energies keeping the nearest neighbor
ping matrix elements constant.

Here we study the effect of boundary corrugation on
conductance curves by modulating the boundary with a t
(Ac/2)sin(2pz/lc). In Fig. 14 upper panel we show condu
tance curves for a corrugated spherically shaped (R515
bohr! neck with a circular cross section. The conductan
curves forlc equal to 6, 7, 8.5, and 10 bohr and for tw
different amplitudesAc51.0 bohr andAc52.0 bohr~shifted
by 12G0) are shown. In the case of a short corrugati
wavelengthlc<7.0 bohr ~compared tolF510 bohr! a
downshift of all the steps is seen, and a downshift decre
with decreasinglc . In the case of strong corrugatio
(Ac52 bohr! a resonance starts to build up.

FIG. 14. The conductance curves for corrugated boundary.
upper curves~shifted by12G0) correspond to a corrugation am
plitudeAc52 bohr, while the lower correspond toAc51 bohr. The
corrugation leads to a downshift of the steps for smalllc which
decreases withlc (lc56, 7 bohr!. For largerlc (lc58.5, 10 bohr!
the steps are smeared corresponding to a smallerReff of the neck.
Introducing a scatterer in the middle~lower panel! gives a ‘‘super-
position’’ of the corrugation effect and the effect of the localiz
scatterer seen previously.
e

h-
ce
w

ls
al

p-

e
m

e

es

Introducing a scatterer in the middle~lower panel! we see
the same effect as in the case of no corrugation just with
new step positions as the starting point. Thus the two sc
tering mechanisms seem to superimpose. When the corr

FIG. 15. The electron density~upper! and current density
~lower! for the incoming states atEF in the case of a boundary
corrugation with amplitudeAc52 bohr and wavelengthlc57
bohr. The conductance is 0.6G0 for a width of 8 bohr~left! and
2.45G0 for a width of 12 bohr~right! corresponding to a node
structure with no node and one node, respectively.

FIG. 16. Upper: The histogram obtained from sampling the co
ductance during a variation of the width for the strongly corruga
neck (Ac52, lc57 bohr!. Lower: The same situation as the upp
histogram but now including the scatterer in the middle.
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55 2649SCATTERING AND CONDUCTANCE QUANTIZATION IN . . .
tion wavelength is increased further (lc>7 bohr in upper
panel! the steps are smeared corresponding to a sm
Reff . In contrast to the effect of the localized scatterer, wh
could smear/close single steps selectively, the scatte
from boundary corrugation downshift all the steps.

It is remarkable to observe that the step structure rem
and that the steps are even sharper in the case with
boundary corrugation and scatterer than in the case with
the scatterer. Thus we can have a step structure shifted a
from integer positions in a model where the width is varyi
continuously, and these steps can still be associated with
quantum modes in the neck structure. In Fig. 15 we show
contour plots of the electron density~upper panel! and z
current density~lower panel! for the case of boundary corru
gation. We can again conclude that the node structure
sists and correlates with the number of conductance ch
nels, even though the conductances are downshifted from
integer positions, see Fig. 15. One can gain further insigh64

of the nature of the modes and the behavior of the cond
tance by investigation of the eigenvalves and eigenvector
t†t and tt†.

The quantized conductance is most clearly revealed
perimentally by considering conductance histograms fr
big ensembles of contacts. This is necessary because o
poor reproducibility of the neck structure as discussed e
lier. The detailed shapes of the histograms can depend
several factors including overall neck shape, impurity
boundary scattering, and also mechanical instabilities but
H.
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shall not go into a discussion of this here. However, we
want to point out that the impurity and boundary scatter
discussed above may lead to shifted peaks in a conduct
histogram. To illustrate this, we show in the upper panel
Fig. 16 the conductance histogram obtained from a stron
corrugated neck (lc57.0 bohr,Ac52 bohr!. In the lower
panel we show the histogram for the scatterer positioned
the middle of this neck. Since we only sample over the ne
width,W, the histogram is simply inversely proportional
dG/dW. The histograms clearly exhibit peaks which a
shifted away from the integer positions due to the scatter
However, as the analysis above shows the peaked structu
still due to the well-defined quantum modes perpendicula
the direction of the current.
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