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Dynamic charge susceptibility for the infinite-U Anderson model

T. Brunner and D. C. Langreth
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 23 May 1996!

The dynamic charge susceptibility for the single-impurityN-fold degenerate Anderson model is calculated
within the noncrossing approximation. The calculations were done in all regimes: empty orbital, mixed valent,
and Kondo. At largeN in the Kondo regime the results can be connected at low temperatures with the
predictions of large-N mean-field theory, suggesting a range of temperature where the validity of the two
theories overlaps. Our smallerN results are presented in the context of electronic friction and energy transfer
of an atom or molecule moving outside a metallic surface. It is suggested that some of the dramatic temperature
and frequency dependences obtained should be relevant for this surface problem.@S0163-1829~97!00703-0#
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I. INTRODUCTION

This study is motivated by a problem in surface physi
When a particle~atom or molecule, neutral or charged! in-
teracts with a metal there may be both phonon and elec
processes going on in the surface. Low-energy (, eV! scat-
tering of rare gases, for example, is dominated by pho
processes,1,2 neutralization of high energy (' keV! ions in
scattering is obviously caused by electronic~charge ex-
change! processes.3,4 Of course, there are cases where bo
mechanisms might contribute, for example vibration
damping5–13 for CO on Cu and Pt or excitation of molecula
vibration in scattering for NO/Ag.14–17 In any case there is
experimental evidence of nonadiabatic electronic coupling
a number of simple cases including desorption of adsor
molecules,18–20 damping of vibrational modes of molecule
surface systems,20–22and charge-transfer in ion-surface sc
tering and desorption experiments.23–25Recently, this role of
electronic non-adiabaticity has been reemphasized thro
laser-induced desorption experiments and the accompan
theory.26–28

The usual way to describe charge-exchange process
surface problems is by means of a time-dependent Ande
model.29,30 Many treatments neglect spin and the intr
adsorbate Coulomb interactionU, but different improve-
ments have been suggested.31–33 Langreth and Nordlande
developed a general and consistent solution of the ti
dependent degenerate level problem with infiniteU.34 It is
based on the so-called noncrossing approximation~NCA!
~Refs. 35–39! for the stationary problem. This was earli
justified as an expansion in 1/N (N being the degeneracy o
the electronic adsorbate level!, although it is perhaps bette
regarded as a thermodynamically self-consistent and c
serving approximation in its own right, which except at ve
low temperatures, which are not generally relevant for
surface problem, reproduces the correct features of the e
solution, including the Kondo and mixed valent states.
accuracy has recently been studied in comparison with
exact numerical renormalization-group solution forN52 at
low temperatures.40

The NCA was generalized34 to the nonequilibrium time-
dependent situation using nonequilibrium double-tim
Green’s-function techniques introduced by Kadanoff a
550163-1829/97/55~4!/2578~16!/$10.00
.

n

n

h
l

n
d

-

gh
ng

in
on
-

e-

n-

e
act
s
e

d

Baym41 and by Keldysh.42 It was shown that the intra
adsorbate correlation can drastically change the cha
transfer dynamics. An exact numerical solution for the tim
dependent Green’s functions was given by Shao, Langr
and Nordlander.43 The procedure followed in the present p
per, however, is simply to linearize the time-dependent N
equations,34 and then iterate them to self-consistency, th
obtaining the linear-response functions exactly within t
NCA.

An eventual application might be to the damping or li
shapes of adsorbate vibrations, in situations where the Ko
or correlated mixed-valent states could have anomalous
fects. For example, NO/Cu~111! has been recently argued44

to be a Kondo system on the basis of an experimental de
mination of the Anderson model parameters. Undoubte
there exist many other such systems with equilibrium para
eters in an interesting range. More generally, a pract
scheme for molecular dynamics at surfaces in the presenc
electronic dissipation has been developed45 and successfully
applied.46 This scheme used friction coefficients, related
the charge susceptibilities calculated here, but neglecting
correlations induced by the intra-atomic Coulomb interact
considered here. In such problems one might expect to b
the range where such neglected correlations should be
portant in a large number of cases; as we see, the presen
these correlations can make a qualitative difference in
nature of the response.

In this paper we consider the response of the mean o
pation of an atomic level to a shift in the level position,
would occur as the atomic species moved perpendicularl
a metal surface. The imaginary or dissipative part of t
response is related to the electronic friction coefficient fo
movement in this direction. Also related is the response t
change in the tunneling matrix element from the atomic le
to the surface. As noted recently,47,48 the interplay between
these two responses can be important, at least when qu
tative results are required. In addition, a level degener
N52 or perhapsN54, would be more common than the th
N56 results which, in order to simplify the numerical ca
culation, we present here. Nevertheless, these are quan
tive, not qualitative considerations, which can be relieved
heavier numerical work when specific systems are un
consideration. Here we simply calculate the charge susce
2578 © 1997 The American Physical Society
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55 2579DYNAMIC CHARGE SUSCEPTIBILITY FOR THE . . .
bility for a model system, and demonstrate for the benefi
surface theoretical development the huge differences in t
perature and frequency dependence that intra-atomic C
lomb correlations can make under the appropriate conditio
and more generally provide for both surface and bulk co
munities benchmark NCA charge susceptibility calculatio
that have not previously been performed, to our knowled
Such results may also have application to quantum dots
similar resonant tunneling systems, which should be Kon
systems in appropriate parameter regimes.49–55

In the context of bulk problems, dynamic response for
infinite-U Anderson problem has been widely discuss
~magnetic impurities!. Kuramoto suggested a thermodynam
cally self-consistent formalism for general dynamic susc
tibilities via a generating functional.37 The formalism was
applied for the dynamicmagneticsusceptibility.56 Müller-
Hartmann discussed theT50 limit of the formalism.57 Spu-
rious NCA results for low frequencies or low temperatur
were examined.58,59Further studies — again on the dynam
magnetic susceptibility — were performed by Maekaw
et al.60 and by Bickers, Cox, and Wilkins;61 see also the
comprehensive review article by Bickers.62 For a very recent
and general review, see Hewson.63

Dynamic charge susceptibility has been explicitly dis
cussed in two studies for the Kondo regime. Coleman64 cal-
culated magnetic and charge susceptibilities for arbitrary
quencies aroundT50, within a mean-field theory which is
valid in the limitN5` provided that the filling factor is kep
finite.65 Though our calculation cannot be extended
T50 we can study the temperature dependence for hig
T. Coleman’s study and ours cover opposite regions in te
perature. We will refer to his results for the susceptibilities
detail. We will try to associate the numerical results whi
can be derived with his formulas for low temperatures a
the results which we get for higher temperatures. The w
by Jin and co-workers,66 which presents qualitative argu
ments designed to cure the NCA’s breakdown at very l
temperatures, is also conceptually related to our study.

In the following we will present dynamic charge susce
tibilities for a wide range of frequencies and temperatures
the Kondo regime, the mixed-valence regime, and the em
impurity regime. As we are mainly interested in dissipati
nonadiabatic processes we will usually discuss the imagin
part of the susceptibility. For comparison we also show
namic magnetic susceptibilities, which we do not claim to
shown for the first time, but a comparison facilitates the
terpretation of our results. Finally we also show results
the single-levelU50 model~resonant level model! in order
to emphasize the large effects the Coulomb interaction
on the charge response.

II. MODEL

A. Degenerate level

For describing the interaction between electrons on
degenerate electronic level of the adsorbate particle and
duction electrons in the metal, we consider the followi
time-dependent Anderson Hamiltonian
f
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H5(
m

em~ t !nm1U (
m.m8

nmnm81(
km

eknkm

1
1

AN(
km

~Vkckm
† cm1H.c.!, ~2.1!

wherem enumerates theN states which would be degenera
due to an assumed symmetry in the absence of the s
time-dependent perturbation,em(t) is the time-dependent en
ergy of the adsorbate electronic level, andnm5cm

† cm is the
number operator for the adsorbate levelm. U is the Coulomb
repulsion between electrons on the adsorbate level wh
causes the strong correlation. The quantityek is the band
energy of the metallic electrons, assumed to depend only
their other quantum numbersk, and not on m, and
nkm5ckm

† ckm is the number operator for band electrons.Vk is
the hopping matrix element between adsorbate states
conduction states~hybridization!. We have included a pref
actor 1/AN; therefore it is not necessary to rescaleVk when
studying theN dependence.

We takeen(t) to vary harmonically with

em~ t !5e1dem~ t !5e1dem~V!exp~2 iVt !, ~2.2!

wheredem(t) is assumed to be small. Therefore the avera
occupancy of themth orbital^nm&(t) will take a similar form

^nm&~ t !5^n0&1d^nm&~ t !5^n0&1d^nm&~V!exp~2 iVt !,
~2.3!

where^n0& is defined to be the occupancy ofoneof theN
atomic orbitals in the absence of the perturbationdem(t).
The susceptibility tensor is then defined by

d^nm&~V!52(
n

xmn~V!den~V!. ~2.4!

Generally one wants the response of a linear combina
(mamd^nm& to a specified combination of level shift
den5ande. We take the set of coefficients@a# to be nor-
malized such that

(
m

am
2 5N. ~2.5!

For each set@a# we define a susceptibility

x [a]~V!5(
mn

amxmn~V!an . ~2.6!

For cases with simple symmetries, there are only two in
pendent cases:~i! the charge susceptibilityxchargewhere all
the levels move together@an51#, and~ii ! the magnetic sus-
ceptibility xmagn where the mean position of the levels
unchanged@(nan50#. The magnetic susceptibility, which i
easy to calculate within the NCA and for which a number
studies already exist, is considered here for comparison
discussion.

Following Coleman39 and Langreth and Nordlander,34 we
perform the infinite-U limit by adopting the slave-boson
technique. The Hamiltonian is rewritten
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2580 55T. BRUNNER AND D. C. LANGRETH
H5(
m

en~ t !nm1(
km

eknkm1
1

AN(
km

~Vkckm
† b†cm1H.c.!;

~2.7!

it must be studied in the subspace where the number ope

Q5b†b1(
m

nm ~2.8!

has the eigenvalue 1.

B. Single level

As we are especially interested in the effect of the deg
eracy and the intra-adsorbate Coulomb correlation, we c
pare all results with results for the nondegenerate mo
(N51) or resonant level model or Fano-Anderson mode
variant of which has often been used in the surface cha
transfer problem. The Hamiltonian is

H5e~ t !n1(
k

eknk1(
k

~Vkck
†c1H.c.!. ~2.9!

Heren5c†c is the number operator for the adsorbate lev
For this case there is but a singlee and hence but a singl
susceptibility. Similarly if we were to increaseN but keep
U50, the charge and magnetic susceptibilities would
equal to each other and larger by a factor ofN.

C. Terminology

We take over the real-time Green’s function terminolo
of Langreth and Nordlander,34 using, for example, the nota
tion iGm(t,t8) for the adsorbate electron Green’s functi
^Tcm(t)cm

† (t8)&. We always assume a sufficient symme
that the basis may be chosen so that it is diagonal inm. In
fact we usually suppress them subscripts altogether, becau
there is nom dependence in the charge susceptibility ca
am51. Similarly, the slave-boson Green’s function
iB(t,t8)5^Tb(t)b†(t8)&. According to conventions define
before,67 we use retarded (GR, BR) and advanced (GA, BA)
propagators, and less than (G,, B,) and greater than (G.,
B.) propagators. Usually we write only equations for t
retarded and less than quantities, advanced and greater
propagators fulfill similar equations.34,43As long as we have
a time-dependent nonequilibrium problem there are two t
arguments (t,t8); for an equilibrium problem propagators d
pend on the time difference (t2t8) only. Equilibrium quan-
tities are marked by the subscript ‘‘eq.’’ In equilibrium th
fermion spectral density, for example, is given
2ImGeq

R (v)/p5ImGeq
A (v)/p, the occupied fermion spec

tral density byGeq
,(v)/2p, and the total adsorbate charg

after integration over frequency byNGeq
,(t2t850). A more

complete summary of our notation for the thermal equil
rium theory is given in Appendix A.G is the physical ferm-
ion propagator for the single-level case~where there is no
B at all!. For the degenerate level case the physical ferm
propagator consists of a convolution of the auxiliary prop
gatorsG andB, as illustrated schematically in Fig. 1.
tor
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D. Conduction-band electrons

The dependence of the NCA equations on the band e
trons can be expressed in terms of the the quantityK, whose
retarded form is given in frequency space by

KR~v!5(
k

uVku2
1

v2ek1 id
, ~2.10!

while

K,~v!5e2bvK.~v!522 ImKR~v! f ~v!, ~2.11!

where f (v)5(exp(bv)11)21. In particular,

2ImKR~v!/p5(
k

uVku2d~v2ek!5^uVu2r&~v!,

~2.12!

wherer is the band density of states. As previously, we ta
a simple parabolic form for̂uVu2r&, such that

2ImKR~v!5H D@12~v/D !2#, uvu<D

0, uvu.D.
~2.13!

The real part is then given by a Kramers-Kronig relation

ReKR~v!5
D

p F2v

D
2S 12

v2

D2D lnU 12v/D

11v/D UG . ~2.14!

For comparison with earlier papers,34,43 one should notice
that the width parameterD in this paper is the same asND in
the earlier papers due to the different definition ofV in Eq.
~2.7!. All energies and temperatures in this paper are m
sured in units of the newD. Furthermore, in all our numeri
cal calculations we takeD55 in these units.

E. Connection to vibrational damping and friction coefficients
at a surface

Consider an adsorbate oscillating in some normal mod
the surface. The forcedF(V) on the nucleus induced by th
change in level positionde(V) will be

dF~V!52
]e

]Q
d^n&~V!, ~2.15!

whereQ is the appropriate nuclear normal coordinate. Th
will also be a force induced by the change in the magnitu
and phase ofVk as the nucleus moves. The effect of varyin
the magnitude ofVk has been neglected in early work in th
field,5 although it has been suggested that in some situat
the cooperative or cancelling effect ofe andD changes can
be important when quantitative results are needed.47 For mo-
tions parallel to the surface, whereD ande would vary only

FIG. 1. Physical adsorbate electron propagatorA(t,t8) in the
NCA.
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55 2581DYNAMIC CHARGE SUSCEPTIBILITY FOR THE . . .
due to deviations of the surface from planarity, the force d
the change in phase ofVk is crucial. Thus the discussion he
using only Eq.~2.15! is not applicable to the parallel motio
case, and incomplete for the perpendicular motion case.
though the rectification of this deficiency is relatively simp
it involves other response functions thanxcharge, and so is
more appropriately discussed in a separate publication.

Usingxchargeto express Eq.~2.15! in terms of the nuclear
motion gives

dF~V!5S ]e

]QD 2xcharge~V!dQ~V!. ~2.16!

Inserting Eq.~2.16! into Newton’s equation of motion give
the following equation for the~complex! V:

V25V0
22

1

M S ]e

]QD 2xcharge~V!, ~2.17!

whereM is the mass andV0 is the mode frequency in th
absence of level repopulation. Solution of Eq.~2.17! gives
the shifted resonant frequencyV and damping constantg,
the latter being minus twice imaginary part of the comp
resonant frequency:

g~V!5
1

M S ]e

]QD 2Imxcharge~V!

V
, ~2.18!

where, to simplify the discussion, we have neglected the
rection involving the frequency derivative of Rex, which is
usually negligible in any case.

The friction coefficientK is defined as the ratio of nuclea
force to nuclear velocity in the slow limit, that is
K5Mg(0). This is the limit in which vibrational damping is
usually discussed, because normally one expects vibrati
motion to be slow on the electronic time scale due to m
ratio arguments. It is also the limit used in molecula
dynamics theory of Head-Gordon and Tully.45 In this limit
one may use the Korringa-Shiba relation Eq.~B5! to express
the friction coefficient in terms of the static response,

K5pS d^n&
dQ D 2, ~2.19!

which can equivalently be written in terms of the phase s
d through the Friedel rule68 ^n&5d/p. Equation~2.19! is
thus more general than its original derivations in the case
potential scattering,69 or in the case of theU50 Anderson
model.70,5

However, we know that the presence of the Kondo
correlated mixed-valent state may provide a slow electro
time scale, which will necessitate keeping a finite frequen
in Eq. ~2.18!. In addition, even for very slow nuclear motion
K may have anomalous temperature dependence becau
the slow electronic time scales. The extent to which th
effects should occur is one of the subjects of this paper.

III. GENERAL TIME-DEPENDENT SOLUTION

The general time-dependent generalization of the N
was given by Langreth and Nordlander.34 For the sake of
completeness we repeat the integrodifferential equat
given before. These equations are rewritten here in the f
e

l-
,

r-

al
s
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ft

of

r
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e

A

s
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of integral equations, which can specify the deviation fro
equilibrium more explicitly. The general time-dependent s
lution, be it in the form of the integrodifferential equations
in the form of the integral equations, is the basis of o
derivation of the linear response in Sec. IV.

A. Degenerate level

The equations for the retarded propagators are the foll
ing:

@ i ] t2e2dem~ t !#Gm
R~ t,t8!

5d~ t2t8!1E dt1S
R~ t,t1!Gm

R~ t1 ,t8!, ~3.1!

i ] tB
R~ t,t8!5d~ t2t8!1E dt1P

R~ t,t1!B
R~ t1 ,t8!. ~3.2!

The NCA expressions for the self-energies, as illustrated
nerically in Fig. 2, are specifically given for the retarde
functions by

SR~ t,t8!5
1

N
K.~ t2t8!BR~ t,t8! ~3.3!

and

PR~ t,t8!5
1

N(
m

K,~ t82t !Gm
R~ t,t8!. ~3.4!

Using the equilibrium functions~see Appendix A!, these
equations can be transformed into the equivalent inte
equations

Gm
R~ t,t8!5Geq

R ~ t2t8!1E dt1Geq
R ~ t2t1!E dt2

3@dem~ t1!d~ t12t2!1SR~ t1 ,t2!2Seq
R ~ t12t2!#

3Gm
R~ t2 ,t8! ~3.5!

and

FIG. 2. Self-energies in the NCA:~a! S(t,t8) for the auxiliary
fermion and~b! P(t,t8) for the slave boson.
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2582 55T. BRUNNER AND D. C. LANGRETH
BR~ t,t8!5Beq
R ~ t2t8!1E dt1Beq

R ~ t2t1!E dt2

3@PR~ t1 ,t2!2Peq
R ~ t12t2!#B

R~ t2 ,t8!.

~3.6!

The equations for the lesser propagators are

@ i ] t2e2dem~ t !#Gm
,~ t,t8!5E dt1@SR~ t,t1!Gm

,~ t1 ,t8!

1S,~ t,t1!Gm
A~ t1 ,t8!#,

~3.7!

i ] tB
,~ t,t8!5E dt1@PR~ t,t1!B

,~ t1 ,t8!

1P,~ t,t1!B
A~ t1 ,t8!#, ~3.8!

where the self energies~see Fig. 2! are in this case given by

S,~ t,t8!5
1

N
K,~ t2t8!B,~ t,t8!, ~3.9!

P,~ t,t8!5
1

N(
m

K.~ t82t !Gm
,~ t,t8!. ~3.10!

The equivalent integral equations are

Gm
,~ t,t8!5E dt1Geq

R ~ t2t1!E dt2$@dem~ t1!d~ t12t2!

1SR~ t1 ,t2!2Seq
R ~ t12t2!#Gm

,~ t2 ,t8!

1S,~ t1 ,t2!Gm
A~ t2 ,t8!% ~3.11!

and

B,~ t,t8!5E dt1Beq
R ~ t2t1!E dt2

3$@PR~ t1 ,t2!2Peq
R ~ t12t2!#B

,~ t2 ,t8!

1P,~ t1 ,t2!B
A~ t2 ,t8!%. ~3.12!

B. Single level

Both integrodifferential and integral equations forGR and
G, are the same as in the case of the degenerate level.
self-energies are much simpler:

SR~ t,t8!5Seq
R ~ t2t8!5KR~ t2t8! ~3.13!

and

S,~ t,t8!5Seq
,~ t2t8!5K,~ t2t8!. ~3.14!

IV. LINEAR RESPONSE AND DYNAMIC
SUSCEPTIBILITIES

With the full general time-dependent solutions at hand
derivation of the linear-response approximation is no pr
lem. All the quantities in the following are written as sum
equilibrium quantity and the deviation from equilibrium
caused bydem(t) @see Eq.~2.2!#. For example,
he

e
-

Gm
R~ t,t8!5Geq

R ~ t2t8!1dGm
R~ t,t8!, ~4.1!

with similar definitions holding for the deviations from equ
librium of the other quantities. Then the equations of Sec.
are linearized, i.e., all terms containing the deviations in q
dratic or higher order are neglected. The double Fou
transform of deviations such asdGn

R(t,t8) vanishes unless its
two frequenciesv andv8 are related byv85v1V. The
frequencyV is a parameter, rather than an active variable
the linearized equations, so we can take the Fourier tra
forms to depend on a single active variablev, defining, for
exampledGm

R(v) by

dGm
R~ t,t8!5exp~2 iVt !E dv

2p
exp@2 iv~ t2t8!#dGm

R~v!.

~4.2!

The same defining relation is applied for the other propa
tors and self-energies.

A. Charge response of degenerate level

For the charge response,am51 so that none of the quan
tities depend onm; therefore we omit this subscript in th
equations in this subsection. By linearizing Eqs.~3.5!, ~3.6!,
~3.3!, and~3.4!, respectively, we obtain the following equa
tions for the retarded functions:

dGR~v!5Geq
R ~v1V!@de1dSR~v!#Geq

R ~v!, ~4.3!

dBR~v!5Beq
R ~v1V!dPR~v!Beq

R ~v!, ~4.4!

dSR~v!5E dv1

2p

1

N
K.~v2v1!dB

R~v1!, ~4.5!

dPR~v!5E dv1

2p
K,~v12v!dGR~v1!. ~4.6!

Similarly, by respectively linearizing Eqs.~3.11!, ~3.12!,
~3.9!, and ~3.10!, we obtain the following equations for th
lesser functions:

dG,~v!5Geq
R ~v1V!„de1dSR~v!…Geq

,~v!

1Geq
,~v1V!„de1dSA~v!…Geq

A ~v!

1Geq
R ~v1V!dS,~v!Geq

A ~v!, ~4.7!

dB,~v!5Beq
R ~v1V!dPR~v!Beq

,~v!

1Beq
,~v1V!dPA~v!Beq

A ~v!

1Beq
R ~v1V!dP,~v!Beq

A ~v!, ~4.8!

dS,~v!5E dv1

2p

1

N
K,~v2v1!dB

,~v1!, ~4.9!

dP,~v!5E dv1

2p
K.~v12v!dG,~v1!. ~4.10!

Once the above four equations are solved, it is a straig
forward matter to calculatexcharge(V) using
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55 2583DYNAMIC CHARGE SUSCEPTIBILITY FOR THE . . .
d^nm&~V!5E dv

2p
dG,~v!. ~4.11!

Then according to Eqs.~2.4! and ~2.6! with an51, the
charge susceptibility is

xcharge~V!52NE dv

2p

dG,~v!

de
. ~4.12!

The charge susceptibility can be represented graphically
the diagrams, in Fig. 3. For deriving the equations give
above from the diagrams, one must take care of the prop
projection on the subspaceQ51.Q conservation can also be
used to derive the alternative formula forxcharge,

xcharge~V!5E dv

2p

dB,~v!

de
, ~4.13!

as discussed in Appendix B.
A thermodynamical self-consistent scheme via a gener

ing functional for calculating general susceptibilities in th
NCA was suggested by Kuramoto.37 It was applied for the
calculation of the magnetic susceptibility; if it were to be
applied for the charge susceptibility it should coincide wit
the results in the present paper. Finally a direct derivatio
with the Kubo formula via then-n correlation function is
also possible~compare Ref. 66!. Then one must take care to
select the appropriate diagrams~Ref. 37, Appendix G in Ref.
62!. Jin and co-workers,66 whose work we discuss further in
Appendix B, apply different schemes for different paramete
regimes.

B. Numerical procedure

After solving for the equilibrium functions by standard
procedures, the linear-response equations are solved by ite
tion. The set of iterations for the retarded functions is starte
with

dGR~v!5deGeq
R ~v1V!Geq

R ~v!, ~4.14!

FIG. 3. Diagrammatic representation of the dynamic charge su
ceptibility in the NCA:xcharge(t2t8)52N times the retarded part
of the displayed sum of diagrams. The magnetic response is de
mined by the first diagram only.
y
n
er

t-

n

r

ra-
d

then we calculatedPR(v), dBR(v), dSR(v), dGR(v), and
so on. The set of iterations for the lesser functions is sta
with

dG,~v!5Geq
R ~v1V!„de1dSR~v!…Geq

,~v!1Geq
,~v1V!

3„de1dSA~v!…Geq
A ~v!, ~4.15!

and then we proceed in analogy. Typically 10–20 iteratio
were required for convergence, although at lowV andN an
order of magnitude more were sometimes required. In te
of the number of grid points, the convergence was mo
tonic and slow, the error appearing to diminish only a
faster than;C/np , wherenp is the number of points within
the lowest-energy scale of the problem (TK in the most dif-
ficult cases!. Typically np’s of 102–103 were required for
stable results. The constantC appeared to be substantial
smaller in magnitude~opposite in sign! for xchargecalculated
from Eq. ~4.13! than forxchargecalculated from Eq.~4.12!,
leading to rather faster convergence for the former, a f
that was exploited at low frequency and temperature, wh
uCu tends to be large.

C. Magnetic response of degenerate level

For the magnetic response everything works correspo
ingly. For example, from Eq.~3.4! one finds that

dPR~v!5
1

N(
m

E dv1

2p
K,~v12v!dGm

R~v1!,

~4.16!

instead of Eq.~4.6!. Similarly, the equation analogous to E
~4.3! is

dGm
R~v!5Geq

R ~v1V!@amde1dSR~v!#Geq
R ~v!,

~4.17!

while Eqs.~4.4! and ~4.5! remain unchanged. Inserting Eq
~4.17! into Eq. ~4.16! and using(mam50 gives

dPR~v!5E dv1

2p
K,~v12v!Geq

R ~v1V!dSR~v!Geq
R ~v!.

~4.18!

Equations~4.18!, ~4.4!, and~4.5! form a closed set of equa
tions for dPR, dBR, anddSR, but since there is no driving
term, they imply that these quantities all vanish. For the
tarded part there is only one equation of interest, which
Eq. ~4.17! with dSR50. Using the same argument for th
lesser quantities, one finds similarly that onlydGm

, is differ-
ent from zero:

dGm
,~v!5amde@Geq

R ~v1V!Geq
,~v!

1Geq
,~v1V!Geq

A ~v!#. ~4.19!

Then, since

(
m

d^nm&~V!5(
m

E dv

2p
amdGm

,~v!, ~4.20!

one finds, upon substitution of Eq.~4.19! and use of Eqs.
~2.5! and ~2.6!, that

s-

er-
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2584 55T. BRUNNER AND D. C. LANGRETH
xmagn~V!52NE dv

2p
@Geq

R ~v1V!Geq
,~v!

1Geq
,~v1V!Geq

A ~v!#. ~4.21!

Since the magnetic susceptibility can be directly calcula
from equilibrium quantities, there is no necessity for an
erative process~i.e., for a summation of diagrams!, as for the
charge susceptibility.

The graphical representation for the magnetic r
ponse is given by the first term in Fig. 3. Closed fermi
loops do not contribute to the magnetic respon
((mamK . . .G . . .G . . .50) so all the other terms in Fig
3 are zero. Formula~4.21! for the magnetic susceptibility ha
been given before@Eq. ~4.2! in Ref. 56, Eq.~10! in Ref. 57,
and Eq.~5.70a! in Ref. 62#. The derivation here generalize
these to less specific spatial symmetries.

D. Response of single level

The equations for the response have the following form

dGR~v!5deGeq
R ~v1V!Geq

R ~v!, ~4.22!

dG,~v!5de@Geq
R ~v1V!Geq

,~v!1Geq
,~v1V!Geq

A ~v!#,

~4.23!
and

x~V!52E dv

2p

dG,~v!

de
. ~4.24!

The diagrammatic representation is once again the first t
in Fig. 3.

V. RESULTS AND DISCUSSION

We begin this section with some preliminary discuss
of energy scales and spectral densities, and present wha
found to be a remarkably successful approximation
xcharge, which we call the spectral density convolution a
proximation ~SDCA!. Then in Sec. V B below we presen
results forN520 as one approaches the Kondo regime, a
in Sec. V C compare them with mean-field theory results
Sec. V D we present results for the more nearly pract
caseN56 in all three regimes: empty orbital, mixed valenc
and Kondo.

A. Spectral densities and the spectral density
convolution approximation

In order to facilitate the discussion, we present Fig.
which shows the real spectral functions for thermal equi
rium, for a level positione521.5 approaching the Kondo
regime for the largeN case. Here the Haldane invariant lev
position@Eq. ~C1!# e*520.78. We show both the total an
occupied spectral functions timesN. For the latter, the area
under the curve is just the occupancy of the atomic orb
^n&, in this case 0.92. For the former, the area would be
the orbital degeneracyN ~hereN520) if it were not for the
fact that the infiniteU has pushed a substantial part of t
spectral weight off to infinity, leaving behind at finite fre
quency, an area of 2.48 in this case, in agreement with
d
-

-

e

:

m

we
o

d
n
l
,

,
-

l

l
st

q.

~A17!. For comparison we also show the equivalent fun
tions for a single level (N51, U50) with the same param
eters. Here the total spectral weight is 1 and the occup
part gives^n&50.86.

The Kondo resonance is centered at an energyT0 above
the Fermi level. Here we findT0'0.022, in good order-of-
magnitude agreement with the Kondo temperat
TK50.018 as calculated from the Bethe ansatz formula63,62

TK5
Dr

2p
e11C23/2NS D

pDr
D 1/Ne2pueu/D. ~5.1!

The derivation of Eq.~5.1! essentially assumed a rectangu
band, that is2ImKR(v)5D for uvu<Dr rather than Eq.
~2.13!, but we used a logarithmic scaling argument43 to ob-
tain Dr'e21/2D so thatDr'3 in our case whereD55. In
principle one should also distinguish a temperature sc
TL which differs fromTK by a factor of theN-dependent
Wilson number ('1), but that distinction is beyond the ac
curacy scale of the discussion here, and we will always t
of T0, TK , andTL as if they were the same.

The temperature in Fig. 4 is chosen about ten times lo
thanT0 (T50.002), therefore the width and position of th
Kondo peak are close to their values atT50; that is, there
should be no significant changes as the temperature is fu
lowered. Of course, within the NCA there are changes as
temperature is lowered, where a spurious peak appears a
Fermi level. The temperatureTNCA* at which this NCA break-
down occurs, as given by Eq.~5.53! of Ref. 62, is
TNCA* 50.001, although our actual calculations suggest t
the breakdown does not occur until the temperature g
somewhat lower than this.

With increasing temperature there is almost no chang
the charge for the single-level case, whereas for the deg
erate level one can observe a change from a low-tempera
value ~0.92! to a value at higher temperature~0.98! ~strong
coupling to weak coupling, see, e.g., Schlottmann,71 Fig.
5.1 a!. WhenT becomes larger thanT0, the Kondo resonance
becomes broader, and gradually vanishes.

FIG. 4. N times the real spectral densityr for e521.5 and
T50.002, withr according to Eq.~A15! for N520 and Eq.~A19!
for N51. The occupied portions@Eqs.~A16! and ~A20!# are indi-
cated with heavier lines. The inset details the Kondo resona
which peaks above the Fermi level atT0'0.022. The total charge
^n& is 0.92 forN520 and 0.86 forN51.
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55 2585DYNAMIC CHARGE SUSCEPTIBILITY FOR THE . . .
We conclude this section with a discussion of a sim
approximation forxchargewhich we call the spectral densit
convolution approximation~SDCA!, which rather remark-
ably we have found to be accurate over a wide range of
parameter space. To motivate it, suppose we had an un
related~one-body! N component Fermi system with densi
of statesr(v). Then the dissipative part ofxchargefor such a
system would be given by

2 Imxcharge52pNE dv r~v!r~v1V!@ f ~v!„12 f ~v1V!…

2 f ~v1V!„12 f ~v!…#. ~5.2!

The first term could be thought of as representing absorp
of a vibrational quantum by electronic transitions from occ
pied states to unoccupied ones, while the second term
giving the contribution of the corresponding emission p
cesses. Thus the SDCA consists of simply noting that for
systemr(v) is given by Eq.~A15!, and then using this in
Eq. ~5.2! for xcharge, despite the fact that our system is o
viously not uncorrelated. We have found empirically
comparison with the calculations, which are exact with
NCA, that the SDCA is valid in the empty orbital and mixe
valence regimes, and also in the Kondo regime ifT.T0; and
if V is large (.0.5) it is valid at all temperatures in th
Kondo regime.

That the SDCA should work so well is rather remarkab
because it indicates that all vertex corrections are neglig
whenx is calculated in this manner. This is not the same
the NCA procedure of neglecting the crossed vertex cor
tions in calculating the real spectral functions fromG and
B @see Eqs.~A13! and~A14!#, but one must also neglect th
type of vertex corrections one generates from the iteratio
Eqs. ~4.3! and ~4.7!, or from terms beyond the first term i
Fig. 3. The latter, however, are virtually never negligib
even qualitatively. This means that corrections like the
which would also occur in the four-line correlation functio
to which Eqs.~5.2! and ~A15! are zeroth approximations
must be mostly canceled by further vertex corrections in
correlation function. Yet, this probably cannot be explain
by some undiscovered Ward identity, because the SDC
not exact within NCA, and is not even approximate asT
goes much belowT0 unlessV is large.

Here we use the SDCA principally as an aid in the phy
cal interpretation of our results, although in discussing fr
tion it is used as an interpolation-extrapolation tool. Exc
there, however, the real spectral functions are not used in
of the calculations. This is an important point, because
most significant error made in the NCA occurs40 in obtaining
the real spectral functions from the ‘‘auxiliary’’ quantitie
G andB. Here all our principal results below follow directl
from the auxiliary quantities alone.

B. NCA susceptibilities at largeN

Here we present our results for the NCA susceptibilities
N520. In Sec. V C we will compare them to results calc
lated using the mean-field theory of Coleman. The dyna
charge susceptibility is shown in Fig. 5. At high temperatu
the Kondo feature in the spectral density is wiped out, le
ing only one relevant energy scale. The response has a
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at aboutV52. As we will see below, this energy is close
the response peak for the single level. With lower tempe
ture the Kondo feature in the spectrum~see Sec. V A! be-
comes more pronounced, and we observe a second pe
the response at aboutV50.02~aboutT0). The interpretation
of the charge response for high frequencies and forT>T0
using the SDCA is quite easy: the peak in the respons
aboutV52 is essentially due to transitions from the occ
pied states around the shifted level~centered atv;22 in
the spectral weight! to empty states close to and above t
Fermi level. The peak at aboutV50.02 is due to transitions
from occupied states close to, but below, the Fermi level i
the unoccupied states in the Kondo resonance. This inter
tation is of course oversimplified, as it does not take in
account the strong temperature dependence of the Ko
resonance itself, which causes the low-frequency respo
peak to shift quite a bit with temperature.

The SDCA becomes wrong for lower frequencies~here
below, say,V50.5) and temperatures belowT0. First the
low-frequency peak shifts to lower frequencies~e.g.,
V50.01 for T50.01). With lower temperatures~strong-
coupling limit! we observe a two-peak structure with the le
peak now much closer to the right peak; we will show belo
that this form of the curve agrees very well with the mea
field results aroundT50. Though the NCA cannot be ap
plied for temperatures too low we believe for the paramet
chosen our calculation atT50.002 to be close to a tempera
ture where the dynamic charge response saturates. The p
imity of theT50.002 and 0.003 curves can be seen as a s
of this saturation. These were the lowest temperatures
sible for low frequency with the present numerical metho
At the lowest temperatures the low-frequency charge
sponse is cut off below roughlyV'0.07, just in the region
where the magnetic response starts to peak~see below!. This
feature is preserved in mean-field theory~see Sec. V C!.

In Fig. 6 we show the imaginary part of the dynam
magnetic susceptibility for the degenerate level. Calculati
like that have been done before.56,72 They are included here
in order to facilitate the discussion and to make a compari
with mean-field theory. There is a broad peak for high
temperatures which shifts at lower temperatures.
T,0.005~as in the charge response! the magnetic respons
locks into the low-temperature~strong coupling! behavior.

FIG. 5. Dynamic charge susceptibility in the NCA forN520
ande521.5 at different temperaturesT.
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Here there is one narrow peak which is located
V'0.025. This is roughly the position of the Kondo res
nanceT0. The response is completely determined by the a
iliary G function, which has only one energy scale set
TK , which in turn determines the magnetic response. T
level position e does not play a role~except indirectly
through the determination ofTK). Once again we can choos
T low enough to see the response saturate. Altho
T50.0005 is slightly belowTNCA* @see Eq.~5.53! of Ref. 62#,
it is still too high to observe the spurious NCA singulariti
for low frequency.72 When plotting Imx(V)/V one can ob-
serve Lorentzian behavior for higher temperatures an
resonance feature atV'0.025 at lower temperatures, th
was similarly seen before.72 The absolute values are ver
large, much larger than the charge response, as expe
from simple arguments.

C. Comparison with mean-field theory

Here we compare theN520 results in the Kondo regim
with the mean-field theory of Coleman@see Appendix C for
details#. He studied the infinite-U Anderson model by con
sidering fluctuations around a broken-symmetry mean-fi
theory in leading order in 1/N.64 He calculated numerica
results for the dynamic susceptibilities forT50, and his for-
mulas can be applied for finite though small temperatu
too. His results are valid in a limit where NCA calculation
become wrong. We will try to make a connection betwe
our finite-temperature NCA results and Coleman’s lo
temperature results. The mean field theory results have b
shown65 to be exact forN5` for any finite filling factor
Q/N. Here we apply them forN520 andQ/N5 1

20 where it
could be hoped that they still would be a good approxim
tion, although they obviously break down asT approaches
the temperature of the mean-field phase transition, wh
does not occur for any finiteN. The NCA should also be
very accurate for anN this size, but it breaks down forT’s
less thanTNCA* . SinceTNCA* is typically less than where th
mean-field phase transition occurs, it might be hoped
there would be a region of overlap.

There are several difficulties when directly compari
Coleman’s results and our NCA results. Coleman use
Lorentzian density of band states„2ImKR(v)5D@1

FIG. 6. Dynamic magnetic susceptibility in the NCA fo
N520 ande521.5 at different temperaturesT.
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2#21

… whereas our density is parabolic@see Eq.
~2.13!#. The difference is roughly compensated for by setti
DL5D exp(21/2). While Coleman’s results are valid for
wide band, our numerical NCA calculation is applied f
cases with bands that cannot be called very wide~e.g.,
D55D andDL'3D). Furthermore it is not clear how far in
the Kondo limit one has to be (uju!D) for Coleman’s for-
mulas to be applicable. Next, the population of the atom
level will not perfectly coincide. Also, while the mean-fiel
results are valid forT50 and for very small temperatures
and the NCA results for temperatures that are not too low
is not clear whether there should be some overlap of the
approaches for temperatures in between, or, if there is a t
perature ‘‘gap,’’ what the susceptibilities might look lik
there. With all these restraints in mind, it will turn out th
both approaches can be very reasonably connected an
can gain a very good insight into the behavior of the susc
tibilities over the whole temperature range.

In Figs. 7 and 8 we show the imaginary part for th
charge and magnetic dynamic response calculated with C

FIG. 7. Mean-field approximation of the dynamic charge s
ceptibility for the degenerate level (N520) according to Coleman’s
formula ~C3! for e521.5 ore*520.782.@Parameters from~C2!:
At T50, ẽ50.025 andD̃50.0037; atT50.007, ẽ50.028, and
D̃50.0022#.

FIG. 8. Mean-field approximation of the dynamic magnetic s
ceptibility for the degenerate level (N520) according to Coleman’s
formula ~C4! for e521.5 or e*520.782.
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55 2587DYNAMIC CHARGE SUSCEPTIBILITY FOR THE . . .
man’s formulas~C3! and ~C4!. The figures should be com
pared with Figs. 5 and 6. We find an agreement that is by
better than qualitative. Taking into account the different s
of approach and all the problems for a direct comparison
were discussed above, there is a surprisingly good agree
for temperatures between roughly 0.001 to 0.005, concern
both absolute values and characteristic frequencies.
mean-field phase transition forN5` occurs forT;0.01,
and the mean-field results for finiteN should be expected to
grow poor asT nears this value. Our NCA results show ho
the low-frequency peak in the charge susceptibility, wh
increases in strength in mean-field theory as the tempera
is raised, turns around and begins to decrease again,
ultimately disappears at high temperatures. Coleman him
applied his formulas only forT50. Our comparison show
that they can be applied for small finiteT, too. It also sug-
gests that NCA and mean-field theory have a regime of c
mon validity, thus bridging the gap between low and hi
temperatures.

D. NCA susceptibilities in various regimes forN56

Here we present and discuss results for the empty orb
mixed-valent, and Kondo regimes. We will try to relate o
discussion where possible to concepts that might be im
tant for electronic damping of atomic motions or friction
metal surfaces. For the latter purpose one should think
resonance half-widthD on the order of an eV, and temper
tures and frequencies varying through a range that is t
cally around 0.01–0.1 times this. To simplify the numer
we chose to present the results forN56, althoughN52 or
possiblyN54 are more typical for real surface problems
which the model would most cleanly apply. Here we w
simply be content to say that we have made prelimin
calculations forN52, and found that they are qualitative
similar to theN56 ones.

When presenting the results, we always give for comp
son the single-level (N51, U50) results, in order to em
phasize the vast qualitative differences that can occur.
make this comparison we choose theD parameter forN56
to be the same as forN51 ~and as before use this parame
as the unit for all other quantities!. This has the effect tha
the ~large! width of an atomic state below the Fermi level
roughly the same forN51 as it is forN56 ~i.e.,D). On the
other hand, when the level is above the Fermi level in
empty orbital regime, the level width is roughlyD/N, so that
the width in the single-level model will be larger by a fact
of N than in the correlated model. Recall that ourD is the
quantity that has been calledND in a number of previous
papers.

We begin with the empty orbital regime, where we sho
the results in Fig. 9. Here, in the context of the SDCA, t
contributions come from transitions from the tail of the de
sity of states below the Fermi level to the broadened ato
level above. One does not expect the correlation effect
play a significant role for the empty level, and the curv
show this at least qualitatively, with little anomalous tem
perature dependence except at extreme temperatures. N
theless for obtaining results that are correct within factors
2, the correlation effects are still important, as shown by
fact that the magnetic and charge susceptibilities are st
r
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little different. The fairly substantial difference in sharpne
~especially at low frequencies! betweenN51 and 6 is to a
good degree due the point discussed above, that the wid
the level isD/N and notD, so that we are comparing tran
sitions in states with different widths.

We now consider Imxcharge(V)/V, which at low frequen-
cies is related to the electronic friction as discussed in S
II E. If this quantity is constant in the range of frequenci
appropriate to the atomic motion, then the system will b
have as it had a friction constantK5Mg(V), whereg is
given by Eq.~2.18!. From the curve forN51 in Fig. 9 we
find that Imxcharge(V)/V50.013, in good agreement wit
the exact low-frequency value for the wide-band model

Imxcharge~V!/V5
1

p

D2

~e21D2!2
50.0127. ~5.3!

Except for the highest temperature, one finds forN56 that
Imxcharge(V)/V;0.0015 in the lower half of the frequenc
range shown in the figure. A good part of the differen
between this and the friction for the single-level mod
(U50) is due to the difference in level widths discuss
above. In the empty orbital regime, the most compara
U50 case would be obtained by lettingD→D/N in Eq.
~5.3! and then multiplying the results byN, thus replacing
Eq. ~5.3! by

Imxcharge~V!/V5
1

pN

D2

„e21~D/N!2…2
50.0033, ~5.4!

which is only on the order of a factor of 2 different from th
value forxchargein Fig. 9. It turns out that Eq.~5.4! is exact
in the correlated case only to lowest order inD/e. The cor-
rection term is much larger than that implied by theD2/N2

term in the denominator of Eq.~5.4!; it in fact makes a frac-
tional reduction to Eq.~5.4! of orderD/e times logarithmic
terms, as may be straightforwardly verified by perturbat
theory in Vk . Thus the difference between our resu
(;0.0015) and Eq.~5.4! is not inconsistent with what shoul
be expected. We conclude that even in this empty orb

FIG. 9. Dynamic susceptibilities in the empty impurity regim
(e52). The top and middle panels are forN56 @^n&50.08#, while
the bottom panel is forN51 @^n&50.10#.
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2588 55T. BRUNNER AND D. C. LANGRETH
regime where the strong-U correlations effects do not pro
duce much temperature dependence, they are still impo
if quantitative results are required. The friction is very sm
here, because the atomic level is well above the Fermi le

The susceptibilities in the mixed-valent region are sho
in Fig. 10. They are of course much larger in this region. T
influence of the large-U correlation effects are evident no
only from the temperature dependence, but the differe
between the magnetic and charge susceptibilities.

A nonlogarithmic plot ofxchargeat the low-frequency end
of the figure shows that the curves apparently appro
straight lines through the origin, suggesting that a sens
frictionlike regime @see Eq.~2.18!ff.# has been reached, a
beit with strongly temperature-dependent friction. This c
be understood given that the SDCA is a good approxima
in this region: forV!T, Eq. ~5.2! becomes

Imxcharge~V!

V
5pNE dv r2~v!S 2

d f~v!

dv D . ~5.5!

The form ofr(v) for this case is a single peak whose ma
mum is about 0.5D above the Fermi level, and whose wid
is ;0.2D, but temperature dependent, increasing by;50%
as the temperature is increased over the range of the cu
in the figure. Thus Eq.~5.5! suggests that the friction is de
termined by the overlap of the tail of2d f(v)/dv and the
lower end of the peak inr2(v). As an illustration of this and
of the interesting temperature dependences that can o
we show a plot of the prediction of Eq.~5.5! in Fig. 11. We
note that this is consistent with the results from the full NC
calculations for the casee50. The SDCA curves show in
greater detail the transition to the Kondo regime as the t
perature is lowered.

One should note that, unlike the uncorrelatedU50,
N51 case, the valuee50 is not special. In the former cas
r(v) just consists of a Lorentzian-like curve that followse

FIG. 10. Dynamic susceptibilities in the mixed-valence regi
(e50). The top and middle panels are forN56 @^n&50.4#, while
the bottom panel is forN51 @^n&50.5#.
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around, including crossing the Fermi level whene does. In
the correlated case, the peak does not cross the Fermi lev
e is lowered, but rather remains as if suspended above
Fermi level, sharpening, and weakening as it turns into
Kondo resonance, with the broad peak at the atomic le
position reappearing below the Fermi level ase is further
lowered. The configuration leading to the strong
temperature-dependent friction persists for a range ofe in the
mixed-valent regime, and is not unique to our choicee50.
All this is clear from the curves in Fig. 11. Ase moves
further below the Fermi level, the resonance in the spec
density, which is still above the Fermi level, sharpens in
the Kondo resonance, and the characteristic low-energy s
comes within the range of temperatures shown in Fig.
For temperatures exceeding this range, the Kondo pea
the spectral density weakens, and so does the friction as
temperature increases further.73 This high-temperature fall-
off of Imx with increasingT is seen again in the figures
where we display the charge susceptibility in the Kondo
gime. An explicit plot of the rapid temperature dependen
of the dissipation in the Kondo regime is given in Ref. 48

In contrast to this is theU50 case, where the choic
e50 puts a peak inr(v) right at the Fermi level. Then
Imx actually decreases with increasing temperature,
shown in Fig. 10. This can be understood from Eq.~5.5!: at
T50, 2d f(v)/dv samples only the central maximum o
r2(v), while asT rises it begins to sample the tails as we
This inverse temperature dependence should decreasee
moves away from the Fermi level, and should reverse its
whene is a distance;D above or below the Fermi level. In
Fig. 11 we show this single levelU50 curve, just for the
casee50, where it is largest. It is somewhat problema
how to make the best comparison between the two case
this intermediate regime. We have continued to follow t
scheme of keeping ourD constant as we go from the sing
level to the degenerate level, a procedure that is clearly s
sible in the Kondo regime. However one could argue tha
smallerD would be more appropriate for the single-lev
case in the mixed-valent regime, and that then the sin

FIG. 11. Friction in the mixed-valence regime in the SDCA v
Eq. ~5.5!, for various values of orbital energye. The circles repre-
sent the full NCA fore50, and were obtained by the slopes of th
curves like those in Fig. 10@vs V instead of log10V# at V50.03.
The curve markedU50 is the single-level curve fore50; values
for othere ’s are smaller and have weaker temperature depende
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level friction would be larger and more temperature dep
dent than what we have shown. It is in any case true with
question, however, that the temperature dependence isquali-
tativelydifferent in the two cases.

Finally, we show the results fore521.5, that is, ap-
proaching the Kondo regime, in Figs. 12, 13, and 14.
discussed previously forN520, the results for the degene
ate level case show strong temperature dependence on
different energy scales, as opposed to those for the sin
level case which show essentially no temperature dep
dence except at the extreme temperatureT50.2. The charge
susceptibilities are very small, as expected. However,
quantity relevant to electronic friction is Imx(V)/V. This is
as large as in the mixed-valent case, because of the
low-frequency response caused by the Kondo resona
However, note also that we are not in the simple fricti
limit even at the lowest frequencies shown, and inde
Imx is neither a monotonic function of frequency nor
temperature. It can change by factors of 10 over a rang
temperatures that are still just a small fraction ofD. In short,
we have an electronic energy scale which is as small as t
normally associated with the vibrations of the nuclei, alo
with temperature dependences on this low scale, which
be of either sign.

FIG. 12. Dynamic charge susceptibility forN56 and
e521.5.

FIG. 13. Dynamic magnetic susceptibility forN56 and
e521.5.
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VI. CONCLUSION

We have provided benchmark calculations of the pred
tions of the noncrossing approximation for the so-cal
charge susceptibility. These could be useful in several a
where the Anderson model is relevant, including highly c
related condensed-matter systems, quantum dots, and
motion of atoms and molecules outside metallic surfac
With respect to the latter, we showed the connection betw
these results and electronic friction. We show that in t
regimes, the effect of the intra-atomic Coulomb repulsi
U can lead to temperature dependence of the electronic
tion on a scale as small as that usually associated with vi
tional processes. Both the temperature and frequency de
dence are qualitatively different from models in whichU is
either neglected or treated in the Hartree-Fock approxim
tion.
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APPENDIX A: EQUILIBRIUM SOLUTION

In equilibrium there is no variation of paramete
@de(t)50#. Then we have the standard Anderson proble
Since the equilibrium quantities are needed for the line
response solution, we show the most important formulas
form appropriate for the real-time Green’s-function termin
ogy. When presenting the NCA equilibrium results, we re
especially to the work by Kuramoto37 and Coleman.39

1. Degenerate level

With the Dyson equations in the usual form the se
energies in the NCA can be represented by the diagram
Fig. 2, with the auxiliary propagatorsG andB replaced by
their equilibrium counterparts. The various propagators a
self-energies can be easily derived by applying
definitions.67 The only thing one must especially take care
is the proper projection on theQ51 subspace~for details,
see Ref. 34!. The retarded propagators are given by the f
lowing equations:

Geq
R ~v!5@v2e2Seq

R ~v!#21, ~A1!

Beq
R ~v!5@v2Peq

R ~v!#21, ~A2!

Seq
R ~v!5E dv1

2p

1

N
K.~v2v1!Beq

R ~v1!, ~A3!

Peq
R ~v!5E dv1

2p
K,~v12v!Geq

R ~v1!, ~A4!

and the lesser propagators by

Geq
,~v!5Geq

R ~v!Seq
,~v!Geq

A ~v!, ~A5!
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Beq
,~v!5Beq

R ~v!Peq
,~v!Beq

A ~v!, ~A6!

Seq
,~v!5E dv1

2p

1

N
K,~v2v1!Beq

,~v1!, ~A7!

Peq
,~v!5E dv1

2p
K.~v12v!Geq

,~v1!. ~A8!

The retarded and lesser quantities are connected by the
equilibrium relations like

Geq
,~v!522ImGeq

R ~v!exp~2bv!/Z, ~A9!

with Z being the partition function for the adsorbate lev
the latter being determined by the requirement thatQ51, as
calculated from

Q5E dv

2p
@NGeq

,~v!1Beq
,~v!#. ~A10!

The spectral functions satisfy the sum rules

2E dv

p
ImGeq

R ~v!52E dv

p
ImBeq

R ~v!51. ~A11!

Due to Eq.~A10!, the atomic level occupancŷn& can be
calculated either fromG, or B,,

^n&5NE dv

2p
Geq

,~v!512E dv

2p
Beq

,~v!. ~A12!

The introduction of slave bosons makes bothG and B
auxiliary quantities. The physical adsorbate electron pro
gatorA is given by the diagram in Fig. 1. Vertex correctio
are not considered in the NCA. We have

Aeq
R ~v!5E dv1

2p
@Geq

R ~v1v1!Beq
,~v1!

2Geq
,~v1v1!Beq

A ~v1!# ~A13!

and

Aeq
,~v!52E dv1

p
Geq

,~v1v1!ImBeq
R ~v1!. ~A14!

The real physical adsorbate electron spectral densityr(v) is
given by

r~v!52
1

p
ImAeq

R ~v!. ~A15!

On the other handAeq
,(v)/2p is the physical adsorbate ele

tron occupied spectral density. In this thermal equilibriu
situation the two quantities are related by

Aeq
,

2p
~v!5r~v! f ~v!. ~A16!

Because we letU→` at the beginning, that part of th
real spectral weight corresponding to multiple occupancy
the degenerate level is shifted to infinity and is not coun
in the spectral sum rule, which in this case reads
al

,

a-

f
d

2E dv

p
ImAeq

R ~v!512~121/N!^n&. ~A17!

The quantity (121/N)^n& is simply the probability that one
of the otherN21 degenerate levels is occupied when o
tries to add an electron to themth one. Nevertheless, on
may still obtain the occupancŷn& from theA, spectrum,

^n&5NE dv

2p
Aeq

,~v!. ~A18!

2. Single level

The self-energy in the single-level case is exactly giv
by Seq

R (v)5KR(v), and Seq
,(v)5K,(v). Here the real

spectral densityr(v) is given by

r~v!52
1

p
ImGeq

R ~v!, ~A19!

while Geq
,(v)/2p is the real occupied spectral density. Sim

larly to the degenerate case, the equilibrium quantities
related by

Geq
,~v!

2p
5r~v! f ~v!. ~A20!

All the quantities can be given in closed form for the sing
level case, and there is no approximation involved.

APPENDIX B: IDENTITIES AND RELATIONS

Here we list some of the identities and sum rules satis
by the linear-response quantities, which we use or refer t
the main text, in addition to, of course, Kramers-Kronig,

Rex~V!5PE dV8

p

Imx~V8!

V82V
, ~B1!

which along with its inverse follows for all response fun
tions from causality. First the spectral density integrals~A11!
remain unchanged; that is,

E dv

p
ImdGm

R~v!5E dv

p
ImdBR~v!50. ~B2!

Second,Q51 must still hold; that is,

dQ~ t ![exp~2 iVt !E dv

2p S (
m

dGm
,~v!1dB,~v! D 50.

~B3!

This can be explicitly shown, most easily by showin
(d/dt)dQ(t)50 via the linearized integrodifferential equa
tions. Therefore the charge susceptibility may be calcula
either from Eq.~4.12! or ~4.13!, as stated in the text.

It is well known that forT→0 the NCA does not properly
represent the Fermi-liquid regime.58,57,62 Neglect of vertex
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corrections destroys a proper description of low-energy
citations. Both the Friedel-Langreth relation68 for the equi-
librium spectral density

2ImAeq
R ~v50!5

N

D
sin2~p^n&/N! ~B4!

and the Korringa-Shiba74,75 relation

lim
V→0

Imx~V!

V
5

p

N
„x~0!…2 ~B5!

for the magnetic response are known to be violated. T
spectral density has a very small cusp around the Fermi
ergy v50, and the magnetic susceptibility Imx(V)/V di-
verges for very low frequenciesV. These singularities
should show up for temperaturesT lower thanTNCA* which
was specified by Bickers.62 Presumably also the Korringa
Shiba relation for the charge response71 is violated in a simi-
lar fashion in the NCA; numerically the limit on the left sid
of Eq. ~B5! is hard to determine forxcharge.

The violation of the Fermi-liquid relations can be seen
a consequence of the partial resummation of terms in
orders in 1/N. Taking into account only diagrams that co
tribute in leading orders in 1/N can remedy this problem.76,66

At frequencies around the Kondo temperature, howe
there must be a summation of infinite orders to dispose of
Kondo divergence. Jin and co-workers66 seem to follow this
twofold strategy. It is very well suited for a general qualit
tive discussion and for deriving formulas for limiting cas
~e.g.,T@TK , T!TK , v'TK , andv'0). It is certainly less
suited for quantitative numerical calculations~different for-
mulas will not render continuous results!. Jin, Matsuura, and
Kuroda66 are wrong in their 1991 paper when they claim
include ‘‘crossing’’ diagrams that are not contained in t
NCA—they do not include crossing conduction electr
lines, and all diagrams suggested in their paper are conta
in our NCA calculation. What makes the difference from t
NCA is the neglect of the self-consistency—the infinite su
mation of diagrams at low frequencies and temperatures
the calculation in leading order in 1/N instead.

It should be emphasized that besides the NCA there is
additional reason for the Korringa-Shiba relations not to
fulfilled, which is the neglect of impurity-band and ban
band contributions inx, which was defined just as th
impurity-impurity correlation function. For a finite band
width these terms might not be negligible. So, for a fin
band, even for the single-level model the Korringa-Shiba
lation is not fulfilled. Only in the wide-band limit (D→`
with uVu2/D finite! does the susceptibility for the single lev
satisfy the Korringa-Shiba relation, as usually stated.

APPENDIX C: LARGE- N MEAN-FIELD THEORY
FOR DYNAMIC SUSCEPTIBILITIES IN THE KONDO

LIMIT AT LOW TEMPERATURES

Here we present in our notation the formulas from Co
man’s theory64 relevant to the evaluation here. The ban
width DL and the level positione enter only via the leading
x-

e
n-

s
ll

r,
e

ed

-
nd

n
e

-

-
-

order expression for the Haldane invariant level@see Eq.
~2.32! of Ref. 64#

e*5e1
D

p
ln
DLp

D
. ~C1!

One has to determine the complex level positionj with
j5 ẽ1 i D̃ by solving the equation@see Eq.~2.29! of Ref. 64#

D

p F c̃~j!2 ln
Db

2p2i G1j5e*1
iD

N
, ~C2!

with c̃(j)5c„121(jb/2p i )…, wherec is the digamma func-
tion. The dynamic charge susceptibility is given by

xcharge~V!5
ND̃

D

V

V12i D̃
H FDp @c̃~j1V!2c̃~j!#1V G21

1FDp @c̃~2j*1V!2c̃~2j* !#2V G21J ,
~C3!

and the dynamic magnetic susceptibility by@see Eq.~3.66! of
Ref. 64#

xmagn~V!52
ND̃

p

1

~V12i D̃!V

3@c̃~j1V!2c̃~j!1c̃~2j*1V!2c̃~2j* !#.

~C4!

The prefactors are chosen to be in accordance with our c
ventions above. Both susceptibilities fulfill the Korringa
Shiba relation in the form Eq.~B5!. The limit T→0 can be
easily performed@c̃(j)→ lnjb/2p i #.

FIG. 14. Dynamic susceptibility for the single level fo
e521.5 at different temperatures.
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