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Dynamic charge susceptibility for the infinite-U Anderson model
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The dynamic charge susceptibility for the single-impufiyfold degenerate Anderson model is calculated
within the noncrossing approximation. The calculations were done in all regimes: empty orbital, mixed valent,
and Kondo. At largeN in the Kondo regime the results can be connected at low temperatures with the
predictions of largeN mean-field theory, suggesting a range of temperature where the validity of the two
theories overlaps. Our smallb results are presented in the context of electronic friction and energy transfer
of an atom or molecule moving outside a metallic surface. It is suggested that some of the dramatic temperature
and frequency dependences obtained should be relevant for this surface pf@0&68-18207)00703-0

. INTRODUCTION Baynf! and by Keldysi? It was shown that the intra-
adsorbate correlation can drastically change the charge-
This study is motivated by a problem in surface physicstransfer dynamics. An exact numerical solution for the time-
When a particlelatom or molecule, neutral or chargeid-  dependent Green’s functions was given by Shao, Langreth,
teracts with a metal there may be both phonon and electroand Nordlandef? The procedure followed in the present pa-
processes going on in the surface. Low-energydV) scat-  per, however, is simply to linearize the time-dependent NCA
tering of rare gases, for example, is dominated by phonorquations* and then iterate them to self-consistency, thus
processed? neutralization of high energy~ keV) ions in  obtaining the linear-response functions exactly within the
scattering is obviously caused by electroritharge ex- NCA.
change processed? Of course, there are cases where both An eventual application might be to the damping or line
mechanisms might contribute, for example vibrationalshapes of adsorbate vibrations, in situations where the Kondo
damping~*3for CO on Cu and Pt or excitation of molecular or correlated mixed-valent states could have anomalous ef-
vibration in scattering for NO/Ag*~" In any case there is fects. For example, NO/GL11) has been recently argu#d
experimental evidence of nonadiabatic electronic coupling irto be a Kondo system on the basis of an experimental deter-
a number of simple cases including desorption of adsorbechination of the Anderson model parameters. Undoubtedly
molecules®~2° damping of vibrational modes of molecule- there exist many other such systems with equilibrium param-
surface systen®2?and charge-transfer in ion-surface scat-eters in an interesting range. More generally, a practical
tering and desorption experimerts2°Recently, this role of scheme for molecular dynamics at surfaces in the presence of
electronic non-adiabaticity has been reemphasized througlectronic dissipation has been develdBeathd successfully
laser-induced desorption experiments and the accompanyirapplied?® This scheme used friction coefficients, related to
theory?6-28 the charge susceptibilities calculated here, but neglecting the
The usual way to describe charge-exchange processes @orrelations induced by the intra-atomic Coulomb interaction
surface problems is by means of a time-dependent Andersaonsidered here. In such problems one might expect to be in
model?®* Many treatments neglect spin and the intra-the range where such neglected correlations should be im-
adsorbate Coulomb interactiod, but different improve- portantin a large number of cases; as we see, the presence of
ments have been suggesféd® Langreth and Nordlander these correlations can make a qualitative difference in the
developed a general and consistent solution of the timenature of the response.
dependent degenerate level problem with infirité” It is In this paper we consider the response of the mean occu-
based on the so-called noncrossing approximafld@A)  pation of an atomic level to a shift in the level position, as
(Refs. 35—39 for the stationary problem. This was earlier would occur as the atomic species moved perpendicularly to
justified as an expansion inNL/(N being the degeneracy of a metal surface. The imaginary or dissipative part of this
the electronic adsorbate leyehlthough it is perhaps better response is related to the electronic friction coefficient for a
regarded as a thermodynamically self-consistent and comnovement in this direction. Also related is the response to a
serving approximation in its own right, which except at very change in the tunneling matrix element from the atomic level
low temperatures, which are not generally relevant for thdo the surface. As noted recenfi(!® the interplay between
surface problem, reproduces the correct features of the exatttese two responses can be important, at least when quanti-
solution, including the Kondo and mixed valent states. lItstative results are required. In addition, a level degeneracy
accuracy has recently been studied in comparison with thél=2 or perhap®\N=4, would be more common than the the
exact numerical renormalization-group solution fb=2 at  N=6 results which, in order to simplify the numerical cal-
low temperature&’ culation, we present here. Nevertheless, these are guantita-
The NCA was generalizéfito the nonequilibrium time- tive, not qualitative considerations, which can be relieved by
dependent situation using nonequilibrium double-timeheavier numerical work when specific systems are under
Green’s-function techniques introduced by Kadanoff andconsideration. Here we simply calculate the charge suscepti-
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bility for a model system, and demonstrate for the benefit of

surface theoretical development the huge differences in tem- H =2 em(t)Np+U E nmnm’+k2 €Nkm
perature and frequency dependence that intra-atomic Cou- " m>m’ "

lomb correlations can make under the appropriate conditions, 1

and more generally provide for both surface and bulk com- + \/_ﬁkE (ViChnCm*H.C), (2.1
munities benchmark NCA charge susceptibility calculations m

that have not previously been performed, to our knowledgeyherem enumerates thd states which would be degenerate
Such results may also have application to quantum dots angue to an assumed symmetry in the absence of the small
similar resonant tunneling systems, which should be Kond@ime-dependent perturbatioa,(t) is the time-dependent en-
systems in appropriate parameter regifties® ergy of the adsorbate electronic level, amg=c!c, is the

In the context of bulk problems, dynamic response for thenumber operator for the adsorbate lerelU is the Coulomb
infinite-U Anderson problem has been widely discussedepulsion between electrons on the adsorbate level which
(magnetic impurities Kuramoto suggested a thermodynami- causes the strong correlation. The quantiyis the band
cally self-consistent formalism for general dynamic suscepenergy of the metallic electrons, assumed to depend only on
tibilities via a generating functiondl. The formalism was their other quantum number&, and not onm, and
applied for the dynamianagneticsusceptibility?® Miiller-  n,=c/. cmis the number operator for band electrovigis
Hartmann discussed the=0 limit of the formalism>’ Spu-  the hopping matrix element between adsorbate states and
rious NCA results for low frequencies or low temperaturesconduction stateshybridization. We have included a pref-
were examined®®® Further studies — again on the dynamic actor 14/N; therefore it is not necessary to rescalewhen
magnetic susceptibility — were performed by Maekawa studying theN dependence.

et al® and by Bickers, Cox, and Wilkin%: see also the We takee,(t) to vary harmonically with
comprehensive review article by Bické¥sEor a very recent _
and general review, see Hewsdh. em(t) = €+ em(t) = e+ Sen(Q)exp( —iQt), (2.2

Dynamic charge susceptibility has been explicitly dis- where de(t) is assumed to be small. Therefore the average

cussed in two studies for the Kondo regime. Coleffi@al- . : e
culated magnetic and charge susceptibilities for arbitrary fre>CC- PNy of thenth orbital(ny,)(t) will take a similar form

guencies around =0, within a mean-field theory which is _ _ s
valid in the limitN=c< provided that the filling factor is kept (N ()=o) + 6nm) (1) = (Mo} + & nim) () xR '9(2_’3)
finite®® Though our calculation cannot be extended to
T=0 we can study the temperature dependence for highe¥here(no) is defined to be the occupancy ofie of the N
T. Coleman’s study and ours cover opposite regions in tem@tomic orbitals in the absence of the perturbatiden(t).
perature. We will refer to his results for the susceptibilities in The susceptibility tensor is then defined by
detail. We will try to associate the numerical results which
can be derived with his formulas for low temperatures and SN ()= =2 Xmn() Sen(Q). (2.4)
the results which we get for higher temperatures. The work n
by Jin and co-worker® which presents qualitative argu-
ments designed to cure the NCA's breakdown at very lo
temperatures, is also co_nceptually relateql to our study. Sen=a, 5¢. We take the set of coefficientst] to be nor-
In the following we will present dynamic charge suscep-__ .
o . ’ malized such that
tibilities for a wide range of frequencies and temperatures for
the Kondo regime, the mixed-valence regime, and the empty
impurity regime. As we are mainly interested in dissipative > a2m=N. (2.5
nonadiabatic processes we will usually discuss the imaginary
part of the susceptibility. For comparison we also show dy£qr each sefa] we define a susceptibility
namic magnetic susceptibilities, which we do not claim to be
shown for the first time, but a comparison facilitates the in-
terpretation of our results. Finally we also show results for Xta) (=2 amxmn( Q). (2.9
the single-leveld =0 model(resonant level modgin order mn
to emphasize the large effects the Coulomb interaction hagor cases with simple symmetries, there are only two inde-
on the charge response. pendent casegi) the charge susceptibilityqqe Where all
the levels move togethéw,= 1], and(ii) the magnetic sus-
ceptibility xmagn Where the mean position of the levels is

Il. MODEL unchanged = ,a,=0]. The magnetic susceptibility, which is
easy to calculate within the NCA and for which a number of
studies already exist, is considered here for comparison and

For describing the interaction between electrons on theliscussion.

degenerate electronic level of the adsorbate particle and con- Following Colemar’ and Langreth and Nordland&rwe
duction electrons in the metal, we consider the followingperform the infinitet limit by adopting the slave-boson
time-dependent Anderson Hamiltonian technique. The Hamiltonian is rewritten

Generally one wants the response of a linear combination
WEmam5<nm) to a specified combination of level shifts

A. Degenerate level
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1
H=>, .sn(t)n,nﬂL;n €Nim+ \/_N%:n (Ve bem+H.c); S

m
(2.7) 4
G
it must be studied in the subspace where the number operator

FIG. 1. Physical adsorbate electron propagaér,t’) in the

Q=b'b+ > n,, 2.9 NCA
m
D. Conduction-band electrons
has the eigenvalue 1. The dependence of the NCA equations on the band elec-
trons can be expressed in terms of the the quaKtjtwhose
B. Single level retarded form is given in frequency space by

As we are especially interested in the effect of the degen-
eracy and the intra-adsorbate Coulomb correlation, we com- KR(w)=2 |Vk|2m.
pare all results with results for the nondegenerate model K k
(N=1) or resonant level model or Fano-Anderson model, ayhile
variant of which has often been used in the surface charge-
transfer problem. The Hamiltonian is K<(w)=e P*K”(w)=-2ImKX(w)f(w), (2.11

wheref ()= (exp(Bw)+1) L. In particular,

(2.10

H=e(t)n+ >, gne+ > (Viclc+H.c). (2.9
. K —|mKR(w)/7T:§k: IVil28(w—€)={(|V]?p)(w),

Heren=c'c is the number operator for the adsorbate level. (2.12
For this case there is but a singteand hence but a single
susceptibility. Similarly if we were to increade¢ but keep
U=0, the charge and magnetic susceptibilities would b
equal to each other and larger by a factomof

wherep is the band density of states. As previously, we take
& simple parabolic form fo¢|V|%p), such that

A[1-(w/D)?], |w|<D

CImKR( ) =
Imk™(w) [o, lo|>D.

(2.13

C. Terminology

. ) i The real part is then given by a Kramers-Kronig relation
We take over the real-time Green’s function terminology
Al2w w?
——|1 In

of Langreth and Nordlandéf,using, for example, the nota-

tion iG(t,t’) for the adsorbate electron Green’s function ReKR(w)= 1D By
(Tenm(t)el (). We always assume a sufficient symmetry
that the basis may be chosen so that it is diagonah.irin For comparison with earlier papets*® one should notice
fact we usually suppress tie subscripts altogether, because that the width parameteX in this paper is the same &K\ in
there is nom dependence in the charge susceptibility casdghe earlier papers due to the different definitionvofn Eq.
an=1. Similarly, the slave-boson Green’s function is (2.7). All energies and temperatures in this paper are mea-
iB(t,t")=(Tb(t)b™(t")). According to conventions defined sured in units of the new. Furthermore, in all our numeri-
before®” we use retarded@R, BR) and advanced@”, BA)  cal calculations we takB =5 in these units.

propagators, and less tha@{, B<) and greater thanG~,

B~) propagators. Usually we write only equations for the E. Connection to vibrational damping and friction coefficients
retarded and less than quantities, advanced and greater than at a surface

propagators fulfill similar equatior’§:** As long as we have

a time-dependent nonequilibrium problem there are two time{h
argumentstt’); for an equilibrium problem propagators de-
pend on the time differencé{t’) only. Equilibrium quan-
tities are marked by the subscript “eq.” In equilibrium the Je
fermion spectral density, for example, is given by SF(Q)=——=48(n)(Q), (2.19
—ImGEq(w)/wzlmGQq(w)/w, the occupied fermion spec- 9Q

tral density byG:q(w)/ZW, and the total adsorbate charge whereQ is the appropriate nuclear normal coordinate. There
after integration over frequency bijq(t—t’ =0). Amore will also be a force induced by the change in the magnitude
complete summary of our notation for the thermal equilib-and phase o¥/, as the nucleus moves. The effect of varying
rium theory is given in Appendix AG is the physical ferm- the magnitude oV, has been neglected in early work in the
ion propagator for the single-level cagehere there is no field,> although it has been suggested that in some situations
B at all). For the degenerate level case the physical fermiorthe cooperative or cancelling effect efand A changes can
propagator consists of a convolution of the auxiliary propa-be important when quantitative results are ne€ddebr mo-
gatorsG andB, as illustrated schematically in Fig. 1. tions parallel to the surface, whefeand e would vary only

1+w/D|| (214

1—w/D’

Consider an adsorbate oscillating in some normal mode at
e surface. The forcéF({2) on the nucleus induced by the
change in level positiode() will be
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due to deviations of the surface from planarity, the force due

the change in phase bf; is crucial. Thus the discussion here N
using only Eq.(2.15 is not applicable to the parallel motion ¢ ¢
case, and incomplete for the perpendicular motion case. Al- . >
though the rectification of this deficiency is relatively simple, N B LS
it involves other response functions thg@age and so is > @
more appropriately discussed in a separate publication.
Using xcharget0 €Xpress Eq2.19 in terms of the nuclear K
motion gives ¢ ¢
e ——-
Py
oF(Q)= (é’Q) Xchargéﬂ)gQ(Q) (2.19 )
Inserting Eq.(2.16) into Newton’s equation of motion gives  F|G. 2. Self-energies in the NCAa) S (t,t’) for the auxiliary
the following equation for thécomplex (: fermion and(b) TI(t,t') for the slave boson.
2
02=02— i(ﬁ) Yenarad Q) (2.17  of integral equations, which can specify the deviation from
gQ) ~enargeT equilibrium more explicitly. The general time-dependent so-

lution, be it in the form of the integrodifferential equations or
in the form of the integral equations, is the basis of our
derivation of the linear response in Sec. IV.

whereM is the mass and}, is the mode frequency in the
absence of level repopulation. Solution of E8.17) gives
the shifted resonant frequen€y and damping constany,
the latter being minus twice imaginary part of the complex
resonant frequency: A. Degenerate level

1 IMXcnared Q) The equations for the retarded propagators are the follow-
Q)= (&Q) — (218  ing:

where, to simplify the discussion, we have neglected the corfig,— e— 5em(t)]G,Ff](t,t’)
rection involving the frequency derivative of Rewhich is
usually negligible in any case.
The friction coefficienK_ is c_iefined as the ratip of nucle_ar =8(t—t')+ f dt;SR(t,t)GR(t,t), (3.1
force to nuclear velocity in the slow limit, that is,
K=M y(0). This is the limit in which vibrational damping is
usually discussed, because normally one expects vibrational R R )
motion to be slow on the electronic time scale due to mas!s‘?tB (tt")=o(t—t' )+f dty 1T7(t, 1) B7(ty,t). 3.2
ratio arguments. It is also the limit used in molecular-

dynamics theory of Head-Gordon and Tuflyin this limit  The NCA expressions for the self-energies, as illustrated ge-
one may use the Korringa-Shiba relation E85) to express nerically in Fig. 2, are specifically given for the retarded

the friction coefficient in terms of the static response, functions by
(d(n)) (2.19 1
dQ ' ER(t,t’)=NK>(t—t’)BR(t,t’) (3.3

which can equivalently be written in terms of the phase shift

& through the Friedel rufé (n)=é/x. Equation(2.19 is  and

thus more general than its original derivations in the case of

potential scattering® or in the case of th&J=0 Anderson 1

model’*® MR(t,t) = = K<(t' —H)GR(t,t'). (3.4
However, we know that the presence of the Kondo or N*m

correlated mixed-valent state may provide a slow electronic

time scale, which will necessitate keeping a finite frequencyJsing the equilibrium functiongsee Appendix 4, these

in Eq. (2.18. In addition, even for very slow nuclear motion, €quations can be transformed into the equivalent integral

K may have anomalous temperature dependence becauseégiuations

the slow electronic time scales. The extent to which these

effects should occur is one of the subjects of this paper.

Gﬁ(t,t')zGEq(t—t')JrJ dtlssq(t—tl)J dt,

) o X[ Sem(ty) Sty —ty) +2R(ty ) — eq(tl ty)]
The general time-dependent generalization of the NCA
was given by Langreth and NordlandérFor the sake of XGR(ta,t") (3.9
completeness we repeat the integrodifferential equations
given before. These equations are rewritten here in the forrand

Ill. GENERAL TIME-DEPENDENT SOLUTION
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BR(t,t'):Bsq(t—t'Hf dtlssq(t—tl)J dt,

X [TIR(ty,tp) — TIg{t; —t5) 1BR(t, ).

(3.6
The equations for the lesser propagators are
U&—e—aqmﬂeéum>=fdupﬁamoemumw
S(4t) Gty t)],
(3.7
iatB<(t,t’)=f dt,[TIR(t,t;)B=(t;,t")
+I15(t,t,) BA(ty,t7)], (3.9

where the self energigsee Fig. 2 are in this case given by

2<(t,t')=%K<(t—t’)B<(t,t’), (3.9

I=(t,t')= %2 K>(t'-t)Go(t,t’).  (3.10

The equivalent integral equations are
G;(t,t'):f dthSd(t_tl)f dto{[ Sem(ty) o(t1—t3)

+3R(ty, 1) ~ 35t~ 1) IG (1ot
+3 (g, 1) Ga(ta,t))}

)
(3.11)

and

<(t,t’)=J’ dtle;q(t—tl)f dt,

X{LTIR(ty,tp) —TIg{t; —t) IB=(tp,t")
+ T (t,t5) BA(t,, 1)} (3.12

B. Single level

Both integrodifferential and integral equations ®F and
G* are the same as in the case of the degenerate level.
self-energies are much simpler:

SR(tt) =35 (t—t")=KR(t—t") (3.13

and

SE(tt) =32 {t—t")=K=(t—t"). (3.149

IV. LINEAR RESPONSE AND DYNAMIC
SUSCEPTIBILITIES

T. BRUNNER AND D. C. LANGRETH
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GR(tt)=G(t—t")+SGR(t,t'), 4.1

with similar definitions holding for the deviations from equi-
librium of the other quantities. Then the equations of Sec. IlI
are linearized, i.e., all terms containing the deviations in qua-
dratic or higher order are neglected. The double Fourier
transform of deviations such aﬁssff(t,t’) vanishes unless its
two frequenciesw and o’ are related byw'=w+Q. The
frequency(l is a parameter, rather than an active variable, in
the linearized equations, so we can take the Fourier trans-
forms to depend on a single active variable defining, for
examplesGR(w) by

SGR(t t’)=eX|:(—iQt)J d—wexr[—iw(t—t’)]b‘GR(w)
mi = 2 mi =
4.2

The same defining relation is applied for the other propaga-
tors and self-energies.

A. Charge response of degenerate level

For the charge response,,= 1 so that none of the quan-
tities depend omm; therefore we omit this subscript in the
equations in this subsection. By linearizing E(&5), (3.6),
(3.3), and(3.4), respectively, we obtain the following equa-
tions for the retarded functions:

SGR(0) =G5 w+Q)[se+ 53R (w)]GH(w), (4.3
SBR(w) =Bg{ 0+ Q) STI¥(0)Bi{w), 4.9
SSR(w)= f%—ww ©)oBR(w,), (4.5
R dwy < R
(w)=fﬁK (01— w) G (wq). (4.6)

Similarly, by respectively linearizing Eq<¥3.17), (3.12,
(3.9, and(3.10, we obtain the following equations for the
lesser functions:

8G™(0) =G w+0)(Se+ 53R (0))Gof )
+Gof @+ Q) (Se+ 53X ))Gof ®)

The +G 0+ Q)55 (0)Ghf w), 4.7
8B~ () =B{w+Q) 8% (w)Bsw)
+Bgf 0+ Q) 811 (w) B w)
+Bi {0+ Q)" (0)BLfw), (4.9

dw, 1
O3 (w)—f—NK<(w—w1)5B<(wl), 4.9

With the full general time-dependent solutions at hand the
derivation of the linear-response approximation is no prob-
lem. All the quantities in the following are written as sum of
equilibrium quantity and the deviation from equilibrium
caused bydeq,(t) [see Eq(2.2)]. For example,

dwl
5H<(a))=fEK>(w1—w)5G<(w1). (4.10

Once the above four equations are solved, it is a straight-
forward matter to calculat®cnagd{2) using
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then we calculatélIR(w), 6BR(w), 62 (w), 6GR(w), and
so on. The set of iterations for the lesser functions is started
with

8G=(0)=Ggfw+ Q) (5e+ 52%(0))Gof w) + G 0+ Q)
X (8e+ 63M(w))Ged ), (4.19

and then we proceed in analogy. Typically 10—20 iterations
were required for convergence, although at I@wandN an
order of magnitude more were sometimes required. In terms
of the number of grid points, the convergence was mono-
tonic and slow, the error appearing to diminish only a bit
faster than~C/n,, wheren,, is the number of points within
o the lowest-energy scale of the probleify(in the most dif-
ficult cases Typically n,'s of 10°~10° were required for

FIG. 3. Diagrammatic representation of the dynamic charge sus- .
ceptibilty in the NCA: xenargdt—t')= — N times the retarded part stable results. The consta@t appeared to be substantially

of the displayed sum of diagrams. The magnetic response is dete maller in magnitud¢opposite in signfor Xchargecalculated

mined by the first diagram only. rom Eq. (4.13 than for xcharge Calculated from Eq(4.12),
leading to rather faster convergence for the former, a fact
that was exploited at low frequency and temperature, where

do
5<”m>(9):fz5(3<(w)- 4.11 |C| tends to be large.

. . C. Magnetic response of degenerate level
Then according to Eqgs(2.4) and (2.6) with a,=1, the

charge susceptibility is For the magnetic response everything works correspond-
ingly. For example, from Eq(3.4) one finds that

3 do 6G~(w) 1 de
Xenargd V)= "N | 50 =5 —- (412 STIR(0) =23, f 5K (01— ©) 8GR (w1),
N m 277
The charge susceptibility can be represented graphically by (4.16

the diagrams, in Fig. 3. For deriving the equations giveninstead of Eq(4.6). Similarly, the equation analogous to Eq.
above from the diagrams, one must take care of the propgn.3) is

projection on the subspa€g=1. Q conservation can also be

used to derive the alternative formula f@gharge SGR(0)=Gi{w+Q)[ andet 52%(0)1GE(w),
(4.17
dw 6B<(w) . . .
Yerardd Q)= | =—— (413  While Egs.(4.4) and (4.5 remain unchanged. Inserting Eq.
charg 2w e (4.17 into Eq.(4.16 and using® ,a,=0 gives

as discussed in Appendix B. R doy _ R R R

A thermodynamical self-consistent scheme via a generat-911" (@)= J 5 K (017 0)Gef 0+ Q) 527 (0)Gef ).
ing functional for calculating general susceptibilities in the (4.18
NCA was suggested by Kuramotblt was applied for the
calculation of the magnetic susceptibility; if it were to be Equations(4.18), (4.4), and(4.5 form a closed set of equa-
applied for the charge susceptibility it should coincide withtions for SIIR, 5BR, and 5%R, but since there is no driving
the results in the present paper. Finally a direct derivatiorierm, they imply that these quantities all vanish. For the re-
with the Kubo formula via then-n correlation function is tarded part there is only one equation of interest, which is
also possiblécompare Ref. 66 Then one must take care to Eq. (4.17) with s2R=0. Using the same argument for the
select the appropriate diagrattidef. 37, Appendix G in Ref. lesser quantities, one finds similarly that od, is differ-
62). Jin and co-worker& whose work we discuss further in ent from zero:
Appendix B, apply different schemes for different parameter
regimes. 8G ()= ande[Gif 0+ Q)G w)

+ G 0+ Q)Ghof )]. (4.19
B. Numerical procedure

After solving for the equilibrium functions by standard Then, since

procedures, the linear-response equations are solved by itera- do
tion. The set of iterations for the retarded functions is started E (N (Q)= E f Z—am5G;(w), (4.20
with m m m

R R R one finds, upon substitution of E¢4.19 and use of Egs.
0GT ()= 6eGef 0+ Q)Gef @), (414 (2.5 and(2.6), that
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do g <
Xmagd )=~ Nf 5 [Gefw+Q)Gefw)

+Gof 0+ Q)Gofw)]. (4.2

Since the magnetic susceptibility can be directly calculated

from equilibrium quantities, there is no necessity for an it-
erative proces§.e., for a summation of diagramsas for the
charge susceptibility.

The graphical
ponse is given by the first term in Fig. 3. Closed fermion
loops do not contribute to the magnetic
CEmamK ...G...G...=0) so all the other terms in Fig.
3 are zero. Formuléd.21) for the magnetic susceptibility has
been given beforEq. (4.2) in Ref. 56, Eq.(10) in Ref. 57,
and Eq.(5.70a in Ref. 62. The derivation here generalizes
these to less specific spatial symmetries.

D. Response of single level

T. BRUNNER AND D. C.

representation for the magnetic res-

response

LANGRETH

2.0
Frequency ®

0.0 2.0

FIG. 4. N times the real spectral densipy for e=—1.5 and
T=0.002, withp according to Eq(A15) for N=20 and Eq(A19)
for N=1. The occupied portiongEqgs. (A16) and (A20)] are indi-
cated with heavier lines. The inset details the Kondo resonance

The equations for the response have the following formswhich peaks above the Fermi level B§~0.022. The total charge

5GR(w) = 8eGif w+Q)GE{w), (4.22

8G~(w)=Se[ G w+Q)Gof w) + G 0+ Q)Gof )],
(4.23

and

do 86~ (w)

X(@)=- 21 e

(4.24)

The diagrammatic representation is once again the first term

in Fig. 3.

V. RESULTS AND DISCUSSION

We begin this section with some preliminary discussion

of energy scales and spectral densities, and present what

found to be a remarkably successful approximation to

Xcharge Which we call the spectral density convolution ap-
proximation (SDCA). Then in Sec. V B below we present
results forN=20 as one approaches the Kondo regime, an
in Sec. V C compare them with mean-field theory results. |

caseN=6 in all three regimes: empty orbital, mixed valence,
and Kondo.

A. Spectral densities and the spectral density
convolution approximation

In order to facilitate the discussion, we present Fig. 4

n
Sec. VD we present results for the more nearly practicaP

(n) is 0.92 forN=20 and 0.86 foN=1.

(A17). For comparison we also show the equivalent func-
tions for a single levell=1, U=0) with the same param-
eters. Here the total spectral weight is 1 and the occupied
part gives(n)=0.86.

The Kondo resonance is centered at an endiggbove
the Fermi level. Here we findy~0.022, in good order-of-
magnitude agreement with the Kondo temperature
Tx=0.018 as calculated from the Bethe ansatz forftitffa

1N
&el+C73/2N A o~ mlel/A
7D,

TK:2’7T

(5.9

The derivation of Eq(5.1) essentially assumed a rectangular

band, that is—ImKR(w)=A for |w|<D, rather than Eq.
.13, but we used a logarithmic scaling argunféro ob-

fain D,~e YD so thatD,~3 in our case wher®=5. In

principle one should also distinguish a temperature scale

T. which differs from Ty by a factor of theN-dependent

(yViIson number 1), but that distinction is beyond the ac-

curacy scale of the discussion here, and we will always talk
f Ty, Tk, andT_ as if they were the same.

The temperature in Fig. 4 is chosen about ten times lower
thanT, (T=0.002), therefore the width and position of the
Kondo peak are close to their valuesTat 0; that is, there
should be no significant changes as the temperature is further
lowered. Of course, within the NCA there are changes as the
temperature is lowered, where a spurious peak appears at the

JFermi level. The temperatuiic, at which this NCA break-

which shows the real spectral functions for thermal equilib-down occurs, as given by Eq5.53 of Ref. 62, is

rium, for a level positione=—1.5 approaching the Kondo
regime for the largé\ case. Here the Haldane invariant level
position[Eqg. (CD)] €* 0.78. We show both the total and
occupied spectral functions timés For the latter, the area

TXca=0.001, although our actual calculations suggest that
the breakdown does not occur until the temperature gets
somewhat lower than this.

With increasing temperature there is almost no change in

under the curve is just the occupancy of the atomic orbitathe charge for the single-level case, whereas for the degen-
(n), in this case 0.92. For the former, the area would be juserate level one can observe a change from a low-temperature

the orbital degenerady (hereN=20) if it were not for the

value (0.92 to a value at higher temperatu¢@.99 (strong

fact that the infiniteU has pushed a substantial part of thecoupling to weak coupling, see, e.g., Schlottméhifig.

spectral weight off to infinity, leaving behind at finite fre-

5.1 9. WhenT becomes larger thar,, the Kondo resonance

guency, an area of 2.48 in this case, in agreement with Edpecomes broader, and gradually vanishes.
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We conclude this section with a discussion of a simple

A ; . 0.10 .
approximation forycharqeWhich we call the spectral density —— T=0002
convolution approximationSDCA), which rather remark- T
ably we have found to be accurate over a wide range of the 0.08 - T-0.006
parameter space. To motivate it, suppose we had an uncor- — T—0015
related(one-body N component Fermi system with density 2006 [ 1-00m
of statesp(w). Then the dissipative part ¢fcagefor such a s -—-T N
. (3] —-— T=0.200" ™\
system would be given by =X 04 7
e O
V74 | BN D
2 ImXchargeZZWNf dwp(w)p(o+Q)[f(0)(1-f(o+Q)) 0.02 /Cf//
—fo+Q)(1—f(w))]. (5.2 000 Lo Dreri e L T

i ) ] 0.001 0.010 0.100 1.000  10.000

The first term could be thought of as representing absorption Frequency Q

of a vibrational quantum by electronic transitions from occu-

pied states to unoccupied ones, while the second term as FIG. 5. Dynamic charge susceptibility in the NCA fdr=20
giving the contribution of the corresponding emission pro-ande=—1.5 at different temperaturés

cesses. Thus the SDCA consists of simply noting that for our . i i

systemp(w) is given by Eq.(A15), and then using this in at about)=2. As we will see below, this energy is close to
Eq. (5.2) for xcharge despite the fact that our system is ob- the response peak for the single level. With lower tempera-
viously not uncorrelated. We have found empirically by turé the Kondo feature in the spectrusee Sec. VAbe-
comparison with the calculations, which are exact withincoMmes more pronounced, and we observe a second peak in
NCA, that the SDCA is valid in the empty orbital and mixed the response at abo(it=0.02(aboutTo). The interpretation
valence regimes, and also in the Kondo regimesifT,; and ~ Of the charge response for high frequencies andTferT,

if O is large (~0.5) it is valid at all temperatures in the USing the SDCA is quite easy: the peak in the response at
Kondo regime. aboutQ) =2 is essentially due to transitions from the occu-

That the SDCA should work so well is rather remarkable,Pied states around the shifted leveentered atw~—2 in
because it indicates that all vertex corrections are negligibléhe spectral weightto empty states close to and above the
wheny is calculated in this manner. This is not the same ad €'mi level. The peak at abo(t=0.02 is due to transitions
the NCA procedure of neglecting the crossed vertex correcdfom occupied states close to, but below, the Fermi level into
tions in calculating the real spectral functions franand ~ the unoccupied states in the Kondo resonance. This interpre-
B [see Eqs(A13) and(A14)], but one must also neglect the tation is of course oversimplified, as it does not take into
type of vertex corrections one generates from the iteration gfccount the strong temperature dependence of the Kondo
Egs. (4.3 and (4.7), or from terms beyond the first term in resonance |tself, wh|gh causes the low-frequency response
Fig. 3. The latter, however, are virtually never negligible, P€aK to shift quite a bit with temperature. _
even qualitatively. This means that corrections like these, 1he SDCA becomes wrong for lower frequencigere
which would also occur in the four-line correlation function Pelow, say,Q1=0.5) and temperatures beloW. First the
to which Egs.(5.2) and (A15) are zeroth approximations, lOW-frequency peak shifts to lower frequencige.g.,
must be mostly canceled by further vertex corrections in thig2?=0-01 for T=0.01). With lower temperaturegstrong-
correlation function. Yet, this probably cannot be explainedcoupling limi) we observe a two-peak structure with the left
by some undiscovered Ward identity, because the SDCA iB€ak now much closer to the right peak; we will show below
not exact within NCA, and is not even approximate &s that this form of the curve agrees very well with the mean-
goes much below, unlessQ is large. field results around’=0. Though the NCA cannot be ap-

Here we use the SDCA principally as an aid in the physi-p“ed for temperaturgs too low we believe for the parameters
cal interpretation of our results, although in discussing fric-chosen our calculation &t=0.002 to be close to a tempera-
tion it is used as an interpolation-extrapolation tool. ExcepfUre where the dynamic charge response saturates. The prox-
there, however, the real spectral functions are not used in arl{lity of the T=0.002 and 0.003 curves can be seen as a sign
of the calculations. This is an important point, because th&! this saturation. These were the lowest temperatures fea-
most significant error made in the NCA occifrs obtaining sible for low frequency with the present numerical method.
the real spectral functions from the “auxiliary” quantities At the lowest temperatures the low-frequency charge re-

G andB. Here all our principal results below follow directly SPonse is cut off below roughl2~0.07, just in the region
from the auxiliary quantities alone. where the magnetic response starts to fdeak below This

feature is preserved in mean-field thedsge Sec. V €

In Fig. 6 we show the imaginary part of the dynamic
magnetic susceptibility for the degenerate level. Calculations

Here we present our results for the NCA susceptibilities atike that have been done befate’? They are included here
N=20. In Sec. V C we will compare them to results calcu-in order to facilitate the discussion and to make a comparison
lated using the mean-field theory of Coleman. The dynamiavith mean-field theory. There is a broad peak for higher
charge susceptibility is shown in Fig. 5. At high temperaturetemperatures which shifts at lower temperatures. For
the Kondo feature in the spectral density is wiped out, leavT<0.005(as in the charge responshe magnetic response
ing only one relevant energy scale. The response has a peblicks into the low-temperaturéstrong coupling behavior.

B. NCA susceptibilities at largeN
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FIG. 7. Mean-field approximation of the dynamic charge sus-
ceptibility for the degenerate levelNE 20) according to Coleman’s
formula (C3) for e= — 1.5 ore* = — 0.782.[Parameters froniC2):
Here there is one narrow peak which is located atAt T=0, €=0.025 andA=0.0037; atT=0.007,€=0.028, and
~0.025. This is roughly the position of the Kondo reso- A=0.0023.
nanceT . The response is completely determined by the aux-

iliary G_fun_ction, which h{;\s only one energy scale set by+(w/DL)2]71) whereas our density is parabolisee Eq.

Tk, which in turn determines the magnetic response. The, ;31 The difference is roughly compensated for by setting
level position e does not play a rolgexcept indirectly D,=D exp(—1/2). While Coleman’s results are valid for a
through the determination diy). Once again we can choose \ije hand, our numerical NCA calculation is applied for
T low enough to see the response saturate. Althouglces with bands that cannot be called very wideg.,
T=0.0005 is slightly belowl\c, [see Eq(5.53 of Ref. 63,  p=5A andD,~3A). Furthermore it is not clear how far in

it is still too high to observe the spurious NCA singularities the Kondo limit one has to beg/<A) for Coleman’s for-

for low frequer_10y7.2 When plotting Inx(Q)/€) one can ob-  myjas to be applicable. Next, the population of the atomic
serve Lorentzian behavior for higher temperatures and geye| will not perfectly coincide. Also, while the mean-field
resonance feature &~0.025 at lower temperatures, that regyits are valid foT=0 and for very small temperatures,
was similarly seen befor€. The absolute values are Very and the NCA results for temperatures that are not too low, it
large, much larger than the charge response, as expectgdnot clear whether there should be some overlap of the two
from simple arguments. approaches for temperatures in between, or, if there is a tem-
perature ‘“gap,” what the susceptibilities might look like
there. With all these restraints in mind, it will turn out that
both approaches can be very reasonably connected and we
can gain a very good insight into the behavior of the suscep-

FIG. 6. Dynamic magnetic susceptibility in the NCA for
N=20 ande= —1.5 at different temperatures

C. Comparison with mean-field theory

Here we compare thid= 20 results in the Kondo regime
with the mean-field theory of Colemdsee Appendix C for ~< " *
detaild. He studied the infinitéd Anderson model by con- tPilities over the whole temperature range.
sidering fluctuations around a broken-symmetry mean-field In Figs. 7 and 8 we ShQW the imaginary part fpr .
theory in leading order in N.** He calculated numerical charge and magnetic dynamic response calculated with Cole-
results for the dynamic susceptibilities f6= 0, and his for-
mulas can be applied for finite though small temperatures,
too. His results are valid in a limit where NCA calculations

80

become wrong. We will try to make a connection between
our finite-temperature NCA results and Coleman’s low-
temperature results. The mean field theory results have been
showrf® to be exact forN= for any finite filling factor
Q/N. Here we apply them folN=20 andQ/N= 5 where it
could be hoped that they still would be a good approxima-
tion, although they obviously break down &sapproaches
the temperature of the mean-field phase transition, which
does not occur for any finitél. The NCA should also be
very accurate for aiN this size, but it breaks down fdF’s
less thanTyc, - SinceTye, is typically less than where the
mean-field phase transition occurs, it might be hoped that
there would be a region of overlap.

There are several difficulties when directly comparing

—— T=0.000
-------- — T=0.001
T=0.003
———- T=0.005
--=-- T=0.007

"

0
0.001

0.010

0.100 1.000
Frequency Q

10.000

FIG. 8. Mean-field approximation of the dynamic magnetic sus-

Coleman’s results and our NCA results. Coleman uses 8eptibility for the degenerate levelNE 20) according to Coleman’s

Lorentzian density of band state§— ImKR(w)=A[1

formula (C4) for e=—1.5 ore* =—0.782.
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man’s formulas(C3) and (C4). The figures should be com-

pared with Figs. 5 and 6. We find an agreement that is by far 010

better than qualitative. Taking into account the different sort Y

of approach and all the problems for a direct comparison that 5 005

were discussed above, there is a surprisingly good agreement ;

for temperatures between roughly 0.001 to 0.005, concerning = 0.00

both absolute values and characteristic frequencies. The :

mean-field phase transition fod= occurs forT~0.01, §0.10

and the mean-field results for finité¢ should be expected to = 005

grow poor asT nears this value. Our NCA results show how S

the low-frequency peak in the charge susceptibility, which 0.00

increases in strength in mean-field theory as the temperature <

is raised, turns around and begins to decrease again, and g 005 .
ultimately disappears at high temperatures. Coleman himself =

applied his formulas only fof =0. Our comparison shows 0.00 .

that they can be applied for small finile too. It also sug- 0.1 1.0 10.0
gests that NCA and mean-field theory have a regime of com- Frequency Q

mon validity, thus bridging the gap between low and high

FIG. 9. Dynamic susceptibilities in the empty impurity regime
(e=2). The top and middle panels are fdé==6 [(n)=0.08], while
the bottom panel is foN=1 [(n)=0.10].

temperatures.

D. NCA susceptibilities in various regimes forN =6 ] ] ] o )
i __little different. The fairly substantial difference in sharpness
Here we present and discuss results for the empty orbita especially at low frequencigbetweenN=1 and 6 is to a

mixed-valent, and Kondo regimes. We will try to relate our o,y degree due the point discussed above, that the width of
discussion where possible to concepts that might be impoty,. |avel isA/N and notA. so that we are comparing tran-
tant for electronic damping of atomic motions or friction at iiions in states with diﬁe,rent widths.

metal surfaces. For the latter purpose one should think of a We now consider IMygyargd ©)/€2, which at low frequen-
resonance half-widtth on the order of an eV, and tempera- qjoq is rejated to the electronic friction as discussed in Sec.
tures and frequencies varying through a range that is typip £ ¢ this quantity is constant in the range of frequencies
cally around 0.01-0.1 times this. To simplify the numer'csappropriate to the atomic motion, then the system will be-
we chose to present the results fée=6, althoughN=2 or have as it had a friction constakt=My(Q), where y is
possiblyN=4 are more typical for real surface problems to given by Eq.(2.18. From the curve foN=1 in Fig. 9 we
which the model would most cleanly apply. Here we will g4 -+ IMkchargd 1)/ =0.013, in good agreement with

simply be content to say that we have made preliminar){he exact low-frequency value for the wide-band model
calculations forN=2, and found that they are qualitatively

similar to theN=6 ones. 1 A2

When presenting the results, we always give for compari- IMXchargd D/ Q= — —5—757=0.0127. (5.9

X . 7 (e“+A%)

son the single-levelN=1, U=0) results, in order to em-
phasize the vast qualitative differences that can occur. T@xcept for the highest temperature, one findsNor 6 that
make this comparison we choose theparameter foN=6  ImypagdQ2)/Q~0.0015 in the lower half of the frequency
to be the same as fd¥=1 (and as before use this parameterrange shown in the figure. A good part of the difference
as the unit for all other quantitigsThis has the effect that between this and the friction for the single-level model
the (large) width of an atomic state below the Fermi level is (U=0) is due to the difference in level widths discussed
roughly the same foN=1 as it is forN=6 (i.e.,A). Onthe above. In the empty orbital regime, the most comparable
other hand, when the level is above the Fermi level in theJ=0 case would be obtained by letting—A/N in Eq.
empty orbital regime, the level width is rough/N, so that  (5.3) and then multiplying the results by, thus replacing
the width in the single-level model will be larger by a factor Eq. (5.3) by
of N than in the correlated model. Recall that duris the
quantity that has been callddA in a number of previous 1
papers. ImXchargéQ)/Q_ N (_EZW =0.0033, (5.9

We begin with the empty orbital regime, where we show
the results in Fig. 9. Here, in the context of the SDCA, thewhich is only on the order of a factor of 2 different from the
contributions come from transitions from the tail of the den-value for xcnargein Fig. 9. It turns out that Eq(5.4) is exact
sity of states below the Fermi level to the broadened atomiin the correlated case only to lowest orderAihe. The cor-
level above. One does not expect the correlation effects teection term is much larger than that implied by thé/N?
play a significant role for the empty level, and the curvesterm in the denominator of E@5.4); it in fact makes a frac-
show this at least qualitatively, with little anomalous tem-tional reduction to Eq(5.4) of orderA/e times logarithmic
perature dependence except at extreme temperatures. Nevtarms, as may be straightforwardly verified by perturbation
theless for obtaining results that are correct within factors otheory in V. Thus the difference between our result
2, the correlation effects are still important, as shown by thg ~0.0015) and Eq5.4) is not inconsistent with what should
fact that the magnetic and charge susceptibilities are still #e expected. We conclude that even in this empty orbital

AZ
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< 7 FIG. 11. Friction in the mixed-valence regime in the SDCA via
Eq. (5.5, for various values of orbital energy The circles repre-
0.0 - . sent the full NCA fore=0, and were obtained by the slopes of the
"0.01 0.10 1.00 10.00 curves like those in Fig. 10vs Q) instead of logy] at 2 =0.03.
Frequency Q The curve marked) =0 is the single-level curve foe=0; values

for othere’s are smaller and have weaker temperature dependence.

FIG. 10. Dynamic susceptibilities in the mixed-valence regime . . . .
(e=0). The top and middle panels are fdr=6 [(n)=0.4], while around, including crossing the Fermi level wherloes. In

the bottom panel is foN=1 [(n)=0.5]. the correlated case, the peak does not cross the Fermi level as
€ is lowered, but rather remains as if suspended above the
regime where the strong- correlations effects do not pro- Fermi level, sharpening, and weakening as it turns into the
duce much temperature dependence, they are still importatondo resonance, with the broad peak at the atomic level
if quantitative results are required. The friction is very smallPosition reappearing below the Fermi level @ss further
here, because the atomic level is well above the Fermi levelowered. The configuration leading to the strongly
The susceptibilities in the mixed-valent region are showrfémperature-dependent friction persists for a rangeinfthe
in Fig. 10. They are of course much larger in this region. TheMixed-valent regime, and is not unique to our chotce0.
influence of the largés correlation effects are evident not All this is clear from the curves in Fig. 11. As moves
only from the temperature dependence, but the differenclirther below the Fermi level, the resonance in the spectral
between the magnetic and charge susceptibilities. density, which is still above the Fermi Igv_el, sharpens into
A nonlogarithmic plot ofyhargeat the low-frequency end the Kondt_) resonance, and the characteristic Iow-e.nergy scale
of the figure shows that the curves apparently approacRomes within the range of temperatures shown in Fig. 11.
straight lines through the origin, suggesting that a sensibl&0r temperatures exceeding this range, the Kondo peak in
frictionlike regime[see Eq.2.18ff.] has been reached, al- the spectral density weakens, and so does the friction as the
beit with strongly temperature-dependent friction. This canfémperature increases furtHérThis high-temperature fall-
be understood given that the SDCA is a good approximatio®ff of Imy with increasingT is seen again in the figures,

in this region: forQ<T, Eq. (5.2 becomes where we display the charge susceptibility in the Kondo re-
gime. An explicit plot of the rapid temperature dependence
IMXchargd ) df(w) of the dissipation in the Kondo regime is given in Ref. 48.
—:WNJ dw p*(w)| - . In contrast to this is thdJ=0 case, where the choice
QO dw d

e=0 puts a peak inp(w) right at the Fermi level. Then

The form ofp(w) for this case is a single peak whose maxi-Imy actually decreases with increasing temperature, as
mum is about 0.A above the Fermi level, and whose width shown in Fig. 10. This can be understood from Eg5): at
is ~0.2A, but temperature dependent, increasing0% T=0, —df(w)/dw samples only the central maximum of
as the temperature is increased over the range of the curvgd(w), while asT rises it begins to sample the tails as well.
in the figure. Thus Eq(5.5) suggests that the friction is de- This inverse temperature dependence should decrease as
termined by the overlap of the tail of df(w)/dw and the  moves away from the Fermi level, and should reverse itself
lower end of the peak ip?(w). As an illustration of this and whene is a distance~ A above or below the Fermi level. In
of the interesting temperature dependences that can occWig. 11 we show this single levéd =0 curve, just for the
we show a plot of the prediction of E€.5) in Fig. 11. We  casee=0, where it is largest. It is somewhat problematic
note that this is consistent with the results from the full NCAhow to make the best comparison between the two cases in
calculations for the case=0. The SDCA curves show in this intermediate regime. We have continued to follow the
greater detail the transition to the Kondo regime as the temscheme of keeping ouk constant as we go from the single
perature is lowered. level to the degenerate level, a procedure that is clearly sen-

One should note that, unlike the uncorrelatdd=0, sible in the Kondo regime. However one could argue that a
N=1 case, the value=0 is not special. In the former case smaller A would be more appropriate for the single-level
p(w) just consists of a Lorentzian-like curve that follows case in the mixed-valent regime, and that then the single-
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VI. CONCLUSION

0.10
We have provided benchmark calculations of the predic-
0.08 tions of the noncrossing approximation for the so-called
charge susceptibility. These could be useful in several areas
2 0.06 where the Anderson model is relevant, including highly cor-
2 related condensed-matter systems, quantum dots, and the
>§ motion of atoms and molecules outside metallic surfaces.
g 004 With respect to the latter, we showed the connection between
- these results and electronic friction. We show that in two
0.02 regimes, the effect of the intra-atomic Coulomb repulsion
U can lead to temperature dependence of the electronic fric-
0.00 - . tion on a scale as small as that usually associated with vibra-
"0.001 0.010 0.100 1.000 10.000 tional processes. Both the temperature and frequency depen-
Frequency Q dence are qualitatively different from models in whichis

either neglected or treated in the Hartree-Fock approxima-
FIG. 12. Dynamic charge susceptibility foN=6 and tjon.

e=—15.
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ate level case show strong temperature dependence on two

different energy scales, as opposed to those for the single- '
level case which show essentially no temperature depen- APPENDIX A: EQUILIBRIUM SOLUTION
dence except at the extreme temperaflir€0.2. The charge In equilibrium there is no variation of parameters

susceptibilities are very small, as expected. However, these(t)=0]. Then we have the standard Anderson problem.
quantity relevant to electronic friction is pf(2)/{). Thisis  Since the equilibrium quantities are needed for the linear-
as large as in the mixed-valent case, because of the vepgsponse solution, we show the most important formulas in a
low-frequency response caused by the Kondo resonanceyrm appropriate for the real-time Green’s-function terminol-
However, note also that we are not in the simple frictionggy. When presenting the NCA equilibrium results, we refer
limit even at the lowest frequencies shown, and indeecspecially to the work by Kuramotband Colemari®

Imy is neither a monotonic function of frequency nor of

temperature. It can change by factors of 10 over a range of 1. Degenerate level

temperatures that are still just a small fractionMofin short, ] . .

we have an electronic energy scale which is as small as those With the Dyson equations in the usual form the self-
normally associated with the vibrations of the nuclei, alongenergies in the NCA can be represented by the diagrams in

with temperature dependences on this low scale, which cahig- 2, with the auxiliary propagatois and B replaced by
be of either sign. their equilibrium counterparts. The various propagators and

self-energies can be easily derived by applying the
definitions®’ The only thing one must especially take care of

80 y T T is the proper projection on th®@=1 subspacéfor detalils,
T20.0002 see Ref. 31 The retarded propagators are given by the fol-
oo | T=0.0005 | lowing equations:
----- T=0.002 _
C -——- T=0.005 Gefw)=[w—e-Xgfw)] Y, (A1)
2 \  —-—-- T=0.010 . R L
0T ‘ —— T=0.020 1 Bef w)=[o—1lef@)] 7, (A2)
E ............ T=0060
= | AN - T=0.200 o do; 1 N
20 . Eeq(w):fENK (w—wl)Bed(wl), (A3)
o B _ R0 dle< G "
0.001 0010 0100  1.000  10.000 o @)= on (01~ w)Gef 1), (A4)

Frequency Q
and the lesser propagators by

FIG. 13. Dynamic magnetic susceptibility foN=6 and
e=—15, G @) =G )2 { 0)Gef @), (AS)



2590 T. BRUNNER AND D. C. LANGRETH 55

Boy @) =Bl (w)T5{ 0)Bof w), A6 d
ed @) =B @)l 0)Bef o) (A6) —f%lmAs({w):l—(l_l/N)(m- (A17)
Sofw)= f ——K (0—w1)Bgfw1), (A7) The quantity (1 1/N)(n) is simply the probability that one
of the otherN—1 degenerate levels is occupied when one
do tries to add an electron to thmth one. Nevertheless, one
Mofw)= f 2—1K>(w1—w)Ge<q(w1)- (A8)  may still obtain the occupandgjn) from the A< spectrum,
a
The retarded and lesser quantities are connected by thermal _ jd_"’ <
equilibrium relations like (m=N ZwAed(w)' (AL8)

Gof @)= —2IMGE{ w)exp — Bw)/Z, (A9) 2. Single level

with Z being the partition function for the adsorbate level, The self-energy in the single-level case is exactly given
the latter being determined by the requirement Qatl, as by Esq(w): KR(w), and qu(w): K<(w). Here the real
calculated from spectral density(w) is given by

do - - 1
QZJ Z[NGeq(w)-i-Bed(w)]. (A10) p(w)z—;lmqu(w), (A19)

Th ral function i h m rul . . . . .
e spectral functions satisfy the sum rules while Ggq(w)/27r is the real occupied spectral density. Simi-

do do larly to the degenerate case, the equilibrium quantities are
—f7ImG§d(w):—f7lmB§d(w)=1. (A11)  related by

Due to Eq.(A10), the atomic level occupancin) can be Gof @)
calculated either fronG= or B~,

=p(@)f(w). (A20)

do _ do __ All the quantities can be given in closed form for the single-
(n>=Nf ﬂGeq(w)zl_ f ﬂBeq(w)' (A12)  level case, and there is no approximation involved.

The introduction of slave bosons makes b@&hand B APPENDIX B: IDENTITIES AND RELATIONS
auxiliary quantities. The physical adsorbate electron propa- ) . . L
gatorA is given by the diagram in Fig. 1. Vertex corrections Here we list some of the identities and sum rules satisfied

are not considered in the NCA. We have by the linear-response quantities, which we use or refer to in
the main text, in addition to, of course, Kramers-Kronig,
w)= j—[G o+w))B(w]) dQ’ Imy(Q
q( eq( 1 et{ 1 ReX(Q) P Q)’((—Q) , (Bl)
—Gof 0+ w1)Bifwy)] (A13)

which along with its inverse follows for all response func-
and tions from causality. First the spectral density integfAl1)
remain unchanged; that is,

q((u)——f—G do+w)ImBg q(a)l) (A14)

The real physical adsorbate electron spectral depgid) is f d—wlmaeﬁ](w)z J d—wlmﬁBR(w)=0. (B2)
given by ™ ™

1 _ ; . ;
p(w)=— ;ImAEq(w). (A15) Second Q=1 must still hold; that is,

On the other hanqu(w)/ZTr is the physical adsorbate elec- do
tron occupied spectral density. In this thermal equilibrium 5Q(t)zexp(—iQt)f —(2 8G(w)+ 6B~ (w) |=0
situation the two quantities are related by 27\ “m 83)

<

eq
o (@ =pl)f(w). (A16)  This can be explicity shown, most easily by showing
(d/dt) Q(t) =0 via the linearized integrodifferential equa-
Because we leU—x at the beginning, that part of the tions. Therefore the charge susceptibility may be calculated
real spectral weight corresponding to multiple occupancy ogither from Eq.(4.12) or (4.13), as stated in the text.
the degenerate level is shifted to infinity and is not counted It is well known that forT— 0 the NCA does not properly
in the spectral sum rule, which in this case reads represent the Fermi-liquid regim&>"®2 Neglect of vertex
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corrections destroys a proper description of low-energy ex- 0.12
citations. Both the Friedel-Langreth relat?rfor the equi-
librium spectral density 0.10 } —— T=0.020
e T=0,060
----- T=0.200
N 0.08 |
R _ _ .
—IMAS{(0=0)= Ksmz(rr(n)/N) (B4) -
g 006 |
and the Korringa-Shid4 " relation =
0.04 |
_Imx(Q)  m ) 0.02 |
lim =5 = () (B5)

0.00 L . :
0.001 0.010 0.100 1.000 10.000

) , Frequency Q
for the magnetic response are known to be violated. The

spectral density has a very small cusp around the Fermi en- fiG. 14. Dynamic susceptibility for the single level for
ergy =0, and the magnetic susceptibility ¥t2)/Q di-  ¢=—1.5 at different temperatures.
verges for very low frequencie$). These singularities
should show up for temperatur@slower thanTyc, Which
was specified by Bicker¥ Presumably also the Korringa-
Shiba relation for the charge respofiss violated in a simi-  order expression for the Haldane invariant leysée Eq.
lar fashion in the NCA; numerically the limit on the left side (2.32 of Ref. 64
of Eqg. (B5) is hard to determine fogcharge

The violation of the Fermi-liquid relations can be seen as
a consequence of the partial resummation of terms in all . A Dum
orders in IN. Taking into account only diagrams that con- € =€t ;In A
tribute in leading orders in W can remedy this problenf:%®

At frequencies around the Kondo temperature, howeverg o has to determine the complex level positionwith

there must be a summation of infinite orders to dispose of the _~ .~ . .
Kondo divergence. Jin and co-work&seem to follow this %— e+iA by solving the equatiofsee Eq(2.29 of Ref. 64

twofold strategy. It is very well suited for a general qualita-
tive discussion and for deriving formulas for limiting cases Al AB
(e.9.,T>Ty, T<T, 0=~Tk, andw~0). Itis certainly less —[z//(g)—ln—z.
suited for quantitative numerical calculatiofdifferent for- ™ 2
mulas will not render continuous resyltdin, Matsuura, and _
Kurod&® are wrong in their 1991 paper when they claim towith (&) = ¢(} + (£8/2mi)), wherey is the digamma func-
include “crossing” diagrams that are not contained in thetion. The dynamic charge susceptibility is given by
NCA—they do not include crossing conduction electron
lines, and all diagrams suggested in their paper are contained _
in our NCA calculation. What makes the difference from the NA
NCA is the neglect of the self-consistency—the infinite sum- Xchargé2) = A Q+2iA
mation of diagrams at low frequencies and temperatures and
the calculation in leading order inN/instead.

It should be emphasized that besides the NCA there is an +
additional reason for the Korringa-Shiba relations not to be
fulfilled, which is the neglect of impurity-band and band- (C3)
band contributions iny, which was defined just as the
impurity-impurity correlation function. For a finite band- and the dynamic magnetic susceptibility lsge Eq(3.66) of
width these terms might not be negligible. So, for a finiteRef. 64
band, even for the single-level model the Korringa-Shiba re- _
lation is not fulfilled. Only in the wide-band limit§— oo NA 1
with |V|?/D finite) does the susceptibility for the single level Xmagd )= — T m
satisfy the Korringa-Shiba relation, as usually stated.

(CD

e, i
é=¢€ +W’ (C2

-1

A~ -
[;w(gm)—wf)]m

A ~ - -1
;w(—s*m)—w(—s*)]—n} ]

XLPE+Q) = (&) +P(— & + Q)= ()],
APPENDIX C: LARGE- N MEAN-FIELD THEORY (C4)
FOR DYNAMIC SUSCEPTIBILITIES IN THE KONDO

LIMIT AT LOW TEMPERATURES The prefactors are chosen to be in accordance with our con-

Here we present in our notation the formulas from Cole-ventions above. Both susceptibilities fulfill the Korringa-
man’s theory’ relevant to the evaluation here. The band-Shiba relation in the form EqB5). The limit T—0 can be
width D, and the level positiore enter only via the leading- easily performed (&) — In&B/2mi].
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