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Polarizable-bond model for second-harmonic generation
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We develop a theory for the calculation of the optical second-harmonic generation spectra of Si incorporat-
ing the nonlinear surface local field effect. Our model consists of four interpenetrated fcc lattices of nonlinearly
polarizable bonds. Each of them is anisotropic and although they are centrosymmetric, they respond quadrati-
cally to the spatial inhomogeneities of the polarizing local field. The large gradient of the field induced at a
bond due to the dipole moment of a neighbor leads to a second order polarization. In the bulk, each bond lies
within a centrosymmetric environment, so this contribution is canceled out after summing over all other bonds.
However, at the surface it is not compensated and it leads to a large nonlinear macroscopic response. Our
model parameters are fitted to the nonlinear anisotropy measured at 1.17 and 2.34 eV. We calculate a linear
anisotropy spectra for thd 10 surface in agreement with previous measurements. Our nonlinear spectra show
peaks at 1.65 eV for a strain€@d01) surface and at 1.75 eV for(d11) surface, in agreement with some recent
experimental result§S0163-18207)08104-9

[. INTRODUCTION tive close to the surface. More recently, nonlinear anisotropy
and electroreflectance spectroscopy experiments have shown
The electric-dipolar quadratic susceptibility is a third rankthat different components of the nonlinear susceptibility peak
tensor, and therefore it must be null within the bulk of anyat slightly different frequencieS2! These peaks have been
centrosymmetric system. For this reason, a large portion cdssociated to particular interband bulk transitions frequency-
the light with frequency @ reflected from an interface illu- shifted at the surface.
minated with monochromatic radiation atis surface origi- There are different theoretical approaches in the literature
nated, making second-harmonic generatiStG) a sensi- to calculate SHG. The nonlinear surface response of simple
tive optical surface probe for this class of systems. Besidefmetals was estimaté®?® and later calculatédZ® within the
being nondestructive and noninvasive, SHG has the addegydrodynamic model, and microscopic calculations for
advantage of accessing surfaces such as buried interfacesmple metals have been performed using self-consistent jel-
out of ultrahigh vacuum conditions and within arbitrary lium models?®~?® A peak in the SHG spectrum has been
transparent ambients. However, the efficiency of the surfacpredicted at the subharmonic of the ionization thresfold
SHG is extremely low, of the order f 1/c(a3/  and giant resonances were obtained at the frequencies of the
Ne)~10 % cm?/W, whereag is the Bohr radiush the  multipolar surface plasmon and its subharmdtiidhe an-
wavelengthg the electronic charge, ardthe speed of light, isotropy due to lattice effects has been incorporated using a
and very powerful laser systems are required for its observaBoltzmann equation approach for systems with a nearly
tion. Most experiments have been performed only at a fevspherical Fermi surfaé® and within the “Swiss cheese”
selected frequencies, emphasizing the polar and azimuthaiodef! for noble metal$? On the other side, there are a few
angular dependence of the signal for different crystal surealculations of the SHG spectra of semiconductors. Simple
faces and combinations of incoming and outgoinganalytical expressions for model semiconductors made up of
polarizations*? The possible angular dependence of SHGa continuous distribution of polarizable entifiesere ob-
is well understood from a phenomenological point of view,tained by neglecting crystallinity effects. The latter were
in terms of the independent components of the bulk and sutincorporated®>°within a dipolium model that also accounts
face nonlinear susceptibilities and their symmetry originatedor local field effects. A more microscopic approach has been
constraints>~16 employed to calculate SHG from As terminated(13il)
The recent development of high power tunable lasers wittslabs using a tight binding formalisth.
a wide spectral range has stimulated experiments in nonlin- The purpose of the present paper is the development of a
ear surfacespectroscopyIn particular, SHG spectra have simple quantitative theory for the SHG spectra of semicon-
recently been measured for different clean, oxidized, and adductor surfaces accounting in an approximate way for the
sorbate covered surfaces of'$t8 These spectra show a well bulk transitions and the crystalline symmetry. A previous
developed peak close tow2=3.3 eV. Its position and its successful theory for the surfalieear response of natural Si
relative insensitivity to surface conditions suggest that it isincorporated the geometrical arrangement of the atoms at the
originated from a bulk transition between the valence andsurface through the surface local field efféctn this paper
conduction bands, which becomes SH electric-dipolarly acwe extend that theory to the nonlinear response. We expect
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the local field effect to have large consequences in SHG We describe the quantum mechanical approach used to

through the following mechanism: Consider a localized po<ind the dynamical response of the oscillator to an external

larizable entity and a semi-infinite crystal made up of itsperturbation. This response is the one required to study SHG.

replicas. If each entity is centrosymmetric it would have noWe start with the unperturbed Hamiltonian

electric-dipole-allowed SH transition, though it may have

electric-quadrupolar and magnetic-dipolar contributions pro- h=> 4
= ho,

1

portional to&;VE,, whereé, is the local field acting at site

i. The external field has a very slow spatial variation whose T ) .
scale is of the order of the wavelength although the field Whereaj (a;) are the creatioannihilatior) operators whose
induced by a nearby entiflymay have a very large variation, Pasic commutators are

with a scale determined by the distance frgmo i, ry;,
which of course is of atomic dimensioas Different neigh-

bors contribute to the gradieRi&; along different directions, with i,j=x, y, or z. The position and momentum operator
so that, if thesite i is itself centrosymmetric, these large are given by

gradients will cancel out among themselves, leaving only a

small residual gradient of ordé¥\. This cancellation is no xi=ri(ai+aiT) 3

longer possible at the surface, whékeg|~¢&/a, yielding a and

large SH surface polarization. When written in terms of the

macroscgeic fielE this surface polarization is then propor- pi:imwiri(aiT_ai)a (4
tional toEE/a, which corresponds to a large surface allowed . _

dipolar SH process. In this paper we develop the modeVith ri=VA/2Mw;. Now, we assume a time dependent
above into a full calculation for Si surfaces, building upon amonechromatic perturbing Hamiltonidr, i.e.,

previous paper by Schaich and Mendd%4ollowing Ref. N CH (e ot glot 5

38, we take as our polarizable entities the interatomic bonds =H'(e e, ®)
with appropriately defined linear and nonlinear polarizabil-with the perturbation given not only by the usual electric

ities. Thus, our model Si crystal consists of four interpen-dipolar coupling, but also by the magnetic dipolar and elec-
etrated semi-infinite fcc lattices. However, unlike Ref. 38, intric quadrupolar interaction

our model we allow the centrosymmetric Si-Si bonds to re-

spond nonlinearly to thenhomogeneousolarizing local I

field. Thus, we obtain a finite quadratic response due to the H'=— p~€—m'B—§Q:(V€), (6)
noncentrosymmetrie@nvironmentat the surface; our SHG

mechanism is additional to any other surface nonlinearityyhere £ is the linear local electric field amplitude at the

such as those that would arise due to the actual breakage 8I ; 2 ; 3 - ;
igin, V& its gradient, and5 is thelinear local magnetic
the centrosymmetry of the bonds themseffeA. short ac- 9 9 g

count of this model and its first results have been recentijiéld, p=exandQ=exx are the electric dipole and quadru-
published™® pole moment operators, white=exx p/(2mgc) is the mag-
This paper is organized as follows. In Sec. || we obtainnetic dipole moment operator.
expressions for the nonlinear dipolar and quadrupolar micro- In order to calculate the induced change in the expectation
scopic polarizabilities of eactanisotropig bond in terms of ~ value of an observabl®, we use the Kubo formul&$
its linear polarizabilities along and across its axis. These ex-
pressions are exact for anisotropic harmonic oscillators. In
Sec. Il we relate the surface and bulk macroscopic suscep-
tibilities to the bonds polarizabilities. In Sec. IV we present
calculations for the anisotropy of the linear and nonlinearand
reflectance of different Si surfaces and their calculated SHG
spectra, and we compare our results to the available experi- 2) _
: ! ; ; (609 (2w))=
mental data. Finally, in Sec. V we discuss our conclusions.

1
alaj+=|,

. M

[a.a]]= 5 )

1 (=
(60V(w))= Efo dre'([O,H'(—7)]) (7)

1 )ZF N
— dTlelelf dr,e'“m2
ih 0 T

X([OH (=m)LH (=72)]), (8

II. MICROSCOPIC MULTIPOLAR SUSCEPTIBILITIES where the square brackets denote a commutator and the an-
A. A single bond gular brackets an ensemble average, and the calculation is
. ) . . . ) . done within the interaction picture. The superscripts 1 and 2,
We conslder first an anlsotroplc pointlike harmonic oscil- 55 \well as the argument of or 2w, indicate first-order and
lator of cylindrical symmetry, with charge<0 and mass gecond-order response, respectively.
m situated at the origin. For the time being, we chorge Following Ref. 33, we obtain the first-order induced di-
be along the symmetry axis aydz perpendicular to it, and  ole moment
we denote the resonant frequency that corresponds to the
response parallel to the bond by, = |, whereas the reso- <55(1)(w)>= d(w)-& (9)
nant frequency that corresponds to the perpendicular re- ’
sponse is denoted by, =w,= o, . where the linear microscopic polarizability is
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a)(o) 0 0
3(w)=aij= 0 aL(w) 0 ’ (10)
0 0 a (o)

and to emphasize the dependence on each bond’s orientation
we introduce the notatioa |« a, and @, «—ay=a, for its
parallel and perpendicular response, with

e?/m o
ai(w)=w2_w2 (with i=| or L). (11

The linear response of the oscillator is well described by Eq.
(9), since the linear quadrupolar and magnetic contributions
are negligible in the long-wavelength !In?fﬁ.leeW|se, the FIG. 1. lllustration of the diamond structure of Si. We show a
second-order induced dipole moment is tetrahedral building block consisting of a cube with Si atoms at
) ) (m) alternate vertices joined to another Si atom at the cube’s center by
(6pi”(20)) =[Xijui (@) + Xijki (@) 1E(Vi&), (12 tour bonds. The crystal can be viewed as an fcc lattice made of
where we adopt Einstein convention on repeated indicegeplicas of this basic unit.

Here, . . o
which has a bimodal distribution. Therefore, we model the

) 1 response of the semiconductor as that of a lattice of aniso-

Xij (@)= 5 ai(20) aj( o) + ai(2o) @ (@)] (13 tropic cylindrically symmetric polarizable borfissuch as
those described above. For each bond we introduce a coor-

and dinate system centered on it and with thaxis aligned with
3 the symmetry axis. To transform its response to the crystal's
me N r _ o _ coordinate system we simply displace its center and rotate its

Xiji (€)= 5l ai(2@) ajl ) = aw(20)a;(w)] (14 symmetry axis. We will employ Eq$12)—(16) to relate the

are the dipolar electricd) and magneticr) originated con- norl1l|nﬁarbres§onse o(;‘.each bc_)ndhto |ts| Ilneat:_lpollan;ablhty.
tributions to the microscopic second-order susceptibility ofb E t io 0? S cot?_r hlnate aX'Sbt 'I%IFt)r? arlzal_l s given
the oscillator. Finally, the second-order induced electric qua- y Eq.(10), from which we can bul € honlinear response
drupolar moment is and then get the corresponding tensor for each bond orienta-

tion A through a rotation,
(8Q1P(20))= xRl (@) EE (15)

with a microscopic second-order electric quadrupol@) (
susceptibility given by

ai)} zRi}\mR;\namn (17)

and

Xi)}k| :Ri)\mRJ?\an(\l’Rl)\SanrS! (18

1
(Q) =T ) . .
Xij (@)= sl ai(w)aj(w) +ai(w)a(w)]. (160 pore s refers to any one of the electric dipolaf)(or mag-

7 . . o netic dipolar n) or electric quadrupolar@) susceptibility
V){f;‘) (CrSQQ‘j’hO that the microscopic susceptibiliti€s and  (ensors calculated using EqEL3), (14), and (16) in the
X' of a single oscillator determine all the responseygng's coordinate system. In Eqd7) and (18), R is the
functions which are relevant within the long wavelength y,otrix that rotates thewth bond system into the crystal’s

Iimit.. o . _coordinate system. Alternatively, we could take advantage of
It is remarkable that in this model the nonlinear susceptiypq cylindrical symmetry to write

bilities at frequencyw are factorized into simple products of

the linear polarizability atw and 2w. Hence, from the &’A:auékémrai(u_ékéh), (19
knowledge ofa;(w) we can get completely the microscopic . ] o
nonlinear behavior. whereé is a unitary vector along the direction of tigh

bond. The nonlinear susceptibilities can then be constructed
directly in the crystal’'s system by substituting Ed9) into
Egs.(13), (14), and(16).

The semiconductors that we want to study have a simple Based on the microscopic response of each bond, in the
diamondlike structure, with a tetrahedron as the basic unitollowing section we will show how to obtain the macro-
This unit can be viewed as a cube with one atom at the cent&copic susceptibilities required for the calculation of the
linked through four bonds to atoms sitting at alternate cor-SHG conversion efficiency of the crystal.
ners(Fig. 1). The diamond structure is constructed by repli-
cating these four bonds into four intercalated fcc lattices. The IIl. MACROSCOPIC SUSCEPTIBILITIES
polarization induced in the semiconductor originates from
the displacement of its charge distribution which typically In this section we calculate the macroscopic susceptibili-
has strong maxima at the middle of each bond for monties of the semi-infinite diamondlike lattice of polarizable
atomic semiconductors, with the exception of diamond Chonds previously described. The susceptibilities are defined

B. Bonds in a tetrahedron
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through the macroscopic second-order nonlinear polarizasymmetry of a face may be less than thacroscopicsym-

tion, according to the following standard definitions. For themetry. For example, th€001) face has on the average the

centrosymmetric bulk, the first nonzero contribution to thesame symmetry as a square, which yields the nonzero com-

second-order nonlinear polarization per unit volume is giverponents described above. However, if we look at a micro-

by scopic region, the displacement between the first and second
_ . . crystalline planes might have a component along a square

P{P(r,2w) = X{J (T, @) V(E (T, ), (200  diagonal, say th¢110] direction, which would therefore be
whereE(r, ) is the fundamental electric field of frequency Lnequwglent to the second d|agonals)along iu0] direc
I Ab) ion. This allows a nonzero value faty, . _Nevertheless,_any
w at positionr within the bulk (), and ™ is the bulk g, face has steps, so that on other microscopic regions the

second order macroscopic susceptibility. For a cubic syste I
Eq. (200 can be further simplified in the standard cubic%Ies of the[110] and[ 110] directions are reversed, and so

axadd14 is the sign ofxg‘?},. Itis only after averaging over both kinds
of regions, that is, over the macroscopic region being illumi-
P(P)(24) = yVi(E(F,w)E(F,w)H éEi(F,w)ViEi(F,w) nated by the beam, that the contribution to the surface polar-
' ization coming fromy 5, cancels out, regaining the full sym-
(no summatiop, (21)  metry of the square as j§{3,=0.1

ZXy

where we assumed a single transverse plane wave in the bulk With the knowledge ofy, £, a”d)_?(_s) itis a simple matter
= - o to calculate the SHG radiated efficiency following Refs. 13
so thatV-E=0 andE-V=0. Here,

and 14. Therefore, in the rest of this section, we develop the
£=x®— 0B (hg summation ant ) formalism based on the polarazible bor{&gc. I) in order
AU A A (220  to calculate the macroscopic susceptibilities.

yields the anisotropic behavior of SHG coming from the

A. Linear response
bulk, and P

We look for the first order induced dipole moment of
1y _ L every bondn\, wheren denotes a site of the fcc lattice
Y= Xij (nosummation and j) (23 corresponding to thath bond orientation. To simplify our

. o ) o notation we substitute
gives the corresponding isotropic bulk contribution.

The lack of inversion symmetry at the surfac® @llows sp > 26
us to write an effective singular polarization (@)= Pm (@), (26)
P(2w) 8(z— z,) which, following Refs. 13 and 14, we lo- and we adopt a convention in which an argumenray one

cate in vacuum just on top of the semi-infinite crystal o, implies first order. The linear polarizatign,, obeys, in
(z=2zp-), and whose dipole moment per unit area is given byanalogy to Eq(9),

Pi¥(20) = xijW(0)Ej(B,w)Ex(B,w), (24 B (@)= @ (@) - Eny 27)

where ¥'® is the second order macroscopic surface SUSCeRshere

tibility, and E(B,w) is the macroscopic electric field just
below the selvedgez& zy+ within the long wavelength ap- . = (oxt = - R
proximation which differs from the field just on top Em=E®(rp)+ Z, Mnxnrar e P (@) (28
E(A,w) due to screening, i.e., m
R is the local field, which is the sum of the external field
E(B,w)=(Ex(A,0),Ey(A w),E;(A w)e(w)), (25  E©I(r ) and the dipolar field produced by all other bonds.

with e(w) the isotropic bulk dielectric function. Here we 1N€ tensor

have chosen a coordinate system such that the surface lies at

z=17, andz>z, is inside the system. Notice that the coordi- V1 VvV 1
nate system employed in the surface calculation might differ nANA! |F_ an|
from the standard cubic system employed in the bulk calcu-

lation above. Due to the surface symmetry there are only ¥ields the dipolar interaction between the bonus and
few nonzero independent components of the surface suscep-\'. The sum in Eq(28) is over all bonds1’\’#n\ and
tibility, namely, ngz)z, ngz)x: ngz)y, and ngx>x: Xg)y for the  can be carried out using standard planewise schésees for

(00D face, x5, xS xS, and x5 X&), for the (110 instance, Ref. 41 For this task we writd = (R, ,2/1),

P=r, (29

r=ro

face, and X(zsz)z’ X(ZSZX: X(Zsz)y, XS()X: X(Z‘j/)w and Where/\ denotes the'th crystal plane ok bonds at posi-
xS = _X(XSy)y: —X§Sy)x for the (111 face. There is an overall 10N Z=2,, and» numbers the individual bonds that make

permutation symmetry in the last two indices, i.e.,up this plane, so thaR,,, spans a 2D periodic lattice for
x=x%. and the susceptibilities of different faces are in€ach/". Assuming the long wavelength approximation, the
general different. polarization of all bonds. that belong to a given plané is

We mention that for the diamond structure we may obtairthe samep,,,=p,,, SO we can sum over’ and obtain
other nonzero components Gf® since themicroscopic from Eq.(27) that
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B. Surface nonlinear response

- N - - -
Pr(w)=a (o) E(A,w)+/,2}\, M/V“"p/'”'(w))’ We consider now the second order dipole moments. First
(30)  We confine our attention to the surface region where the local
field has a large uncompensated gradient at each bond site of
where we neglect the slow spatial dependenceé&ﬁ“o order V~1/a with a the lattice parameter. Later we will
X(r)—E(A,) and we introduce the interplane interac- alculate the polarization at the bulk where there is a cancel-
tions lation that leaves only small gradients of ordér w/c.
The equation for the total second-order dipole moment

_ near the surface is given by
M/x/'x'ZE M, onsrunr- (3D

P (2w)=pW(20)+ & (20)-| EQ(2w)

Here the prime indicates that the self-interaction of a bond is

excluded from the sum, i.e., the term witl+ »’ when both -

/=/"and\=\". It tuns out theM decays exponentially + 2 Mxnias s pgf};\),@w)] (39)

as|/—/"| increases. The solution of E(B0) gives the lin- N

ear polarization of the'th plane for each bonN, so that the Here, the total dipole moment atw2is driven by the nonlin-

total polarization is simply given by ear response to the spatially varying linear local field which
we obtain from Eq(12),

PA@)=2 Pl(w). 32 <6p§2><2w>>~(5<n’;”<2w)>i=xf,-"&.’wém(w)),-vl(énuw)zk.)
39

Notice that near the surface(c)B<VE~E/a, so we have
ignored the magnetic contribution to the¢h’s bond suscep-
tibility x™* [see Eq(18)]. However, this magnetic contri-

- - oy - bution will be included when we calculate the nonlinear bulk
Enl(w)=(@Y(w)) "-palo), (33 response below. The second-order dipole moment is also

- driven by the linear response to the field ab 2lue to the
once Eq.(30) has_ been solved fqo,), . oscillating quadrupolegEg. (15)],
Now we consider the bulk of the system. We have that

P, (w)— py(B,w) is independent of the plane numbérso . 1 - -
th/a}\t Eq(30)5 reduces to (Ef']()%)(zw))l :EE (Nn)\n’)\’)ijk(Q;r)l))\f(zw))jk . (40)
n’\’

Later on we will require the local field,, at thexth bonds
of the /th plane, which can be obtained from E¢87) and
(30),

. - . . N Finally, the last term on the left-hand side of Eg8) repre-
E, [18\n = @ (@) Upyn/]-Prr(B,w) = @) -E(A o), sents the linear response to the field at due to the other
A (34) dipoles oscillating at @ and should be included to achieve
self-consistency.

where the interaction between bond typeand\’ is given In Eqg. (39) we require the gradient of the local field evalu-
by the[(4X3)X (4% 3)] matrix ated at the bonds, which turns out to be proportional to the
linear dipole moment and is given By
ﬁ r= ./(;l I\ (35) > > >
M /Z:ﬂo AN Vi€ (w))j=— > (Naxna)ijk(Pnrnr (@), (4)
n’\’

The solution of Eq(34) gives the linearly induced bulk di- with
pole moment of each bond and therefore the total bulk dipole
moment is given by - 1
Nn)\n’)\’:_vvvﬁ (42)
N N F—ra bl
P(B.0)=ny>, P\(B,w) (36) T

» being the same tensor as in E40). We also require the
with n, the 3D density of bonds. Finally, we identify the nonlinear induced quadrupolar moment given by Eif),

isotropic bulk dielectric response€{w) through and rewritten as
3 e(w)—1_ (5Qif(20))— QR (20));
P(B,w)= 7 E(B,w). (37 N . .
i = XA N @) Em(@DEn(@) (43

Sinceﬁ(B,w) is a function of&, Eq. (37) yields an analyti-  with ¥{?* the microscopic quadrupolar susceptibility of the
cal expression which relatef w) to the principal polariz- \th bond[see Eq.(18)].

abilities o and «, . This relation is a generalization of the ~ We apply the same planewise summation scheme to Eqg.
Clausius-Mossott{CM) relation to the diamond structure.  (38) that led to Eq.(30) by defining
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N/)\/’)\/:Z’N/V)\//V’)\/Y (44)

and writing

> (168, — & (2w)- My ] P (20)

N/

whereS is the nonlinear source,

(S (20))= XM En(w)), 2/ (Nonsnkim
)\’” ’

X (P (©))m
1 P ’
+ Eai)}(Zw) > (N/Mw)mx(k?%’ﬁ
}\/’//

X (E (@& (@) (46)

Notice that the driving fields fof depend on the linear local
field £,,(») and the linear dipole momem,, (), which
are related through E@33). The interactionV,, ., decays

very quickly as the separation between planes increase

Therefore, as we move away from the surfage=() into
the bulk (/— ), the driving sourceS becomes negligible,

o) p(tOt)(Zw) vanishes ag’— o and the total surface-dipole
moment per unit area

P9(20) nSZ P (2w)

(47)

is well defined. Heren, is the number of bonds per unit area.

BERNARDO S. MENDOZA AND W. LUIS MOCHAN

C. Bulk nonlinear response

Now, we consider the bulkR) nonlinear induced-dipole

polarizationp{°)(B,2w) andp{"’(B,2w). In the long wave-
length regime they are very slowly dependent on position, so
that following the classical local-field argument, the total
bulk quadratic-dipole polarization obeys

N2w) - Unyi]- P (B,20)

> (16—
)\/

=p("(B,20) + & (2w)-&Q(B,2w). (49
Since now we are in the retarded regime, we have to incor-
porate the magnetic contribution to the nonlinear polariza-
tion,

(PI™)i = XM (@) (E,(B,w)); V(& (B, w)),

+ XN (@) (E\(B,w) V(E(B,)) . (50)
The first term on the right-hand side is the electric-dipole-
driven term, proportional to the gradient of the local electric
field, and the second term corresponds to the magnetic-
dipole-driven term. Notice that in the latter we made the

substitution&, (B)—E(B) since the spatial fluctuations of

e transverse fields are of ordex«{/c)? times smaller than
the ﬁgrresponding fluctuations of the longitudinal electric
field.

For a strictly space-independent field the source terms in
Eqg. (49) would be null. To calculate them we have to ac-
count for the weak spatial variation of both the long-range
bulk-field and its short-range local-field corrections. There-
fore, we assume a plane-wave spatial variation of the form

& (0)=E (B,w)eld (51)

In order to obtain the different components of the surface

susceptibility tensog® from this equation, we fix in turn
the driving fieldE(A, w) [see Eq(25)] along different direc-
tions. Indeed, to get(?) we chooseE(A) along thej direc-
tion. Thus, we would generates), x5, and x{5), with
i=X,y, orz. If we now choseE(B) with two null compo-
nents, sayE;(B) and E(B) for mutually orthogonal direc-
tions j #k, we would get

P = X{JE;(B)2+ x{fkEx(B) 2+ 2x|E;(B)E(B).

(48)

Knowing x{¥ and x{),
x5}, henceforth generating's), x{5, and x(), for i=x
y, orz. It should be clear from Eq24) that {3 = x), and

then all 27 components ¢ are finally obtained. We recall

that some of the non-null components found through thi

procedure are forbidden by tineacroscopicymmetry of the

surface they would become zero after averagmg over th&f /v 'w—r/m

we can solve this equation for

for the linear fields and for the polarization, where the linear
local field may be obtained from Eg&3) and(34), and we

allow the small wave vectog to point in any direction.
Therefore, the fields depend not only on the plane index
but also on the in-plane index

We start with the quadrupolar field

g(/u)\(zw))iz(é;\Q)(B,Zw)iezid'F/m)

|
= E//E[}\/ (N/V)\/'V’)\ )I]k(Q/n’)/)\’)]kt

(52

where the quadrupole moment is given by E4B3). Using

; g. (51), and assuming thaty- Ar ,,, 1, /|<1, for all the

erms/ v’ that contnbute to the sum in Edq52), where
, we get for any pIanef in the

-

r// I)\I

in the calculation of the SHG signal.

order ing-Ar 1y
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g.(Q) 1 Nt =(nl) 2iq-AT /oy 1y
(& (B,Zw))i=§ > (N/onsro)ije(Qyr (B,2w))je VNIV
Ry

1
:EE

N

{( > (ﬁ/vx/’v’x’)ijk

/'y

+2i(a>|( > (AF/WWf>|(ﬁ/vvw>uk)}(6;”,“(8,2(»))“
/!

= ()i (QUV(B,20))(ia)), (53)
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where the first term on the second line is zero in view of theand from Eq.(33) we get the bulk local field

odd parity ofN and the bulk quadrupolar amplitude is - -, -
& (B,w)=&Mw)-E(B,w), (61

Q™ (B,20));; = XY™ (@) (€, (B, 0)(E\(B,w)),. 5 with
54

Here, we introduced the fourth rank quadrupole-dipole inter- ENw)=(E ) F\ (). (62)

action tensor Now, from Eq.(49) we obtain the nonlinear polarization

(ﬁhx’)ijklz/,zyr (N/onsro ) )ijk(AT sn )i - (59) plY(B 20)=> (T 12w) & (B,2w), (63
)\"

This tensor is most easily evaluated in the cubic axis makin% terms of the bulk source
use of the permutation symmetry of cubic crystals,

w S}(B,20) =T} E{(B,w) ViE|(B,w), (64)
(7on)ij = 2 > (Nypsron)injie | Za—2m0) with
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:2 (ﬁ/x/w)i'j'k'(Z/x_Z/w), (56) ,
‘ X émi2s (i nsion (©)
where the indices’j’k’z are obtained fromijkl by per- A
forming a cyclic permutatiof® o ,
Following a similar treatment for the dipolar term of Egs. —ah (20) 2, (Fo ) mns oSt E ()& ().

(49 and (50) we obtain the gradient of the local field that A
accompanies a plane wave propagating within the Bllk, (65)

2 N B The first (secondl term on the right-hand side of E¢65)

(&,(B,0));=i(q);(E(B,w));
Viler(B,0)) =1 ()i (B(B, @), comes from the firstsecond term of Eq.(57), whereas the
. . . last line comes from the quadrupolar field of E§3). The
—I(Q)|§ (Tn)ijki (P (B, )y, total bulk polarization per unit volume is written as
(57)

PPI(2w)=n,2, p{*(B,20). (66)
where the first term gives the variation of the long-range A
bulk field, and the second term gives the short-range Ioca|Comparing Eq(66) to Eq.(20) we identify the macroscopic

field corrections. ' bulk susceptibility
Now that we have all the terms required for E49), we

proceed to find its solution. First, we define b < -~
) } F(w)= 2 (T7H2w)ha TV (@) (67)
T (Nw) =18, — & (nw) Uy, (59 M

with n=1 or 2. From Eq.34) we obtain the amplitude of
the bulk linear dipole moment

from which ¢ andy can be obtained using Eq22) and Eq.
(23), respectively.

pr(B,w)=§N w)-E(B,w), (59 D. Higher multipoles

We conclude our calculation of the nonlinear surface and
bulk nonlinear susceptibilities by incorporating the effect of
higher induced multipoles to the polarization, namely, by
Sgk(w)zz (‘F*l(w))m, cay (o), (60) adding the gradient of the quadrupolar density to the dipolar

X density*® The surface polarization becori&&®

in terms of the macroscopic linear field, with
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N 9 1 - antibonding transitions, while, is due to transitions involv-
PE—Pe — Enb; (Q\(B,2w))iz, (68  ing atomic states with different symmetry. We assume the
latter have larger resonant frequencies than the former, and

changing the surface susceptibility to thus we approximater, (w) by a Lorentzian centered at

some relatively high frequency, with a weight character-

1_ ized by a frequency parameter,, i.e.,
Xi(jslz_’Xi(jslz_EXijky (69) Y a yp P
2
where a) (w)=— _p 5. (74)
a)L w

;ijk:; Xi(zo%ﬁfﬁqjgﬁk- (70) After choosing these parameters, we solve the generalized

CM relation for each frequency to obtain(w) in terms of

Notice that this quadrupolar contribution to the surface po-the experimentally measured bulk _dielectric _function

larization is bulk originated. Similarly, we include the effect frf“’)'f Ha\flng tﬁetermllr)ed the pOIaf['.E‘.”ll.tt’.'“ty tEI’IlSOI’, and
of higher induced multipoles to the effective bulk erefore also the noniinéar. susceptioili |é§ec._ D, we
polarization®? solve the Local field equations to obEam first thillnear dipole

momentsp,, (@) (Sec. Il A), then p1(2w), Q11 (2w),

and the total nonlinear dipole momerpi%f’t)(Zw) (Sec. llIB

and Sec. Il §. Next, we obtain the bulk and surface polar-
(7)) izations P®)(2w) and P (2w) per unit volume and unit
modifying the bulk susceptibility tensor, area, respectively, and the nonlinear surface and bulk suscep-

tibilities. The SHG efficiencyR(w) is defined through

ﬁ<b><2w>aﬁ<b>(2w>—%nb2 Qu(B20)-(2id),
A

X=X~ Xiju (72 | (20)
with R(w)= T2, (75)
I (w)
~  _ QAN o\ 73 wherel,(2w) is the reflected intensity of the SH field, and
Xiikd ; Ximn émiéni 73 I,(w) is the incident intensity of the fundamental field. It can

finally be calculated in terms of the nonlinear susceptibilities
We mention that had we used a simple fcc lattice of iso-using standard formulds:**

tropic polarizable entitiegtetrahedrainstead of four inter- The anisotropy of the SHG of Qill) and S{001) has
penetrated lattices of anisotropic polarizable bonds considbeen measured for all possible combinations of incoming
ered above, we would have obtained only one independerind outgoings and p polarizations athiw=1.17 eV and
component of¢{® corresponding toy, and thus under these 2.34 eV2~5 For the following results, we chose the param-
assumption the nonlinear bulk response would have beegtersfiw, =7.17 eV andhw,=1.68 eV. These were ob-
isotropic. However, although in our model all the bonds aretained by fitting the ratio between the heights of the peaks
identical except for their orientation, and their response issbserved in the azimuthal angular dependenc®gf for p
harmonic-oscillator-like, their anisotropy combined with the polarized outgoing ang polarized incoming light upon a
lower symmetry of the tetrahedral structure yields0, ren-  Sj(111) surface for both frequencies. As will be shown be-

dering the bulk anisotropic. low, with these parameters we obtain a good agreement with
the other anisotropy measurements performed at the fixed
IV. RESULTS frequencies above. Our value ef, is of the order of the

. ) _ _transition energy between the atomic states of (S°® with
In the preceding section we obtained the macroscopig_q and 212D° with J=1 47 in qualitative agreement with
nonlinear bulk and surface susceptibilities in terms of thene giscussion before Eq7’4). We achieved a good numeri-
microscopic susceptibility tensors of each bond. Assuming.| convergence using 40 crystalline planes in the calculation
an anisotropic harmonic oscillator model the latter were writ-5 4 including a small imaginary part i, by adding a
ten[Egs.(13), (14), and(16)] in terms of the linear polariz- damping frequencyw,<w, in the Lorentzian(74); we took

TLENS: , :
abilities &”. In the following, we assume these relations 10, _q 1°ev, although its actual value is not very important
hold approximately for the bond susceptibilities of a Si crys-,4 long as it is small.

tal and further assume th@ is independent of position.
Therefore, in our model we incorporate only the surface
modification to the local fields, and we ignore any other sur-
face modification to the linear and nonlinear response such In this section we present the results obtained for the re-
as those due to transitions involving surface states. As diflectance anisotropy of &10 and the SHG anisotropy for
cussed at the end of Sec. Il A, we can find an expressio®i(001) and S{111).

which relates the bulk dielectric functics{w) to the princi- In Fig. 2, we show a plot oty vs w, obtained from the

pal polarizabilitiese)(w) and e, (), which is a generaliza- generalized CM relation through the procedure described
tion of the Clausius-MossottiCM) relation to the diamond above. We observe the usual peaks due to the singularities of
structure. Close to the visible spectral region, we expect thahe bulk joint density of states, although they are substan-
the main contributions toe originate in bonding- tially shifted due to short range Coulomb and exchange in-

A. Linear and nonlinear anisotropy
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FIG. 2. Imaginary part of the axial bond polarizabilidim of Si =
as a function of frequencw. The structure appears substantially E
shifted from the singularities of the joint density of states due to NE
short range Coulomb and exchange interactions, which are compen-_©
sated within the bulk by the long range local field effect. B
=
teractions. We recall that the bulk local field effect induces =&
an almost equal but opposite sHiftwith this fitted a)(w)
and takinga, (w) from Eq. (74), we calculated the surface , . | . .
induced anisotrop AR/R of the linear normalized reflec- 00 60 190 180 240 300 360
tance of Sj110, whereAR=R;15— Ry is the difference of ¢ (degrees)

the reflectivity for normally incident light polarized along the
110 and 001 directions. The results for our bond model are F|G. 4. s-in p-out SHG efficiencyR{Y) as a function of the
shown in Fig. 3 along with the experimental ddtand the  azimuthal angles calculated for SiL11). The angle of incidence is
results for a simple fcc lattice of isotropic dipoffsWe  g=45°. The top(bottom panel is forhw=1.17 eV w=2.34
notice that the bond model has a good agreement with exv).
periment, as good as that of the single-fcc model. We men-
tloq, though, tha_t a S|m|I_ar model fqr SSI;IG, with only one fcc Ri(,;")(w) _ |ai(m)(w) + Ci(m)(w)COS(m(p)|2, (76)
lattice of isotropic polarizable entiti€é;*3 each representing
a tetrahedral arrangement of bonds, cannot reproduce eithghd fors-polarized SH output
the bulk SHG anisotropy, which is evident in the experi-
;ngng/%n thé001) surface’ or the resonant peak observed at R™(w)=|b™(w)sin(me)|?, (77)
Now we turn our attention to the nonlinear anisotropy.wherei stands for the fundamental input polarization, which
Following Refs. 13 and 14, we write fop-polarized SH  could be eithes or p, m denotes the rotational symmetry of
output the surfacem=3 for the (111) face, whereas=4 for the
(001) face, andp is the azimuthal angle. The complex func-
tionsa(w), b(w), andc(w) depend on the macroscopic sus-
ceptibilities y(w), {(»), and¥®(w), as well as on the angle
of incidence  and bulk dielectric functione(w) through
Fresnel factors. These relationships can be found in Refs. 13
and 14. From them it follows that® andb*) depend only
on ¢ (besides the Fresnel factprsand therefore the azi-
muthal anisotropy of the (001) face originates in the bulk,
regardless of the input-output polarizations. Also, for the
(111) face we have thaR{Y vs ¢ displays three peaks at
on=2n7/3 withn=0,1,2(i.e., threefold symmetjy and de-
pending on the relative phase values betwaghandc(®
2 2.5 3 3.5 4 4.5 5 there could be also three alternate peakgatp,* #/3, for
Frequency (eV) eithers or p input polarization.
In Fig. 4 we plotR{}) vs ¢ for Si(111), with §=45°. The
FIG. 3. Normal incidence anisotropy of the linear reflectancetop plot is for Zw=1.17 eV and the bottom one is for
AR/R of a Si110 surface as a function of frequenay We show 7iw=2.34 eV. The parameters, and w, that describe the
results calculated with our bond modsbilid line) and for a single ~ perpendicular linear polarizabilityr, [Eq. (74)] were ob-
fcc lattice of isotropic tetrahedral polarizable entitiggshed ling  tained by fitting these plots to the corresponding experiments
together with experimental resulidashed-dotted line given in Refs. 2 and 14. We see that there is an alternate

10°AR/R
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FIG. 5. p-in p-out SHG efficiencyR(Y) as a function of the FIG. 6. SHG efficiencyR™ as a function of the azimuthal

azimuthal anglep calculated for SiL11). The angle of incidence is anglee for Si(001. The angle of incidence ig=45°, and we fixed
6=45°. The top(bottom) panel is forhiw=1.17 eV (iw=2.34 hw=1.17 eV(dashed lingand% w=2.34 eV(solid line). The top
ev). (bottom) panel is fors—P (p— P) polarization.

peak atp=60°,180°, and300°, andthat the ratio between NOW becomes negligible at 1.17 eV. The experimental results
these and the Iargér ones at’: 0°,120°, and240° gets  Of Ref. 5 confirm the result for 2.34 eV, and to our knowl-

smaller for larger frequencies. On the other hand, Fig. 5 dge there are no experiments for this combination of polar-
showstfp) vs ¢ for Si(111), wheref#=45° and for 1.17 eV |zat|9n at1.17 ev. 3) 3) )

and 2.34 eV. For 1.17 eV, we only see the peaks at [19Ure 7 shows,yandRss vse f:)r Si(111), at 2.34 eV
©=0°,120°, and240° and thevanishing of the alternate and 1._17 eV, respectively, fo@_=45 . Sln_ce both are for
peaks gives a minimum just like in the experimental resultsS-Polarized SH beams, they display a sixfold peak degen-
of Ref. 51. For 2.34 eV we get a very small alternate peal€racy[Ea. (77)]. These two efficiencies only depend gn
which was not detected experimentdililowever, its calcu- and Xﬁﬁﬁ a component which is unique to the (111) face.
lated height is smaller than the experimental resolution. NoOnce again, these results are in qualitative agreement with
tice the change of scale by a factor of 1000 between Figs. f¢ experimental counterparts at 2.34 eV and 1.17 eV from
and 5. This big difference in signal strength arises from theRefs. 5 and 2, respectively. Notice again the change of scale

different magnitude of the Fresnel factors foandp incom- ~ between both panels. _
ing polarization. The calculated results shown above imply that the present

In the top panel of Fig. 6 we displaR‘® vs ¢ for model gives an accurate qualitative description of the major
Si(001), where = 45° and forfiw=1.17 eV “and 2.34 ey features for the anisotropic nature SHG in Si at 1.17 and 2.34
We no'Eice that? produces indeed a small anisotropy at 2 34eV. We have also checked that our results also agree with the

- - _ 52
eV, which becomes even smaller at 1.17 eV, as is clearlfisotropy recently measured at=1.6 eV>" Moreover,
shown in the experimental results of Ref. 2. However, wel'® model allows a variation of the fundamental frequency,
notice a = phase difference between the oscillations ofthus generating spectroscopic resglts for SHG. They will be
R we calculated at 2.34 eV and at 1.17 eV. This phasdliscussed in the following subsection.
reversal has not been experimentally reported. This may be
due to an ambiguity in the origin of the azimuthal angle. For B. Spectroscopy

example, in Ref. 2 it was chosen for convenience of display In the preceding section we concentrated on the angular
only. Therefore, we suggest that in future experiments thelependence of the SHG efficiency for a few fixed frequen-
initial direction against which one measukgshould remain  cies. Recently, the availability of intense tunable lasers has
fixed throughout the whole set of frequencies. Similarly, thepermitted spectroscopic studies of SHG. In this subsection
lower panel of Fig. 6 displanyf;]). Again, there is a small we present calculations of several SHG spectra for different
anisotropy produced by the bulk terthat 2.34 eV, which faces of Si and combinations of in and out polarizations.
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FIG. 7. SHG efficiencyR™® as a function of the azimuthal 400 \ , ,
angle ¢ for Si(111). The angle of incidence i®=45°. The top 1 15 2 2.5 3
(bottom panel is forp—S (s—S) polarization andh w=2.34 eV Frequency (eV)

(hw=1.17 eV.
FIG. 8. Surface and bulk nonlinear susceptibilities as a function

Here we use the same parametersand , as in the pre- of frequency for Si111). The first pane! )shows|2|nby (dashed
S,

ceding subsection, with no further fitting. We constrain our-line), 2|e[ny (dotted ling, and Je[nyx{*, (solid ling). In the
selves to a range that only goes up to 3 eV, since we expe&fher panels the corresponding componeng'sk is indicated. No-
spurious effects as the second-harmonic frequency gets clolige the resonant structure around 1.75 eV.
to the resonant frequendyw, =7.17 eV.

First, we present the values for the nonlinear susceptibili-
ties as a function of frequency for (3L1). In Fig. 8, we T T T
showy, ¢, and the four different independent components of 106

¥*. We notice that the surface susceptibilitig§) , x{ . =

and x{il have strong resonancesfab~1.75 eV. Fory* | =

and the bulk componentg and ¢ there is no structure and &

they are in general smaller than the other surface compo- go 108
nents, which are dominated by In Fig. 9 we show the 5

SHG efficiency spectra of Gi11) RY) vsw for 9=45°,and =

for ¢=0° and 60°, which correspond to the large and small =
peaks of Fig. 4. We also plot the ratio between the height of 10°

these two lines. We clearly notice that there is a strong fre-
quency dependence of both spectra. For instarieg)
(¢=60°) has a maximum at 1.17 eV, and is practically null
at 1.4 eV. These structures appear also in the quotient be-
tween both spectra, a feature that could be experimentally
explored quantitatively, even without making absolute mea- 10’31 15 5 25 3
surements. Even more dramatic is the large resonance for
both orientations at= 1.75 eV, whose position and width Frequency (eV)
Aw~0.14 eV is in agreement with recent experimefits. FIG. 9. SHG efficiencyR{) as a function of frequency for
Indeed, SHG spectra have recently been measured for di&;j(111) (top panel. The angle of incidence i8=45° and the azi-
ferent clean, oxidized, and adsorbate covered surfaces @futhal angles are=0° (solid) and ¢ =60° (dashedt they corre-
Si"*These spectra show a well developed peak close tgpond to the peaks of Fig. 4. We also show the ratio of these two
2w=3.3 eV. lts position and its relative insensitivity to sur- peaks in the bottom panel.

100
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face conditions suggest that it is originated from a bulk tran-
sition between the valence and conduction bands which be- 3 . . 3
comes SH electric-dipolarly active due to distortions in the — [ R ]
crystalline structure close to the surface. To account for < 100 3
strain within the first few layers, we introduce a parameter Ng ; ;
A=d,;/dg—1, wheredg is the separation between consecu-
tive fcc planes in the bulk, andi, the corresponding separa-
tion between the first and second layers. For the=Q)
bulk-truncated001) crystal we find a structureless spectrum,
which is barely modified by stretching,. However, if we
shrink d; by as little as 5% a very well developed peak
appear® atiw=1.65 eV, with a widthhiAw~0.14 eV in 13 14 15 16 L7 18 19 2
excellent agreement with experiment. These results can be Frequency (eV)

appreciated in Fig. 1 of Ref. 39, which displag)()

calculated for light incident on 8)01) at an angle§=45° FIG. 10. SHG efficiencyR{;) as a function of frequency for
and ¢=30°. For even larger contractions, the height of theSi(001) and for a relaxatiom = —0.05. The angle of incidence is
peak increases but its position remains mostly unchanged=45°, the azimuthal angle ig=30°. For the solid line we took
Notice the huge change of scale between Fig. 1 of Ref. 3gje surfac_e polarizal_)ilitﬁ_s(w) equal to the bulk polarizability
and Fig. 9. The height of the latter is five orders of magni—“b(“’)’ as in our previous figures. We also show results for the case

hen ay(w)=2a,(w) (dash-dotted and whenag(w)=0.5a,(w)
tude larger than that of the former. We have seen above th"f\{ihort-dashe)d Finally, we considered the case of a constant surface

the (11_1) c_rystallme face presents a peak at 1.75 eV, aSolarizability & ) = @(2.34 €V andéy(2w) = éy(4.68 eV} (dot-
shown in Fig. 9, even when undistorted. While for th1) e and similarlyd(w) = d,(1.17 eV and &,(2w) = &,(2.34 eV}
face the peak comes fromff) , x{3;, and xff} as can be (long dashey
appreciated from Fig. 8, for th€001) face the peak only
comes fromxm, which is shown in Fig. 3 of Ref. 39. clearly observed very recently resonancesxﬂ” and in

Our results agree with the interpretation of the first ex-Xﬁ at 2w=3.4 eV for Si(111)7X 7, besides a resonance in
perimental spectf&’?in that the origin of the resonance is x{*  at 20=3.3 eV.
surface originated. This was further confirmed through non- It has been found experimentally that the peaks close to
linear electroreflectance spectroscoyER),?*?* where it Aw=1.65 eV in the SHG spectra of both(801) and (111)
was found that this resonance does not depend on applieslirfaces are quite insensitive to the surface conditidtey
static electric fields, whereas a field dependent dipolar bulleppear on clean reconstructed samples and on samples oxi-
transition was found nearby. The latter is missing in ourdized under different conditions. The electronic structure of
results since in the absence of an applied static electric fielthese systems is expected to be quite different at the surface,
tWO_photon dipo]ar transitions are Symmetry_forbiddenand so must be their pOIarlzablhty In our calculation we
within the bulk. However, in Ref. 17 the peak at 3.3 eV wasa@ssumed the same polarizability at the surface and at the
associated with a resonance in the normal component of t%::’itzns(:)xiea?\?;g;tri‘;ida?rt]rlmyefglrjrtg?:ghfrl]ngr%g; igeei?;lilrgirl\i

(S) . . .

zﬁgiﬁif-ﬁsc?g:r?feﬁjle bg:(;zr?f:gp :r?:r:ig'vﬁ?; gae‘?igor?otherpbustness of the SHG resonant peak under surface perturba-
resonance in the isotropic contribution to the efficiency of'uons, we have calculated the SHG efficiency spectra for

o 3) Si(001) making arbitrary modifications to the polarizability
SHG from the(111) surface fors— p polarizationRsy’ Was  of s first layer of bonds. Remarkably, the position of the

found. This indicates thag{3; does not resonate. This was resonant peak and its relative height over its baseline are not
taken as a further argument for théﬂ n resonancé? al-  significantly changed by rather large changes to the surface
though the possibili} of a resonance iyf?| seems not to  polarizability. This is appreciated, for instance, in Fig. 10,
have been contemplatédOur results, shown in Fig. 8, dis- where we show results obtained for the cases of surface po-
play a resonance, although small, j(fﬁ)”, a much larger !anzabllltles that double and that halve the bulk po!anz_a_b_n-
(s - (3) ity. We also show results for constant surface polarizabilities
resonance wmﬁ”, and no resonance at all i} , . The h fixed h | f the bulk polarizabilities th
latter is also absent in Fig. 3 of Ref. 39. These theoretica‘ at were fixed at the values of the bulk polarizabilities that
results are contrary to thé inter, retétior.\ of experiment in' o ¢ fitted to the SHG anisotropy at 1.17 and 2.34 eV. The
y P P "eason for this lack of sensitivity in the resonance position is

Refs. 17 and 19. Since we only accounted for the surfacg,y,q layer-by-layer polarization peaks at the subsurface

chal field eff_ect in our theory, itis fe"’!s'b'e to f|nq a mecha- bonds instead of at the topmost layer, as shown in Fig. 11.
nism to provide the resonance we did not findyin, | . It

seems more difficult to conceive a mechanism to eliminate
the resonance we did find ig, ;. However, there is still

some disagreement on the identification of the tensor com- |n summary, we developed a model for the surface SHG
ponents responsible for the surface reson@raed panela)  of crystals with the structure of diamond which takes into
of Fig. 2 of Ref. 21 does show structure in the isotropiCaccount the nonlinear polarization induced by the micro-
contribution toR{?), which necessarily comes from a reso- scopic spatial variation of the linear local field. Our model
nance in X(f\u- Moreover, Pedersen and Morgérhave consists of four interpenetrated fcc lattices of anisotropic po-

1000 E T T |/'~,~ T T 1

4) (10-20
Rép) (107" ¢

V. CONCLUSIONS
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For the(111) face a much larger peak at a nearby frequency
was found even without relaxation. In our calculation, the

; position of the peak differs from that of the bulk interband

! transitions due to a local field induced shift. Our results also

i suggest a possible explanation for the lack of sensitivity of

' the SHG spectra on the surface treatment, since they show
' that the total SH polarization peaks below the first crystalline

: plane, and it extends for a few other planes before vanishing
, into the bulk. We have recalculated the SHG spectra employ-
; ing different microscopic surface polarizabilities and have

; i i ; ; ; ; ; found that the peak’s position is very robd$t® very large

o 1 2 3 4 5 & 7 8 change, such as that expected for a hydrogenated surface,
would be necessary to removetit.

In conclusion, our results yield a plausible explanation for
the experimentally found SHG resonance. The peak in our
model does not arise from a SH transition that becomes di-
polarly allowed due to a lattice distortidh Rather, it comes

(2w)))

(tot)
nA

P,

m((

FCC plane number

FIG. 11. Dipole moment IM@{??(2w));) induced in the bond
n\ as a function of the positiom,,, of its centroid(we summed

over bonds with the sang,,). The rhombi correspond to the solid . .
line in Fig. 10 and were calculated at the frequency of its peak.from the large uncompensated local field gradient at the sur-

Similarly, the triangles(crosses correspond to the dottelong-  face and is therefore allowed even for a centrosymmetrical
dashel line of Fig. 10. bond, but in the noncentrosymmetrical environment of the
surface. According to our model, the peak observed on the
élll) surface is present even without surface relaxation, so

larizable bonds, each of which responds nonlinearly to th _ . .
its observation should not be interpreted as evidence for a

inhomogeneous local field with a microscopic hyperpolariz- > . :
ability that we wrote in terms of the linear polarizability. The lattice expansion. On th other hand, Fhe peak on(@d)
surface only arises within our model in the presence of a

latter was obtained from the bulk dielectric function, the ge- ) , X
surface contraction. In this paper we have restricted our at-

ometry of the crystal, and two parameters describing the rez"=" h ; local field eff d further th ical
sponse of an individual bond in the direction normal to itst€Ntion to the surface local field eftect, and further theoretica

axis, which were fitted to a few SHG anisotropy measure_developments would be necessary to find the contributions to

ments on thg001) and (111) surface. Our model yields a SHG from other effects. Theoretical work along this line is
linear reflectance difference spectra for t1d0) surface in required to understand and eliminate the apparent discrepan-

agreement with experiment. We remark that a similar modefi€S Petween our theory and some consequences of experi-
with only one fcc lattice of isotropic polarizable entitfés? ment, such as_the identification of the susceptibility compo-
each representing a tetrahedral arrangement of bonds, Camﬂﬁnts_resporlmblekfor th% obbserV(lad resona:tlzlesaAlso, furlther
reproduce either the bulk SHG anisotropy, which is evidenfXperimental work would be weicome to fully disentangle
in the experiments on th€001) surface’ or the peak at the role of the different susceptibility components.

2hw=3.3 eV. Although we have neglected all effects due to
the surface modification of the electronic structure, we have
obtained agreement with the first experimental spectra avail- This research was partially supported by CONACyT-
able for different surfaces of Si. For a bulk truncat@€d1) 3246-E9308(B.M.S) and by DGAPA-UNAM-IN102493
face we obtained a structureless spectrum which acquiredand IN104594(W.L.M.). Also, B.M.S. would like to ac-
well defined peak when we allowed for surface relaxationknowledge enlightening discussions with V. Arroyo.
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