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Polarizable-bond model for second-harmonic generation
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We develop a theory for the calculation of the optical second-harmonic generation spectra of Si incorporat-
ing the nonlinear surface local field effect. Our model consists of four interpenetrated fcc lattices of nonlinearly
polarizable bonds. Each of them is anisotropic and although they are centrosymmetric, they respond quadrati-
cally to the spatial inhomogeneities of the polarizing local field. The large gradient of the field induced at a
bond due to the dipole moment of a neighbor leads to a second order polarization. In the bulk, each bond lies
within a centrosymmetric environment, so this contribution is canceled out after summing over all other bonds.
However, at the surface it is not compensated and it leads to a large nonlinear macroscopic response. Our
model parameters are fitted to the nonlinear anisotropy measured at 1.17 and 2.34 eV. We calculate a linear
anisotropy spectra for the~110! surface in agreement with previous measurements. Our nonlinear spectra show
peaks at 1.65 eV for a strained~001! surface and at 1.75 eV for a~111! surface, in agreement with some recent
experimental results.@S0163-1829~97!08104-6#
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I. INTRODUCTION

The electric-dipolar quadratic susceptibility is a third ra
tensor, and therefore it must be null within the bulk of a
centrosymmetric system. For this reason, a large portion
the light with frequency 2v reflected from an interface illu
minated with monochromatic radiation atv is surface origi-
nated, making second-harmonic generation~SHG! a sensi-
tive optical surface probe for this class of systems. Besi
being nondestructive and noninvasive, SHG has the ad
advantage of accessing surfaces such as buried interf
out of ultrahigh vacuum conditions and within arbitra
transparent ambients. However, the efficiency of the surf
SHG is extremely low, of the order of1 1/c(aB

3/
le)3'10220 cm2/W, whereaB is the Bohr radius,l the
wavelength,e the electronic charge, andc the speed of light,
and very powerful laser systems are required for its obse
tion. Most experiments have been performed only at a
selected frequencies, emphasizing the polar and azimu
angular dependence of the signal for different crystal s
faces and combinations of incoming and outgoi
polarizations.2–12 The possible angular dependence of SH
is well understood from a phenomenological point of vie
in terms of the independent components of the bulk and
face nonlinear susceptibilities and their symmetry origina
constraints.13–16

The recent development of high power tunable lasers w
a wide spectral range has stimulated experiments in non
ear surfacespectroscopy. In particular, SHG spectra hav
recently been measured for different clean, oxidized, and
sorbate covered surfaces of Si.17,18These spectra show a we
developed peak close to 2v53.3 eV. Its position and its
relative insensitivity to surface conditions suggest that i
originated from a bulk transition between the valence a
conduction bands, which becomes SH electric-dipolarly
550163-1829/97/55~4!/2489~14!/$10.00
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tive close to the surface. More recently, nonlinear anisotro
and electroreflectance spectroscopy experiments have sh
that different components of the nonlinear susceptibility pe
at slightly different frequencies.19–21These peaks have bee
associated to particular interband bulk transitions frequen
shifted at the surface.

There are different theoretical approaches in the literat
to calculate SHG. The nonlinear surface response of sim
metals was estimated22,23 and later calculated24,25 within the
hydrodynamic model, and microscopic calculations
simple metals have been performed using self-consistent
lium models.26–28 A peak in the SHG spectrum has bee
predicted at the subharmonic of the ionization threshol28

and giant resonances were obtained at the frequencies o
multipolar surface plasmon and its subharmonic.29 The an-
isotropy due to lattice effects has been incorporated usin
Boltzmann equation approach for systems with a nea
spherical Fermi surface30 and within the ‘‘Swiss cheese’
model31 for noble metals.32 On the other side, there are a fe
calculations of the SHG spectra of semiconductors. Sim
analytical expressions for model semiconductors made u
a continuous distribution of polarizable entities1 were ob-
tained by neglecting crystallinity effects. The latter we
incorporated33–35within a dipolium model that also accoun
for local field effects. A more microscopic approach has be
employed to calculate SHG from As terminated Si~111!
slabs using a tight binding formalism.36

The purpose of the present paper is the development
simple quantitative theory for the SHG spectra of semic
ductor surfaces accounting in an approximate way for
bulk transitions and the crystalline symmetry. A previo
successful theory for the surfacelinear response of natural S
incorporated the geometrical arrangement of the atoms a
surface through the surface local field effect.37 In this paper
we extend that theory to the nonlinear response. We ex
2489 © 1997 The American Physical Society
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2490 55BERNARDO S. MENDOZA AND W. LUIS MOCHÁN
the local field effect to have large consequences in S
through the following mechanism: Consider a localized p
larizable entity and a semi-infinite crystal made up of
replicas. If each entity is centrosymmetric it would have
electric-dipole-allowed SH transition, though it may ha
electric-quadrupolar and magnetic-dipolar contributions p
portional toEW i¹EW i , whereEW i is the local field acting at site
i . The external field has a very slow spatial variation who
scale is of the order of the wavelengthl, although the field
induced by a nearby entityj may have a very large variation
with a scale determined by the distance fromj to i , r i j ,
which of course is of atomic dimensionsa. Different neigh-
bors contribute to the gradient¹EW i along different directions,
so that, if thesite i is itself centrosymmetric, these larg
gradients will cancel out among themselves, leaving onl
small residual gradient of orderE/l. This cancellation is no
longer possible at the surface, whereu¹EWu'E/a, yielding a
large SH surface polarization. When written in terms of t
macroscopic fieldEW this surface polarization is then propo
tional toEWEW /a, which corresponds to a large surface allow
dipolar SH process. In this paper we develop the mo
above into a full calculation for Si surfaces, building upon
previous paper by Schaich and Mendoza.33 Following Ref.
38, we take as our polarizable entities the interatomic bo
with appropriately defined linear and nonlinear polarizab
ities. Thus, our model Si crystal consists of four interpe
etrated semi-infinite fcc lattices. However, unlike Ref. 38,
our model we allow the centrosymmetric Si-Si bonds to
spond nonlinearly to theinhomogeneouspolarizing local
field. Thus, we obtain a finite quadratic response due to
noncentrosymmetricenvironmentat the surface; our SHG
mechanism is additional to any other surface nonlinea
such as those that would arise due to the actual breakag
the centrosymmetry of the bonds themselves.38 A short ac-
count of this model and its first results have been rece
published.39

This paper is organized as follows. In Sec. II we obta
expressions for the nonlinear dipolar and quadrupolar mic
scopic polarizabilities of each~anisotropic! bond in terms of
its linear polarizabilities along and across its axis. These
pressions are exact for anisotropic harmonic oscillators
Sec. III we relate the surface and bulk macroscopic susc
tibilities to the bonds polarizabilities. In Sec. IV we prese
calculations for the anisotropy of the linear and nonline
reflectance of different Si surfaces and their calculated S
spectra, and we compare our results to the available exp
mental data. Finally, in Sec. V we discuss our conclusion

II. MICROSCOPIC MULTIPOLAR SUSCEPTIBILITIES

A. A single bond

We consider first an anisotropic pointlike harmonic osc
lator of cylindrical symmetry, with chargee,0 and mass
m situated at the origin. For the time being, we choosex to
be along the symmetry axis andy,z perpendicular to it, and
we denote the resonant frequency that corresponds to
response parallel to the bond byvx5v i , whereas the reso
nant frequency that corresponds to the perpendicular
sponse is denoted byvy5vz5v' .
G
-

-

e

a

e

el

s
-
-

-

e

y
of

ly

-

x-
In
p-
t
r
G
ri-
.

-

he

e-

We describe the quantum mechanical approach use
find the dynamical response of the oscillator to an exter
perturbation. This response is the one required to study S
We start with the unperturbed Hamiltonian

h5(
i

\v i S ai†ai1 1

2D , ~1!

whereai
† (ai) are the creation~annihilation! operators whose

basic commutators are

@ai ,aj
†#5d i j ~2!

with i , j5x, y, or z. The position and momentum operat
are given by

xi5r i~ai1ai
†! ~3!

and

pi5 imv i r i~ai
†2ai !, ~4!

with r i5A\/2mv i . Now, we assume a time depende
monochromatic perturbing Hamiltonianh8, i.e.,

h85H8~e2 ivt1eivt!, ~5!

with the perturbation given not only by the usual elect
dipolar coupling, but also by the magnetic dipolar and el
tric quadrupolar interaction

H852pW •EW2mW •BW 2
1

2
QJ :~¹EW!, ~6!

where EW is the linear local electric field amplitude at the
origin, ¹EW its gradient, andBW is the linear local magnetic

field, pW 5exW andQJ5exWxW are the electric dipole and quadru
pole moment operators, whilemW 5exW3pW /(2mc) is the mag-
netic dipole moment operator.

In order to calculate the induced change in the expecta
value of an observableO, we use the Kubo formulas40

^dO~1!~v!&5
1

i\E0
`

dteivt^@O,H8~2t!#& ~7!

and

^dO~2!~2v!&5S 1i\ D 2E
0

`

dt1e
ivt1E

t1

`

dt2e
ivt2

3^@@O,H8~2t1!#,H8~2t2!#&, ~8!

where the square brackets denote a commutator and the
gular brackets an ensemble average, and the calculatio
done within the interaction picture. The superscripts 1 and
as well as the argument ofv or 2v, indicate first-order and
second-order response, respectively.

Following Ref. 33, we obtain the first-order induced d
pole moment

^dpW ~1!~v!&5aJ~v!•EW, ~9!

where the linear microscopic polarizability is
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55 2491POLARIZABLE-BOND MODEL FOR SECOND-HARMONIC . . .
aJ~v!5a i j5S a i~v! 0 0

0 a'~v! 0

0 0 a'~v!
D , ~10!

and to emphasize the dependence on each bond’s orient
we introduce the notationa i←ax anda'←ay5az for its
parallel and perpendicular response, with

a i~v!5
e2/m

v i
22v2 ~with i5i or ' !. ~11!

The linear response of the oscillator is well described by
~9!, since the linear quadrupolar and magnetic contributi
are negligible in the long-wavelength limit.33 Likewise, the
second-order induced dipole moment is

^dpi
~2!~2v!&5@x i jkl

~d! ~v!1x i jkl
~m!~v!#Ej~¹kEl !, ~12!

where we adopt Einstein convention on repeated indic
Here,

x i jkl
~d! ~v!5

1

2e
@a i l ~2v!a jk~v!1a ik~2v!a j l ~v!# ~13!

and

x i jkl
~m!~v!5

3

2e
@a i l ~2v!a jk~v!2a ik~2v!a j l ~v!# ~14!

are the dipolar electric (d) and magnetic (m) originated con-
tributions to the microscopic second-order susceptibility
the oscillator. Finally, the second-order induced electric q
drupolar moment is

^dQi j
~2!~2v!&5x i jkl

~Q!~v!EkEl , ~15!

with a microscopic second-order electric quadrupolar (Q)
susceptibility given by

x i jkl
~Q!~v!5

1

2e
@a i l ~v!a jk~v!1a ik~v!a j l ~v!#. ~16!

We can show33 that the microscopic susceptibilitiesaJ and
xJ (d),(m),(Q) of a single oscillator determine all the respon
functions which are relevant within the long waveleng
limit.

It is remarkable that in this model the nonlinear susce
bilities at frequencyv are factorized into simple products o
the linear polarizability atv and 2v. Hence, from the
knowledge ofa i(v) we can get completely the microscop
nonlinear behavior.

B. Bonds in a tetrahedron

The semiconductors that we want to study have a sim
diamondlike structure, with a tetrahedron as the basic u
This unit can be viewed as a cube with one atom at the ce
linked through four bonds to atoms sitting at alternate c
ners~Fig. 1!. The diamond structure is constructed by rep
cating these four bonds into four intercalated fcc lattices. T
polarization induced in the semiconductor originates fr
the displacement of its charge distribution which typica
has strong maxima at the middle of each bond for m
atomic semiconductors, with the exception of diamond
ion
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which has a bimodal distribution. Therefore, we model t
response of the semiconductor as that of a lattice of an
tropic cylindrically symmetric polarizable bonds38 such as
those described above. For each bond we introduce a c
dinate system centered on it and with thex axis aligned with
the symmetry axis. To transform its response to the cryst
coordinate system we simply displace its center and rotat
symmetry axis. We will employ Eqs.~12!–~16! to relate the
nonlinear response of each bond to its linear polarizabilit

In the bond’s coordinate axis the polarizabilityaJ is given
by Eq.~10!, from which we can build the nonlinear respon
and then get the corresponding tensor for each bond orie
tion l through a rotation,

a i j
l 5Rim

l Rjn
l amn ~17!

and

x i jkl
l 5Rim

l Rjn
l Rkr

l Rls
l xmnrs, ~18!

wherexJ refers to any one of the electric dipolar (d) or mag-
netic dipolar (m) or electric quadrupolar (Q) susceptibility
tensors calculated using Eqs.~13!, ~14!, and ~16! in the
bond’s coordinate system. In Eqs.~17! and ~18!, Rl is the
matrix that rotates thelth bond system into the crystal’
coordinate system. Alternatively, we could take advantage
the cylindrical symmetry to write

aJl5a iê
lêl1a'~12êlêl!, ~19!

where êl is a unitary vector along the direction of thelth
bond. The nonlinear susceptibilities can then be construc
directly in the crystal’s system by substituting Eq.~19! into
Eqs.~13!, ~14!, and~16!.

Based on the microscopic response of each bond, in
following section we will show how to obtain the macro
scopic susceptibilities required for the calculation of t
SHG conversion efficiency of the crystal.

III. MACROSCOPIC SUSCEPTIBILITIES

In this section we calculate the macroscopic susceptib
ties of the semi-infinite diamondlike lattice of polarizab
bonds previously described. The susceptibilities are defi

FIG. 1. Illustration of the diamond structure of Si. We show
tetrahedral building block consisting of a cube with Si atoms
alternate vertices joined to another Si atom at the cube’s cente
four bonds. The crystal can be viewed as an fcc lattice made
replicas of this basic unit.
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through the macroscopic second-order nonlinear polar
tion, according to the following standard definitions. For t
centrosymmetric bulk, the first nonzero contribution to t
second-order nonlinear polarization per unit volume is giv
by

Pi
~b!~rW,2v!5x i jkl

~b! Ej~rW,v!¹kEl~rW,v!, ~20!

whereEW (rW,v) is the fundamental electric field of frequenc
v at position rW within the bulk (b), and xJ (b) is the bulk
second order macroscopic susceptibility. For a cubic sys
Eq. ~20! can be further simplified in the standard cub
axes13,14

Pi
~b!~2v!5g¹ i„EW ~rW,v!•EW ~rW,v!…1zEi~rW,v!¹ iEi~rW,v!

~no summation!, ~21!

where we assumed a single transverse plane wave in the
so that¹•EW 50 andEW •¹50. Here,

z5x i i i i
~b!2x i j i j

~b! 2x i j j i
~b! 2x i i j j

~b! ~no summation andiÞ j !
~22!

yields the anisotropic behavior of SHG coming from t
bulk, and

g5
1

2
x i j i j

~b! ~no summation andiÞ j ! ~23!

gives the corresponding isotropic bulk contribution.
The lack of inversion symmetry at the surface (s) allows

us to write an effective singular polarizatio
Pi(s)(2v)d(z2z0) which, following Refs. 13 and 14, we lo
cate in vacuum just on top of the semi-infinite crys
(z5z02), and whose dipole moment per unit area is given

Pi~s!~2v!5x i jk
~s!~v!Ej~B,v!Ek~B,v!, ~24!

wherexJ (s) is the second order macroscopic surface susc
tibility, and EW (B,v) is the macroscopic electric field jus
below the selvedge (z5z01 within the long wavelength ap
proximation! which differs from the field just on top
EW (A,v) due to screening, i.e.,

EW ~B,v!5„Ex~A,v!,Ey~A,v!,Ez~A,v!/e~v!…, ~25!

with e(v) the isotropic bulk dielectric function. Here w
have chosen a coordinate system such that the surface l
z5z0 andz.z0 is inside the system. Notice that the coord
nate system employed in the surface calculation might di
from the standard cubic system employed in the bulk ca
lation above. Due to the surface symmetry there are on
few nonzero independent components of the surface sus
tibility, namely, xzzz

(s) , xzzx
(s) 5xzzy

(s) , and xzxx
(s) 5xzyy

(s) for the
~001! face,xzzz

(s) , xzzx
(s) Þxzzy

(s) , andxzxx
(s) Þxzyy

(s) for the ~110!
face, and xzzz

(s) , xzzx
(s) 5xzzy

(s) , xzxx
(s) 5xzyy

(s) , and
xxxx
(s) 52xxyy

(s) 52xyyx
(s) for the ~111! face. There is an overal

permutation symmetry in the last two indices, i.
x i jk
(s)5x ik j

(s) , and the susceptibilities of different faces are
general different.

We mention that for the diamond structure we may obt
other nonzero components ofxJ (s) since themicroscopic
a-
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symmetry of a face may be less than themacroscopicsym-
metry. For example, the~001! face has on the average th
same symmetry as a square, which yields the nonzero c
ponents described above. However, if we look at a mic
scopic region, the displacement between the first and sec
crystalline planes might have a component along a squ
diagonal, say the@110# direction, which would therefore be
inequivalent to the second diagonal along the@11̄0# direc-
tion. This allows a nonzero value forxzxy

(s) . Nevertheless, any
surface has steps, so that on other microscopic regions
roles of the@110# and @11̄0# directions are reversed, and s
is the sign ofxzxy

(s) . It is only after averaging over both kind
of regions, that is, over the macroscopic region being illum
nated by the beam, that the contribution to the surface po
ization coming fromxzxy

(s) cancels out, regaining the full sym
metry of the square as ifxzxy

(s) 50.14

With the knowledge ofg, z, andxJ (s) it is a simple matter
to calculate the SHG radiated efficiency following Refs.
and 14. Therefore, in the rest of this section, we develop
formalism based on the polarazible bonds~Sec. II! in order
to calculate the macroscopic susceptibilities.

A. Linear response

We look for the first order induced dipole moment
every bondnl, where n denotes a site of the fcc lattic
corresponding to thelth bond orientation. To simplify our
notation we substitute

^dpW ~1!~v!&→pW nl~v!, ~26!

and we adopt a convention in which an argument ofonlyone
v implies first order. The linear polarizationpW nl obeys, in
analogy to Eq.~9!,

pW nl~v!5aJl~v!•EWnl , ~27!

where

EWnl5EW ~ext!~rWnl!1 (
n8l8

MJ nln8l8•p
W
n8l8~v! ~28!

is the local field, which is the sum of the external fie
EW (ext)(rWnl) and the dipolar field produced by all other bond
The tensor

MJ nln8l85¹¹
1

urW2rWn8l8u
urW5rWnl

~29!

yields the dipolar interaction between the bondsnl and
n8l8. The sum in Eq.~28! is over all bondsn8l8Þnl and
can be carried out using standard planewise schemes~see, for
instance, Ref. 41!. For this task we writerWnl5(RW l nl ,zl l),
wherel l denotes thel th crystal plane ofl bonds at posi-
tion z5zl l and n numbers the individual bonds that mak
up this plane, so thatRW l nl spans a 2D periodic lattice fo
eachl . Assuming the long wavelength approximation, t
polarization of all bondsl that belong to a given planel is
the same,pW l nl5pW l l , so we can sum overn8 and obtain
from Eq. ~27! that
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pW l l~v!5aJl~v!•S EW ~A,v!1 (
l 8l8
MJ l ll 8l8•p

W
l 8l8~v!D ,

~30!

where we neglect the slow spatial dependence ofEW (ext)

3(rWnl)→EW (A,v) and we introduce the interplane intera
tions

MJ l ll 8l85(
n8

8MJ l nll 8n8l8. ~31!

Here the prime indicates that the self-interaction of a bon
excluded from the sum, i.e., the term withn5n8 when both

l 5l 8 andl5l8. It turns out theMJ decays exponentially
as ul 2l 8u increases. The solution of Eq.~30! gives the lin-
ear polarization of thel th plane for each bondl, so that the
total polarization is simply given by

pW l ~v!5(
l

pW l l~v!. ~32!

Later on we will require the local fieldEW l l at thelth bonds
of the l th plane, which can be obtained from Eqs.~27! and
~30!,

EW l l~v!5„aJl~v!…21
•pW l l~v!, ~33!

once Eq.~30! has been solved forpW l l .
Now we consider the bulk of the system. We have t

pW l l(v)→pW l(B,v) is independent of the plane numberl , so
that Eq.~30! reduces to

(
l8

@1dll82aJl~v!•UJll8#•p
W

l8~B,v!5aJl~v!•EW ~A,v!,

~34!

where the interaction between bond typesl andl8 is given
by the @(433)3(433)# matrix

UJll85 (
l 852`

`

MJ l ll 8l8. ~35!

The solution of Eq.~34! gives the linearly induced bulk di
pole moment of each bond and therefore the total bulk dip
moment is given by

PW ~B,v!5nb(
l

pW l~B,v! ~36!

with nb the 3D density of bonds. Finally, we identify th
isotropic bulk dielectric responsee(v) through

PW ~B,v!5
e~v!21

4p
EW ~B,v!. ~37!

SincePW (B,v) is a function ofaJ , Eq. ~37! yields an analyti-
cal expression which relatese(v) to the principal polariz-
abilities a i anda' . This relation is a generalization of th
Clausius-Mossotti~CM! relation to the diamond structure.
is

t

le

B. Surface nonlinear response

We consider now the second order dipole moments. F
we confine our attention to the surface region where the lo
field has a large uncompensated gradient at each bond s
order ¹'1/a with a the lattice parameter. Later we wi
calculate the polarization at the bulk where there is a can
lation that leaves only small gradients of order¹'v/c.

The equation for the total second-order dipole mom
near the surface is given by

pW nl
~ tot!~2v!5pW nl

~nl!~2v!1aJl~2v!•FEWnl
~Q!~2v!

1 (
n8l8

MJ nln8l8• pn8l8
~ tot!

~2v!G . ~38!

Here, the total dipole moment at 2v is driven by the nonlin-
ear response to the spatially varying linear local field wh
we obtain from Eq.~12!,

^dpi
~2!~2v!&→„pW nl

~nl!~2v!…i5x i jkl
~d!,l

„EWnl~v!…j¹ l„EWnl~v!…k .
~39!

Notice that near the surface (v/c)B!¹E'E/a, so we have
ignored the magnetic contribution to thelth’s bond suscep-
tibility xJ (m),l @see Eq.~18!#. However, this magnetic contri
bution will be included when we calculate the nonlinear bu
response below. The second-order dipole moment is
driven by the linear response to the field at 2v due to the
oscillating quadrupoles@Eq. ~15!#,

„EWnl
~Q!~2v!…i5

1

2(
n8l8

~NJ nln8l8! i jk„Q
J

n8l8
~nl!

~2v!…jk . ~40!

Finally, the last term on the left-hand side of Eq.~38! repre-
sents the linear response to the field at 2v due to the other
dipoles oscillating at 2v and should be included to achiev
self-consistency.

In Eq. ~39! we require the gradient of the local field eval
ated at the bonds, which turns out to be proportional to
linear dipole moment and is given by33

¹ i„EWnl~v!…j52 (
n8l8

~NJ nln8l8! i jk„p
W
n8l8~v!…k , ~41!

with

NJ nln8l852¹¹¹
1

urW2rWn8l8u
U
rW5rWnl

~42!

being the same tensor as in Eq.~40!. We also require the
nonlinear induced quadrupolar moment given by Eq.~15!,
and rewritten as

^dQi j
~2!~2v!&→„QJ nl

~nl!~2v!…i j

5x i jkl
~Q!,l~v!„EWnl~v!…k„EWnl~v!…l ~43!

with xJ (Q),l the microscopic quadrupolar susceptibility of th
lth bond@see Eq.~18!#.

We apply the same planewise summation scheme to
~38! that led to Eq.~30! by defining
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NJ l ll 8l85(
n8

8NJ l nll 8n8l8, ~44!

and writing

(
l8l 8

@1dll8d l l 82aJl~2v!•MJ l ll 8l8#•p
W
l 8l8
~ tot!

~2v!

5SW l l~2v!, ~45!

whereSW is the nonlinear source,

„SW l l~2v!…i52x i jkl
~d!,l

„EW l l~v!…j (
l8,l 8

~NJ l ll 8l8!klm

3„pW l 8l8~v!…m

1
1

2
a i j

l ~2v! (
l8,l 8

~NJ l ll 8l8! jklxklmn
~Q!,l8

3„EW l 8l8~v!…m„EW l 8l8~v!…n . ~46!

Notice that the driving fields forSW depend on the linear loca
field EW l l(v) and the linear dipole momentpW l l(v), which

are related through Eq.~33!. The interactionNJ l ll 8l8 decays
very quickly as the separation between planes increa
Therefore, as we move away from the surface (l 50) into
the bulk (l →`), the driving sourceSW becomes negligible
so pW l l

(tot)(2v) vanishes asl →` and the total surface-dipol
moment per unit area

PW ~s!~2v!5ns(
l ,l

pW l l
~ tot!~2v! ~47!

is well defined. Here,ns is the number of bonds per unit are
In order to obtain the different components of the surfa
susceptibility tensorxJ (s) from this equation, we fix in turn
the driving fieldEW (A,v) @see Eq.~25!# along different direc-
tions. Indeed, to getx i j j

(s) we chooseEW (A) along thej direc-
tion. Thus, we would generatex ixx

(s) , x iyy
(s) , and x izz

(s) , with

i5x, y, or z. If we now choseEW (B) with two null compo-
nents, sayEj (B) andEk(B) for mutually orthogonal direc-
tions jÞk, we would get

Pi~s!5x i j j
~s!Ej~B!21x ikk

~s!Ek~B!212x i jk
~s!Ej~B!Ek~B!.

~48!

Knowing x i j j
(s) and x ikk

(s) , we can solve this equation fo
x i jk
(s) , henceforth generatingx ixy

(s) , x ixz
(s) , and x iyz

(s) for i5x,
y, or z. It should be clear from Eq.~24! thatx i jk

(s)5x ik j
(s) , and

then all 27 components ofxJ (s) are finally obtained. We recal
that some of the non-null components found through t
procedure are forbidden by themacroscopicsymmetry of the
surface; they would become zero after averaging over
inequivalent top surface layers,14 and they should be ignore
in the calculation of the SHG signal.
s.

e

s

e

C. Bulk nonlinear response

Now, we consider the bulk (B) nonlinear induced-dipole
polarizationpW l

(tot)(B,2v) andpW l
(nl)(B,2v). In the long wave-

length regime they are very slowly dependent on position
that following the classical local-field argument, the to
bulk quadratic-dipole polarization obeys

(
l8

@1dll82aJl~2v!•UJll8#•p
W

l8
~ tot!

~B,2v!

5pW l
~nl!~B,2v!1aJl~2v!•EWl

~Q!~B,2v!. ~49!

Since now we are in the retarded regime, we have to inc
porate the magnetic contribution to the nonlinear polari
tion,

~pW l
~nl!! i5x i jkl

~d!,l~v!„EWl~B,v!…j¹k„EWl~B,v!…l

1x i jkl
~m!,l~v!„EWl~B,v!…j¹k„EW ~B,v!…l . ~50!

The first term on the right-hand side is the electric-dipo
driven term, proportional to the gradient of the local elect
field, and the second term corresponds to the magne
dipole-driven term. Notice that in the latter we made t
substitutionEWl(B)→EW (B) since the spatial fluctuations o
the transverse fields are of order (av/c)2 times smaller than
the corresponding fluctuations of the longitudinal elect
field.42

For a strictly space-independent field the source term
Eq. ~49! would be null. To calculate them we have to a
count for the weak spatial variation of both the long-ran
bulk-field and its short-range local-field corrections. The
fore, we assume a plane-wave spatial variation of the fo

EW l nl~v!5EWl~B,v!eiq
W
•rW l nl, ~51!

for the linear fields and for the polarization, where the line
local field may be obtained from Eqs.~33! and~34!, and we
allow the small wave vectorqW to point in any direction.
Therefore, the fields depend not only on the plane indexl
but also on the in-plane indexn.

We start with the quadrupolar field

„EW l nl
~Q! ~2v!…i[„EWl

~Q!~B,2v! ie
2iqW •rW l nl

…

5
1

2 (
l 8n8l8

~NJ l nll 8n8l8! i jk~Q
J

l 8n8l8
~nl ! ! jk ,

~52!

where the quadrupole moment is given by Eq.~43!. Using
Eq. ~51!, and assuming thatuqW •DrW l nll 8n8l8u!1, for all the
terms l 8n8 that contribute to the sum in Eq.~52!, where
DrW l nll 8n8l8[rW l nl2rW l 8n8l8 , we get for any planel in the
bulk the following expansion for the quadrupolar field to fir
order inqW •DrW l nll 8n8l8:
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„EWl
~Q!~B,2v!…i5

1

2 (
l 8n8l8

~NJ l nll 8n8l8! i jk„Q
J

l8
~nl!

~B,2v!…jke
2iqW •DrW l nll 8n8l8

.
1

2(l8
F S (

l 8n8
~NJ l nll 8n8l8! i jk D 12i ~qW ! lS (

l 8n8
~DrW l nll 8n8l8! l~N

J

l nll 8n8l8! i jk D G „QJ l8
~nl!

~B,2v!…jk

[(
l8

~hJll8! i jkl „Q
J

l8
~nl!

~B,2v!…jk~ iql !, ~53!
th

e

in

s.
at

g
ca

f

nd
of
by
lar
where the first term on the second line is zero in view of

odd parity ofNJ and the bulk quadrupolar amplitude is

„QJ l
~nl!~B,2v!…i j5x i jkl

~Q!,l~v!„EWl~B,v!…k„EWl~B,v!…l .
~54!

Here, we introduced the fourth rank quadrupole-dipole int
action tensor

~hJll8! i jkl5 (
l 8n8

~NJ l nll 8n8l8! i jk~DrW l nll 8n8l8! l . ~55!

This tensor is most easily evaluated in the cubic axis mak
use of the permutation symmetry of cubic crystals,

~hJll8! i jkl5 (
l 852`

` S (
n8

~NJ l nll 8n8l8! i 8 j 8k8D ~zl l2zl 8l8!

5(
l 8

~NJ l ll 8l8! i 8 j 8k8~zl l2zl 8l8!, ~56!

where the indicesi 8 j 8k8z are obtained fromi jkl by per-
forming a cyclic permutation.33

Following a similar treatment for the dipolar term of Eq
~49! and ~50! we obtain the gradient of the local field th
accompanies a plane wave propagating within the bulk,33

¹ i„EWl~B,v!…j5 i ~qW ! i„EW ~B,v!…j

2 i ~qW ! l(
l8

~hJll8! i jkl „p
W

l8~B,v!…k ,

~57!

where the first term gives the variation of the long-ran
bulk field, and the second term gives the short-range lo
field corrections.

Now that we have all the terms required for Eq.~49!, we
proceed to find its solution. First, we define

TJll8~nv!51dll82aJl~nv!•UJll8, ~58!

with n51 or 2. From Eq.~34! we obtain the amplitude o
the bulk linear dipole moment

pW l~B,v!5 J̀

l~v!•EW ~B,v!, ~59!

in terms of the macroscopic linear field, with

J̀

l~v!5(
l8

„TJ21~v!…ll8•aJl8~v!, ~60!
e

r-

g

e
l-

and from Eq.~33! we get the bulk local field

EWl~B,v!5 jJl~v!•EW ~B,v!, ~61!

with

jJl~v!5„aJ21~v!…l•J̀l~v!. ~62!

Now, from Eq.~49! we obtain the nonlinear polarization

pW l
~ tot!~B,2v!5(

l8
„TJ21~2v!…ll8•SW

l8~B,2v!, ~63!

in terms of the bulk source

Sil~B,2v!5G i jkl
l Ej~B,v!¹kEl~B,v!, ~64!

with

G i jkl
l 5~x imkl

~d!,l1x imkl
~m!,l!jmj

l 1~x imns
~d!,l1x imns

~m!,l!

3jmj
l (

l8
~hJll8!nsrk̀ rl

l8~v!

2a im
l ~2v!(

l8
~hJll8!mnskxnsrt

~Q!,l8j r j
l8~v!j t l

l8~v!.

~65!

The first ~second! term on the right-hand side of Eq.~65!
comes from the first~second! term of Eq.~57!, whereas the
last line comes from the quadrupolar field of Eq.~53!. The
total bulk polarization per unit volume is written as

PW ~b!~2v!5nb(
l

pW l
~ tot!~B,2v!. ~66!

Comparing Eq.~66! to Eq. ~20! we identify the macroscopic
bulk susceptibility

xJ ~b!~v!5 (
l,l8

„TJ21~2v!…ll8•G
Jl8~v! ~67!

from whichz andg can be obtained using Eqs.~22! and Eq.
~23!, respectively.

D. Higher multipoles

We conclude our calculation of the nonlinear surface a
bulk nonlinear susceptibilities by incorporating the effect
higher induced multipoles to the polarization, namely,
adding the gradient of the quadrupolar density to the dipo
density.43 The surface polarization becomes44,45
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Pi~s!→Pi~s!2
1

2
nb(

l
„QJ l~B,2v!…iz , ~68!

changing the surface susceptibility to

x i jk
~s!→x i jk

~s!2
1

2
x̃ i jk , ~69!

where

x̃ i jk5(
l

x izmn
~Q!,ljmj

l jnk
l . ~70!

Notice that this quadrupolar contribution to the surface
larization is bulk originated. Similarly, we include the effe
of higher induced multipoles to the effective bu
polarization,43

PW ~b!~2v!→PW ~b!~2v!2
1

2
nb(

l
QJ l~B,2v!•~2iqW !,

~71!

modifying the bulk susceptibility tensor,

x i jkl
~b!→x i jkl

~b! 2x̃ i jkl , ~72!

with

x̃ i jkl5(
l

x ikmn
~Q!,ljmj

l jnl
l . ~73!

We mention that had we used a simple fcc lattice of i
tropic polarizable entities~tetrahedra! instead of four inter-
penetrated lattices of anisotropic polarizable bonds con
ered above, we would have obtained only one independ
component ofxJ (b) corresponding tog, and thus under thes
assumption the nonlinear bulk response would have b
isotropic. However, although in our model all the bonds
identical except for their orientation, and their response
harmonic-oscillator-like, their anisotropy combined with t
lower symmetry of the tetrahedral structure yieldszÞ0, ren-
dering the bulk anisotropic.

IV. RESULTS

In the preceding section we obtained the macrosco
nonlinear bulk and surface susceptibilities in terms of
microscopic susceptibility tensors of each bond. Assum
an anisotropic harmonic oscillator model the latter were w
ten @Eqs.~13!, ~14!, and~16!# in terms of the linear polariz-
abilities aJl. In the following, we assume these relations
hold approximately for the bond susceptibilities of a Si cry
tal and further assume thataJl is independent of position
Therefore, in our model we incorporate only the surfa
modification to the local fields, and we ignore any other s
face modification to the linear and nonlinear response s
as those due to transitions involving surface states. As
cussed at the end of Sec. III A, we can find an express
which relates the bulk dielectric functione(v) to the princi-
pal polarizabilitiesa i(v) anda'(v), which is a generaliza-
tion of the Clausius-Mossotti~CM! relation to the diamond
structure. Close to the visible spectral region, we expect
the main contributions toa i originate in bonding-
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en
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antibonding transitions, whilea' is due to transitions involv-
ing atomic states with different symmetry. We assume
latter have larger resonant frequencies than the former,
thus we approximatea'(v) by a Lorentzian centered a
some relatively high frequencyv' with a weight character-
ized by a frequency parametervp , i.e.,

a'~v!5
vp
2

v'
22v2 . ~74!

After choosing these parameters, we solve the general
CM relation for each frequency to obtaina i(v) in terms of
the experimentally measured bulk dielectric functi
e(v).46 Having determined the polarizability tensor, an
therefore also the nonlinear susceptibilities~Sec. II!, we
solve the local field equations to obtain first the linear dip

momentspW nl(v) ~Sec. III A!, then pW nl
(nl)(2v), QJ nl

(nl)(2v),

and the total nonlinear dipole momentspW nl
(tot)(2v) ~Sec. III B

and Sec. III C!. Next, we obtain the bulk and surface pola
izationsPW (b)(2v) and PW (s)(2v) per unit volume and unit
area, respectively, and the nonlinear surface and bulk sus
tibilities. The SHG efficiencyR(v) is defined through

R~v!5
I r~2v!

I i
2~v!

, ~75!

where I r(2v) is the reflected intensity of the SH field, an
I i(v) is the incident intensity of the fundamental field. It ca
finally be calculated in terms of the nonlinear susceptibilit
using standard formulas.13,14

The anisotropy of the SHG of Si~111! and Si~001! has
been measured for all possible combinations of incom
and outgoings and p polarizations at\v51.17 eV and
2.34 eV.2–5 For the following results, we chose the param
eters\v'57.17 eV and\vp51.68 eV. These were ob
tained by fitting the ratio between the heights of the pe
observed in the azimuthal angular dependence ofRsp for p
polarized outgoing ands polarized incoming light upon a
Si~111! surface for both frequencies. As will be shown b
low, with these parameters we obtain a good agreement
the other anisotropy measurements performed at the fi
frequencies above. Our value ofv' is of the order of the
transition energy between the atomic states of Si 3p23P with
J50 and 3d3D0 with J51,47 in qualitative agreement with
the discussion before Eq.~74!. We achieved a good numer
cal convergence using 40 crystalline planes in the calcula
and including a small imaginary part ina' by adding a
damping frequencyvc!v' in the Lorentzian~74!; we took
vc50.1 eV, although its actual value is not very importa
as long as it is small.

A. Linear and nonlinear anisotropy

In this section we present the results obtained for the
flectance anisotropy of Si~110! and the SHG anisotropy fo
Si~001! and Si~111!.

In Fig. 2, we show a plot ofa i vs v, obtained from the
generalized CM relation through the procedure descri
above. We observe the usual peaks due to the singularitie
the bulk joint density of states, although they are subst
tially shifted due to short range Coulomb and exchange
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teractions. We recall that the bulk local field effect induc
an almost equal but opposite shift.48 With this fitteda i(v)
and takinga'(v) from Eq. ~74!, we calculated the surfac
induced anisotropy37 DR/R of the linear normalized reflec
tance of Si~110!, whereDR5R1102R001 is the difference of
the reflectivity for normally incident light polarized along th
110 and 001 directions. The results for our bond model
shown in Fig. 3 along with the experimental data49 and the
results for a simple fcc lattice of isotropic dipoles.50 We
notice that the bond model has a good agreement with
periment, as good as that of the single-fcc model. We m
tion, though, that a similar model for SHG, with only one f
lattice of isotropic polarizable entities,34,33 each representing
a tetrahedral arrangement of bonds, cannot reproduce e
the bulk SHG anisotropy, which is evident in the expe
ments on the~001! surface,5 or the resonant peak observed
3.3 eV.17

Now we turn our attention to the nonlinear anisotrop
Following Refs. 13 and 14, we write forp-polarized SH
output

FIG. 2. Imaginary part of the axial bond polarizabilitya i of Si
as a function of frequencyv. The structure appears substantia
shifted from the singularities of the joint density of states due
short range Coulomb and exchange interactions, which are com
sated within the bulk by the long range local field effect.

FIG. 3. Normal incidence anisotropy of the linear reflectan
DR/R of a Si~110! surface as a function of frequencyv. We show
results calculated with our bond model~solid line! and for a single
fcc lattice of isotropic tetrahedral polarizable entities~dashed line!
together with experimental results~dashed-dotted line!.
s

e
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er
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Rip
~m!~v!5uai

~m!~v!1ci
~m!~v!cos~mw!u2, ~76!

and fors-polarized SH output

Ris
~m!~v!5ubi

~m!~v!sin~mw!u2, ~77!

wherei stands for the fundamental input polarization, whic
could be eithers or p, m denotes the rotational symmetry o
the surface,m53 for the (111) face, whereasm54 for the
(001) face, andw is the azimuthal angle. The complex func
tionsa(v), b(v), andc(v) depend on the macroscopic sus
ceptibilitiesg(v), z(v), andxJ (s)(v), as well as on the angle
of incidenceu and bulk dielectric functione(v) through
Fresnel factors. These relationships can be found in Refs
and 14. From them it follows thatc(4) andb(4) depend only
on z ~besides the Fresnel factors!, and therefore the azi-
muthal anisotropy of the (001) face originates in the bu
regardless of the input-output polarizations. Also, for th
(111) face we have thatRip

(3) vs w displays three peaks a
wn52np/3 with n50,1,2~i.e., threefold symmetry!, and de-
pending on the relative phase values betweenai

(3) andci
(3) ,

there could be also three alternate peaks atw5wn6p/3, for
eithers or p input polarization.

In Fig. 4 we plotRsp
(3) vsw for Si~111!, with u545°. The

top plot is for \v51.17 eV and the bottom one is fo
\v52.34 eV. The parametersv' andvp that describe the
perpendicular linear polarizabilitya' @Eq. ~74!# were ob-
tained by fitting these plots to the corresponding experime
given in Refs. 2 and 14. We see that there is an altern

o
n-

e

FIG. 4. s-in p-out SHG efficiencyRsp
(3) as a function of the

azimuthal anglew calculated for Si~111!. The angle of incidence is
u545°. The top~bottom! panel is for\v51.17 eV (\v52.34
eV!.
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peak atw560°,180°, and300°, andthat the ratio between
these and the larger ones atw50°,120°, and240° gets
smaller for larger frequencies. On the other hand, Fig.
showsRpp

(3) vs w for Si~111!, whereu545° and for 1.17 eV
and 2.34 eV. For 1.17 eV, we only see the peaks
w50°,120°, and240° and thevanishing of the alternate
peaks gives a minimum just like in the experimental resu
of Ref. 51. For 2.34 eV we get a very small alternate pea
which was not detected experimentally.5 However, its calcu-
lated height is smaller than the experimental resolution. N
tice the change of scale by a factor of 1000 between Figs
and 5. This big difference in signal strength arises from th
different magnitude of the Fresnel factors fors andp incom-
ing polarization.

In the top panel of Fig. 6 we displayRsp
(4) vs w for

Si~001!, whereu545° and for\v51.17 eV and 2.34 eV.
We notice thatz produces indeed a small anisotropy at 2.3
eV, which becomes even smaller at 1.17 eV, as is clea
shown in the experimental results of Ref. 2. However, w
notice a p phase difference between the oscillations o
Rsp

(4) we calculated at 2.34 eV and at 1.17 eV. This pha
reversal has not been experimentally reported. This may
due to an ambiguity in the origin of the azimuthal angle. Fo
example, in Ref. 2 it was chosen for convenience of displ
only. Therefore, we suggest that in future experiments t
initial direction against which one measuresw should remain
fixed throughout the whole set of frequencies. Similarly, th
lower panel of Fig. 6 displaysRpp

(4) . Again, there is a small
anisotropy produced by the bulk termz at 2.34 eV, which

FIG. 5. p-in p-out SHG efficiencyRpp
(3) as a function of the

azimuthal anglew calculated for Si~111!. The angle of incidence is
u545°. The top~bottom! panel is for\v51.17 eV (\v52.34
eV!.
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now becomes negligible at 1.17 eV. The experimental resu
of Ref. 5 confirm the result for 2.34 eV, and to our know
edge there are no experiments for this combination of pol
ization at 1.17 eV.

Figure 7 showsRps
(3) andRss

(3) vsw for Si~111!, at 2.34 eV
and 1.17 eV, respectively, foru545°. Since both are for
s-polarized SH beams, they display a sixfold peak dege
eracy @Eq. ~77!#. These two efficiencies only depend onz
and x iii

(s) a component which is unique to the (111) fac
Once again, these results are in qualitative agreement w
the experimental counterparts at 2.34 eV and 1.17 eV fro
Refs. 5 and 2, respectively. Notice again the change of sc
between both panels.

The calculated results shown above imply that the pres
model gives an accurate qualitative description of the ma
features for the anisotropic nature SHG in Si at 1.17 and 2
eV. We have also checked that our results also agree with
anisotropy recently measured at\v51.6 eV.52 Moreover,
the model allows a variation of the fundamental frequenc
thus generating spectroscopic results for SHG. They will
discussed in the following subsection.

B. Spectroscopy

In the preceding section we concentrated on the angu
dependence of the SHG efficiency for a few fixed freque
cies. Recently, the availability of intense tunable lasers h
permitted spectroscopic studies of SHG. In this subsect
we present calculations of several SHG spectra for differe
faces of Si and combinations of in and out polarization

FIG. 6. SHG efficiencyR(4) as a function of the azimuthal
anglew for Si~001!. The angle of incidence isu545°, and we fixed
\v51.17 eV~dashed line! and\v52.34 eV~solid line!. The top
~bottom! panel is fors→P (p→P) polarization.
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Here we use the same parametersv' andvp as in the pre-
ceding subsection, with no further fitting. We constrain ou
selves to a range that only goes up to 3 eV, since we exp
spurious effects as the second-harmonic frequency gets c
to the resonant frequency\v'57.17 eV.

First, we present the values for the nonlinear susceptib
ties as a function of frequency for Si~111!. In Fig. 8, we
showg, z, and the four different independent components
xJ (s). We notice that the surface susceptibilitiesx ii'

(s) , x'ii
(s) ,

andx iii
(s) have strong resonances at\v'1.75 eV. Forx'''

(s)

and the bulk componentsg and z there is no structure and
they are in general smaller than the other surface com
nents, which are dominated byx iii

(s) In Fig. 9 we show the
SHG efficiency spectra of Si~111! Rsp

(3) vsv for u545°, and
for w50° and 60°, which correspond to the large and sm
peaks of Fig. 4. We also plot the ratio between the height
these two lines. We clearly notice that there is a strong f
quency dependence of both spectra. For instance,Rsp

(3)

(w560°) has a maximum at 1.17 eV, and is practically nu
at 1.4 eV. These structures appear also in the quotient
tween both spectra, a feature that could be experiment
explored quantitatively, even without making absolute me
surements. Even more dramatic is the large resonance
both orientations at' 1.75 eV, whose position and width
\Dv'0.14 eV is in agreement with recent experiments.17

Indeed, SHG spectra have recently been measured for
ferent clean, oxidized, and adsorbate covered surfaces
Si.17–19 These spectra show a well developed peak close
2v53.3 eV. Its position and its relative insensitivity to sur

FIG. 7. SHG efficiencyR(3) as a function of the azimuthal
anglew for Si~111!. The angle of incidence isu545°. The top
~bottom! panel is forp→S (s→S) polarization and\v52.34 eV
(\v51.17 eV!.
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FIG. 8. Surface and bulk nonlinear susceptibilities as a funct
of frequency for Si~111!. The first panel shows 2ueunbg ~dashed
line!, 2ueunbz ~dotted line!, and 2ueunbx'''

(s) ~solid line!. In the
other panels the corresponding component ofxJ (s) is indicated. No-
tice the resonant structure around 1.75 eV.

FIG. 9. SHG efficiencyRsp
(3) as a function of frequency for

Si~111! ~top panel!. The angle of incidence isu545° and the azi-
muthal angles arew50° ~solid! andw560° ~dashed!; they corre-
spond to the peaks of Fig. 4. We also show the ratio of these
peaks in the bottom panel.
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face conditions suggest that it is originated from a bulk tr
sition between the valence and conduction bands which
comes SH electric-dipolarly active due to distortions in t
crystalline structure close to the surface. To account
strain within the first few layers, we introduce a parame
D5d1 /dB21, wheredB is the separation between consec
tive fcc planes in the bulk, andd1 the corresponding separa
tion between the first and second layers. For the (D50)
bulk-truncated~001! crystal we find a structureless spectru
which is barely modified by stretchingd1. However, if we
shrink d1 by as little as 5% a very well developed pe
appears39 at \v51.65 eV, with a width\Dv'0.14 eV in
excellent agreement with experiment. These results can
appreciated in Fig. 1 of Ref. 39, which displaysRpp

(4)(v)
calculated for light incident on Si~001! at an angleu545°
andw530°. For even larger contractions, the height of t
peak increases but its position remains mostly unchan
Notice the huge change of scale between Fig. 1 of Ref.
and Fig. 9. The height of the latter is five orders of mag
tude larger than that of the former. We have seen above
the ~111! crystalline face presents a peak at 1.75 eV,
shown in Fig. 9, even when undistorted. While for the~111!
face the peak comes fromx ii'

(s) , x'ii
(s) , and x iii

(s) as can be
appreciated from Fig. 8, for the~001! face the peak only
comes fromx ii'

(s) , which is shown in Fig. 3 of Ref. 39.
Our results agree with the interpretation of the first e

perimental spectra17,19 in that the origin of the resonance
surface originated. This was further confirmed through n
linear electroreflectance spectroscopy~NER!,20,21 where it
was found that this resonance does not depend on ap
static electric fields, whereas a field dependent dipolar b
transition was found nearby. The latter is missing in o
results since in the absence of an applied static electric
two-photon dipolar transitions are symmetry-forbidd
within the bulk. However, in Ref. 17 the peak at 3.3 eV w
associated with a resonance in the normal component o
surface responsex'''

(s) . This assignment was based on t
angle-of-incidence dependence of the signal.53 In Ref. 19 no
resonance in the isotropic contribution to the efficiency
SHG from the~111! surface fors→p polarizationRsp

(3) was
found. This indicates thatx'ii

(s) does not resonate. This wa
taken as a further argument for thex'''

(s) resonance,19 al-
though the possibility21 of a resonance inx i'i

(s) seems not to
have been contemplated.19 Our results, shown in Fig. 8, dis
play a resonance, although small, inx i'i

(s) , a much larger
resonance inx'ii

(s) , and no resonance at all inx'''
(s) . The

latter is also absent in Fig. 3 of Ref. 39. These theoret
results are contrary to the interpretation of experiment
Refs. 17 and 19. Since we only accounted for the surf
local field effect in our theory, it is feasible to find a mech
nism to provide the resonance we did not find inx''' . It
seems more difficult to conceive a mechanism to elimin
the resonance we did find inx'ii . However, there is still
some disagreement on the identification of the tensor c
ponents responsible for the surface resonance21 and panel~a!
of Fig. 2 of Ref. 21 does show structure in the isotrop
contribution toRsp

(3) , which necessarily comes from a res
nance in x'ii

(s) . Moreover, Pedersen and Morgen54 have
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clearly observed very recently resonances inx'ii
(s) and in

x iii
(s) at 2v53.4 eV for Si~111!737, besides a resonance

x'''
(s) at 2v53.3 eV.
It has been found experimentally that the peaks close

\v51.65 eV in the SHG spectra of both Si~001! and ~111!
surfaces are quite insensitive to the surface condition.17 They
appear on clean reconstructed samples and on samples
dized under different conditions. The electronic structure
these systems is expected to be quite different at the surf
and so must be their polarizability. In our calculation w
assumed the same polarizability at the surface and at
bulk, and we accounted only for the change in the local fi
and its spatial variation at the surface. In order to explore
robustness of the SHG resonant peak under surface pertu
tions, we have calculated the SHG efficiency spectra
Si~001! making arbitrary modifications to the polarizabilit
of its first layer of bonds. Remarkably, the position of t
resonant peak and its relative height over its baseline are
significantly changed by rather large changes to the sur
polarizability. This is appreciated, for instance, in Fig. 1
where we show results obtained for the cases of surface
larizabilities that double and that halve the bulk polarizab
ity. We also show results for constant surface polarizabilit
that were fixed at the values of the bulk polarizabilities th
were fitted to the SHG anisotropy at 1.17 and 2.34 eV. T
reason for this lack of sensitivity in the resonance position
that the layer-by-layer polarization peaks at the subsurf
bonds instead of at the topmost layer, as shown in Fig. 1

V. CONCLUSIONS

In summary, we developed a model for the surface S
of crystals with the structure of diamond which takes in
account the nonlinear polarization induced by the mic
scopic spatial variation of the linear local field. Our mod
consists of four interpenetrated fcc lattices of anisotropic

FIG. 10. SHG efficiencyRpp
(4) as a function of frequency for

Si~001! and for a relaxationD520.05. The angle of incidence i
u545°, the azimuthal angle isf530°. For the solid line we took
the surface polarizabilityaJs(v) equal to the bulk polarizability
aJb(v), as in our previous figures. We also show results for the c
when as(v)52ab(v) ~dash-dotted! and whenas(v)50.5ab(v)
~short-dashed!. Finally, we considered the case of a constant surf
polarizabilityaJs(v)5aJb(2.34 eV! andaJs(2v)5aJb(4.68 eV! ~dot-
ted!, and similarlyaJs(v)5aJb(1.17 eV! andaJs(2v)5aJb(2.34 eV!
~long dashed!.
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55 2501POLARIZABLE-BOND MODEL FOR SECOND-HARMONIC . . .
larizable bonds, each of which responds nonlinearly to
inhomogeneous local field with a microscopic hyperpolar
ability that we wrote in terms of the linear polarizability. Th
latter was obtained from the bulk dielectric function, the g
ometry of the crystal, and two parameters describing the
sponse of an individual bond in the direction normal to
axis, which were fitted to a few SHG anisotropy measu
ments on the~001! and ~111! surface. Our model yields a
linear reflectance difference spectra for the~110! surface in
agreement with experiment. We remark that a similar mo
with only one fcc lattice of isotropic polarizable entities,34,33

each representing a tetrahedral arrangement of bonds, ca
reproduce either the bulk SHG anisotropy, which is evid
in the experiments on the~001! surface,5 or the peak at
2\v53.3 eV. Although we have neglected all effects due
the surface modification of the electronic structure, we ha
obtained agreement with the first experimental spectra av
able for different surfaces of Si. For a bulk truncated~001!
face we obtained a structureless spectrum which acquire
well defined peak when we allowed for surface relaxatio

FIG. 11. Dipole moment Im(„pW nl
(tot)(2v)…i) induced in the bond

nl as a function of the positionznl of its centroid~we summed
over bonds with the sameznl). The rhombi correspond to the soli
line in Fig. 10 and were calculated at the frequency of its pe
Similarly, the triangles~crosses! correspond to the dotted~long-
dashed! line of Fig. 10.
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For the~111! face a much larger peak at a nearby frequen
was found even without relaxation. In our calculation, t
position of the peak differs from that of the bulk interban
transitions due to a local field induced shift. Our results a
suggest a possible explanation for the lack of sensitivity
the SHG spectra on the surface treatment, since they s
that the total SH polarization peaks below the first crystall
plane, and it extends for a few other planes before vanish
into the bulk. We have recalculated the SHG spectra emp
ing different microscopic surface polarizabilities and ha
found that the peak’s position is very robust.39 A very large
change, such as that expected for a hydrogenated sur
would be necessary to remove it.17

In conclusion, our results yield a plausible explanation
the experimentally found SHG resonance. The peak in
model does not arise from a SH transition that becomes
polarly allowed due to a lattice distortion.17 Rather, it comes
from the large uncompensated local field gradient at the
face and is therefore allowed even for a centrosymmetr
bond, but in the noncentrosymmetrical environment of
surface. According to our model, the peak observed on
~111! surface is present even without surface relaxation,
its observation should not be interpreted as evidence fo
lattice expansion. On the other hand, the peak on the~001!
surface only arises within our model in the presence o
surface contraction. In this paper we have restricted our
tention to the surface local field effect, and further theoreti
developments would be necessary to find the contribution
SHG from other effects. Theoretical work along this line
required to understand and eliminate the apparent discre
cies between our theory and some consequences of ex
ment, such as the identification of the susceptibility comp
nents responsible for the observed resonances. Also, fu
experimental work would be welcome to fully disentang
the role of the different susceptibility components.
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