PHYSICAL REVIEW B VOLUME 55, NUMBER 4 15 JANUARY 1997-11

Theory of photoluminescence of thev=1 quantum Hall state:
Excitons, spin waves, and spin textures
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We study the theory of intrinsic photoluminescence of two-dimensional electron systems in the vicinity of
the v=1 quantum Hall state. We focus predominantly on the recombination of a band of initial “excitonic
states” that are the low-lying energy states of our modebatl. It is shown that the recombination of
excitonic states can account for recent observations of the polarization-resolved spectra of a high-mobility
GaAs quantum well. The asymmetric broadening of the spectral line ior thpolarization is explained to be
the result of the “shakeup” of spin waves upon radiative recombination of excitonic states. We derive line
shapes for the recombination of excitonic states in the presence of long-range disorder that compare favorably
with the experimental observations. We also discuss the stabilities and recombination spectra of other
(“charged”) initial states of our model. An additional high-energy line observed in experiment is shown to be
consistent with the recombination of a positively charged state. The recombination spectrum of a negatively
charged initial state, predicted by our model but not observed in the present experiments, is shown to provide
a direct measure of the formation energy of the smallest “charged spin texture” ofvthe state.
[S0163-18297)07304-9

I. INTRODUCTION problem has been treated by numerical diagonalization of
small system&; 2 though some approximate analytic treat-
Continuing improvements in the quality of quantum-well ments have been proposed in the fractional quantum-4all
devices are leading to increasing resolution of the intrinsiand Wigner crystaf regimes. Despite the great deal of theo-
photoluminescence spectra of two-dimensional electron sysetical effort, the comparison between the theoretical and ex-
tems in the extreme quantum regime. It is now well estabperimental photoluminescence spectra of high-mobility
lished that features in the photoluminescence spectra are reamples is still rather unsatisfactory, with even qualitative
lated to the appearance of the integer and fractional quantufeatures of the observed spectra still not convincingly ac-
Hall states and the insulating phase associated with the mageunted for.(We note that “acceptor-bound photolumines-
netically induced Wigner crystal:* The possibility of ex- cence” spectra are somewhat better understéogiThis ex-
tracting information on the properties of these strongly corperimental technique is quite different from intrinsic
related phases from the photoluminescence spectra hakotoluminescence which we study here.
stimulated a great deal of recent experimental and theoretical It is the purpose of this paper to show that the intrinsic
interest in this technique. photoluminescence spectra of two-dimensional systems close
The interpretation of photoluminescence spectra require® the integer filling fractionv=1 contain interesting and
an understanding of the energy eigenstates of a valence-banantrivial structure (the filling fraction is defined by
hole in the presence of the electron gas. Due to the strong=nh/eB, wheren is the electron density anelB/h is the
many-body interactions that are important in the extremelensity of flux quanta From a theoretical point of view, this
guantum regime of these systems, this presents an essentialtya much simpler filling fraction to study than the fractional
strongly coupled many-body problem and the interpretatiorquantum Hall and Wigner crystal regimes, yet still poses a
of spectral structure is extremely difficult. The theories thatnontrivial problem due to the importance of strong correla-
have been developed to address this issue fall into two brodiibns in determining the low-energy excitations at this filling
categories. Certain theories treat the interparticle correlationfaction.
approximately through the use of some form of mean-field In recent photoluminescence experiments on a very-high-
description of the interactions’ Such an approach has been mobility GaAs quantum well, extremely narrow line widths
shown to account successfully for oscillations in the mearhave been achieved and very interesting low-energy structure
position of the luminescence line in the integer quantum Halhas been resolved.It is found that as the filling fraction of
regime of disordered sampleghe fractional quantum Hall the sample is swept through=1, the photoluminescence
and Wigner crystal regimes cannot be described within sucBpectrum displays very intriguing behavior. The evolution of
a mean-field approach. To treat these cases, other theorithe spectrum is quite different in the two circular polariza-
have been developed which attempt to describe the interpations, which originate from the recombination of a hole with
ticle correlations more accuratély'® In these theories, a electrons of the two spin polarizations, as illustrated in Fig.
simplified model is usually adopted in which the electronsl(a). In one polarization ¢.), no significant features are
and photoexcited hole are restricted to states in the lowestbserved in the spectrum at=1; the integrated intensity
Landau level. For the most part, the resulting many-bodyshows a weak minimum, but the line shape is almost un-
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(a) v has received a great deal of recent theoreficat and ex-
A perimental interest~?°in an effort to understand the effects
of the electron spin on the properties of the low-energy ex-
(O O, citations. In this light, it is of particular interest to understand
the origin of the structure appearing in the above photolumi-
0 nescence spectra, since this technique separately probes the
U two spin states of the electrons.
Motivated by these experiments, we study the theory of
(b) ' ' ' the intrinsic photoluminescence of two-dimensional electron
GaAs/AlGaAs _ systems at filling fractions close to=1. We will follow the
100f SQW My - i i i
W=25 nm B=39T models used in the fractional quantum Hall and Wigner crys-
T=0.5K ¥ tal regimes and neglect Landau level mixing for the elec-

trons, but will take full account of the interparticle correla-
tions. The model that one obtains within this approximation
is much simpler to analyze at=1 than in either of these
other two regimes. Therefore, at the very least, the study of
this model atv=1 is the most natural way in which to test
the applicability of the underlying assumptions of the theo-
ries for photoluminescence in the fractional quantum Hall
and Wigner crystal regimes. Moreover, as we shall see, the
photoluminescence spectrumiat 1 retains nontrivial struc-
ture related to the low-energy excitations of this state and is
E (meV) therefore of great interest in itself. A similar approach to
FIG. 1. () Schematic diagram of the low-energy interband tran-Photoluminescence at=1 has been discussed in Ref. 26.
sitions in a GaAs quantum well. The recombination of electrons ofThis work did not address the polarization-dependence of the
the two spin orientations of the lowest Landau level gives rise to thgphotoluminescence spectrum. We study these issues in some
two different circular polarizationgb) Low-temperature photolu- detail, and compare our predictions with the experimental
minescence spectra of a GaAs quantum wellvatl, from the  observations described above. We show that one can account
experiments reported in Ref. 19. In the circular polarization, a  for all of the qualitative features observed in the experiment.
narrow line is observed with a line shape similar to that observed The outline of the paper is as follows. In Sec. Il we mo-
away fromv=1. In theo_ circular polarization, the spectrum ac- tivate the model that we will study, and discuss its relation-
quires a strong low-energy broadening as compared to the spectghip with other models of photoluminescence in the extreme
away fromv=1; an additional high-energy pedjeak B appears quantum regime. In Sec. Il we study the predictions of this
at Iow tempel_ratureg._ Energies are measured relative to the energigsodel at a filling fraction of exactly= 1. We argue that for
at which the intensities are maximal. the sample studied in Ref. 19, and for all samples in which
the valence-band hole is close to the electron gas compared
changed. In the other polarizatiowr (), a much more dra- to the typical electron-electron spacing, the most important
matic evolution is observed: the integrated intensity also deinitial states are “excitonic states{as we choose to name
creases slightly, but, at the same time, the main spectral lintiem. These are states in which the Landau level of gpin-
becomes strongly broadened on the low-energy side; at thalectrons is fully occupied, and the valence-band hole binds
lowest temperatures, an additional high-energy peak appeansith a spin{ electron to form an exciton. In the remainder of
Figure Xb) shows the spectra observed in the experimentshis section we study the photoluminescence spectrum aris-
reported in Ref. 19 at the filling fraction=1 for both cir- ing from the recombination of these excitonic states. This is
cular polarizations; the additional high-energy peak is lathe main part of the paper, and contains our most important
beled the ‘B peak.” conclusions with regard to the experimental observations.
These observations cannot be accounted for within thdhe radiative recombination of the excitonic states is shown
existing “mean-field” theories of photoluminescence in theto be quite different in the two circular polarizations. In the
integer quantum Hall regin®&. In the first place, these theo- o, polarization, the hole recombines with the spirelec-
ries treat the spin degree of freedom of the electrons in suction to which it is bound, leaving an undisturbed Landau
a way that no polarization-dependent effects can appealevel of sping electrons. In thes_ polarization, the hole
Moreover, strong correlations are likely to be important inrecombines with one of the spin-electrons, and a single
determining the structure observed in photoluminescence &pin reversal is left in the final state. The photoluminescence
v=1, since it is now clear that the properties of typical GaAsspectrum in this polarization becomes broadened to low en-
systems at this filling fraction are dominated by interactionsgergy due to the “shakeup” of these spin waves. We argue
the single-particle gapthe bare electron Zeeman energy that the polarization dependence of the main recombination
being very much smaller than the interaction energy scale. Itine in the spectra of Fig.(b) can be accounted for in terms
fact, as suggested in Ref. 20, the- 1 state is better viewed of the recombination of excitonic states: the recombination
as a strongly correlated state similar to the incompressibléne in theo _ polarization is broadened to low energy due to
states at fractional filling fractions, since, even for a vanishthe shakeup of spin waves, while the line in #ae polar-
ing single-particle gap, a nonzero charge gap would still apization remains narrowwith a width limited only by disor-
pear as a result of the electron-electron repulsion. This statder). We derive the line shapes for a disorder-free system as
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a function of the separation between the valence-band holging energy eigenstates of a single photoexcited hole in the
and the electron gas, and the extent of Landau level mixingresence of the electron gas, and studying the processes by
for the hole. We show that disorder arising from the remotewhich these states can decay radiatively. The rate of each
ionized donor impurities is likely to have an important effectinterband transition is determined by the matrix element of
on the width of this line, and derive line shapes for the rethe electric dipole operator between the initial and final
combination in the two polarizations taking account of thisstates. Within the effective mass approximation, this is pro-
disorder. The line shapes compare favorably with the experiportional to the matrix element of one of the operators
mental observations shown in FigtbL

In Sec. IV, we turn our attention to quite different initial 5
states, in which the valence-band hole forms a positively '-ij dr ey (1) by (1), @
charged or negatively charged complex. These states can
have lower energies than the excitonic states if the filling
fraction is slightly less than or greater thar 1 (when some L+EJ d2r e (1) gy (1), (2
quasiparticles are presgntand can then be important for

photoluminescence. We show that the high-energy(ieak o1 yeen the in-plane envelope functions of the initial and

B) in Fig. 1(b) is consistent with the recombination of a {5 statesye.no(r) being the electron and hole field anni-
positively charged initial state in which there are no spin- pijation operators. The absolute transition rate depends on

elgctror)s in the vicinity of th? .hole. In this case, our Cf"‘l_cu'the overlap of the electron and hole subband wave functions,
lations include corrections arising from Landau level mixing 514 on the form of the electron and hole wave functions on

for the electrons These are shown to change the position ofy atomic scale, which may differ for the two polarizations.
this recombination line relative to that of the excitonic statesyye will study only the contributions arising from the matrix

The recombination spectrum of a negatively charged initiajements of_, , which are sufficient to determine the line
state is shown, from numerical studies, to contain structur%hapes in the two polarizations.

that measures the formation energy of the smallest “charged p a tg the importance of many-body interactions in the

H 120-22 _ . A
spin texture™ = of the »=1 state. There is no clear evi- 4antized Hall regime of these systems, to make progress
dence for this initial state in the present experiments. Weyne myst restrict attention to a somewhat simplified model of
discuss the type of sample and the conditions under whick,g injtial and final states of the photoluminescence process.
this initial state might be more stable and its recombinationy natural model to study which retains the effects of many-
could be observed. Finally, Sec. V contains a summary of thgy correlations is one in which the electrons and the hole

main points of the paper. are restricted to the lowest Landau level and move in a single
plane. Such a model is motivated by the success of similar
Il. DESCRIPTION OF THE MODEL approximations in accounting for the qualitqtive and qu_anti-
tative properties of thev=1 state and the incompressible
We aim to develop a theory that can account for the phostates at fractional filling fractior’S. However, various
toluminescence of high-mobility quantum wells in the vicin- authors®-3213%have shown that fospin-polarizedelectrons
ity of v=1. In the experiments of Ref. 19, and in experi- and holes restricted to a single Landau level and with the
ments on similar GaAs quantum weflgecombination is same quantum-well envelope functions, a “hidden symme-
observed between the two lowest-energy electron sttes try” leads to the result that photoluminescence contains no
two spin polarizations of the lowest Landau level of the low-spectroscopic structure: the spectrum consists of a single line
est subband stateand the two lowest-energy hole states.at an energy that is independent of the state, or even the
These two hole states originate from the heavy-hole states g@iresence, of the electron gas. In the present case, the elec-
the valence band, but are strongly mixed with the light-holetrons are not spin polarized. However, it is straightforward to
states due to the quantum well confinenfénypically, suf-  show that a similar symmetry applies for an arbitrary number
ficiently low excitation powers are used that the density ofof spin components for electrons and holes, provided the
holes is extremely smallcompared to the density of elec- interactions conserve the spin of each particle: the spectrum
trong and they may be considered to be independent. consists of a series of sharp lines, at energies which are in-
To represent these systems, we will study a model irdependent of the state or presence of the electroritase
which the electrons are confined to a single subband andre therefore the energies of each allowed interband transi-
carry a spin of 1/2, and there is a single hole, which may beion for an empty quantum well
in one of the two statesfi(or |}).?® Since we consider the In order to obtain a nontrivial photoluminescence spec-
recombination of a single photoexcited hole, the “spin” la- trum, it is essential to study a model that breaks this symme-
bel of the hole will play no role other than to define the try. There are two clear mechanisms by which this occurs in
polarization in which the hole can recombifeee Fig. 8)].  practice. First, through Landau level coupling for the elec-
We will therefore ignore this label, and leave it to be under-trons or hole; in GaAs quantum wells, this is likely to be
stood that when we discuss a recombination process with more important for the hole than for the electrons due to the
spin-] (spin-|) electron the hole must be in the sginspin-  much smaller cyclotron energy of the valence band com-
) state. pared to that of the conduction band. Second, due to the
For the most part, we will assume that following photo- asymmetry of the single-side-doped quantum wells and
excitation the system is able to relax to thermal equilibriumsingle heterojunctions used in the experiments, the electrons
before the hole recombines. In this case, one can understaadd holes do not move in the same plane; the hole is pulled
the photoluminescence spectrum by identifying the low-somewhat away from the electron lay@iNote that the pres-
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ence of a disordered potential does not break the symmetrand introduce the separatiah between the electrons and
and one of the above two mechanisms must be introducedhole in the same way as was done in Ref. 8. For all of the
It is common in theories of photoluminescence in thecalculations that we report, the system size is sufficiently
fractional quantum Hall regime to retain Landau quantizatiorlarge that finite-size effects are well-controlled.
for both electrons and holes and to break the “hidden sym- Although the neglect of Landau level mixing is not likely
metry” by introducing a separatiod between the planes in 0 be quantitatively accurate at weak fields, when the typical
which the electrons and hole mo¥&! In our work, we will  interaction energy can be larger than the electron cyclotron
restrict the electrons to states in the lowest Landau level, an@nergy, we hope that it does give the correct qualitative pic-
will also assume that the electrons and the hole are confindgire. In Sec. IlIF, we will indicate the extent to which one
to planes that are separated by a distadc&Ve will not,  can trust the qualitative features of a model neglecting Lan-
however, impose the restriction that the hole is in the lowesglau level mixing for the electrons, and in Sec. IVA will
Landau level. We take account of Landau level mixing forcalculate some quantitative corrections arising from this mix-
the valence-band hole by assuming its in-plane dispersion t&g-
be parabolic with an effective mass,. Thus we retain two
mechanisms by which the hidden symmetry is broken. We Ill. EXCITONIC STATES
will discuss how the photoluminescence spectrum depends
on the parametersl and m,,. For quantitative comparisons
of our theory with the experimental observations reproduce
in Fig. 1(b), we will choosed to be the separation between
the centers of the electron and hole subband wave functiog

In this section we will consider the introduction of an

&electron-hole pair to the ground staterat 1. We will show

that, provided the distanca of the hole from the electron

s is not too large, the low-energy states may be described
a band of “excitonic states,” defined below. We will
urther show that the recombination of these excitonic states
can account for the main feature of the spectra presented in
Fig. 1(b): a sharp recombination line in the, polarization

gmd an asymmetrically broadened linedn . We will de-

in the quantum well used in these experiments, which i
approximately 60 A(Ref. 34 and is therefore small com-
pared to the magnetic lengtfi=130 A under these condi-
tions (the magnetic lengthy’=#%/eB, is a measure of the

size of a single-particle state in the lowest Landau level an Gelop models for the line shapes in the two polarizations:

is therefore a fundamental length scale in our mpdalthe . ; - X
: . first for a system with no disorder, and then taking account
absence of detailed knowledge of the valence-band disper- . - 9
. . of the long-range disorder arising from remote ionized do-
sion, which depends strongly on the shape of the quantum

well.® we will choose the valuen,=0.34m, for both hole nors. We .wiII compare the_ predictions of these models with
o . . the experimental observations.

states; this is typical of the masses measured in experitent
and is the value used in theoretical studies of related
problems®® Thus, under these conditions the ratio of the cy-
clotron energy of the holeh wy,=7%eB/my, to the typical As we have explained above, the principal assumption
interaction energy scale?/4meey/, is rather small, 0.15 throughout our discussion is that the electrons are confined to
(usinge=12.53 for GaA$, and one can expect Landau level the lowest Landau level. In this case, the ground state of the
mixing for the hole to be quantitatively important. Indeed, system atv=1 prior to photoexcitation is the state
we will show that it is the finite mass of the hole that pro-
vides the more important mechanism by which the “hidden - +
symmetry” is broken in the photoluminescence spectrum. |0>=1;I Emi vag, )

The neglect of Landau level mixing for the electrons is
the principa| assumption of our work and leads to the key'n which the electrons fill all the spim—states in the lowest
simplifications. It allows explicit knowledge of the ground Landau level and all spig- states are unoccupied. In the
state of the system at=1: a filled Landau level of spi- above expressionyac is the vacuum state with a filled va-
electrong® Moreover, we shall always consider interactionslence band and empty conduction band, afig is the op-
which preserve the electron spin. Therefore, prior to recomerator which creates a spin-electron in a single-particle
bination of the valence-band hole, the system may be chastate in the lowest Landau level. The quantum nunthéds
acterized by the number of spinelectrons and the number any internal quantum number that runs over all degenerate
of missingspin-] electrons in the otherwise filled lowest states in the lowest Landau level. This state is clearly the
Landau level (“spin-holes”). Through the use of this absolute ground state if the bare electron Zeeman energy,
particle-hole transformation, the initial states may described, is large compared to the typical interaction energy, set by
by the interaction of the hole witlispin-|) electrons and e’l4meey/ . Due to the spontaneous ferromagnetism which
spin-holes, both restricted to states in the lowest Landaappears for repulsive electron-electron interactions, it is also
level. For filling fractions close te= 1, and for states which the ground state in the limZ— 0.2
do not involve a large degree of spin depolarization, rela- We now consider the introduction of an additional
tively few of these patrticles are present, and the calculatioglectron-hole pair to the system. The properties of the low-
of the energy eigenstates poses a few-body problem. Thenergy states depend on all of the model paramet#¥s:
majority of our work will address the properties of the sys-and the ratios of the cyclotron energy of the hdley,, and
tem in which there are only two such particles; our results irthe electron Zeeman energg, to the typical interaction en-
this case are based on analytical treatments. We will alsergy scalee?/4meey,/. However, if the Zeeman energy is
present results of numerical studies for systems with largelarge compared to the interaction energy, the low-energy
numbers of particles. We work in the spherical geon®étty  states will be maximally spin-polarized, and their form is

A. Definition of the excitonic states
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clear: all of the spint electron states will be occupied, and (corresponding to a sphere of diameterJ0We have stud-
there will be one remaining spip-electron which will bind  jed only the limiting casesn,=0~ and assume that the
with the valence-band hole to form an excitama magnetic  results for finite hole mass lie between these two limits. We
field, any attractive interaction will lead to binding of a two- find that, form,=0 andm,, =, the ground state is the glo-
dimensional electron-hole pairWe refer to these states as bal spin rotation of the excitonic ground state provided
“excitonic states.” Since we assume that all interactionsd< 1.4 andd<1.3/, respectivelywe have identified these
conserve the electron Spin and we ignore Landau level mina|ueS to an accuracy of better tha]ﬂ]/) Therefore, for
ing for the electrons, the filled Landau level of sgirelec-  d smaller than these values, there is no energetic advantage
trons is inert, and the properties of the excitonic states may be gained from introducing a single spin flip to the exci-
be determined by considering only the electron-hole pair. Inonic state: the zero-momentum excitonic state remains the
particular, the energy eigenstates of the system follow fronground state. In order to fully test the stability of the exci-
those of the exciton itself. The state in which the exciton is intonic state to spin reversal, one should Study the ground state
a state¥p(re,ry) with momentump is as a function of all possible spin polarizations. However, it
seems likely that if the energy is not reduced by the intro-
— 2, 42 t + duction of a single spin reversal, it will not be reduced by a
P) f Fred W e(re:m) g, (re) ¥n(r)[0). - (4) larger depolarization. We therefore anticipate that ébr
t%maller than 1.3, the P=0 excitonic state is the absolute
round state of our model whatever value the hole mass may
ke, and even ag—0. For larger values ofl, the spin

We have suppressed the subband label of the hole, but it is
be understood that there are two excitonic bands correspon
ing to the two hole states. In the absence of an extern o : )
potential, the momentuiR is conserved and the above statespOIar'zat'on of the ground state will change Zsis de-

are energy eigenstates. In Appendix A the wave functiongreased; one may view the_ re_sulting depolarized states as
and dispersion relation of a two-dimensional exciton are de€xcitons formed from the binding of a valence-band hole

rived at small momentum as a function of, andd, within W'tE a tcf?arged spltn textlure. that ith th
the approximation of no Landau level mixing for the elec- or the parameter vajues that we use to compare with the

tron. experiments reported in Ref. 19 the spadirg60 A is much
less than the magnetic lengti=130 A. Our calculations
therefore suggest that in this sample the hole is sufficiently
close to the electron gas that tRe=0 excitonic state pro-
The above excitonic states are the low-energy eigenstatesdes a good description of the ground state of the system
of the system when the Zeeman energy is large compared &xactly atv=1 prior to recombination. We therefore expect
the interaction energy scale. However, for typical GaAsthe excitonic states to provide an important contribution to
samples atv=1, the Zeeman energy of electrons is muchthe photoluminescence spectrum of this sample.
smaller than the interaction energy sc@é4 T the Zeeman At finite temperatures, some of the low-energy excited
energy is 0.09 meV, whereas the typical interaction energy istates of the system will also be populated. These will consist
e?lAmeey/=8.9 meV). It is therefore important, for practi- both of finite-momentum exciton states, and of long-
cal purposes, to study whether these excitonic states remamwavelength spin wave excitations of the system. For small
the lowest-energy states when the Zeeman energy is small. ¢tectron-hole separatiod, and for sufficiently small excita-
is possible that there exist lower energy states involvingion energies that the wavelengths of these excitations are
some degree of spin depolarization. Such depolarization ikrge compared to the magnetic length, the coupling between
known to be important for the charged excitations of thisthe exciton and spin waves will be small, and the two may be
system, for which theoretidd?® and some treated independently. In the remainder of this section we
experimentaf2° studies show that the lowest-energy will discuss the form of recombination expected from the
charged excitations are “charged spin textures” which di-excitonic states in the absence of spin waves. A thermal
verge in size to become ‘“skyrmions” in the limit of vanish- population of spin waves may be viewed as a fluctuation in
ing Zeeman energy. the overall polarization of the system, and will lead to a
The spin polarization of the ground state depends stronglynixing between the two circular polarizations of the spectra.
on the system parameterd,(m;,, andZ). For sufficiently = Provided the temperature is small compared to the particle-
larged, the system will become depolarized wheis small:  hole gap atv=1, only a small number of spin waves will be
in this case, the interactions between the electron gas and thigermally populated, and this mixing will be small.
hole may be neglected and the ground-state spin polarization
will be that of the extra electron, which is determined by the
lowest-energy charged spin texture. However, for suhafie
hole is tightly bound to the additional electron, and it is Itis clear from the form of the excitonic states described
possible that the resulting neutral exciton does not signifiabove that their radiative recombination in the two circular
cantly disturb the spin polarization of the remaining elec-polarizations will lead to quite different final states. In the
trons. o, polarization, the holéwhich must be in thel state must
We have studied the stability of the exciton state to spirrecombine with the single spip-electron. In this case, there
reversal by calculating the ground state of the system in thés only one available final state: the=1 ground stat¢3). In
presence of ainglespin reversal. Our calculations were per- the o_ polarization, the hole can recombine with any one of
formed in the spherical geometry, with system sizes of up téhe spin electrons and there are many possible final states.
51 single-particle basis states in the lowest Landau leveThese are the states in which the spin of a single electron has

B. Stability to spin reversal

C. Radiative recombination
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FIG. 2. Schematic diagram of the radiative decay processes of
the free excitonic states. Each shaded region represents a filled Lan-
dau level of spint electrons, and the circles represent a gpin-
electron (marked by |), a valence-band holélying above the 10> P
shaded region and marked by), and a “spin hole” (lying in the
shaded region and marked by).

FIG. 3. Schematic diagram of the allowed radiative transitions
of the free excitonic states as a function of momentum. The two

b din the=1 d stat d d ibed b exciton bands arise from the two hole subband states, and give rise
€en reversead in =1 ground staté, and are describea by, e two circular polarizations of emitted radiation. In the

the set of single spin-wave exc!ta“_(%“- The recombina-  ,arization only the zero-momentum state recombines and leaves
tion processes in the two polarizations are illustrated schey,q groundstat¢0) as the final state; in the_ polarization(verti-

matically in Fig. 2. ) cal transitions occur from excitonic states of all momenta into the
The transition rates of these processes are determined ¥nd of spin-wave states.

the matrix elements of the operatots, . Using the form of
the exciton wavefunctions derived in Appendix A, these ma
trix elements can be calculated explicitly.

We find that the matrix element describieg. recombi-
nation between the excitonic stdteé) and the ground state

internal wave functions. The spin-wave wave functions
D gyp are well-knowr4° They are fully specified by the
condition that both electron and spin hgie., missing spin-
1 electron are in the lowest Landau level, and are indepen-

|0) is dent of the force law between the electrons. Since we allow
Q Landau level mixing for the valence-band hole, the exciton

(O|L,|P)= 2—/25P,o, (55 Wwave functions do depend on the strength of the interaction

me relative to the cyclotron energy of the hole. However, as

where ) is the area of the sample. Thus, on emission of &hown in Appendix A, for small momenta the wave function
long-wavelength photon, momentum conservation limits the?f the exciton is identical to that of the spin wave, and we
recombination to the zero-momentum excitonic state. obtain

As we now show, for ther_ polarizationall of the exci-
tonic states can recombine, with the momentum of the exci- swWP'|L_|P)=8p pr +O(P2/?I1?), (9)
ton being conserved by the momentum of the spin-wave in '
the final state. Making a particle-hole transformation on thelndependent of the parameters, andd. (The corrections at
filled Landau Ievgl .O.f spirf-_elef:trons, the matrix glement of finite momentum vanish for all, when m,—0, in which
L between an initial excitonic stat¢f), and a final state limit Landau level mixing of the hole is negligible and the

; petveen Xl , .

P >SW'nt;Nh'Ch there is a single spin wave with momentum gy citon wave function becomes identical to that of the spin

P’, may be written wave) The allowed recombination processes for both
ando_ polarizations are illustrated in Fig. 3 as a function of

sMP’|L7|P>=f WEwp(e M) Wxp(re M) dred?ry, momentum.
(6)
whereWy p(re,ry) andWsyp(re,ry) are the wave functions D. Line shapes: No disorder
of the exciton and spin wave of momentun with ry, rep- The fact that only thé°=0 excitonic state can contribute

resenting the position of the spin hole in the second case. Itb photoluminescence in the, polarization, whereas all of
the symmetric gaugei\(r) =Bzxr/2, the exciton and spin- the excitonic states can contribute to emission in the
wave wave functions may be writt€n polarization leads to quite different line shapes for the two
polarizations. It is immediately apparent that, in the absence
of disorder, ther . emission must be a sharp line, since there
is only one possible transition. In the_ polarization many
7) ;[_ransitions can occur and one can expect to observe a broad
ine.
To understand the line shape of thre polarization, con-
sider first the casm,=0,d=0, in which there is no Landau
SV\(P’|L,|P):6PYP,J Ewp(N@xp(r)d?r,  (8)  level coupling for the valence-band hole, and it lies in the
same plane as the electrons. In this case, the dispersion rela-
which demonstrates that the transition from the excitonic tdions of the exciton and the spin wave aentical so all of
the spin-wave state occurs with momentum conservatiorthe allowedo _ transitions have the same energy. This situ-
and at a rate depending on the overlap of their respectivation provides an illustration of how the hidden symmetry

1 L,
\PP(reyrh): \/_aelp(re+rh)/2ﬁe|re><rh-z/2/ (bp(re_rh)-

Integrating Eq(6) over the coordinate r{+ry,)/2, we obtain
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that applies in this casem(,=0, d=0) leads to a trivial
spectrum in which all transitions within each polarization
occur at the same energy.

In order to observe structure in the_ recombination
line, it is essential that the dispersion relations of the exciton
and spin wave differ. Differences aribeth from a nonzero
value of d, such that the electron-hole interaction differs
from the electron-electron interaction, and from Landau level
mixing of the hole stategDifferences will also arise from 0060 20 20 00 20
Landau level mixing of the electrons, but these effects lie Energy
outside the scope of the theory presented henée will FIG. 4. Line shape for the_ polarized luminescence from free
compare the dispersion relations of the excitonic and spinexcitonic states in thermal equilibrium at a temperafyrassuming
wave states by discussing the effective masses of these twrabolic bands for both exciton and spin wave. The energy is
excitations, which describe the properties at small momentaneasured in units dégT(My /Mgy~ 1), relative to the recombina-

In Appendix A we show that, within a model that neglectstion energy of the zero-momentum exciton in this polarization.
Landau level mixing for the electron, the effective mass of
the exciton,My, may be calculated exactly using the parameter values appropriate for the experiments,

and also by the fact that the principal qualitative features of
\/; 21m 2 2 o the observed spectra are consistent with the those expected
gexp(d 12/5)(1+d% 7% from the recombination of excitonic states. Namely, in the
o, polarization there is a sharp recombination line, due to
the recombination of th®=0 excitonic state; while irr_
(10) one expects a broadening of the emission line onldie
energyside, due to the recombination of excitonic states with
The effective-mass approximation to the exciton dispersiomonzero momentum and the subsequent shakeup of spin
relation is good forlP|<(1+\)7%//, whereA=0 is a pa- waves.
rameter defined in Eq(A12) that describes the extent of  To make closer comparison between our theory and the
Landau level mixing for the hole. The spin-wave dispersionexperiments, we proceed by calculating line shapes for the
relation is parabolic fotP|<#// and may be described by excitonic recombination. To do so, it is essential to know the

Intensity

4rreegh?

My=my+ ——5—
X h eZ/,/

-1

x erfad/\2/)—di2/

an effective mass$*° relative probabilitiesnp, for occupation of the various ex-
citonic states. Assuming that these are populated according
\F4weeoh2 to a Boltzmann distribution at a temperatureand treating
sw= V. &2,/ (1D the exciton and spin-wave dispersions as parabolic, it is

straightforward to show that the line shape is

which may be obtained from EL0) by settingmy, andd to
zero. From Eq(10) we find that the Landau level mixing and
the spatial separation of the hole from the electron gas bot
increasethe effective mass of the exciton relative to that of
the spin wave. For the parameter values appropriate to the 1 E
sample used in Fig.(h) we find an exciton effective mass of = exp{
My=0.50mg, which is much larger than that of the spin KeT(Mx/Msw—1) KeT(Mx/Msw—1)
wave, M gy~ 0.081my. Most of this increase arises from the X O (—E), (13
finite mass of the hole; ignoring Landau level mixing for the
hole (m,=0), one would estimatdly=0.16m,. For this where the recombination energy is measured relative to that
sample, therefore, we find that Landau level mixing of theof the P=0 excitonic state in this polarization, and we have
hole provides the more significant mechanism by which theassumedv x> M g,y. The resulting line shape is illustrated in
hidden symmetry in photoluminescence is broken. Even in #&ig. 4. The recombination in the . polarization is insensi-
stronger magnetic field of 8 T, when Landau level mixingtive to the differences between the spin wave and exciton
effects are less important, one finds that a very large value afispersion relations, and remains a single sharp line.
the spacingd=/, is required before the contribution to the  The line shape in Fig. 4 is similar to the form of the main
mass difference between the exciton and spin wave arisingecombination line observed experimentally in the polar-
from the nonzeral outweighs that due to the Landau level ization [Fig. 1(b)]. Furthermore, the line width predicted by
mixing of the hole. Thus, it is typically the case that Landauthe above theory is comparable to, though slightly less than,
level mixing for the hole provides a more important contri- the width of the experimental spectrum: within our approxi-
bution to the loss of the hidden symmetry than the spacingnations, the ratio of the exciton to spin-wave effective mass
d in the spectrum arising from the excitonic states. is My/Mgy= 6.2, so, at the experimental temperature of 0.5
We claim that the observations reported in Ref. 19 andK, we havekgT(Myx/Mgy—1)=0.2 meV (at this tempera-
reproduced in Fig. (b) demonstrate the recombination of ture, the thermal wavelength of the exciton is 2600 A, which
excitonic initial states. This claim is motivated both by theis large compared to the magnetic lengths 130 A, so the
discussion of Sec. IlIB, in which it was shown that the ex-effective-mass approximation is accurate for both exciton
citonic states are the low-energy initial states of our modehnd spin-wave dispersionsHowever, there is a qualitative

k(E)E; npd E—(Ex—Ep™] (12)
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discrepancy between the above expres$ii) and the ex- the same form as Eq14), but with the density replaced by

perimentally observed line shape. Namely, the width of thean effective densityn* = eekgTo/(€%S).

observed line doesot change with temperature for tempera-  The fluctuations of the donor density lead to fluctuations

tures below ther=1 single-particle gagabove this tempera- in the potentials experienced by the electrons and holes. The

ture, peculiarities associated with the= 1 filling fraction do  resulting potential energy fluctuations for the electrons are

not appear in the experimental spettr@ihis discrepancy

indicates a failure of the above model for the line shape of . —€ s

the excitonic states. In the following subsection we show that Vq:mnqe , (15

the assumption ofree excitonic states is not likely to be

accurate in these systems: disorder can be expected to leaddfd are therefore suppressed on scales larger than the spacer-

strong scattering of the excitonic states. Including the effectfayer thicknesss. Due to the asymmetry of the quantum

of disorder, we show that the excitonic recombination specwell, the center-of-charge of the hole is located a distance

trum develops a temperature-independent line shape that éfurther from the ionized donors than that of the electrons,

consistent with the experimental observations. so the magnitude of the potential experienced by the hole is
slightly smaller,

2

E. Effects of long-range disorder

There are various sources of disorder which can scatter
the excitons discussed above. These include interface rough-

ness and impurities that scatter excitons in undoped quantumﬂ is also smooth on a length scale

wells. prever, an additional sou.rce of disorder appears in", Appendix A we have derived an effective Hamiltonian
modulation-doped quantum wells: the long-range potentlat/

arising from the donor impurities that lie some distance, sefos the motion of the exciton in smooth external potentials
9 b ' ¢(r) andV"(r). We make a Born-Oppenheimer approxima-

by the spacer-layer thickness, from the quantum w@he tion for the exciton motion, treating the internal moti@vith

exciton will also interact with the quasiparticles that appear, ~ .- - teristic time scale set by the exciton enerav-level
when the filling fraction is not exactly=1. See Sec. IY y 9

The long-range potential fluctuations are believed to be th geparationas fast compared to the scattering rate of the ex-

dominant source of exciton scattering in the sample of Refi%'tOn by the potential. Expanding the potentials to lowest

) . arder in //s, wheres is the length scale of the external
19, the effects of interface roughness being small due to th : : S
) : Sotennals, the effective Hamiltonian for the center-of-mass
large width and asymmetry of the quantum wélin this i L
- S A . positionR and momentun® of the exciton is found to be
section we will discuss the recombination of the excitonic
states in the presence of the long-range potential disorder, by 5
studying the energy eigenstates of both the exciton and thﬁ;ﬁzm+ve( R)+V"(R)
spin wave(the final state of ther_ recombination procegs X

A d<s

By including this single source of disorder, we obtain a 1 /%p
lower limit on the extent of the disorder-broadening of the (g VVE— 5, VVN)Z
spectral lines. 1+\N %

We begin by reviewing the form of the disorder arising N /2 VVE— VN2

from the ionized donors, as has been discussed in Refs. 43
and 44. Imagine that these donors lie in a plane a distance
s (the spacer-layer thicknessom the two-dimensional elec-
tron gas, with an average density(the same as the number
density of the two-dimensional electron gal the donors
are randomly distributed in the plane, then the density fluc
tuationsn, are correlated according to

- - , (17)
2(1+1) 2 vEh—veh

where all gradient operators are to be understood to act in the
plane of the quantum well. The first term represents the ki-
netic energy of the exciton, with an effective maséy,
given by Eq.(10), while the second and third terms describe
the potential energy of an exciton with center-of-mass posi-
(14) tio_n R. The fourth term,_ in W_hicmeyhzme,h/(meJr m,) and

\ is the parameter defined in EGA12), represents the cou-
where() is the sample area and the bar indicates the averag@ing of the in-plane dipole moment of the exciton with the
over all realizations of the disorder. Due to their mutual elec-€lectric fields acting on the electron and hole parallel to this
trostatic repulsion, one expects there to be significant correplane. This term should be symmetrized in momentum and
lations between the positions of the ionized donors, and @osition coordinates to render the Hamiltonian Hermitian.
subsequent reduction in the amplitude of the density fluctuathe final term, in Whichvrenh are expectation values of the
tions. We treat these correlations within the “nonequilibrium electron-hole interaction defined in Appendix A, is the Stark
model” of Ref. 44, in which the donor distribution is as- shift of the exciton in the parallel components of the electric
sumed to be a snapshot of the distribution at a temperaturféeld due to the mixing with the higher exciton bands.
To. This model is based on the idea that, as the sample is The above Hamiltonian also describes the motion of the
cooled, the charges on the ionized donors readjust within thepin waves of theo=1 state in the long-range potential. In
impurity band until a temperatur€, is reached at which this case, the hole represents the spin hole and one must
such charge mobility becomes smallye=100 K typically).  therefore restrict it to states in the lowest Landau level
It is found that, on length scales larger than the spacer thickch —0) and useV"(r)=—V®(r). The effective spin-wave
ness, the correlation function for the donor fluctuations takeslamiltonian therefore reduces to

NgN_q =NQ &g o
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o P27 A restricted to its low-energy “tail states®*8 However, the
Hsw= 2M5w+ T (VVEX2Z) (18)  line shape in ther_ polarization will be much broader than
in o, as a result of the shakeup of high-momentum spin
ok Ax2 waves. In fact, at very low temperatures, this line shape will
(P—g*A*) ) . .
:T+o(|vve| ). (19 adopt a temperature-independent form, determined by the
sw

momentum distribution of the expected limiting form of the

Thus, the disorder couples only through the in-plane dipolé"’ul's,t""t(.e wave funct!on‘gi We do not pursue a callcul_atl'o.n
of this line shape, since we do not believe that this limiting

moment of the spin wave. In the last line, we have rewritterb havior i ate for th ; Rath
the Hamiltonian in the more familiar form of the free motion P€NavIor is appfop“at? or the pre_sen_t ex_perlments. ather,
as is the case for exciton recombination in empty quantum

of a particle with(fictitious) chargeg* in a random(ficti- S
tious)pvector poténtial A*)E—Mgv\;’z/(q*h)vvexi( ne.  Wells¥*%we expect that the finite lifetime of the valence-

glecting a second-order term in the electric field. The effecband hole prevents full thermal equillibration. This i.s consis-
tive magnetic field experienced by the particle is a randonfent with the observed temperature-independent width of the
function of position with zero averages*—VxA* O+ line.X® Moreover, in view of the above estimates for the

—V2V®M g,/ 2/(q*%). The effect of this magnetic field on strength of disorder which show that the low-energy exciton

the motion of the particle may be judged by considering theSt‘.'jltes are likely to be strongly localized in the potential

typical (fictitious) magnetic length. Calculating the root m'rllf'r&a’ ontla m'g.j?é‘?xpe.‘:t aflov;/].equglbtrr?tlcl).n rathe. il
mean square value &F?V® for the donor distribution(14) erma; equiiibrium 1S Not achieved, the fine shapes wi

with the reduced density*, we find a typical magnetic depend b_oth on the nature of the exciton states in the pres-
ence of disorder and on the relaxation dynamics. Since we do

Iength/'*=5\/(h2/M sw’2)(8 \/;eeo/ 3n*e?). Using the  not have a good understanding of the relaxation dynamics,
parameter value3,=100K, /=130 A, s=800 A, which  we will treat the nonequilibrium recombination within a very
are appropriate for the sample of Ref. 19 under the condisimplified model. We imagine that the disorder is sufficiently
tions for which Fig. 1b) was measured, we find the typical strong N?(ms>ﬁ2/|\/|xsz) that the exciton can become
effective magnetic length is approximately twice the disorderstrongly confined in any local minimum of the potential, and
length scales. Thus the radius of curvature of the spin-wave that the tunneling rate between states in different minima is
trajectory is always large compared to the disorder lengtkmall compared to the decay rate of the valence-band hole.
scale, and the scattering by this random magnetic field iginder these conditions, the low-energy exciton states in all
weak We will neglect the effects of this weak disorder on such minima accurately represent a set of energy eigenstates,
the spin wave motion, and treat the spin-wave as a free pagach of which will contribute to photoluminescence if popu-
ticle with a parabolic dispersion relation described bylated. We represent the relaxation dynamics of the exciton by
Msw- the assumption that, prior to radiative recombination, the ex-
The strength of scattering of the exciton due to the couciton is equally likelyto be found in any one the potential
pling of its in-plane dipole moment to the in-plane electric minima and that only the ground state in any given minimum
field is of the same order as the scattering of the spin waves populated. This assumption is chosen to portray a rapid
and is therefore also small. However, the scattering arisingelaxation to the ground state in a given potential minimum
from the remaining terms is strong. The main contribution isand a slow equilibration between states in different minima.
due to the potentiat/*(r)=Ve(r)+V"(r), which describes The same assumption was the key element of a model pro-
the coupling of the perpendicular dipole moment of the exposed in Ref. 50 to account for exciton recombination in an
citon to the fluctuations in the electric field. Using the corre-undoped quantum well. Also in common with that work, we
lation function(14) and the expressior(d5) and(16) forthe  assume that the potential is Gaussian correlated; this is accu-
electron and hole potential energies, we find that the rootate when the spacer layer thickness is large compared to the
mean square fluctuation in the exciton energy ismean impurity separation, such that many impurities contrib-
Vi,s=0.093 meV for the parameter values of the sample olite to the potential at a given point of the two-dimensional
Ref. 19 ©=800A, d=60A and assumingT,=100K). electron gas. Following a similar approach to that described
Since the fluctuation in the exciton energy is large compareéh Ref. 50, we calculate the mutual probability distribution of
to the kinetic energy cost %2/Mys?=0.02 meV to confine the potentiaV* and its curvatures in the two principal direc-
it to a region of sizes, one expects the disorder to lead to tions at each point wheréV*=0. We use this to calculate
strongly localized low-energy states. the spectra for the two polarizations by averaging over the
In view of the above considerations, we arrive at a modetecombination of the exciton ground state in all potential
for the excitonic recombination in which the exciton stateswells (points of zero potential gradient for which both cur-
prior to recombination must be determined from the potential/atures are larger than zeyr@iving equal weight to each of
VX(r), and the final states are either the ground stimt¢he  these states. Details of these calculations are presented in
o, polarization or thefree spin wave ¢r_). To derive line  appendix B. The resulting line shapes are shown in Fig. 5 for
shapes for the resulting photoluminescence spectra, one mubke parameter values appropriate for the conditions of Ref.
also know the relative populations of the initial exciton 19.
states. In the o, polarization, the radiative recombination of a
One possibility is to assume that thermal equilibrium isgiven exciton state contributes a sharp spectral line at an
achieved. In this case, the width of the line, in which the  energy equal to the value of the potential energy at the given
exciton recombines to leave the=1 ground state, will van- potential minimum plus the kinetic energy of the exciton.
ish as the temperature tends to zero and the exciton becomEsr the parameter values used in Fig. 5, the kinetic energy of
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have important quantitative effects on the width of the
line. The qualitative features of the spectra will remain the
same.

F. Effects of Landau level mixing

To conclude this section on the recombination of exci-
tonic states, we will briefly discuss the validity of the ap-
0.0 . ‘ . proximation in which Landau level mixing for the electrons
-08 06 -04 -02 00 02 is neglected. This approximation is correct in the limit in
Energy (meV) which the electron cyclotron enerdgyw, is large compared
FIG. 5. Spectra of recombination of the excitonic states in theto the interaction energy scale’/4mwee,/. For typical
presence of long-range disorder, fer (solid line) ando . (dashed  samples, these energies are of a similar size, so one must
Iine) polarizations. Energies are measured relative to the recomb'mways expect Landau level mixing to have Significant guan-
nation of the zero-momentum exciton in a sample without disordertjtative effects. One may, however, hope that the qualitative
Parameter values are chosen for the sample of Fign): 1 pehavior is correctly captured by such a theory.
(h2IMxS?)V{ins=0.25, My /M sy= 6.2, %/ Mxs”=0.024 meV. The great deal of theoretical and experimental work on
the integer and fractional quantum Hall regimes has shown
the exciton is small compared to the fluctuations in the pothat this is the case for many properties of these two-
tential, and the overall linewidth is determined primarily by dimensional electron systerfi5In particular, the prediction

the width of the distribution of the potentials at all minima, Of & spontaneously spin-polarized- 1 state with a particle-
X hole gap determined largely by interactiGhappears to be

rms realized in experimerft =

In the o_ polarization, the recombination of each exci- Similarl  that I t of Landau level
tonic state is broadened to low energy due to the shakeup of. imilarly, we éxpect that a small amount of Landau leve

free spin waves with effective madks,y. The extent of this mixing will ot affeci the q_uallt.atlve properties OT the exci-
. T tonic states. Corrections will arise from the coupling of these
broadening depends on the momentum distribution of th

initial i function. The tvoical broadeni b States with the plasmons of the=1 state. For weak Landau
intial éxciton wave tunction. The typical broadening may be ., o mixing, this coupling leads to a weak-coupling po-

estimated by _consiple_ring the ground-state wave function in faronic problem in which a particléhe exciton couples to
typical potential m|n|mum,XW|th curvatures set by the rootyhe gensity fluctuations of its environmefihe plasmons
mean square curvatufe?Vyp,,. The width of the emission The parameter values of the resulting polaronic problem are
line arising from this state is found to be equal tosuych that one expects the energy eigenstates to be closely
(Mx/Mgw) \/ﬁ2V2vi<ms/(2Mx). This energy, which is related to the states in the absence of Landau level mixing,
0.4 meV for the parameter values we use to describe thenly dressed with a cloud of virtual plasmons.
experiments of Ref. 19, accounts for the main low-energy Thus, a small amount Landau level mixing will not lead
broadening of ther_ spectrum shown in Fig. 5. to any qualitative changes in the nature of the initial or final
The theoretical line shapes shown in Fig. 5 are very simiStates of the recombination process. Quantitative changes
lar to the experimental line shapfBig. 1(b)], both qualita- will appear as increases in the effective masses of the spin-
tively and quantitatively. It is important to emphasize, how-Wave and the exciton. We know of no calculations of the

ever, that the quantitative predictions of our model are rathefffects of Landau level mixing on these dispersion relations.
unreliable: the values of the exciton and spin-wave masseg°Wever, the form of the perturbation expansion in the ratio

we use do not take account of Landau level mixing for theOf interactions to the el_ectron cyclotron energy shows that
electrons, and are based on a simplified model for the su the lowest-order corrections to both effective masses are pro-

: : ortional tom,. There will also be changes in the matrix
band structure and the valence-band dispersion. Furthermoreg, I
. . -~ glementg5) and(9). However, these overlaps will still vary
our model for the exciton relaxation and recombination in

. L - on the characteristic momentum scdlé/, so the correc-
the dlsordergd potential is only a crude descnpjﬂon of &ions will only lead to a uniform change of the recombination
rather complicated process. An accurate calculation of theye o 41 excitonic states with small momenta. Provided the
line shapes requires a much better understanding of the 15555 of the exciton remains larger than the mass of the spin
laxation dynamics of the system than we have at presenfyaye, all of the above qualitative discussion will still apply.
Consequently, the predictions of this model are best viewed |t js possible that under the experimental conditions the
as illustrations of the qualitative features one expects of th@xtent of Landau level mixing for the electrons is so large
spectrum when the relaxation dynamics prevent full thermathat the nature of the low-lying initial states is qualitatively
equilibration. Specifically, the line shapes in both polariza-different: for example, the spin polarization of the ground
tions become temperature-independent, andstheolariza-  state may be different. Without a full calculation of the
tion is significantly broadened to lower energy as a result omany-body problem including Landau level mixing, we can-
the release of high-momentum spin waves upon recombinaiot rule out such a possibility. However, we view the success
tion. Finally, we note that our calculations have dealt onlyof our model in explaining the main features of the experi-
with long-range disorder. Short-range disorder, arising, fomental observations as evidence that we have correctly iden-
example, from interface roughness, may lead to hightified the states contributing to photoluminescence in these
momentum components in the exciton wave function andexperiments. Experimentally, one may test whether Landau

Intensity
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level mixing has any qualitative effects by studying the evo- em|0), (20)
lution of the spectrum as a function of the sample density. - . -

One would hope that the qualitative features remain the sanféassified by the quantum number describing the position

in higher-density samplegbut with a similar value of ©f the spin-hole in the plane. Similarly, upon photoexcita-
d//), for which v=1 appears at larger magnetic field and tion, the ground state will be any one of the degenerate maxi-
Landau level mixing is less important. mally spin-polarized states

h!|0), (21
IV. CHARGED INITIAL STATES ) . ) i )
in which the photoexcited electron fills the vacant spin-

We have shown that exactly at=1, the low-energy ini- state, and the hole occupies the lowest Landau level single-
tial states of our model are well described by excitonic stateparticle state with quantum number (h!, is the operator
whend is not very large. However, this situation representsthat creates a valence-band hole in this state; we continue to
only a singular value of the filling fraction. For any typical suppress the subband label of the hoWe will refer to this
filling fraction close tov=1, the sample will contain a small state as the “free-hole state.” This is the simplest “charged
number of quasiparticles. As the magnetic field increases angbmplex” that can compete with the excitonic states to be
the average filling fraction sweeps through unity, the quasithe absolute ground state of the system, and therefore to
particles will change from being negativex 1) to positive  contribute to the low-temperature photoluminescence spec-
(v=1). These charges may become localized by disorder, ifrum.
which case they will not contribute to the transport properties We will compare the energy of the free-hole state with
and a quantized Hall effect will be observed. However, evenhat of an excitonic state in which the valence-band hole
localized charges may affect the photoluminescence spegorms aP=0 exciton with a spint electron a long distance
trum. To discuss the consequences, we will consider cases ffom the positive quasiparticle. One can convert the free-hole
which the filling fraction is sufficiently close to one that the state to this excitonic state K§) introducing a widely sepa-
quasiparticles are very dilutecompared to the density of rated quasielectron/quasihole pair far from the valence-band
electrong and can be considered to be independent: we wilhole (at an energy cost of +Bgy,, WhereBsg,y is the inter-
therefore study a single quasiparticle in an otherwise unifornyction contribution to the energy gap of the- 1 state which
v=1 state. We will consider a sample without disorder.we refer to as the “binding energy” of a spin wayand(2)
Long-range disorder will cause a broadening of all the spechinding the quasielectron to the free valence-band heith
tra we describe below by an amount similar to that of thegn energy gain oBy, which is the binding energy of the
exciton recombination line in the, polarization <-V}5,),  exciton). The energy of the excitonic state is therefore larger
which was discussed in Sec. Il E. than that of the free-hole state by an amodrtBgy— By .

When an electron-hole pair is added to a system containFor a Zeeman energ¥ that is large compared to the inter-
ing a single additional quasiparticle, the resulting energyaction energies, this quantity will be positive, and the free-
spectrum will contain a band of states describing the motiomole state will be the lower-energy state. For sn#jlias is
of an exciton far from the quasiparticle. The recombinationtypically the case experimentally, whether the free-hole or
of these states is well described by the discussion of Sec. lithe exciton state is the lower in energy depends on the rela-
with the quasiparticle providing an additional source of scattive sizes of the spin wave and exciton binding energies. In
tering. However, it may be that the ground state does nopppendix A it is shown that, within the approximation of no
form part of this band, but is some “bound state” in which Landau level mixing for the electrons, these binding energies
the additional electron-hole pair is localized in the vicinity of may easily be calculated. The binding energy of the exciton

the quasiparticle to form a small charged complex. If this isis found to be independent of the mass of the valence-band
the case, one can expect to find a separate feature in thple

photoluminescence spectrum arising from this new initial

state. The simplest forms of these initial statdwse with T oo o e?
maximal spin polarization were discussed in Ref. 26. We Bx= \@ed 2" erfa(dl \/E/)m (22)
will also limit our discussion to the maximally spin-polarized o

charged complexes, but extend the work of Ref. 26 by showThe binding energy of the spin wave follows from the
ing that Landau level mixing for thelectronscan have im- d=0 limit of Eq. (22

portant effects on the stabilities of these complexes relative

to the excitonic states, and that Landau level mixing for the T €
hole can significantly affect their recombination spectra. Bsw= EW- (23

2

From these expressions one finds that for any nonddte
binding energy of the exciton iessthan that of the spin
We begin by considering a sample in which, prior to pho-wave. The free-hole state will therefore always be the lower-
toexcitation, there is a single positively charged excitationenergy state, and, far<1, one can expect to see radiative
For large Zeeman energy, the ground state prior to photoexecombination from the free-hole state rather than from ex-
citation is maximally spin polarized, and the positive chargecitonic states. The form of the recombination spectrum of the
appears as a vacant spirelectron statéa “spin-hole”). In  free-hole state is trivial: since there are no spielectrons
the absence of disorder, the ground state is any one of thgresent, the hole can only recombine in the polarization,
degenerate states and will contribute a single sharp line. Simple considerations

A. Additional positive charge
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show that the recombination of the free-hole state occurs at [Zon(d1 /)12 (€%1Ameen/)?
an energyBsy— By lower than the recombination energy of ABx=+ go 22012 | Ai(wet wp)
the P=0 excitonic state in thig-_ polarization. €
Considerations similar to those we have just presented (e2/477660/)2

1
—| 2 ——m1Zon-1(dIV2/)

formed the basis of the main point of Ref. 26, in which it was 192n—
nzo Nn!2

argued that as the filling fraction is swept from>1 to hwe
v<1, the form of the initial state contributing to photolumi- (25
nescence undergoes a transition from an excitonic state to a
free-hole state. As a result of this transition, a redshift of the ) ) ] ) )
mean position of the photoluminescence line is expected byhere Zn(z) is a function defined in Eq(C11). The first
an amounBs,,— By . A redshift consistent with this behav- term in this expression representsiaoreasein the binding
ior has been observed in very wide quantum-well sanfplesenergy, and accounts for the enhanced binding of an exciton
For narrow quantum wells, and in particular for the experi-in the absence of the filled Landau level of spirelectrons.
ments of Ref. 19, no such redshift is observed. For théelhe second term is decreasen the binding energy, which
parameter-values appropriate to these experiments, one findffectively arises from the screening of the electron-hole in-
Bx=8.0 meV andBsy~=11.1 meV, so the shift in energy teraction by the filled Landau level of spin-electrons
would be 3.1 meV. This energy difference is likely to be (which becomes weakly polarizable when Landau level mix-
overestimated by our model, which neglects the finite thick-ing is included.
ness of both the electron and hole subband wave functions, We evaluate the above correction to the binding energy of
but even with these factors included one would expect théhe exciton by performing the sums in E@5) numerically.
energy shift to be above experimental resolution. That nd-or the parameter values appropriate to the sample used to
redshift is observed seems to indicate that for this sampleneasure Fig. (b), we find that the binding energy of the
there is no change in the nature of the initial states as thexciton decreases; ABy=3.24 meV, by an amount that is
filling fraction sweeps throughr=1. significantly less than the decrease in the spin-wave binding
In the following we show that the absence of a disconti-energy due to Landau level mixing (6.7 meV). The resulting
nuity in the form of the photoluminescence can be explainedhet binding energies of the exciton and spin-wave for these
as a result of Landau level mixing for thedectrons For a  parameter values are therefor&8y=4.76 meV and
small spacingd, the corrections due to this Landau level Bg,,=4.33 meV. Thus, the first correction arising from Lan-
mixing lead to ardecreasen Bgy— By, which may be suf-  dau level mixing for the electrons leads to an exciton binding
ficient to cause this quantity to change sign andeketonic  energy that islarger than that of the spin wave, with
state to become lower in energy than the free-hole state. IBy—Bgy= 0.4 meV. Since the difference in binding energies
this case, as the filling fraction of the sample is sweptBy—Bgis positive and larger than the bare Zeeman energy,
through v=1, the low-energy states will remain well- the excitonic state remains the ground stateifsrl. Intro-
described by the excitonic states and there will be no disconducing Landau level mixing for the electrons, we can there-
tinuity in the form of the recombination spectrum. fore account for the observation that there is no discontinuity
We will study the effects of Landau level mixing of the in the form of the photoluminescence spectrumvatl in
electrons by considering the changes in the binding energiasis sample.
of the exciton and of the spin wave to second order in the For positive Bx—Bgy, one further expects that, if the
Coulomb interaction. These corrections are of orderfree-hole states were to become populated, their recombina-
(%l e/)?I(hwe)~€e*m./e*h?, and are therefore indepen- tion would appear in the-_ photoluminescence spectrum at
dent of the strength of the magnetic field. an energyhigher than that of the emission from the=0
A calculation of the second-order energy correction to theexcitonic state in this polarization. We suggest that thge “
binding energy of the spin wave has been reported in Refpeak” appearing in Fig. (b) could be due to the recombina-
20; it was found that the binding energlecreasedoy an  tion of such states. This peak is consistent with this interpre-
amount tation, insofar as it appears only in the polarization and at
an energy above that of the excitonic recombination line.
Since we use a highly simplified model for the subband wave
(e?lAmeey/)? functions and only include Landau level mixing for the elec-
& — (24 trons to lowest order, the uncertainties in the binding ener-
gies we calculate are significant. The close similarity be-
tween our prediction of an energy spacing of 0.4 meV and
which is consistent with a recent quantum Monte Carlothe observed spacing=0.5 meV) is purely fortuitous, and
evaluation of this quantity* For the parameter values appro- cannot be used as a justification for this interpretation of
priate to GaAs systeman(,=0.067my,e=12.53), this de- peakB. The main problem with this interpretation is that it
crease is 6.77 meV and can be significant compared to thequires a metastable population of the free-hole states. It is
overall spin-wave binding energy neglecting Landau levelpossible that the relaxation rate of free-hole states is suffi-
mixing [this is 11.1 meV for the field strength at which the ciently small that their radiative recombination occurs before
spectra in Fig. (b) were measured thermal equilibration is achieved. In particular, at tempera-
In Appendix C we derive the second-order corrections tadures less than the bare Zeeman energy of the electrathe
the binding energy of the exciton in the presence of thedensity of spin{ electrons is vanishingly small and the
v=1 ground state. The result is quenching of the free-hole states may be supprefbeis

hwe



2448 N. R. COOPER AND D. B. CHKLOVSKII 55

consistent with the appearance of pdalonly at very low  quadratic regression in one over the number of single-
temperaturekgT<Z (Ref. 19]. particle states. To account for Landau level mixing of the
In view of the uncertainty in the energy position of peak hole, we retain the first five hole Landau levels; this is suf-
B and the requirement of a nonequilibrium population, theficient to reproduce the binding energy for even the case
assignment of this peak to the recombination of the free-holen,,=», d=0 (Ref. 59 (in which Landau level mixing will
state is rather speculative. However, this interpretation maye most importantto an accuracy of 5%. For all values of
be tested experimentally. Ideally, one would study the evod for which the results of our finite-size calculations are
lution of the spectrum as a function of the separatibn reliable d<2/), we find that the negatively charged exciton
(which may be controlled by studying quantum wells of dif- is bound(the total angular momentum of the ground state
ferent widths or by the use of front and back gafesAs d  changes asl increases, the first change occurring when this
increases the energy difference between the recombinaticspacing is larger than about one magnetic lengor the
from the free-hole and that of the exciton shoulecrease parameter values appropriate to the experiments of Fig, 1
due to the decreasing binding energy of the exciton. Fowe find a binding energy of 0.088/47eey/=8.8 K
sufficiently larged, the binding energy of the excitdBy will =0.76 meV. This binding energy is large compared to the
become less than that of the spin wdgy plus the Zeeman typical thermal energy, so one could expect these states to
energyZ, and the free-hole state will become the groundstatgrovide an important contribution to photoluminescence for
configuration forv<<1. At this point, one will recover the p=1.
behavior described in Ref. 26 and observed in wide quantum Since the negatively charged initial state contains both
wells,* in which the photoluminescence line shows a disconspin-] and spin} electrons, one might expect that this state
tinuous redshift as the filling fraction is reduced throughwould radiatively decay in both polarizations. However, for
v=1. The transition between these two regimes occurs at all finite values ofm, andd, our numerical studies show that
critical value of the separatiod. which is defined by the the transition rate in the-,. polarization is identically zero.
condition thatZ+Bgy—Bx=0 (whereBgy andBy are the  This transition is forbidden by the selection rule arising from
exact binding energies of the spin wave and exciton, includthe conservation of total angular momentum by the operator
ing all Landau level mixing correctionsThis critical value L, since our calculations show that the total angular mo-
may be estimated using Eq22)—(25). We find thatd, de-  mentum of the initial state differs from that of the available
creases slowly for samples with increasing carrier densitieginal state(a single spin} electron.
due the reduction of the influence of Landau level mixing as In the o_ polarization, there is a significant transition rate
the magnetic field increases to maintair 1. Using the pa-  for all values of the model parameters. In the final state there
rameters appropriate for GaAsm{=0.067, m,=0.34, are two spin} electrons and a single spin-hole, appearing as
€=12.53 and an electrorg factor of 0.4), we find a result of the recombination of one sgirelectron with the

d.=0.5"atB=4T andd.~0.3/ atB=10T. hole. The ground state of this three-body system is a small
charged spin texture, in which all three particles are bound
B. Additional negative charge closely togethe?>2%22Tg higher energy there is a continuum

Consider a system that, prior to photoexcitation, containsOf excited states, representing the unbound motion of a spin

a single additional negative charge. For large electron Ze%v_vave in the presence of the additional electron. It appears
rom our numerical calculations, and from an analytic treat-

g]nznc()afnt?\g)ég:(?n;gltlCeszas-?)gf:rigfegi?;?:st the ground Stater'r?ent of particles with hard-c_ore repulsiéhthat there is
only one bound state, so the final-state energy spectrum con-
eth), (26) §ists of the charged spin texture state and the.spin—wave con-
tinuum, separated by a single energy gap. This energy deter-
which are degenerate m. Upon photoexcitation, the addi- mines the threshold value of the Zeeman energy below
tional electron must also be spjn-there being no vacant which the first spin texture becomes lower in energy than the
spin- electron states. The energy eigenstates of the resultingpin-polarized quasiparticfé.
maximally-spin-polarized system are determined from the The recombination spectrum, calculated numerically for
three-body problem in which twéspin-|) electrons in the the parameter values appropriate to the experiments of Ref.
lowest Landau level interact with the valence-band hole. Inl9, is shown in Fig. 6. The main peak contains 88% of the
this section we discuss the possibility of a bound state of altotal intensity, and is due to the recombination into the
three particles forming. It is known that such a bound stategground state: the charged spin texture. The remaining 12% is
does exist fod=0, both when the hole is restricted to the into the unbound spin-wave states. The finite size of our
lowest Landau levelrfy,=0) >>?%and when the hole mass is system causes this part of the spectrum to be discrete. In the
infinite (in which case the system represents the high-fieldimit of infinite systems sizes, this will become continuous
triplet “D " complex>®). If the energy of this complex is and only the gap separating the spin-wave continuum from
sufficiently less than that of a widely separated exciton andhe charged spin texture complex will remain. We therefore
guasiparticle, one can expect a new feature in the photoluind that the recombination spectrum in this polarization pro-
minescence spectrum to appear whenl. vides a direct measurement of the formation energy of the
We have calculated the binding energy of the exciton tasmallest charged spin texture. The observation of such struc-
the second electron numerically for arbitrany, andd. We  ture in photoluminescence would be of great interest.
work in the spherical geometry with system sizes of up to 51 The relative intensities in the charged-spin texture peak
single-particle states in the lowest Landau level, and extrapaand the spin-wave continuum vary with the parametags
late the binding energy to the infinite-size limit by using andd. If the hole is restricted to states in the lowest Landau
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0.8 r taking account of a separatiahbetween the planes in which
the electrons and hole move, and Landau level coupling for
the valence-band hole described by a nonzero effective mass
0.6 | M -
The low-energy states at=1 are “excitonic states” if

the electron Zeeman energyis large, or even for vanishing

Z if d is not too large §<1.3/). These are states in which
the spini lowest Landau level is filled, and the valence-band
hole binds with a single spifp-electron to form an exciton.
The radiative recombination processes of these states are

charged spin-texture

Intensity
o
H

02| quite different for the two polarization channels. In the
. . polarization, the valence-band hole recombines with the
Spin-wave continuum spin-| electron to which it is bound to leave the=1 ground
0.0 PSRN, I | P I state: the resulting recombination line is narr@imited only
06 04 02 00 by disordey. In the o_ polarization, the valence-band hole
Energy

recombines with one of the spihelectrons, and a spin-wave
FIG. 6. o recombination spectrum of the negatively chargedexcitation is left in the final state. The shakeup of spin waves
complex, calculated for a sphere wit.h 51 single-particle states in thg5,,ses the recombination line in this polarization to be
lowest Landau level and with the parameter valuesy gaqened to low energy. We argue that the observations of
han/(e*/4meey)=0.15,d//=6/13. The recombination energy is pof 19 demonstrate the recombination of excitonic states.
measured in units af*/4meeo/” relative to that of th®=0 exciton g long-range disorder arising from the remote ionized do-
recombination. nors leads to strong scattering of the excitonic states. A
simple model for the recombination of the exciton in this
level (m,=0), it is found that recombination occurs almost disordered potential leads to line shapes that compare favor-
exclusively into the charged-spin texture peak for all valuesaply with the experimental observations.
of d (Ref. 26 (providedd is not so large that the total an-  \We addressed the behavior at filling fractions slightly
gular momentum of the initial ground-state changésthat  away fromvy=1, by considering the photoluminescence of a
case, there iS Vanishingly Sma” intensity in the Spin-WaV%ystem Containing a Sing'e additional positives(l)' or
continuum, so the energy gap is not pronounced. It is onlyyeqgative ¢=1) quasiparticle. We compared the energies of
when one introduces a finite hole mass that appreciable inhe excitonic states with other “charged” initial states that
tensity is found in the spin-wave continuum and the gap caRan form in these cases. Fors1, we showed that, as a
be observed. result of Landau level mixing for the electrons, the excitonic
Despite the fact that our model predicts this negativelygtate is the ground state for smdllfor larged, a “free-hole
charged initial state to be bound for the parameter valuegiate” is lower in energy. The observation of peBkn the
appropriate for the sample used in Ref. 19, there is no featurgyperimental spectra reported in Ref. 19 is consistent with a
in the observed specti#ig. 1(b)], which is clearly associ- metastable population of the free-hole state; further experi-
ated with the recombination of such a state. It is possible thgt,ents are required to justify this assignment. Ferl, a
such recombination is masked by the low-energy tail of thenegatively charged state, in which the valence-band hole
exciton recombination but is responsible for the shoulder obpinds with two spin} electrons, is lower in energy than the
served in ther_ spectrum of Fig. (b). Itis also possible that  excitonic state. The recombination spectrum of this state in
the negatively charged state is not bound in practice, due tghe - polarization contains information directly related to
factors left out of the above calculation of the binding en-ihe formation energy of the smallest charged spin texture of
ergy. One can expect_ a redgcnon in the binding energy ofyig system. No clear evidence for this negatively charged
this state due to the finite thicknesses of the subband wavgate is observed in the present experiments. This state will
functions, Landau level mixing for the electrons, and thepe more stable and its recombination may be more clearly
screening due to spin depolarizatitg., the binding of the  pservaple in higher-density samples with small values of
exciton to the quasiparticle is likely to be reduced if they,
Zeeman energy is sufficiently small that the lowest-energy  gina|ly, we note that similar considerations can be applied
quasiparticle is a charged spin texturéThe negatively (o photoluminescence close to higher integer filling fractions
charged s'Eate will be most stable in samples with small valy, _; Many of the qualitative features of our model at
ues ofd//, for which the binding energy we calculate is ,_1 apnear also at these filling fractions. In particular, in
large, and with high densities, such that 1 occurs atlarger  he strong-field limit, there are low-energy initial states simi-
magnetic field and Landau level mixing and spin-|gr (g the excitonic, and positively and negatively charged
depolarization effects are less important. initial states described above, but with the electrons forming
the excitonic and negatively-charged complexes now lying in
a high Landau level. Discontinuities similar to those dis-
cussed in Sec. IV A can arise as the filling fraction is swept
We have studied a model for the low-temperature photofrom v=i to v=<i, as a result of a change in the ground state
luminescence of high-mobility quantum wells in the vicinity from an excitonic(or negatively chargedstate to a posi-
of the v=1 quantum Hall state. Within this model, we dis- tively charged state. Although we have not calculated de-
cussed the polarization-resolved photoluminescence spectttajled spectra in these cases, it is clear that the recombination

V. SUMMARY
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of excitonic initial states will again lead to asymmetric line study the limitme— 0, m,,= finite, in which there is no Lan-

fractionsy=2n+1, or to the shakeup of magnetoplasmonspg|e.

and magnetoplasmons combined with spin flips at all integer \ye begin by finding the eigenstates of E@\3) for

filling fractions v=i>1. P=0. Initially we neglect the electron-hole interaction, and
solve for the eigenstates of the kinetic energy operator. These
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wherewe ,=eB/m, ,. The statgn,m) is therefore a state in

which the electron has a Landau level index=n
+(Jm|—m)/2 and the hole an inder,=n+(|m|+m)/2.
We now introduce the electron-hole interaction. The ap-
1. Free exciton states proximation that we make is that the cyclotron energy of the
electron,hw,, is large compared to the interaction energy,
such that coupling between states with differaptmay be
(Pet€A)2  (pr—eA,)? neglected. In particular, for this work we focus on the states
+ +VeN(re—ry), (A1)  |n=0,m) in which the electron is in the lowest Landau level
and the hole is in then " Landau level. Within this approxi-
where the subscripts and h refer to the electron and hole mation, the staten=0,m) are eigenstates of the electron-
coordinates, and we will choose to work in the symmetrichole interaction,vVe"(r), since this potential conserves the
gauge,A(r)=Bxr/2. This two-body problem was greatly angular momenturm. The energies of these states are found
simplified by Gorkov and Dzyaloshinsfliwho showed that from the expectation value of the interaction
the energy eigenstates may be classified by the eigenvalues
of a conserved momentum

APPENDIX A: EXCITON STATES IN STRONG
MAGNETIC FIELD

We study a Hamiltonian of the form

2mg 2my,

1
Eom(P=0)= 5 fwe+hop(m+ 1/2+Ve"  (AB)

e
P=Ppe+ph— 5BX(re—rn). (A2)
where we have defined®"=(0,m|Ve"0m). These are the
Replacing this operator by its eigenvalue, one finds that thenergies of thé>=0 exciton states for which the electron is
energy eigenstates are determined by a one-body Schrin the lowest Landau level. We will concentrate on the
dinger equation for the relative coordinater.—ry, with the  lowest-energy staten=0, for which the binding energy is
Hamiltonian —vgh. This binding energy may be calculated exactly for
the interaction

A% _, iefiBy eB?, .. P
Hp—_ﬂv + 2 r><V+Wr +V (r)+m Ve = e2 1 a7
eB dmeeg \[r[?+d?’
+V(PX2“’ (A3)

which represents electrons and holes moving in planes sepa-
1 6
where M=mg+m,,, p=m,m,/(m+m;), and y=(m, rated byd. We findt

—mg)/(Mmg+my). As a result of these transformations, the e?
overall eigenfunctions of EqA1) take the form —VEh= h/\/77/2‘9"2/2/2erfc(d/\/E/)_ (A8)
TEEY
1 A .
Wp(re,r)= \/——e'P'”e”h)/%e”exrh/yze“VP'“e*'h)/% As d//—0 this expression recovers the binding energy of
Q the exciton calculated by Lerner and Lozdtikor the case
X hp(Fa—Tp) (A4) in which the electron and hole move in a single plane. Note

that both the wave function of the zero-momentum exciton
where ¢p(r) is the solution of Eq.(A3), and the state is state and the above binding energy are independent of the
normalized to an aref). value of the hole effective mass.

The eigenstates of this Hamiltonian were discussed by The effective mass of each of these exciton states may be
Lerner and Lozovif in the limit my,m,—0 in which Lan-  found exactly by treating the momentum-dependent terms in
dau level mixing for both the electron and hole may be neEq. (A3) within a perturbation expansion. We concentrate
glected. We do not follow this approach, as we are interestednly on the lowest-energy exciton state=0,m=0. To sec-
in cases for which the hole mass is finite. Rather, we willond order in the momentum, the change in energy is
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P2  e2B2 |(0,m|r|0,0)- PX 7? exciton determines the spin-wave bandwidth, and the inverse

AE P — _+ . . . - _ .
0.0P) oM T M2 n;o Vgh_(mhwh+vemh) effective mass of the exciton gives the spin-stiffness.

-1

P2
- 2mh

ﬁwh
veh—yen

1+ 2. Exciton states in a smooth external potential

(A9)

In this section we show how one may obtain an effective
dynamics for the motion of the exciton in an external poten-
tial that is sufficiently weak and long-ranged. Our procedure
is analogous to the Born-Oppenheimer approximation in the
theory of molecular dynamics. In that case, a simplification

In the last line we have séfl=m,,, since our analysis is
strictly correct only in the limitm,— 0. The effective mass
of the exciton is therefore

52 1 arises due to the separation of time scales between the fast
My =m,+ 72 eyt electronic motion and the slow atomic motion. In the present
B 0 case, the relative motion of the electron-hole pair is treated
drreegh? . as “fast,” and the center-of-mass motion of the exciton is
=my+ — \[geXF(dZ/Z/Z)(lerZ//z) assumed to be much slower.
’ To be specific, we introduce the potentiafS(r,) and
-1 VI(r,) in the Hamiltonian(A3). The momentunP is no

x erfo(d/N2/)—dl2/ (A10) longer conserved. However, within the spirit of the Born-

Oppenheimer approximation, we imagine that the slow coor-

The first-order corrections to the internal wave function, leacdinates, the center-of-mass momentuf and position
to the overall wave function of the exciton ground stateR=(Mere+myry)/(mMe+my,) (which are canonically conju-

(h=/=1) gate, are stationary, and solve for the ground state of the
internal motion. The resulting energy function serves as an
— IP.rp i FoX - 2120 — (o= 1) 2l4 effective Hamiltonian for the center-of-mass motion. This
Wp(re )= e'Fhe!leX M z/eg™ (e~ \ . . .
V21Q) procedure is appropriate provided the energy separation be-

tween the resulting center-of-mass states is much smaller

1 A than the energy spacing between the internal states of the
x| 2(1+)\)(|P_ZXP)'(re_rh) exciton.
To simplify this procedure, we expand the external poten-
1 tials to first order in the relative coordinate

eiP- [re+(l+2)\)rh]/(2+2)\)ei reXrp/2

V21Q)
i VE(re) + V(1) = VE(R) + V(R)
+r-[ 7,V VE(R) — 7.VV(R)],
whererp=2xP/?/fi, and we have sen,=0. The param- (A13)
eter\ is defined to be

Xe—[re—rh—rpl(1+x)]2/4’ (A11)

where ne n=me ,/(Me+my), and it is to be understood that
eh eh . ’
A=(Vi'=Vo)ltoy, (A12)  the gradient operators apply in the plane of motion. This

S o approximation requires the potentials to be smooth on the
which is a measure of the extent of Landau level mixing for . T .
length scale of the exciton siz€, Since the potentials now

the hole. couple to the internal motion through a term proportional to
The above perturbative results for the dispersion relation P g prop

and wave functions are accurate f@<(1+\)%//. In the f, we can calculate the second-order energy shift using the
last line of Eq.(A11) we have introduced exponential func- same perturbative approach we used above. Combining this

tions which reproduce the first-order corrections in the mo-WIth the kinetic energyA9) we obtain

mentum. These are chosen such that the expression correctly P2 N
reproduces thexactwave function in the limit of no Landau AEo,o:NﬂLVe( R)+V(R)
level coupling?? A\—0, and much Landau level coupling, X
\— oo, for the hole. 1 /°P . b
In the limit of no Landau level mixing for the hole, +m7-(77hVV —17eVVY) X2
A—0, the exciton effective mass is due only to the interac-
tion, and we can recover the mass derived by Lerner and N2 g V= V|2
Lozovik for an electron and hole moving in the same plane 1N 2 VvehEh (Al4)

and neglecting all Landau level coupling by settide O:

My = \8lm(4meeyhi?)/(€2/). In this limit, the above ex- where the effective madd  is that defined in EqtA10) and
pressions for the binding energy, effective mass, and wave is defined in Eq(A12). It is to be understood that the term
function of the exciton also describe the properties of spirthat is linear in momentum should be symmetrized with re-
waves atv=1 when Landau level mixing is neglect&®  spect to momentum and position operators, such that the
In this case, the electron of the exciton represents a fspin-Hamiltonian is Hermitian.

electron in the lowest Landau level, and the hole a missing This expression represents the effective Hamiltonian for
spin-} electron in an otherwise filled band of spinelec- the center-of-mass motion of the exciton. The approxima-
trons in the lowest Landau level. The binding energy of thetions used to derive this werd) the center-of-mass motion
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is “slow” compared to the internal motion, an@) the ex-  parabolic dispersion, the Hamiltonian factorizes into two 1D
ternal potentials are smooth on the scale of the magnetisimple harmonic oscillators and the spectrum and wave func-

length. tions may be easily found. The ground-state energy is
APPENDIX B: CALCULATION OF THE DISORDER- ORVRY, )=V+§ lﬁﬁi [Vay (B2)
DOMINATED SPECTRAL LINE SHAPE O Tee Ty 2 VMy 2 V My’

In this appendix we provide some details of the stepsvhere My is the exciton effective mass. The ground-state
required to calculate line shapes for the exciton recombinawave function is the product of two Gaussian functions of
tion (in both polarizations in the presence of long-range ¢ and 7.
disorder, within the simple model outlined in Sec. Ill E. This  In the o, polarization, radiative recombination of the ex-
model averages over the recombination spectra of excitoniton leaves a single final stafthe v=1 ground state The
ground states in all potential minimum ®¥(r), expanding  spectrum of recombination for the exciton ground state in the
the potential in the vicinity of each minimum to harmonic potential minimum with{V,V,,,V,,} is therefore simply
order and assigning equal weight to eac¢harmonic-
oscillatop ground state. One therefore must knéfy the | (E;V,Vge,V,,) = E—Eo(V, Vg, V,) 1, (BI)
spectrum of radiation emitted from the ground state in
given potential minimunicharacterized by the potential and
its two principal curvaturesand(2) the distribution of these larizati
minima for the form of disorder in which we are interested. P22 2210N-

: ; L In the o_ polarization, the exciton annihilates to leave a
We begin by calculating the recombination spectra for the__. . , - .
: ) - o : spin wave in the final state. Due to the finite spatial extent of
exciton ground state in a potential minimum described by

the initial exciton state, the final spin-wave state is a super-
1 1 position of many momentum components and therefore of
V(r)=V+ §V§§§2+§Vm]7’]2, (B1) many energy eigenstatésa’nce the spin waves do not feel the
disorder potential they behave as free particl@se transi-
whereé and » are the distances from the center of the mini-tion therefore has a finite width in energy, of approximately
mum along the principal axegor convenience of notation, %2%/MgyR? whereR is a measure of the spatial extent of the
in this section we omit th&X superscript on the exciton po- ground-state wave function amdsyy is the spin-wave effec-
tential energy. The potential minimum is characterized by tive mass. In detail, the spectrum for recombination of the
the three parametersV,V,V,,}. For an exciton with a exciton ground statp/(V,Ve,V,,,)) is

Qhere the energyE of the emitted radiation is measured
relative to the recombination of the fr&=0 exciton in this

|
REVAPREREDY lsw(PIL_| ) RS[E— (Eg— P?/2M )] (B4)

=2 KPP AE—(Eo=PH2Msw], (B5)
where we have made use of the matrix eleni@nto relatel _(E) to the momentum distribution of the exciton wave function,
(P|¢). Again, the emission energy is measured relative to that of afre® exciton in this polarization. Using the explicit
form of the ground-state harmonic oscillator wave function, this line shape is found to be

|_(E;V,V;:,V, )=————exXp (E—Ey)——(E,; +E B6)
( ¢e'Vn) ELE (=B (Bee Eyp) (
Msw _ 1 -1
Xl (E_EO)M_X(Egg —E,,) |O(Eo—E), (B7)

whereE; =%V, IMy for i={¢&, 75}, Eq is the energyB2),  variablesV,V,, andV, , (potential minima with small val-
I, is an imaginary Bessel function, af(z) is the Heavi- ues ofV are likely to have large positive curvatures, gtc.
side step function. Remarkably, howeverP,,;, can be calculate@xactly in-

We now know the line shapéB3, B7) for the two polar-  cluding all such correlations, for disorder potentials that are
izations of the emission from the ground state in the potentiaGaussian-correlated. We will now outline the steps leading
minimum{V,V,,V,}. To compute the overall spectrum, it to this result, following the approach of Refs. 50 and 55
is also necessary to know the relative densities of minimavhere a similar issue is discussed.
with the characteristic§V,V¢,V,,,}. We will call this dis- We begin with some general definitions that do not de-
tribution Ppin(V, V¢, V,,,). For typical statistical forms of pend on the form of the disorder. We denote the joint prob-
the disorder potential, there will be correlations between theability distribution (at any point in the sampleof V and all
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of its first and second derivatives with respect to some fixed from the quantum well and with density correlations de-
axes{X,y} by P(V,V4,Vy,V,,V_,V,,), whereV.=(V,, scribed by Eq(14), these coefficients are

*V,,)/2. The disorder is assumed to be homogeneous, such o e \2
that this function is independent of position. The density of V2:<8 2mn*d?, (B13)
stationary pointsat whichV, =V, =0 and for which the po- TEEQS
tential and curvatures af&/,V_ ,V_,V,,} may be expressed — 151
in terms of this distributio?? Vi=g v (B14)
Pl Vo,V V- V) = (V2 —V2 —V2 31
stat( + xy) ( + xy) VV+ _ Z = 2’ (815)
XP(V,0,0V, ,V_ V). (B9) S
For our purposes it is more convenient to work in terms of Wzv_)z(’yzg) %W, (B16)
the principal curvature$V,,,V,,}, which for a stationary 16s
point with curvaturegV., ,V_,V,} are where an effective densitp* is used to take account of
o donor correlationé? as discussed in Sec. Ill E. For the dis-
p— 2 2 1
V=Vt VVI+V, (B9) tribution P described by EqsB12)—(B16), the integrals of
Eqg. (B11) may be performed to obtain our final expression
_ N2 a2 o) - ) =
Vo=V = VVZ+V5, (B10)  for the distribution of minima of the disorder potential in

with V=V, chosen. One can convert the distributi@g) ~ Which we are interested

into the distribution of stationary points at which the poten- p v/ .., V )a®(V.)O(V. )A (A2 — A2

tial and principal curvaturesare{V,V,V, }. Noting that minlV:Vee Vp) =0 (Ve O (V) 8- (45 =A%)

potential minima are those stationary points for which both r{ 15V2+8s*A2 +125?VA
xexpg —

curvatures are positive, we then find —
21v?

Pmiﬂ(VlV§§!V7]7])M®(V§§)®(V7777) 854A2_
-, (B17)
X [ dVy [ dV_ [ dV,, 15Vv2
X (V2 —V2—V2) which we have simplified by defining ..=(V.=V,,)/2.
i As emphasized in Ref. 50, with a suitable rescaling of energy
XP(V,0,0V, ,V_,Vy) and lengthscale, the distributiéB12) depends on the spatial
correlations of the disorder only through the dimensionless
2 2 =
XO(Vgg=V i = VI+ Vi) parametera=Vz V?/(V)? (=5/3 for the form of disorder
XO(V,,—V,+ \/\L—2+_2_\/Xy)_ (B11) W study; this is also true foP,in(V,Vg, V).

The spectra arising from the recombination of an exciton
To proceed further, we must determine the functionin & potential minimum characterized §Y,V:,V,,,} (B3,
P(V,V,,Vy,V, ,V_,V,,), which contains all of the relevant B7) may be combined with the above distribution for such
information on the disordered potential. At this point we spe-Minima (B17) to obtain the spectral line shapes within our
cialize the discussion to disorder potentials which are Gausgnodel
ian random functions with zero me#&we choose the zero of

energy such that the average disorder potential vanishes It(E)=j dvj dvggj dV,, Pmin(V,Vee, V)
this case, the explicit form of the distribution
P(V,V\,Vy,V.,V_,V,,) may be easily found. It depends X1(E;V, Vg, V). (B18)

only on the averages of all pairwise products of its variables._ ) ) )
The correlations of the gradient, and V, with all other T_h|s _equatlon S|m_ply expresses th_e_ assumptlon that recom-
variables vanish, as do the correlations\of and V,, for bination occurs with equal probability from exciton ground

spatially isotropic disordefwhich we now assunje One states in all potential minima. We have not been able to find
find<055 closed form expressions for the integrdB18), and have

therefore calculated the line shapes numerically, discretizing
P(V,0,0V.,V_ V) the three-dimensional integral by a lattice with®Ifoints.
_ _ . The results are shown in Fig. 5 for the parameter values
(V2)V2+(VAV2 —2(VV,)VV, appropriate to the conditions under which Figh)lwas mea-
- —— sured. We will now briefly discuss the form of the recombi-
2[(V2+)(V2)—(VV+)2] nation in each polarization.
In the o, polarization, the line shape depends on a single
V2 Viy dimensionless parameter: the ratio of the typical exciton ki-
Xexp ————|, (B12 netic energy to the typical potential-energy fluctuation,

Xy a=(%?%Mys?)/\ V2. For the parameter values we use to
where the bars denote disorder averages. For the disordeompare with experiment this ratio is rather small,
potential arising from the ionized donors located a distancex=0.25. If « were to be zero, there would be no kinetic

xeX
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energy contribution to the exciton energy, and the spectrum (¢ H|D )
would simply measure the heights of the minima of the po- AE,=— “E_E (CH)
tential. In this limit our model for the line shape in this P17 e fo e

pOIarization reduces to that proposed in Ref. 50 for empt}(lvhere{(bf ,Ef} are a Comp|ete set of energy eigenstates and
quantum wellgwith a=5/3, as is appropriate for the form of ejgenvalues the full Hamiltoniary, which includes the ki-
disorder we consider For nonzeroa, the energies of all netic energy of electrons and holes and all interactions
states are increased due to the nonzero kinetiC energy Of thﬁ: Vee+ Veh_ The 0n|y nonzero matrix e|ements involve
exciton, by an amount that differs for potential minima with statesb in which at least one electron has a nonzero Landau
differing principal curvatures. Strictly speaking, consistencyleve| index, so to obtain the energy shift that is correct to
of our model requires that the kinetic energy of the excitongrder /% w,, it is sufficient to retain only the kinetic en-
should always be small compared to the typical potentia[:_.rgy contribution to the energids andE,, .
flu_ctyation_such that the harmonic approximation is valid,; By explicit summation over all final states we obtain ex-
this is equivalent to the requirement thatbe small. pressions for the changes in the exciton, electron, and hole
In the o_ polarization, the line shape depends both ongnergies relative to that of the filled Landau level,

a and on a second dimensionless paramefexMy/  AE_—AE,, in terms of the matrix elements of the electron-
Msw, which is a measure of the spin-wave stiffness. Forglectron and electron-hole interactions,

B=0, the spin-wave kinetic energy is negligible, and the

recombination spectrum of each exciton state is a sharp line

at the initial exciton energy; the line shape in this p0|ari2a-vﬁfkl,n2k2,n3k3,n4k4Ef f d?rd?r'(nyky|r)(nzkalr’)

tion becomes identical to that in the, polarization. For

nonzeroB each exciton transition is broadened to low energy XVEr—r")(rIngkg)(r'[nsks),  (CO)
due to the shakeup of high-momentum, and hence high-

energy, spin waves. The extent of this broadening depends,,, _ > 2 ,

on the size of the initial exciton wave function and thereforevnlkl,nzkz,n3k3,n4k4=f f d*rd*r’(ngky|r){r'[nzkz)

on the principal curvatures of the potential minimum. For the

parameters values we use for experimental comparisons XVE(r—r')(r|ngkq)(nzkslr’).  (C7)

£=6.2 1s large and this broadening is significant. Making use of the invariance of these coefficients under a

uniform displacement of all momenta, the change in the

APPENDIX C: CORRECTION TO THE EXCITONIC binding energy of the exciton
BINDING ENERGY DUE TO LANDAU LEVEL MIXING
EOR THE ELECTRONS ABXE —(AEX—AE0)+(AEQ+AEh—ZAEO), (CS)

To determine the lowest-order corrections to the bindingS found to be
energy of the excitonic state, we explicitly calculate the
changes in energy dfl) a zero momentum exciton formed AB, =
from a spin{ electron and a valence-band hao(8) a single Ne#0np# 0k Ke Ky Neft we+ Npf o,
spin-| electron, and3) a single valence-band hole, each in
the presence of the filled Landau level of spirelectrons, +
and (4) the filled Landau level itself. In this section, we find n+0kky k, NALwe
it c.onvenient. to work !n the Landau gaugér)=Bxy, for (C9)
which the single-particle states for electrons and holes,
(renk)y and({nK|r,), are described by the Landau level index The first term is the increase in binding energy of the exciton
n and a wave vectok. In the absence of Landau level mix- in the absence of the filled Landau level. The second term is
ing, the wave functions of each of the above states are  a reduction in the binding energgince Ve and V" have
opposite signs this may be viewed as the screening of the
‘I’x=i2 elw: hl|0>, (C1) glectron-hole interaction by this filled Landau level. De_pend-
\/ﬁ 7K ing on the balance of the two terms, the overall binding
energy of the exciton can either increase or decrease.

Veh Veh*
NeKe :NKKR,00,00Y ng(ket+k),np(ky +k),00,00

ee ehx
2R€ Vik ok,,00,6,V nk 0k, 00,6, -

_af
o= e01|0>, (€2 Calculating the matrix elements for Coulomb interactions
o= h$|0), (C3) between the electrons and for the force Ig) between the
electron and hole and performing the sums over momenta,
®o=|0), (€4 we find

where e/ and h{ create electrons and holes in the lowest

M\12]( a2 2

Landau level states with momentuky and N=ny(} is the ABy= +[ > [Ig?](d//)g (e*/Ameeq/)

number of single-particle states in this Landau level. Note 27n(nh)* | A(wet wp)

that these energy eigenstates are independent of all model (e2/ameey/)?
ot

parametersd, my). This is, of course, true for the cases of 1> %Iml(d/\/z/) ,

the ®,, ®,, andd,,, and is shown in Appendix A for the nzo NNi2 hwe

zero-momentum exciton state. (C10
The lowest-order corrections to the energy of the states

o, (a=0,g,h,X) is where we have defined a function




I.(2)= Jo ‘qme‘qz’ze‘qqu. (C11)

For the casel=0, the numerical summation of the first term

has previously been presented in the context of the two-

dimensional exciton in an empty quantum w¥lland the
second term may be summed exacflylhe result is
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m (e%l4meey/)?

2)d=0)= R A
ABy’(d=0)=+0.440 1014%- h (@t or)
w2 (In2)?](e%l4meey/)?

12 2 hwe '

(C12

For the case of nonzem, used in Sec. IV A, we have com-
puted the sums numerically.
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