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Theory of photoluminescence of then51 quantum Hall state:
Excitons, spin waves, and spin textures
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Institut Laue-Langevin, Avenue des Martyrs, B.P. 156, 38042 Grenoble, Cedex 9, France

D. B. Chklovskii
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 4 June 1996!

We study the theory of intrinsic photoluminescence of two-dimensional electron systems in the vicinity of
the n51 quantum Hall state. We focus predominantly on the recombination of a band of initial ‘‘excitonic
states’’ that are the low-lying energy states of our model atn51. It is shown that the recombination of
excitonic states can account for recent observations of the polarization-resolved spectra of a high-mobility
GaAs quantum well. The asymmetric broadening of the spectral line in thes2 polarization is explained to be
the result of the ‘‘shakeup’’ of spin waves upon radiative recombination of excitonic states. We derive line
shapes for the recombination of excitonic states in the presence of long-range disorder that compare favorably
with the experimental observations. We also discuss the stabilities and recombination spectra of other
~‘‘charged’’! initial states of our model. An additional high-energy line observed in experiment is shown to be
consistent with the recombination of a positively charged state. The recombination spectrum of a negatively
charged initial state, predicted by our model but not observed in the present experiments, is shown to provide
a direct measure of the formation energy of the smallest ‘‘charged spin texture’’ of then51 state.
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I. INTRODUCTION

Continuing improvements in the quality of quantum-w
devices are leading to increasing resolution of the intrin
photoluminescence spectra of two-dimensional electron
tems in the extreme quantum regime. It is now well est
lished that features in the photoluminescence spectra ar
lated to the appearance of the integer and fractional quan
Hall states and the insulating phase associated with the m
netically induced Wigner crystal.1–4 The possibility of ex-
tracting information on the properties of these strongly c
related phases from the photoluminescence spectra
stimulated a great deal of recent experimental and theore
interest in this technique.

The interpretation of photoluminescence spectra requ
an understanding of the energy eigenstates of a valence-
hole in the presence of the electron gas. Due to the str
many-body interactions that are important in the extre
quantum regime of these systems, this presents an essen
strongly coupled many-body problem and the interpretat
of spectral structure is extremely difficult. The theories th
have been developed to address this issue fall into two b
categories. Certain theories treat the interparticle correlat
approximately through the use of some form of mean-fi
description of the interactions.5–7 Such an approach has bee
shown to account successfully for oscillations in the me
position of the luminescence line in the integer quantum H
regime of disordered samples.5 The fractional quantum Hal
and Wigner crystal regimes cannot be described within s
a mean-field approach. To treat these cases, other the
have been developed which attempt to describe the inter
ticle correlations more accurately.8–16 In these theories, a
simplified model is usually adopted in which the electro
and photoexcited hole are restricted to states in the low
Landau level. For the most part, the resulting many-bo
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problem has been treated by numerical diagonalization
small systems,8–13 though some approximate analytic trea
ments have been proposed in the fractional quantum Hall14,15

and Wigner crystal16 regimes. Despite the great deal of the
retical effort, the comparison between the theoretical and
perimental photoluminescence spectra of high-mobi
samples is still rather unsatisfactory, with even qualitat
features of the observed spectra still not convincingly
counted for.~We note that ‘‘acceptor-bound photolumine
cence’’ spectra are somewhat better understood.17,18This ex-
perimental technique is quite different from intrins
photoluminescence which we study here.!

It is the purpose of this paper to show that the intrin
photoluminescence spectra of two-dimensional systems c
to the integer filling fractionn51 contain interesting and
nontrivial structure ~the filling fraction is defined by
n[nh/eB, wheren is the electron density andeB/h is the
density of flux quanta!. From a theoretical point of view, this
is a much simpler filling fraction to study than the fraction
quantum Hall and Wigner crystal regimes, yet still pose
nontrivial problem due to the importance of strong corre
tions in determining the low-energy excitations at this fillin
fraction.

In recent photoluminescence experiments on a very-h
mobility GaAs quantum well, extremely narrow line width
have been achieved and very interesting low-energy struc
has been resolved.19 It is found that as the filling fraction of
the sample is swept throughn51, the photoluminescenc
spectrum displays very intriguing behavior. The evolution
the spectrum is quite different in the two circular polariz
tions, which originate from the recombination of a hole wi
electrons of the two spin polarizations, as illustrated in F
1~a!. In one polarization (s1), no significant features are
observed in the spectrum atn51; the integrated intensity
shows a weak minimum, but the line shape is almost
2436 © 1997 The American Physical Society
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changed. In the other polarization (s2), a much more dra-
matic evolution is observed: the integrated intensity also
creases slightly, but, at the same time, the main spectral
becomes strongly broadened on the low-energy side; at
lowest temperatures, an additional high-energy peak app
Figure 1~b! shows the spectra observed in the experime
reported in Ref. 19 at the filling fractionn51 for both cir-
cular polarizations; the additional high-energy peak is
beled the ‘‘B peak.’’

These observations cannot be accounted for within
existing ‘‘mean-field’’ theories of photoluminescence in t
integer quantum Hall regime.5–7 In the first place, these theo
ries treat the spin degree of freedom of the electrons in s
a way that no polarization-dependent effects can app
Moreover, strong correlations are likely to be important
determining the structure observed in photoluminescenc
n51, since it is now clear that the properties of typical Ga
systems at this filling fraction are dominated by interactio
the single-particle gap~the bare electron Zeeman energ!
being very much smaller than the interaction energy scale
fact, as suggested in Ref. 20, then51 state is better viewed
as a strongly correlated state similar to the incompress
states at fractional filling fractions, since, even for a vani
ing single-particle gap, a nonzero charge gap would still
pear as a result of the electron-electron repulsion. This s

FIG. 1. ~a! Schematic diagram of the low-energy interband tra
sitions in a GaAs quantum well. The recombination of electrons
the two spin orientations of the lowest Landau level gives rise to
two different circular polarizations.~b! Low-temperature photolu-
minescence spectra of a GaAs quantum well atn51, from the
experiments reported in Ref. 19. In thes1 circular polarization, a
narrow line is observed with a line shape similar to that obser
away fromn51. In thes2 circular polarization, the spectrum ac
quires a strong low-energy broadening as compared to the sp
away fromn51; an additional high-energy peak~peak B! appears
at low temperatures. Energies are measured relative to the ene
at which the intensities are maximal.
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has received a great deal of recent theoretical20–22 and ex-
perimental interest,23–25in an effort to understand the effec
of the electron spin on the properties of the low-energy
citations. In this light, it is of particular interest to understa
the origin of the structure appearing in the above photolu
nescence spectra, since this technique separately probe
two spin states of the electrons.

Motivated by these experiments, we study the theory
the intrinsic photoluminescence of two-dimensional elect
systems at filling fractions close ton51. We will follow the
models used in the fractional quantum Hall and Wigner cr
tal regimes and neglect Landau level mixing for the ele
trons, but will take full account of the interparticle correl
tions. The model that one obtains within this approximati
is much simpler to analyze atn51 than in either of these
other two regimes. Therefore, at the very least, the study
this model atn51 is the most natural way in which to tes
the applicability of the underlying assumptions of the the
ries for photoluminescence in the fractional quantum H
and Wigner crystal regimes. Moreover, as we shall see,
photoluminescence spectrum atn51 retains nontrivial struc-
ture related to the low-energy excitations of this state an
therefore of great interest in itself. A similar approach
photoluminescence atn51 has been discussed in Ref. 2
This work did not address the polarization-dependence of
photoluminescence spectrum. We study these issues in s
detail, and compare our predictions with the experimen
observations described above. We show that one can acc
for all of the qualitative features observed in the experime

The outline of the paper is as follows. In Sec. II we m
tivate the model that we will study, and discuss its relatio
ship with other models of photoluminescence in the extre
quantum regime. In Sec. III we study the predictions of t
model at a filling fraction of exactlyn51. We argue that for
the sample studied in Ref. 19, and for all samples in wh
the valence-band hole is close to the electron gas comp
to the typical electron-electron spacing, the most import
initial states are ‘‘excitonic states’’~as we choose to nam
them!. These are states in which the Landau level of spin↑
electrons is fully occupied, and the valence-band hole bi
with a spin-↓ electron to form an exciton. In the remainder
this section we study the photoluminescence spectrum a
ing from the recombination of these excitonic states. This
the main part of the paper, and contains our most impor
conclusions with regard to the experimental observatio
The radiative recombination of the excitonic states is sho
to be quite different in the two circular polarizations. In th
s1 polarization, the hole recombines with the spin-↓ elec-
tron to which it is bound, leaving an undisturbed Land
level of spin-↑ electrons. In thes2 polarization, the hole
recombines with one of the spin-↑ electrons, and a single
spin reversal is left in the final state. The photoluminesce
spectrum in this polarization becomes broadened to low
ergy due to the ‘‘shakeup’’ of these spin waves. We arg
that the polarization dependence of the main recombina
line in the spectra of Fig. 1~b! can be accounted for in term
of the recombination of excitonic states: the recombinat
line in thes2 polarization is broadened to low energy due
the shakeup of spin waves, while the line in thes1 polar-
ization remains narrow~with a width limited only by disor-
der!. We derive the line shapes for a disorder-free system

-
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a function of the separation between the valence-band
and the electron gas, and the extent of Landau level mix
for the hole. We show that disorder arising from the rem
ionized donor impurities is likely to have an important effe
on the width of this line, and derive line shapes for the
combination in the two polarizations taking account of th
disorder. The line shapes compare favorably with the exp
mental observations shown in Fig. 1~b!.

In Sec. IV, we turn our attention to quite different initia
states, in which the valence-band hole forms a positiv
charged or negatively charged complex. These states
have lower energies than the excitonic states if the fill
fraction is slightly less than or greater thann51 ~when some
quasiparticles are present!, and can then be important fo
photoluminescence. We show that the high-energy line~peak
B) in Fig. 1~b! is consistent with the recombination of
positively charged initial state in which there are no spin↓
electrons in the vicinity of the hole. In this case, our calc
lations include corrections arising from Landau level mixi
for theelectrons. These are shown to change the position
this recombination line relative to that of the excitonic stat
The recombination spectrum of a negatively charged ini
state is shown, from numerical studies, to contain struc
that measures the formation energy of the smallest ‘‘char
spin texture’’20–22 of the n51 state. There is no clear ev
dence for this initial state in the present experiments.
discuss the type of sample and the conditions under wh
this initial state might be more stable and its recombinat
could be observed. Finally, Sec. V contains a summary of
main points of the paper.

II. DESCRIPTION OF THE MODEL

We aim to develop a theory that can account for the p
toluminescence of high-mobility quantum wells in the vici
ity of n51. In the experiments of Ref. 19, and in expe
ments on similar GaAs quantum wells,4 recombination is
observed between the two lowest-energy electron states~the
two spin polarizations of the lowest Landau level of the lo
est subband state!, and the two lowest-energy hole state
These two hole states originate from the heavy-hole state
the valence band, but are strongly mixed with the light-h
states due to the quantum well confinement.27 Typically, suf-
ficiently low excitation powers are used that the density
holes is extremely small~compared to the density of elec
trons! and they may be considered to be independent.

To represent these systems, we will study a mode
which the electrons are confined to a single subband
carry a spin of 1/2, and there is a single hole, which may
in one of the two states (⇑ or ⇓).28 Since we consider the
recombination of a single photoexcited hole, the ‘‘spin’’ l
bel of the hole will play no role other than to define th
polarization in which the hole can recombine@see Fig. 1~a!#.
We will therefore ignore this label, and leave it to be und
stood that when we discuss a recombination process wi
spin-↑ ~spin-↓) electron the hole must be in the spin-⇑ ~spin-
⇓) state.

For the most part, we will assume that following phot
excitation the system is able to relax to thermal equilibriu
before the hole recombines. In this case, one can unders
the photoluminescence spectrum by identifying the lo
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lying energy eigenstates of a single photoexcited hole in
presence of the electron gas, and studying the processe
which these states can decay radiatively. The rate of e
interband transition is determined by the matrix element
the electric dipole operator between the initial and fin
states. Within the effective mass approximation, this is p
portional to the matrix element of one of the operators

L2[E d2r ce↑~r!ch⇑~r!, ~1!

L1[E d2r ce↓~r!ch⇓~r!, ~2!

between the in-plane envelope functions of the initial a
final states,c (e,h)s(r) being the electron and hole field ann
hilation operators. The absolute transition rate depends
the overlap of the electron and hole subband wave functio
and on the form of the electron and hole wave functions
an atomic scale, which may differ for the two polarization
We will study only the contributions arising from the matr
elements ofL6 , which are sufficient to determine the lin
shapes in the two polarizations.

Due to the importance of many-body interactions in t
quantized Hall regime of these systems, to make prog
one must restrict attention to a somewhat simplified mode
the initial and final states of the photoluminescence proc
A natural model to study which retains the effects of man
body correlations is one in which the electrons and the h
are restricted to the lowest Landau level and move in a sin
plane. Such a model is motivated by the success of sim
approximations in accounting for the qualitative and quan
tative properties of then51 state and the incompressib
states at fractional filling fractions.29 However, various
authors30–32,13,9have shown that forspin-polarizedelectrons
and holes restricted to a single Landau level and with
same quantum-well envelope functions, a ‘‘hidden symm
try’’ leads to the result that photoluminescence contains
spectroscopic structure: the spectrum consists of a single
at an energy that is independent of the state, or even
presence, of the electron gas. In the present case, the
trons are not spin polarized. However, it is straightforward
show that a similar symmetry applies for an arbitrary num
of spin components for electrons and holes, provided
interactions conserve the spin of each particle: the spect
consists of a series of sharp lines, at energies which are
dependent of the state or presence of the electron gas~these
are therefore the energies of each allowed interband tra
tion for an empty quantum well!.

In order to obtain a nontrivial photoluminescence sp
trum, it is essential to study a model that breaks this symm
try. There are two clear mechanisms by which this occurs
practice. First, through Landau level coupling for the ele
trons or hole; in GaAs quantum wells, this is likely to b
more important for the hole than for the electrons due to
much smaller cyclotron energy of the valence band co
pared to that of the conduction band. Second, due to
asymmetry of the single-side-doped quantum wells a
single heterojunctions used in the experiments, the elect
and holes do not move in the same plane; the hole is pu
somewhat away from the electron layer.33 Note that the pres-
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55 2439THEORY OF PHOTOLUMINESCENCE OF THEv51 . . .
ence of a disordered potential does not break the symm
and one of the above two mechanisms must be introduc

It is common in theories of photoluminescence in t
fractional quantum Hall regime to retain Landau quantizat
for both electrons and holes and to break the ‘‘hidden sy
metry’’ by introducing a separationd between the planes in
which the electrons and hole move.9,11 In our work, we will
restrict the electrons to states in the lowest Landau level,
will also assume that the electrons and the hole are confi
to planes that are separated by a distanced. We will not,
however, impose the restriction that the hole is in the low
Landau level. We take account of Landau level mixing
the valence-band hole by assuming its in-plane dispersio
be parabolic with an effective massmh . Thus we retain two
mechanisms by which the hidden symmetry is broken.
will discuss how the photoluminescence spectrum depe
on the parameters,d andmh . For quantitative comparison
of our theory with the experimental observations reprodu
in Fig. 1~b!, we will choosed to be the separation betwee
the centers of the electron and hole subband wave funct
in the quantum well used in these experiments, which
approximately 60 Å~Ref. 34! and is therefore small com
pared to the magnetic lengthl 5130 Å under these condi
tions ~the magnetic length,l [A\/eB, is a measure of the
size of a single-particle state in the lowest Landau level
is therefore a fundamental length scale in our model!. In the
absence of detailed knowledge of the valence-band dis
sion, which depends strongly on the shape of the quan
well,35 we will choose the valuemh50.34m0 for both hole
states; this is typical of the masses measured in experime35

and is the value used in theoretical studies of rela
problems.36 Thus, under these conditions the ratio of the c
clotron energy of the hole,\vh[\eB/mh , to the typical
interaction energy scale,e2/4pee0l , is rather small, 0.15
~usinge512.53 for GaAs!, and one can expect Landau lev
mixing for the hole to be quantitatively important. Indee
we will show that it is the finite mass of the hole that pr
vides the more important mechanism by which the ‘‘hidd
symmetry’’ is broken in the photoluminescence spectrum

The neglect of Landau level mixing for the electrons
the principal assumption of our work and leads to the k
simplifications. It allows explicit knowledge of the groun
state of the system atn51: a filled Landau level of spin-↑
electrons.20 Moreover, we shall always consider interactio
which preserve the electron spin. Therefore, prior to reco
bination of the valence-band hole, the system may be c
acterized by the number of spin-↓ electrons and the numbe
of missing spin-↑ electrons in the otherwise filled lowes
Landau level ~‘‘spin-holes’’!. Through the use of this
particle-hole transformation, the initial states may describ
by the interaction of the hole with~spin-↓) electrons and
spin-holes, both restricted to states in the lowest Lan
level. For filling fractions close ton51, and for states which
do not involve a large degree of spin depolarization, re
tively few of these particles are present, and the calcula
of the energy eigenstates poses a few-body problem.
majority of our work will address the properties of the sy
tem in which there are only two such particles; our results
this case are based on analytical treatments. We will a
present results of numerical studies for systems with lar
numbers of particles. We work in the spherical geometry37,38
ry,
.
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and introduce the separationd between the electrons an
hole in the same way as was done in Ref. 8. For all of
calculations that we report, the system size is sufficien
large that finite-size effects are well-controlled.

Although the neglect of Landau level mixing is not like
to be quantitatively accurate at weak fields, when the typ
interaction energy can be larger than the electron cyclot
energy, we hope that it does give the correct qualitative p
ture. In Sec. III F, we will indicate the extent to which on
can trust the qualitative features of a model neglecting L
dau level mixing for the electrons, and in Sec. IVA w
calculate some quantitative corrections arising from this m
ing.

III. EXCITONIC STATES

In this section we will consider the introduction of a
electron-hole pair to the ground state atn51. We will show
that, provided the distanced of the hole from the electron
gas is not too large, the low-energy states may be descr
by a band of ‘‘excitonic states,’’ defined below. We wi
further show that the recombination of these excitonic sta
can account for the main feature of the spectra presente
Fig. 1~b!: a sharp recombination line in thes1 polarization
and an asymmetrically broadened line ins2 . We will de-
velop models for the line shapes in the two polarizatio
first for a system with no disorder, and then taking acco
of the long-range disorder arising from remote ionized d
nors. We will compare the predictions of these models w
the experimental observations.

A. Definition of the excitonic states

As we have explained above, the principal assumpt
throughout our discussion is that the electrons are confine
the lowest Landau level. In this case, the ground state of
system atn51 prior to photoexcitation is the state

u0&[)
m

em↑
† uvac&, ~3!

in which the electrons fill all the spin-↑ states in the lowes
Landau level and all spin-↓ states are unoccupied. In th
above expression,uvac& is the vacuum state with a filled va
lence band and empty conduction band, andems

† is the op-
erator which creates a spin-s electron in a single-particle
state in the lowest Landau level. The quantum numberm is
any internal quantum number that runs over all degene
states in the lowest Landau level. This state is clearly
absolute ground state if the bare electron Zeeman ene
Z, is large compared to the typical interaction energy, set
e2/4pee0l . Due to the spontaneous ferromagnetism wh
appears for repulsive electron-electron interactions, it is a
the ground state in the limitZ→0.20

We now consider the introduction of an addition
electron-hole pair to the system. The properties of the lo
energy states depend on all of the model parameters:d/l
and the ratios of the cyclotron energy of the hole,\vh , and
the electron Zeeman energy,Z, to the typical interaction en-
ergy scalee2/4pee0l . However, if the Zeeman energy i
large compared to the interaction energy, the low-ene
states will be maximally spin-polarized, and their form
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2440 55N. R. COOPER AND D. B. CHKLOVSKII
clear: all of the spin-↑ electron states will be occupied, an
there will be one remaining spin-↓ electron which will bind
with the valence-band hole to form an exciton~in a magnetic
field, any attractive interaction will lead to binding of a two
dimensional electron-hole pair!. We refer to these states a
‘‘excitonic states.’’ Since we assume that all interactio
conserve the electron spin and we ignore Landau level m
ing for the electrons, the filled Landau level of spin-↑ elec-
trons is inert, and the properties of the excitonic states m
be determined by considering only the electron-hole pair
particular, the energy eigenstates of the system follow fr
those of the exciton itself. The state in which the exciton is
a stateCP(re ,rh) with momentumP is

uP&[E d2red
2rhCP~re ,rh!ce↓

† ~re!ch
†~rh!u0&. ~4!

We have suppressed the subband label of the hole, but it
be understood that there are two excitonic bands corresp
ing to the two hole states. In the absence of an exte
potential, the momentumP is conserved and the above stat
are energy eigenstates. In Appendix A the wave functi
and dispersion relation of a two-dimensional exciton are
rived at small momentum as a function ofmh andd, within
the approximation of no Landau level mixing for the ele
tron.

B. Stability to spin reversal

The above excitonic states are the low-energy eigenst
of the system when the Zeeman energy is large compare
the interaction energy scale. However, for typical Ga
samples atn51, the Zeeman energy of electrons is mu
smaller than the interaction energy scale~at 4 T the Zeeman
energy is 0.09 meV, whereas the typical interaction energ
e2/4pee0l 58.9 meV). It is therefore important, for pract
cal purposes, to study whether these excitonic states rem
the lowest-energy states when the Zeeman energy is sma
is possible that there exist lower energy states involv
some degree of spin depolarization. Such depolarizatio
known to be important for the charged excitations of t
system, for which theoretical20–22 and some
experimental23–25 studies show that the lowest-energ
charged excitations are ‘‘charged spin textures’’ which
verge in size to become ‘‘skyrmions’’ in the limit of vanish
ing Zeeman energy.

The spin polarization of the ground state depends stron
on the system parameters (d, mh , andZ). For sufficiently
larged, the system will become depolarized whenZ is small:
in this case, the interactions between the electron gas an
hole may be neglected and the ground-state spin polariza
will be that of the extra electron, which is determined by t
lowest-energy charged spin texture. However, for smalld the
hole is tightly bound to the additional electron, and it
possible that the resulting neutral exciton does not sign
cantly disturb the spin polarization of the remaining ele
trons.

We have studied the stability of the exciton state to s
reversal by calculating the ground state of the system in
presence of asinglespin reversal. Our calculations were pe
formed in the spherical geometry, with system sizes of up
51 single-particle basis states in the lowest Landau le
s
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~corresponding to a sphere of diameter 10l ). We have stud-
ied only the limiting casesmh50,̀ and assume that th
results for finite hole mass lie between these two limits. W
find that, formh50 andmh5`, the ground state is the glo
bal spin rotation of the excitonic ground state provid
d,1.4l andd,1.3l , respectively~we have identified these
values to an accuracy of better than60.1l ). Therefore, for
d smaller than these values, there is no energetic advan
to be gained from introducing a single spin flip to the ex
tonic state: the zero-momentum excitonic state remains
ground state. In order to fully test the stability of the exc
tonic state to spin reversal, one should study the ground s
as a function of all possible spin polarizations. However
seems likely that if the energy is not reduced by the int
duction of a single spin reversal, it will not be reduced by
larger depolarization. We therefore anticipate that ford
smaller than 1.3l , the P50 excitonic state is the absolut
ground state of our model whatever value the hole mass
take, and even asZ→0. For larger values ofd, the spin
polarization of the ground state will change asZ is de-
creased; one may view the resulting depolarized state
excitons formed from the binding of a valence-band h
with a charged spin texture.

For the parameter values that we use to compare with
experiments reported in Ref. 19 the spacingd560 Å is much
less than the magnetic lengthl 5130 Å. Our calculations
therefore suggest that in this sample the hole is sufficie
close to the electron gas that theP50 excitonic state pro-
vides a good description of the ground state of the sys
exactly atn51 prior to recombination. We therefore expe
the excitonic states to provide an important contribution
the photoluminescence spectrum of this sample.

At finite temperatures, some of the low-energy excit
states of the system will also be populated. These will con
both of finite-momentum exciton states, and of lon
wavelength spin wave excitations of the system. For sm
electron-hole separation,d, and for sufficiently small excita-
tion energies that the wavelengths of these excitations
large compared to the magnetic length, the coupling betw
the exciton and spin waves will be small, and the two may
treated independently. In the remainder of this section
will discuss the form of recombination expected from t
excitonic states in the absence of spin waves. A ther
population of spin waves may be viewed as a fluctuation
the overall polarization of the system, and will lead to
mixing between the two circular polarizations of the spect
Provided the temperature is small compared to the parti
hole gap atn51, only a small number of spin waves will b
thermally populated, and this mixing will be small.

C. Radiative recombination

It is clear from the form of the excitonic states describ
above that their radiative recombination in the two circu
polarizations will lead to quite different final states. In th
s1 polarization, the hole~which must be in the⇓ state! must
recombine with the single spin-↓ electron. In this case, ther
is only one available final state: then51 ground state~3!. In
thes2 polarization, the hole can recombine with any one
the spin-↑ electrons and there are many possible final sta
These are the states in which the spin of a single electron
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been reversed in then51 ground state, and are described
the set of single spin-wave excitations.39,40 The recombina-
tion processes in the two polarizations are illustrated sc
matically in Fig. 2.

The transition rates of these processes are determine
the matrix elements of the operators,L6 . Using the form of
the exciton wavefunctions derived in Appendix A, these m
trix elements can be calculated explicitly.

We find that the matrix element describings1 recombi-
nation between the excitonic stateuP& and the ground state
u0& is

^0uL1uP&5A V

2pl 2dP,0 , ~5!

whereV is the area of the sample. Thus, on emission o
long-wavelength photon, momentum conservation limits
recombination to the zero-momentum excitonic state.

As we now show, for thes2 polarizationall of the exci-
tonic states can recombine, with the momentum of the e
ton being conserved by the momentum of the spin-wave
the final state. Making a particle-hole transformation on
filled Landau level of spin-↑ electrons, the matrix element o
L2 between an initial excitonic state,uP&, and a final state
uP8&SW in which there is a single spin wave with momentu
P8, may be written

SŴ P8uL2uP&5E CSW,P* ~re ,rh!CX,P~re ,rh!d
2red

2rh ,

~6!

whereCX,P(re ,rh) andCSW,P(re ,rh) are the wave functions
of the exciton and spin wave of momentumP, with rh rep-
resenting the position of the spin hole in the second case
the symmetric gauge,A(r)5Bẑ3r/2, the exciton and spin
wave wave functions may be written41

CP~re ,rh!5
1

AV
eiP•~re1rh!/2\ei re3rh• ẑ/2l

2
FP~re2rh!.

~7!

Integrating Eq.~6! over the coordinate, (re1rh)/2, we obtain

SŴ P8uL2uP&5dP,P8E FSW,P* ~r!FX,P~r!d2r, ~8!

which demonstrates that the transition from the excitonic
the spin-wave state occurs with momentum conservat
and at a rate depending on the overlap of their respec

FIG. 2. Schematic diagram of the radiative decay processe
the free excitonic states. Each shaded region represents a filled
dau level of spin-↑ electrons, and the circles represent a spin↓
electron ~marked by ↓), a valence-band hole~lying above the
shaded region and marked by1), and a ‘‘spin hole’’~lying in the
shaded region and marked by1).
e-
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internal wave functions. The spin-wave wave functio
FSW,P are well-known.42,40 They are fully specified by the
condition that both electron and spin hole~i.e., missing spin-
↑ electron! are in the lowest Landau level, and are indepe
dent of the force law between the electrons. Since we al
Landau level mixing for the valence-band hole, the excit
wave functions do depend on the strength of the interac
relative to the cyclotron energy of the hole. However,
shown in Appendix A, for small momenta the wave functio
of the exciton is identical to that of the spin wave, and w
obtain

SŴ P8uL2uP&5dP,P81O~P2l 2/\2!, ~9!

independent of the parametersmh andd. ~The corrections at
finite momentum vanish for alld, whenmh→0, in which
limit Landau level mixing of the hole is negligible and th
exciton wave function becomes identical to that of the s
wave.! The allowed recombination processes for boths1

ands2 polarizations are illustrated in Fig. 3 as a function
momentum.

D. Line shapes: No disorder

The fact that only theP50 excitonic state can contribut
to photoluminescence in thes1 polarization, whereas all o
the excitonic states can contribute to emission in thes2

polarization leads to quite different line shapes for the t
polarizations. It is immediately apparent that, in the abse
of disorder, thes1 emission must be a sharp line, since the
is only one possible transition. In thes2 polarization many
transitions can occur and one can expect to observe a b
line.

To understand the line shape of thes2 polarization, con-
sider first the casemh50, d50, in which there is no Landau
level coupling for the valence-band hole, and it lies in t
same plane as the electrons. In this case, the dispersion
tions of the exciton and the spin wave areidentical, so all of
the alloweds2 transitions have the same energy. This si
ation provides an illustration of how the hidden symme

of
an-

FIG. 3. Schematic diagram of the allowed radiative transitio
of the free excitonic states as a function of momentum. The
exciton bands arise from the two hole subband states, and give
to the two circular polarizations of emitted radiation. In thes1

polarization only the zero-momentum state recombines and le
the groundstateu0& as the final state; in thes2 polarization~verti-
cal! transitions occur from excitonic states of all momenta into
band of spin-wave states.
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2442 55N. R. COOPER AND D. B. CHKLOVSKII
that applies in this case (mh50, d50) leads to a trivial
spectrum in which all transitions within each polarizati
occur at the same energy.

In order to observe structure in thes2 recombination
line, it is essential that the dispersion relations of the exci
and spin wave differ. Differences ariseboth from a nonzero
value of d, such that the electron-hole interaction diffe
from the electron-electron interaction, and from Landau le
mixing of the hole states.~Differences will also arise from
Landau level mixing of the electrons, but these effects
outside the scope of the theory presented here.! We will
compare the dispersion relations of the excitonic and s
wave states by discussing the effective masses of these
excitations, which describe the properties at small mome

In Appendix A we show that, within a model that neglec
Landau level mixing for the electron, the effective mass
the exciton,MX , may be calculated exactly

MX5mh1
4pee0\

2

e2l FAp

8
exp~d2/2l 2!~11d2/l 2!

3 erfc~d/A2l !2d/2l G21

. ~10!

The effective-mass approximation to the exciton dispers
relation is good foruPu!(11l)\/l , wherel>0 is a pa-
rameter defined in Eq.~A12! that describes the extent o
Landau level mixing for the hole. The spin-wave dispers
relation is parabolic foruPu!\/l and may be described b
an effective mass39,40

MSW5A8

p

4pee0\
2

e2l
, ~11!

which may be obtained from Eq.~10! by settingmh andd to
zero. From Eq.~10! we find that the Landau level mixing an
the spatial separation of the hole from the electron gas b
increasethe effective mass of the exciton relative to that
the spin wave. For the parameter values appropriate to
sample used in Fig. 1~b! we find an exciton effective mass o
MX50.50m0, which is much larger than that of the sp
wave,MSW50.081m0. Most of this increase arises from th
finite mass of the hole; ignoring Landau level mixing for t
hole (mh50), one would estimateMX50.16m0. For this
sample, therefore, we find that Landau level mixing of t
hole provides the more significant mechanism by which
hidden symmetry in photoluminescence is broken. Even
stronger magnetic field of 8 T, when Landau level mixi
effects are less important, one finds that a very large valu
the spacing,d*l , is required before the contribution to th
mass difference between the exciton and spin wave ari
from the nonzerod outweighs that due to the Landau lev
mixing of the hole. Thus, it is typically the case that Land
level mixing for the hole provides a more important cont
bution to the loss of the hidden symmetry than the spac
d in the spectrum arising from the excitonic states.

We claim that the observations reported in Ref. 19 a
reproduced in Fig. 1~b! demonstrate the recombination
excitonic initial states. This claim is motivated both by t
discussion of Sec. III B, in which it was shown that the e
citonic states are the low-energy initial states of our mo
n
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using the parameter values appropriate for the experime
and also by the fact that the principal qualitative features
the observed spectra are consistent with the those expe
from the recombination of excitonic states. Namely, in t
s1 polarization there is a sharp recombination line, due
the recombination of theP50 excitonic state; while ins2

one expects a broadening of the emission line on thelow-
energyside, due to the recombination of excitonic states w
nonzero momentum and the subsequent shakeup of
waves.

To make closer comparison between our theory and
experiments, we proceed by calculating line shapes for
excitonic recombination. To do so, it is essential to know
relative probabilities,nP , for occupation of the various ex
citonic states. Assuming that these are populated accor
to a Boltzmann distribution at a temperatureT and treating
the exciton and spin-wave dispersions as parabolic, i
straightforward to show that the line shape is

I2~E![(
P

nPd@E2~EP
X2EP

SW!# ~12!

5
1

kBT~MX /MSW21!
expF E

kBT~MX /MSW21!G
3Q~2E!, ~13!

where the recombination energy is measured relative to
of theP50 excitonic state in this polarization, and we ha
assumedMX.MSW. The resulting line shape is illustrated i
Fig. 4. The recombination in thes1 polarization is insensi-
tive to the differences between the spin wave and exc
dispersion relations, and remains a single sharp line.

The line shape in Fig. 4 is similar to the form of the ma
recombination line observed experimentally in thes2 polar-
ization @Fig. 1~b!#. Furthermore, the line width predicted b
the above theory is comparable to, though slightly less th
the width of the experimental spectrum: within our appro
mations, the ratio of the exciton to spin-wave effective ma
is MX /MSW56.2, so, at the experimental temperature of 0
K, we havekBT(MX /MSW21)50.2 meV ~at this tempera-
ture, the thermal wavelength of the exciton is 2600 Å, wh
is large compared to the magnetic length,l 5130 Å, so the
effective-mass approximation is accurate for both exci
and spin-wave dispersions!. However, there is a qualitative

FIG. 4. Line shape for thes2 polarized luminescence from fre
excitonic states in thermal equilibrium at a temperatureT, assuming
parabolic bands for both exciton and spin wave. The energy
measured in units ofkBT(MX /MSW21), relative to the recombina
tion energy of the zero-momentum exciton in this polarization.
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discrepancy between the above expression~12! and the ex-
perimentally observed line shape. Namely, the width of
observed line doesnot change with temperature for temper
tures below then51 single-particle gap~above this tempera
ture, peculiarities associated with then51 filling fraction do
not appear in the experimental spectra!. This discrepancy
indicates a failure of the above model for the line shape
the excitonic states. In the following subsection we show t
the assumption offree excitonic states is not likely to be
accurate in these systems: disorder can be expected to le
strong scattering of the excitonic states. Including the effe
of disorder, we show that the excitonic recombination sp
trum develops a temperature-independent line shape th
consistent with the experimental observations.

E. Effects of long-range disorder

There are various sources of disorder which can sca
the excitons discussed above. These include interface ro
ness and impurities that scatter excitons in undoped quan
wells. However, an additional source of disorder appear
modulation-doped quantum wells: the long-range poten
arising from the donor impurities that lie some distance,
by the spacer-layer thickness, from the quantum well.~The
exciton will also interact with the quasiparticles that app
when the filling fraction is not exactlyn51. See Sec. IV!
The long-range potential fluctuations are believed to be
dominant source of exciton scattering in the sample of R
19, the effects of interface roughness being small due to
large width and asymmetry of the quantum well.34 In this
section we will discuss the recombination of the excito
states in the presence of the long-range potential disorde
studying the energy eigenstates of both the exciton and
spin wave~the final state of thes2 recombination process!.
By including this single source of disorder, we obtain
lower limit on the extent of the disorder-broadening of t
spectral lines.

We begin by reviewing the form of the disorder arisin
from the ionized donors, as has been discussed in Refs
and 44. Imagine that these donors lie in a plane a dista
s ~the spacer-layer thickness! from the two-dimensional elec
tron gas, with an average densityn ~the same as the numbe
density of the two-dimensional electron gas!. If the donors
are randomly distributed in the plane, then the density fl
tuationsnq are correlated according to

nqn2q85nVdq,q8 ~14!

whereV is the sample area and the bar indicates the ave
over all realizations of the disorder. Due to their mutual el
trostatic repulsion, one expects there to be significant co
lations between the positions of the ionized donors, an
subsequent reduction in the amplitude of the density fluc
tions. We treat these correlations within the ‘‘nonequilibriu
model’’ of Ref. 44, in which the donor distribution is as
sumed to be a snapshot of the distribution at a tempera
T0. This model is based on the idea that, as the sampl
cooled, the charges on the ionized donors readjust within
impurity band until a temperatureT0 is reached at which
such charge mobility becomes small (T0.100 K typically!.
It is found that, on length scales larger than the spacer th
ness, the correlation function for the donor fluctuations ta
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the same form as Eq.~14!, but with the density replaced b
an effective densityn*5ee0kBT0 /(e

2s).
The fluctuations of the donor density lead to fluctuatio

in the potentials experienced by the electrons and holes.
resulting potential energy fluctuations for the electrons a

Vq
e5

2e2

2ee0uqu
nqe

2uqus, ~15!

and are therefore suppressed on scales larger than the sp
layer thickness,s. Due to the asymmetry of the quantu
well, the center-of-charge of the hole is located a dista
d further from the ionized donors than that of the electro
so the magnitude of the potential experienced by the hol
slightly smaller,

Vq
h52Vq

ee2uqud .
d!s

2Vq
e~12uqud!, ~16!

but is also smooth on a length scales.
In Appendix A we have derived an effective Hamiltonia

for the motion of the exciton in smooth external potentia
Ve(r) andVh(r). We make a Born-Oppenheimer approxim
tion for the exciton motion, treating the internal motion~with
a characteristic time scale set by the exciton energy-le
separation! as fast compared to the scattering rate of the
citon by the potential. Expanding the potentials to lowe
order in l /s, where s is the length scale of the externa
potentials, the effective Hamiltonian for the center-of-ma
positionR and momentumP of the exciton is found to be

HX
eff5

P2

2MX
1Ve~R!1Vh~R!

1
1

11l

l 2P

\
•~hh“V

e2he“V
h!ẑ

2
l

2~11l!

l 2

2

uhh“V
e2he“V

hu2

V1
eh2V0

eh , ~17!

where all gradient operators are to be understood to act in
plane of the quantum well. The first term represents the
netic energy of the exciton, with an effective mass,MX ,
given by Eq.~10!, while the second and third terms descri
the potential energy of an exciton with center-of-mass po
tion R. The fourth term, in whichhe,h[me,h /(me1mh) and
l is the parameter defined in Eq.~A12!, represents the cou
pling of the in-plane dipole moment of the exciton with th
electric fields acting on the electron and hole parallel to t
plane. This term should be symmetrized in momentum a
position coordinates to render the Hamiltonian Hermitia
The final term, in whichVm

eh are expectation values of th
electron-hole interaction defined in Appendix A, is the Sta
shift of the exciton in the parallel components of the elect
field due to the mixing with the higher exciton bands.

The above Hamiltonian also describes the motion of
spin waves of then51 state in the long-range potential. I
this case, the hole represents the spin hole and one m
therefore restrict it to states in the lowest Landau le
(l→0) and useVh(r)52Ve(r). The effective spin-wave
Hamiltonian therefore reduces to
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HSW
ef f5

P2

2MSW
1
l 2P

\
•~“Ve3 ẑ! ~18!

5
~P2q*A* !2

2MSW
1O~ u“Veu2!. ~19!

Thus, the disorder couples only through the in-plane dip
moment of the spin wave. In the last line, we have rewrit
the Hamiltonian in the more familiar form of the free motio
of a particle with~fictitious! chargeq* in a random~ficti-
tious! vector potential,A*[2MSWl

2/(q* \)¹Ve3 ẑ, ne-
glecting a second-order term in the electric field. The eff
tive magnetic field experienced by the particle is a rand
function of position with zero averageB*5¹3A*
5¹2VeMSWl

2/(q* \). The effect of this magnetic field on
the motion of the particle may be judged by considering
typical ~fictitious! magnetic length. Calculating the roo
mean square value of¹2Ve for the donor distribution~14!
with the reduced densityn* , we find a typical magnetic

length l *5sA(\2/MSWl
2)(8Apee0 /A3n* e2). Using the

parameter valuesT05100 K, l 5130 Å, s5800 Å, which
are appropriate for the sample of Ref. 19 under the con
tions for which Fig. 1~b! was measured, we find the typic
effective magnetic length is approximately twice the disor
length scales. Thus the radius of curvature of the spin-wa
trajectory is always large compared to the disorder len
scale, and the scattering by this random magnetic field
weak. We will neglect the effects of this weak disorder o
the spin wave motion, and treat the spin-wave as a free
ticle with a parabolic dispersion relation described
MSW.

The strength of scattering of the exciton due to the c
pling of its in-plane dipole moment to the in-plane elect
field is of the same order as the scattering of the spin wa
and is therefore also small. However, the scattering aris
from the remaining terms is strong. The main contribution
due to the potentialVX(r)[Ve(r)1Vh(r), which describes
the coupling of the perpendicular dipole moment of the
citon to the fluctuations in the electric field. Using the cor
lation function~14! and the expressions~15! and~16! for the
electron and hole potential energies, we find that the r
mean square fluctuation in the exciton energy
Vrms
X 50.093 meV for the parameter values of the sample

Ref. 19 (s5800 Å, d560 Å and assumingT05100 K).
Since the fluctuation in the exciton energy is large compa
to the kinetic energy cost;\2/MXs

250.02 meV to confine
it to a region of sizes, one expects the disorder to lead
strongly localized low-energy states.

In view of the above considerations, we arrive at a mo
for the excitonic recombination in which the exciton sta
prior to recombination must be determined from the poten
VX(r), and the final states are either the ground state~in the
s1 polarization! or the free spin wave (s2). To derive line
shapes for the resulting photoluminescence spectra, one
also know the relative populations of the initial excito
states.

One possibility is to assume that thermal equilibrium
achieved. In this case, the width of thes1 line, in which the
exciton recombines to leave then51 ground state, will van-
ish as the temperature tends to zero and the exciton beco
le
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restricted to its low-energy ‘‘tail states.’’45–48 However, the
line shape in thes2 polarization will be much broader tha
in s1 as a result of the shakeup of high-momentum s
waves. In fact, at very low temperatures, this line shape w
adopt a temperature-independent form, determined by
momentum distribution of the expected limiting form of th
tail-state wave functions.45,46We do not pursue a calculatio
of this line shape, since we do not believe that this limiti
behavior is appropriate for the present experiments. Rat
as is the case for exciton recombination in empty quant
wells,49,50 we expect that the finite lifetime of the valenc
band hole prevents full thermal equilibration. This is cons
tent with the observed temperature-independent width of
s1 line.19 Moreover, in view of the above estimates for th
strength of disorder which show that the low-energy exci
states are likely to be strongly localized in the potent
minima, one might expect a slow equilibration rate.

If thermal equilibrium is not achieved, the line shapes w
depend both on the nature of the exciton states in the p
ence of disorder and on the relaxation dynamics. Since we
not have a good understanding of the relaxation dynam
we will treat the nonequilibrium recombination within a ve
simplified model. We imagine that the disorder is sufficien
strong (Vrms

X @\2/MXs
2) that the exciton can becom

strongly confined in any local minimum of the potential, a
that the tunneling rate between states in different minima
small compared to the decay rate of the valence-band h
Under these conditions, the low-energy exciton states in
such minima accurately represent a set of energy eigenst
each of which will contribute to photoluminescence if pop
lated. We represent the relaxation dynamics of the exciton
the assumption that, prior to radiative recombination, the
citon is equally likely to be found in any one the potentia
minima and that only the ground state in any given minimu
is populated. This assumption is chosen to portray a ra
relaxation to the ground state in a given potential minimu
and a slow equilibration between states in different minim
The same assumption was the key element of a model
posed in Ref. 50 to account for exciton recombination in
undoped quantum well. Also in common with that work, w
assume that the potential is Gaussian correlated; this is a
rate when the spacer layer thickness is large compared to
mean impurity separation, such that many impurities cont
ute to the potential at a given point of the two-dimension
electron gas. Following a similar approach to that describ
in Ref. 50, we calculate the mutual probability distribution
the potentialVX and its curvatures in the two principal direc
tions at each point where¹VX50. We use this to calculate
the spectra for the two polarizations by averaging over
recombination of the exciton ground state in all potent
wells ~points of zero potential gradient for which both cu
vatures are larger than zero!, giving equal weight to each o
these states. Details of these calculations are presente
appendix B. The resulting line shapes are shown in Fig. 5
the parameter values appropriate for the conditions of R
19.

In the s1 polarization, the radiative recombination of
given exciton state contributes a sharp spectral line at
energy equal to the value of the potential energy at the gi
potential minimum plus the kinetic energy of the excito
For the parameter values used in Fig. 5, the kinetic energ
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the exciton is small compared to the fluctuations in the
tential, and the overall linewidth is determined primarily b
the width of the distribution of the potentials at all minim
;Vrms

X

In the s2 polarization, the recombination of each exc
tonic state is broadened to low energy due to the shakeu
free spin waves with effective massMSW. The extent of this
broadening depends on the momentum distribution of
initial exciton wave function. The typical broadening may
estimated by considering the ground-state wave function
typical potential minimum, with curvatures set by the ro
mean square curvature¹2Vrms

X . The width of the emission
line arising from this state is found to be equal
(MX /MSW)A\2¹2Vrms

X /(2MX). This energy, which is
0.4 meV for the parameter values we use to describe
experiments of Ref. 19, accounts for the main low-ene
broadening of thes2 spectrum shown in Fig. 5.

The theoretical line shapes shown in Fig. 5 are very si
lar to the experimental line shapes@Fig. 1~b!#, both qualita-
tively and quantitatively. It is important to emphasize, ho
ever, that the quantitative predictions of our model are rat
unreliable: the values of the exciton and spin-wave mas
we use do not take account of Landau level mixing for
electrons, and are based on a simplified model for the s
band structure and the valence-band dispersion. Furtherm
our model for the exciton relaxation and recombination
the disordered potential is only a crude description o
rather complicated process. An accurate calculation of
line shapes requires a much better understanding of the
laxation dynamics of the system than we have at pres
Consequently, the predictions of this model are best view
as illustrations of the qualitative features one expects of
spectrum when the relaxation dynamics prevent full therm
equilibration. Specifically, the line shapes in both polariz
tions become temperature-independent, and thes2 polariza-
tion is significantly broadened to lower energy as a resul
the release of high-momentum spin waves upon recomb
tion. Finally, we note that our calculations have dealt o
with long-range disorder. Short-range disorder, arising,
example, from interface roughness, may lead to hi
momentum components in the exciton wave function a

FIG. 5. Spectra of recombination of the excitonic states in
presence of long-range disorder, fors2 ~solid line! ands1 ~dashed
line! polarizations. Energies are measured relative to the recom
nation of the zero-momentum exciton in a sample without disord
Parameter values are chosen for the sample of Fig. 1~b!:
(\2/MXs

2)/Vrms
X 50.25,MX /MSW56.2,\2/MXs

250.024 meV.
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have important quantitative effects on the width of thes2

line. The qualitative features of the spectra will remain t
same.

F. Effects of Landau level mixing

To conclude this section on the recombination of ex
tonic states, we will briefly discuss the validity of the a
proximation in which Landau level mixing for the electron
is neglected. This approximation is correct in the limit
which the electron cyclotron energy\ve is large compared
to the interaction energy scalee2/4pee0l . For typical
samples, these energies are of a similar size, so one
always expect Landau level mixing to have significant qu
titative effects. One may, however, hope that the qualitat
behavior is correctly captured by such a theory.

The great deal of theoretical and experimental work
the integer and fractional quantum Hall regimes has sho
that this is the case for many properties of these tw
dimensional electron systems.29 In particular, the prediction
of a spontaneously spin-polarizedn51 state with a particle-
hole gap determined largely by interactions20 appears to be
realized in experiment.23–25

Similarly, we expect that a small amount of Landau lev
mixing will not affect the qualitative properties of the exc
tonic states. Corrections will arise from the coupling of the
states with the plasmons of then51 state. For weak Landau
level mixing, this coupling leads to a weak-coupling p
laronic problem in which a particle~the exciton! couples to
the density fluctuations of its environment~the plasmons!.
The parameter values of the resulting polaronic problem
such that one expects the energy eigenstates to be clo
related to the states in the absence of Landau level mix
only dressed with a cloud of virtual plasmons.

Thus, a small amount Landau level mixing will not lea
to any qualitative changes in the nature of the initial or fin
states of the recombination process. Quantitative chan
will appear as increases in the effective masses of the s
wave and the exciton. We know of no calculations of t
effects of Landau level mixing on these dispersion relatio
However, the form of the perturbation expansion in the ra
of interactions to the electron cyclotron energy shows t
the lowest-order corrections to both effective masses are
portional tome . There will also be changes in the matr
elements~5! and~9!. However, these overlaps will still vary
on the characteristic momentum scale\/l , so the correc-
tions will only lead to a uniform change of the recombinati
rate for all excitonic states with small momenta. Provided
mass of the exciton remains larger than the mass of the
wave, all of the above qualitative discussion will still appl

It is possible that under the experimental conditions
extent of Landau level mixing for the electrons is so lar
that the nature of the low-lying initial states is qualitative
different: for example, the spin polarization of the grou
state may be different. Without a full calculation of th
many-body problem including Landau level mixing, we ca
not rule out such a possibility. However, we view the succ
of our model in explaining the main features of the expe
mental observations as evidence that we have correctly id
tified the states contributing to photoluminescence in th
experiments. Experimentally, one may test whether Lan
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2446 55N. R. COOPER AND D. B. CHKLOVSKII
level mixing has any qualitative effects by studying the ev
lution of the spectrum as a function of the sample dens
One would hope that the qualitative features remain the s
in higher-density samples~but with a similar value of
d/l ), for which n51 appears at larger magnetic field a
Landau level mixing is less important.

IV. CHARGED INITIAL STATES

We have shown that exactly atn51, the low-energy ini-
tial states of our model are well described by excitonic sta
whend is not very large. However, this situation represe
only a singular value of the filling fraction. For any typic
filling fraction close ton51, the sample will contain a sma
number of quasiparticles. As the magnetic field increases
the average filling fraction sweeps through unity, the qua
particles will change from being negative (n*1) to positive
(n&1). These charges may become localized by disorde
which case they will not contribute to the transport propert
and a quantized Hall effect will be observed. However, ev
localized charges may affect the photoluminescence s
trum. To discuss the consequences, we will consider cas
which the filling fraction is sufficiently close to one that th
quasiparticles are very dilute~compared to the density o
electrons! and can be considered to be independent: we
therefore study a single quasiparticle in an otherwise unifo
n51 state. We will consider a sample without disord
Long-range disorder will cause a broadening of all the sp
tra we describe below by an amount similar to that of
exciton recombination line in thes1 polarization (;Vrms

X ),
which was discussed in Sec. III E.

When an electron-hole pair is added to a system cont
ing a single additional quasiparticle, the resulting ene
spectrum will contain a band of states describing the mo
of an exciton far from the quasiparticle. The recombinat
of these states is well described by the discussion of Sec
with the quasiparticle providing an additional source of sc
tering. However, it may be that the ground state does
form part of this band, but is some ‘‘bound state’’ in whic
the additional electron-hole pair is localized in the vicinity
the quasiparticle to form a small charged complex. If this
the case, one can expect to find a separate feature in
photoluminescence spectrum arising from this new ini
state. The simplest forms of these initial states~those with
maximal spin polarization!, were discussed in Ref. 26. W
will also limit our discussion to the maximally spin-polarize
charged complexes, but extend the work of Ref. 26 by sh
ing that Landau level mixing for theelectronscan have im-
portant effects on the stabilities of these complexes rela
to the excitonic states, and that Landau level mixing for
hole can significantly affect their recombination spectra.

A. Additional positive charge

We begin by considering a sample in which, prior to ph
toexcitation, there is a single positively charged excitati
For large Zeeman energy, the ground state prior to photo
citation is maximally spin polarized, and the positive char
appears as a vacant spin-↑ electron state~a ‘‘spin-hole’’!. In
the absence of disorder, the ground state is any one of
degenerate states
-
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em↑u0&, ~20!

classified by the quantum numberm describing the position
of the spin-hole in the plane. Similarly, upon photoexci
tion, the ground state will be any one of the degenerate m
mally spin-polarized states

hm
† u0&, ~21!

in which the photoexcited electron fills the vacant spin↑
state, and the hole occupies the lowest Landau level sin
particle state with quantum numberm (hm

† is the operator
that creates a valence-band hole in this state; we continu
suppress the subband label of the hole!. We will refer to this
state as the ‘‘free-hole state.’’ This is the simplest ‘‘charg
complex’’ that can compete with the excitonic states to
the absolute ground state of the system, and therefor
contribute to the low-temperature photoluminescence sp
trum.

We will compare the energy of the free-hole state w
that of an excitonic state in which the valence-band h
forms aP50 exciton with a spin-↓ electron a long distance
from the positive quasiparticle. One can convert the free-h
state to this excitonic state by~1! introducing a widely sepa-
rated quasielectron/quasihole pair far from the valence-b
hole ~at an energy cost ofZ1BSW, whereBSW is the inter-
action contribution to the energy gap of then51 state which
we refer to as the ‘‘binding energy’’ of a spin wave!, and~2!
binding the quasielectron to the free valence-band hole~with
an energy gain ofBX , which is the binding energy of the
exciton!. The energy of the excitonic state is therefore larg
than that of the free-hole state by an amountZ1BSW2BX .
For a Zeeman energyZ that is large compared to the inte
action energies, this quantity will be positive, and the fre
hole state will be the lower-energy state. For smallZ, as is
typically the case experimentally, whether the free-hole
the exciton state is the lower in energy depends on the r
tive sizes of the spin wave and exciton binding energies
Appendix A it is shown that, within the approximation of n
Landau level mixing for the electrons, these binding energ
may easily be calculated. The binding energy of the exci
is found to be independent of the mass of the valence-b
hole

BX5Ap

2
ed

2/2l 2 erfc~d/A2l !
e2

4pee0l
. ~22!

The binding energy of the spin wave follows from th
d50 limit of Eq. ~22!

BSW5Ap

2

e2

4pee0l
. ~23!

From these expressions one finds that for any nonzerod the
binding energy of the exciton isless than that of the spin
wave. The free-hole state will therefore always be the low
energy state, and, forn&1, one can expect to see radiativ
recombination from the free-hole state rather than from
citonic states. The form of the recombination spectrum of
free-hole state is trivial: since there are no spin-↓ electrons
present, the hole can only recombine in thes2 polarization,
and will contribute a single sharp line. Simple consideratio
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show that the recombination of the free-hole state occur
an energyBSW2BX lower than the recombination energy o
theP50 excitonic state in thiss2 polarization.

Considerations similar to those we have just presen
formed the basis of the main point of Ref. 26, in which it w
argued that as the filling fraction is swept fromn.1 to
n,1, the form of the initial state contributing to photolum
nescence undergoes a transition from an excitonic state
free-hole state. As a result of this transition, a redshift of
mean position of the photoluminescence line is expected
an amountBSW2BX . A redshift consistent with this behav
ior has been observed in very wide quantum-well sampl4

For narrow quantum wells, and in particular for the expe
ments of Ref. 19, no such redshift is observed. For
parameter-values appropriate to these experiments, one
BX58.0 meV andBSW511.1 meV, so the shift in energ
would be 3.1 meV. This energy difference is likely to b
overestimated by our model, which neglects the finite thi
ness of both the electron and hole subband wave functi
but even with these factors included one would expect
energy shift to be above experimental resolution. That
redshift is observed seems to indicate that for this sam
there is no change in the nature of the initial states as
filling fraction sweeps throughn51.

In the following we show that the absence of a discon
nuity in the form of the photoluminescence can be explain
as a result of Landau level mixing for theelectrons. For a
small spacingd, the corrections due to this Landau lev
mixing lead to andecreasein BSW2BX , which may be suf-
ficient to cause this quantity to change sign and theexcitonic
state to become lower in energy than the free-hole state
this case, as the filling fraction of the sample is swe
through n51, the low-energy states will remain wel
described by the excitonic states and there will be no disc
tinuity in the form of the recombination spectrum.

We will study the effects of Landau level mixing of th
electrons by considering the changes in the binding ener
of the exciton and of the spin wave to second order in
Coulomb interaction. These corrections are of ord
(e2/el )2/(\ve);e4me /e

2\2, and are therefore indepen
dent of the strength of the magnetic field.

A calculation of the second-order energy correction to
binding energy of the spin wave has been reported in R
20; it was found that the binding energydecreasesby an
amount

2DBSW50.58
~e2/4pee0l !2

\ve
, ~24!

which is consistent with a recent quantum Monte Ca
evaluation of this quantity.51 For the parameter values appr
priate to GaAs systems (me50.067m0 ,e512.53), this de-
crease is 6.77 meV and can be significant compared to
overall spin-wave binding energy neglecting Landau le
mixing @this is 11.1 meV for the field strength at which th
spectra in Fig. 1~b! were measured#.

In Appendix C we derive the second-order corrections
the binding energy of the exciton in the presence of
n51 ground state. The result is
at
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DBX51F (
nÞ0

@I2n~d/l !#2

22nn~n! !2 G~e2/4pee0l !2

\~ve1vh!

2F (
nÞ0

1

nn!22n21I2n21~d/A2l !G~e2/4pee0l !2

\ve
,

~25!

where Im(z) is a function defined in Eq.~C11!. The first
term in this expression represents anincreasein the binding
energy, and accounts for the enhanced binding of an exc
in the absence of the filled Landau level of spin-↑ electrons.
The second term is adecreasein the binding energy, which
effectively arises from the screening of the electron-hole
teraction by the filled Landau level of spin-↑ electrons
~which becomes weakly polarizable when Landau level m
ing is included!.

We evaluate the above correction to the binding energy
the exciton by performing the sums in Eq.~25! numerically.
For the parameter values appropriate to the sample use
measure Fig. 1~b!, we find that the binding energy of th
exciton decreases,2DBX53.24 meV, by an amount that i
significantly less than the decrease in the spin-wave bind
energy due to Landau level mixing (6.7 meV). The resulti
net binding energies of the exciton and spin-wave for th
parameter values are thereforeBX54.76 meV and
BSW54.33 meV. Thus, the first correction arising from La
dau level mixing for the electrons leads to an exciton bind
energy that islarger than that of the spin wave, with
BX2BSW50.4 meV. Since the difference in binding energi
BX2BSW is positive and larger than the bare Zeeman ener
the excitonic state remains the ground state forn&1. Intro-
ducing Landau level mixing for the electrons, we can the
fore account for the observation that there is no discontinu
in the form of the photoluminescence spectrum atn51 in
this sample.

For positiveBX2BSW, one further expects that, if th
free-hole states were to become populated, their recomb
tion would appear in thes2 photoluminescence spectrum
an energyhigher than that of the emission from theP50
excitonic state in this polarization. We suggest that theB
peak’’ appearing in Fig. 1~b! could be due to the recombina
tion of such states. This peak is consistent with this interp
tation, insofar as it appears only in thes2 polarization and at
an energy above that of the excitonic recombination li
Since we use a highly simplified model for the subband wa
functions and only include Landau level mixing for the ele
trons to lowest order, the uncertainties in the binding en
gies we calculate are significant. The close similarity b
tween our prediction of an energy spacing of 0.4 meV a
the observed spacing (.0.5 meV) is purely fortuitous, and
cannot be used as a justification for this interpretation
peakB. The main problem with this interpretation is that
requires a metastable population of the free-hole states.
possible that the relaxation rate of free-hole states is su
ciently small that their radiative recombination occurs befo
thermal equilibration is achieved. In particular, at tempe
tures less than the bare Zeeman energy of the electronsZ, the
density of spin-↓ electrons is vanishingly small and th
quenching of the free-hole states may be suppressed@this is
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2448 55N. R. COOPER AND D. B. CHKLOVSKII
consistent with the appearance of peakB only at very low
temperatures,kBT&Z ~Ref. 19!#.

In view of the uncertainty in the energy position of pe
B and the requirement of a nonequilibrium population, t
assignment of this peak to the recombination of the free-h
state is rather speculative. However, this interpretation m
be tested experimentally. Ideally, one would study the e
lution of the spectrum as a function of the separationd
~which may be controlled by studying quantum wells of d
ferent widths or by the use of front and back gates52!. As d
increases the energy difference between the recombina
from the free-hole and that of the exciton shoulddecrease
due to the decreasing binding energy of the exciton.
sufficiently larged, the binding energy of the excitonBX will
become less than that of the spin waveBSWplus the Zeeman
energyZ, and the free-hole state will become the groundst
configuration forn,1. At this point, one will recover the
behavior described in Ref. 26 and observed in wide quan
wells,4 in which the photoluminescence line shows a disc
tinuous redshift as the filling fraction is reduced throu
n51. The transition between these two regimes occurs
critical value of the separationdc which is defined by the
condition thatZ1BSW2BX50 ~whereBSW andBX are the
exact binding energies of the spin wave and exciton, incl
ing all Landau level mixing corrections!. This critical value
may be estimated using Eqs.~22!–~25!. We find thatdc de-
creases slowly for samples with increasing carrier densit
due the reduction of the influence of Landau level mixing
the magnetic field increases to maintainn51. Using the pa-
rameters appropriate for GaAs (me50.067, mh50.34,
e512.53 and an electrong factor of 0.4), we find
dc.0.5l at B54 T anddc.0.3l at B510 T.

B. Additional negative charge

Consider a system that, prior to photoexcitation, conta
a single additional negative charge. For large electron Z
man energy and in the absence of disorder the ground sta
one of the maximally spin-polarized states

em↓
† u0&, ~26!

which are degenerate inm. Upon photoexcitation, the add
tional electron must also be spin-↓, there being no vacan
spin-↑ electron states. The energy eigenstates of the resu
maximally-spin-polarized system are determined from
three-body problem in which two~spin-↓) electrons in the
lowest Landau level interact with the valence-band hole
this section we discuss the possibility of a bound state of
three particles forming. It is known that such a bound st
does exist ford50, both when the hole is restricted to th
lowest Landau level (mh50),53,26and when the hole mass
infinite ~in which case the system represents the high-fi
triplet ‘‘D2’’ complex54!. If the energy of this complex is
sufficiently less than that of a widely separated exciton a
quasiparticle, one can expect a new feature in the phot
minescence spectrum to appear whenn*1.

We have calculated the binding energy of the exciton
the second electron numerically for arbitrarymh andd. We
work in the spherical geometry with system sizes of up to
single-particle states in the lowest Landau level, and extra
late the binding energy to the infinite-size limit by usin
e
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quadratic regression in one over the number of sing
particle states. To account for Landau level mixing of t
hole, we retain the first five hole Landau levels; this is s
ficient to reproduce the binding energy for even the c
mh5`, d50 ~Ref. 54! ~in which Landau level mixing will
be most important! to an accuracy of 5%. For all values o
d for which the results of our finite-size calculations a
reliable (d&2l ), we find that the negatively charged excito
is bound~the total angular momentum of the ground sta
changes asd increases, the first change occurring when t
spacing is larger than about one magnetic length!. For the
parameter values appropriate to the experiments of Fig. 1~b!,
we find a binding energy of 0.086e2/4pee0l 58.8 K
50.76 meV. This binding energy is large compared to
typical thermal energy, so one could expect these state
provide an important contribution to photoluminescence
n*1.

Since the negatively charged initial state contains b
spin-↑ and spin-↓ electrons, one might expect that this sta
would radiatively decay in both polarizations. However, f
all finite values ofmh andd, our numerical studies show tha
the transition rate in thes1 polarization is identically zero.
This transition is forbidden by the selection rule arising fro
the conservation of total angular momentum by the opera
L1 , since our calculations show that the total angular m
mentum of the initial state differs from that of the availab
final state~a single spin-↓ electron!.

In thes2 polarization, there is a significant transition ra
for all values of the model parameters. In the final state th
are two spin-↓ electrons and a single spin-hole, appearing
a result of the recombination of one spin-↑ electron with the
hole. The ground state of this three-body system is a sm
charged spin texture, in which all three particles are bou
closely together.53,20,22To higher energy there is a continuu
of excited states, representing the unbound motion of a s
wave in the presence of the additional electron. It appe
from our numerical calculations, and from an analytic tre
ment of particles with hard-core repulsion,22 that there is
only one bound state, so the final-state energy spectrum
sists of the charged spin texture state and the spin-wave
tinuum, separated by a single energy gap. This energy de
mines the threshold value of the Zeeman energy be
which the first spin texture becomes lower in energy than
spin-polarized quasiparticle.20

The recombination spectrum, calculated numerically
the parameter values appropriate to the experiments of
19, is shown in Fig. 6. The main peak contains 88% of
total intensity, and is due to the recombination into t
ground state: the charged spin texture. The remaining 12%
into the unbound spin-wave states. The finite size of
system causes this part of the spectrum to be discrete. In
limit of infinite systems sizes, this will become continuo
and only the gap separating the spin-wave continuum fr
the charged spin texture complex will remain. We therefo
find that the recombination spectrum in this polarization p
vides a direct measurement of the formation energy of
smallest charged spin texture. The observation of such st
ture in photoluminescence would be of great interest.

The relative intensities in the charged-spin texture pe
and the spin-wave continuum vary with the parametersmh
andd. If the hole is restricted to states in the lowest Land
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level (mh50), it is found that recombination occurs almo
exclusively into the charged-spin texture peak for all valu
of d ~Ref. 26! ~providedd is not so large that the total an
gular momentum of the initial ground-state changes!. In that
case, there is vanishingly small intensity in the spin-wa
continuum, so the energy gap is not pronounced. It is o
when one introduces a finite hole mass that appreciable
tensity is found in the spin-wave continuum and the gap
be observed.

Despite the fact that our model predicts this negativ
charged initial state to be bound for the parameter val
appropriate for the sample used in Ref. 19, there is no fea
in the observed spectra@Fig. 1~b!#, which is clearly associ-
ated with the recombination of such a state. It is possible
such recombination is masked by the low-energy tail of
exciton recombination but is responsible for the shoulder
served in thes2 spectrum of Fig. 1~b!. It is also possible tha
the negatively charged state is not bound in practice, du
factors left out of the above calculation of the binding e
ergy. One can expect a reduction in the binding energy
this state due to the finite thicknesses of the subband w
functions, Landau level mixing for the electrons, and t
screening due to spin depolarization~e.g., the binding of the
exciton to the quasiparticle is likely to be reduced if t
Zeeman energy is sufficiently small that the lowest-ene
quasiparticle is a charged spin texture!. The negatively
charged state will be most stable in samples with small v
ues of d/l , for which the binding energy we calculate
large, and with high densities, such thatn51 occurs at larger
magnetic field and Landau level mixing and spi
depolarization effects are less important.

V. SUMMARY

We have studied a model for the low-temperature pho
luminescence of high-mobility quantum wells in the vicini
of the n51 quantum Hall state. Within this model, we di
cussed the polarization-resolved photoluminescence spe

FIG. 6. s2 recombination spectrum of the negatively charg
complex, calculated for a sphere with 51 single-particle states in
lowest Landau level and with the parameter valu
\vh /(e

2/4pee0l )50.15,d/l 56/13. The recombination energy i
measured in units ofe2/4pee0l relative to that of theP50 exciton
recombination.
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taking account of a separationd between the planes in whic
the electrons and hole move, and Landau level coupling
the valence-band hole described by a nonzero effective m
mh .

The low-energy states atn51 are ‘‘excitonic states’’ if
the electron Zeeman energyZ is large, or even for vanishing
Z if d is not too large (d,1.3l ). These are states in whic
the spin-↑ lowest Landau level is filled, and the valence-ba
hole binds with a single spin-↓ electron to form an exciton
The radiative recombination processes of these states
quite different for the two polarization channels. In thes1

polarization, the valence-band hole recombines with
spin-↓ electron to which it is bound to leave then51 ground
state: the resulting recombination line is narrow~limited only
by disorder!. In the s2 polarization, the valence-band ho
recombines with one of the spin-↑ electrons, and a spin-wav
excitation is left in the final state. The shakeup of spin wav
causes the recombination line in this polarization to
broadened to low energy. We argue that the observation
Ref. 19 demonstrate the recombination of excitonic sta
The long-range disorder arising from the remote ionized
nors leads to strong scattering of the excitonic states
simple model for the recombination of the exciton in th
disordered potential leads to line shapes that compare fa
ably with the experimental observations.

We addressed the behavior at filling fractions sligh
away fromn51, by considering the photoluminescence o
system containing a single additional positive (n&1), or
negative (n*1) quasiparticle. We compared the energies
the excitonic states with other ‘‘charged’’ initial states th
can form in these cases. Forn&1, we showed that, as
result of Landau level mixing for the electrons, the exciton
state is the ground state for smalld; for larged, a ‘‘free-hole
state’’ is lower in energy. The observation of peakB in the
experimental spectra reported in Ref. 19 is consistent wi
metastable population of the free-hole state; further exp
ments are required to justify this assignment. Forn*1, a
negatively charged state, in which the valence-band h
binds with two spin-↓ electrons, is lower in energy than th
excitonic state. The recombination spectrum of this state
the s2 polarization contains information directly related
the formation energy of the smallest charged spin texture
this system. No clear evidence for this negatively charg
state is observed in the present experiments. This state
be more stable and its recombination may be more cle
observable in higher-density samples with small values
d/l .

Finally, we note that similar considerations can be appl
to photoluminescence close to higher integer filling fractio
n5 i . Many of the qualitative features of our model
n51 appear also at these filling fractions. In particular,
the strong-field limit, there are low-energy initial states sim
lar to the excitonic, and positively and negatively charg
initial states described above, but with the electrons form
the excitonic and negatively-charged complexes now lying
a high Landau level. Discontinuities similar to those d
cussed in Sec. IV A can arise as the filling fraction is swe
from n* i to n& i , as a result of a change in the ground sta
from an excitonic~or negatively charged! state to a posi-
tively charged state. Although we have not calculated
tailed spectra in these cases, it is clear that the recombina

e
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2450 55N. R. COOPER AND D. B. CHKLOVSKII
of excitonic initial states will again lead to asymmetric lin
shapes, due either to the shake up of spin waves at odd fi
fractionsn52n11, or to the shakeup of magnetoplasmo
and magnetoplasmons combined with spin flips at all inte
filling fractions n5 i.1.
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APPENDIX A: EXCITON STATES IN STRONG
MAGNETIC FIELD

1. Free exciton states

We study a Hamiltonian of the form

H5
~pe1eAe!

2

2me
1

~ph2eAh!
2

2mh
1Veh~re2rh!, ~A1!

where the subscriptse andh refer to the electron and hol
coordinates, and we will choose to work in the symmet
gauge,A(r)5B3r/2. This two-body problem was greatl
simplified by Gorkov and Dzyaloshinskii41 who showed that
the energy eigenstates may be classified by the eigenva
of a conserved momentum

P[pe1ph2
e

2
B3~re2rh!. ~A2!

Replacing this operator by its eigenvalue, one finds that
energy eigenstates are determined by a one-body Sc¨-
dinger equation for the relative coordinater[re2rh with the
Hamiltonian

HP52
\2

2m
“

21
ie\Bg

2m
r3“1

e2B2

8m
r21Veh~r!1

P2

2M

1
eB

M
~P3 ẑ!•r, ~A3!

where M[me1mh , m[memh /(me1mh), and g[(mh
2me)/(me1mh). As a result of these transformations, t
overall eigenfunctions of Eq.~A1! take the form

CP~re ,rh!5
1

AV
eiP•~re1rh!/2\ei re3rh/2l

2
e2 igP•~re2rh!/2\

3cP~re2rh!, ~A4!

where cP(r) is the solution of Eq.~A3!, and the state is
normalized to an areaV.

The eigenstates of this Hamiltonian were discussed
Lerner and Lozovik42 in the limit me ,mh→0 in which Lan-
dau level mixing for both the electron and hole may be
glected. We do not follow this approach, as we are interes
in cases for which the hole mass is finite. Rather, we w
ng
s
r

-
d
-

c

es

e
ro

y

-
d
ll

study the limitme→0,mh5 finite, in which there is no Lan-
dau level mixing for the electron, but there may be for t
hole.

We begin by finding the eigenstates of Eq.~A3! for
P50. Initially we neglect the electron-hole interaction, a
solve for the eigenstates of the kinetic energy operator. Th
are the same as the symmetric gauge Landau level s
un,m& characterized by the Landau level indexn and angular
momentumm. The energies are42

En,m5\ve@n1~ umu2m!/211/2#

1\vh@n1~ umu1m!/211/2#, ~A5!

whereve,h[eB/me,h . The stateun,m& is therefore a state in
which the electron has a Landau level indexne5n
1(umu2m)/2 and the hole an indexnh5n1(umu1m)/2.
We now introduce the electron-hole interaction. The a
proximation that we make is that the cyclotron energy of
electron,\ve , is large compared to the interaction energ
such that coupling between states with differentne may be
neglected. In particular, for this work we focus on the sta
un50,m& in which the electron is in the lowest Landau lev
and the hole is in them th Landau level. Within this approxi-
mation, the statesun50,m& are eigenstates of the electro
hole interaction,Veh(r), since this potential conserves th
angular momentumm. The energies of these states are fou
from the expectation value of the interaction

E0,m~P50!5
1

2
\ve1\vh~m11/2!1Vm

eh ~A6!

where we have definedVm
eh[^0,muVehu0,m&. These are the

energies of theP50 exciton states for which the electron
in the lowest Landau level. We will concentrate on t
lowest-energy state,m50, for which the binding energy is
2V0

eh . This binding energy may be calculated exactly f
the interaction

Veh~r!52
e2

4pee0

1

Auru21d2
, ~A7!

which represents electrons and holes moving in planes s
rated byd. We find16

2V0
eh5

e2

4pee0l
Ap/2ed

2/2l 2erfc~d/A2l !. ~A8!

As d/l →0 this expression recovers the binding energy
the exciton calculated by Lerner and Lozovik42 for the case
in which the electron and hole move in a single plane. N
that both the wave function of the zero-momentum exci
state and the above binding energy are independent of
value of the hole effective mass.

The effective mass of each of these exciton states ma
found exactly by treating the momentum-dependent term
Eq. ~A3! within a perturbation expansion. We concentra
only on the lowest-energy exciton staten50,m50. To sec-
ond order in the momentum, the change in energy is
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DE0,0~P!5
P2

2M
1
e2B2

M2 (
mÞ0

z^0,muru0,0&•P3 ẑz2

V0
eh2~m\vh1Vm

eh!

5
P2

2mh
F11

\vh

V1
eh2V0

ehG21

. ~A9!

In the last line we have setM5mh , since our analysis is
strictly correct only in the limitme→0. The effective mass
of the exciton is therefore

MX5mh1
\2

l 2

1

V1
eh2V0

eh

5mh1
4pee0\

2

e2l FAp

8
exp~d2/2l 2!~11d2/l 2!

3 erfc~d/A2l !2d/2l G21

. ~A10!

The first-order corrections to the internal wave function, le
to the overall wave function of the exciton ground sta
(\5l 51)

CP~re ,rh!.
1

A2pV
eiP.rhei re3rh• ẑ/2e2~re2rh!2/4

3F11
1

2~11l!
~ iP2 ẑ3P!•~re2rh!G

.
1

A2pV
eiP•[ re1~112l!rh]/ ~212l!ei re3rh/2

3e2[ re2rh2rP /~11l!] 2/4, ~A11!

where rP[ ẑ3Pl 2/\, and we have setme50. The param-
eterl is defined to be

l[~V1
eh2V0

eh!/\vh , ~A12!

which is a measure of the extent of Landau level mixing
the hole.

The above perturbative results for the dispersion rela
and wave functions are accurate foruPu!(11l)\/l . In the
last line of Eq.~A11! we have introduced exponential fun
tions which reproduce the first-order corrections in the m
mentum. These are chosen such that the expression corr
reproduces theexactwave function in the limit of no Landau
level coupling,42 l→0, and much Landau level coupling
l→`, for the hole.

In the limit of no Landau level mixing for the hole
l→0, the exciton effective mass is due only to the inter
tion, and we can recover the mass derived by Lerner
Lozovik for an electron and hole moving in the same pla
and neglecting all Landau level coupling by settingd50:
MX5A8/p(4pee0\

2)/(e2l ). In this limit, the above ex-
pressions for the binding energy, effective mass, and w
function of the exciton also describe the properties of s
waves atn51 when Landau level mixing is neglected.39,40

In this case, the electron of the exciton represents a sp↓
electron in the lowest Landau level, and the hole a miss
spin-↑ electron in an otherwise filled band of spin-↑ elec-
trons in the lowest Landau level. The binding energy of
d

r

n

-
ctly

-
d
e

e
n

-
g

e

exciton determines the spin-wave bandwidth, and the inve
effective mass of the exciton gives the spin-stiffness.

2. Exciton states in a smooth external potential

In this section we show how one may obtain an effect
dynamics for the motion of the exciton in an external pote
tial that is sufficiently weak and long-ranged. Our procedu
is analogous to the Born-Oppenheimer approximation in
theory of molecular dynamics. In that case, a simplificat
arises due to the separation of time scales between the
electronic motion and the slow atomic motion. In the pres
case, the relative motion of the electron-hole pair is trea
as ‘‘fast,’’ and the center-of-mass motion of the exciton
assumed to be much slower.

To be specific, we introduce the potentialsVe(re) and
Vh(rh) in the Hamiltonian~A3!. The momentumP is no
longer conserved. However, within the spirit of the Bor
Oppenheimer approximation, we imagine that the slow co
dinates, the center-of-mass momentumP and position
R[(mere1mhrh)/(me1mh) ~which are canonically conju-
gate!, are stationary, and solve for the ground state of
internal motion. The resulting energy function serves as
effective Hamiltonian for the center-of-mass motion. Th
procedure is appropriate provided the energy separation
tween the resulting center-of-mass states is much sm
than the energy spacing between the internal states of
exciton.

To simplify this procedure, we expand the external pote
tials to first order in the relative coordinate

Ve~re!1Vh~rh!5Ve~R!1Vh~R!

1r•@hh“V
e~R!2he“V

h~R!#,

~A13!

wherehe,h[me,h /(me1mh), and it is to be understood tha
the gradient operators apply in the plane of motion. T
approximation requires the potentials to be smooth on
length scale of the exciton size,l . Since the potentials now
couple to the internal motion through a term proportional
r, we can calculate the second-order energy shift using
same perturbative approach we used above. Combining
with the kinetic energy~A9! we obtain

DE0,05
P2

2Mx
1Ve~R!1Vh~R!

1
1

11l

l 2P

\
•~hh“V

e2he“V
h!3 ẑ

2
l

11l

l 2

2

uhh“V
e2he“V

hu2

V1
eh2V0

eh , ~A14!

where the effective massMX is that defined in Eq.~A10! and
l is defined in Eq.~A12!. It is to be understood that the term
that is linear in momentum should be symmetrized with
spect to momentum and position operators, such that
Hamiltonian is Hermitian.

This expression represents the effective Hamiltonian
the center-of-mass motion of the exciton. The approxim
tions used to derive this were~1! the center-of-mass motion



e

p
in
e
is
ito

ic

d

d
th
y

ni
,
-
y

D
nc-

te
of

x-

the

d

a
t of
er-
of
e

ly
e

the

2452 55N. R. COOPER AND D. B. CHKLOVSKII
is ‘‘slow’’ compared to the internal motion, and~2! the ex-
ternal potentials are smooth on the scale of the magn
length.

APPENDIX B: CALCULATION OF THE DISORDER-
DOMINATED SPECTRAL LINE SHAPE

In this appendix we provide some details of the ste
required to calculate line shapes for the exciton recomb
tion ~in both polarizations! in the presence of long-rang
disorder, within the simple model outlined in Sec. III E. Th
model averages over the recombination spectra of exc
ground states in all potential minimum ofVX(r), expanding
the potential in the vicinity of each minimum to harmon
order and assigning equal weight to each~harmonic-
oscillator! ground state. One therefore must know~1! the
spectrum of radiation emitted from the ground state in
given potential minimum~characterized by the potential an
its two principal curvatures!, and~2! the distribution of these
minima for the form of disorder in which we are intereste

We begin by calculating the recombination spectra for
exciton ground state in a potential minimum described b

V~r!5V1
1

2
Vjjj

21
1

2
Vhhh2, ~B1!

wherej andh are the distances from the center of the mi
mum along the principal axes~for convenience of notation
in this section we omit theX superscript on the exciton po
tential energy!. The potential minimum is characterized b
the three parameters$V,Vjj ,Vhh%. For an exciton with a
ti
it
im

th
tic

s
a-

n

a

.
e

-

parabolic dispersion, the Hamiltonian factorizes into two 1
simple harmonic oscillators and the spectrum and wave fu
tions may be easily found. The ground-state energy is

E0~V,Vjj ,Vhh!5V1
\

2
AVjj

MX
1

\

2
AVhh

MX
, ~B2!

whereMX is the exciton effective mass. The ground-sta
wave function is the product of two Gaussian functions
j andh.

In thes1 polarization, radiative recombination of the e
citon leaves a single final state~the n51 ground state!. The
spectrum of recombination for the exciton ground state in
potential minimum with$V,Vjj ,Vhh% is therefore simply

I1~E;V,Vjj ,Vhh!5d@E2E0~V,Vjj ,Vhh!#, ~B3!

where the energyE of the emitted radiation is measure
relative to the recombination of the freeP50 exciton in this
polarization.

In thes2 polarization, the exciton annihilates to leave
spin wave in the final state. Due to the finite spatial exten
the initial exciton state, the final spin-wave state is a sup
position of many momentum components and therefore
many energy eigenstates~since the spin waves do not feel th
disorder potential they behave as free particles!. The transi-
tion therefore has a finite width in energy, of approximate
\2/MSWR

2 whereR is a measure of the spatial extent of th
ground-state wave function andMSW is the spin-wave effec-
tive mass. In detail, the spectrum for recombination of
exciton ground stateuc(V,Vjj ,Vhh)& is
n,
it
I2~E;V,Vjj ,Vhh![(
P

zSŴ PuL̂2uc& z2d@E2~E02P2/2MSW!# ~B4!

5(
P

z^Puc& z2d@E2~E02P2/2MSW!#, ~B5!

where we have made use of the matrix element~9! to relateI2(E) to the momentum distribution of the exciton wave functio
^Puc&. Again, the emission energy is measured relative to that of a freeP50 exciton in this polarization. Using the explic
form of the ground-state harmonic oscillator wave function, this line shape is found to be

I2~E;V,Vjj ,Vhh!5
2MSW/MX

AEjjEhh

expF ~E2E0!
MSW

MX
~Ejj

211Ehh
21!G ~B6!

3I 0F ~E2E0!
MSW

MX
~Ejj

212Ehh
21!GQ~E02E!, ~B7!
.

are
ing
55

e-
b-
whereEii[\AVii /MX for i5$j,h%, E0 is the energy~B2!,
I 0 is an imaginary Bessel function, andQ(z) is the Heavi-
side step function.

We now know the line shapes~B3, B7! for the two polar-
izations of the emission from the ground state in the poten
minimum $V,Vjj ,Vhh%. To compute the overall spectrum,
is also necessary to know the relative densities of min
with the characteristics$V,Vjj ,Vhh%. We will call this dis-
tribution Pmin(V,Vjj ,Vhh). For typical statistical forms of
the disorder potential, there will be correlations between
al

a

e

variablesV,Vjj , andVhh ~potential minima with small val-
ues ofV are likely to have large positive curvatures, etc!.
Remarkably, however,Pmin can be calculatedexactly, in-
cluding all such correlations, for disorder potentials that
Gaussian-correlated. We will now outline the steps lead
to this result, following the approach of Refs. 50 and
where a similar issue is discussed.

We begin with some general definitions that do not d
pend on the form of the disorder. We denote the joint pro
ability distribution ~at any point in the sample! of V and all
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of its first and second derivatives with respect to some fi
axes$x̂,ŷ% by P(V,Vx ,Vy ,V1 ,V2 ,Vxy), whereV6[(Vxx
6Vyy)/2. The disorder is assumed to be homogeneous, s
that this function is independent of position. The density
stationary pointsat whichVx5Vy50 and for which the po-
tential and curvatures are$V,V1 ,V2 ,Vxy% may be expressed
in terms of this distribution55

Pstat~V,V1 ,V2 ,Vxy!5~V1
2 2V2

2 2Vxy
2 !

3P~V,0,0,V1 ,V2 ,Vxy!. ~B8!

For our purposes it is more convenient to work in terms
the principal curvatures$Vjj ,Vhh%, which for a stationary
point with curvatures$V1 ,V2 ,Vxy% are

Vjj5V11AV2
2 1Vxy

2 , ~B9!

Vhh5V12AV2
2 1Vxy

2 , ~B10!

with Vjj>Vhh chosen. One can convert the distribution~B8!
into the distribution of stationary points at which the pote
tial and principal curvaturesare $V,Vjj ,Vhh%. Noting that
potential minima are those stationary points for which b
curvatures are positive, we then find

Pmin~V,Vjj ,Vhh!}Q~Vjj!Q~Vhh!

3E dV1E dV2E dVxy

3~V1
2 2V2

2 2Vxy
2 !

3P~V,0,0,V1 ,V2 ,Vxy!

3d~Vjj2V12AV2
2 1Vxy

2 !

3d~Vhh2V11AV2
2 1Vxy

2 !. ~B11!

To proceed further, we must determine the functi
P(V,Vx ,Vy ,V1 ,V2 ,Vxy), which contains all of the relevan
information on the disordered potential. At this point we sp
cialize the discussion to disorder potentials which are Ga
ian random functions with zero mean~we choose the zero o
energy such that the average disorder potential vanishes!. In
this case, the explicit form of the distributio
P(V,Vx ,Vy ,V1 ,V2 ,Vxy) may be easily found. It depend
only on the averages of all pairwise products of its variab
The correlations of the gradientsVx andVy with all other
variables vanish, as do the correlations ofV2 andVxy for
spatially isotropic disorder~which we now assume!. One
finds50,55

P~V,0,0,V1 ,V2 ,Vxy!

}expH 2
~V1

2 !V21~V2!V1
2 22~VV1!VV1

2@~V1
2 !~V2!2~VV1!2#

J
3expF2

V2
2

2V2
2

2
Vxy
2

2Vxy
2 G , ~B12!

where the bars denote disorder averages. For the diso
potential arising from the ionized donors located a dista
d

ch
f

f

-

h

-
s-

s.

er
e

s from the quantum well and with density correlations d
scribed by Eq.~14!, these coefficients are

V25S e2

8pee0s
D 22pn* d2, ~B13!

V1
2 5

15

8

1

s4
V2, ~B14!

VV152
3

4

1

s2
V2, ~B15!

V2
2 5Vxy

2 5
15

16

1

s4
V2, ~B16!

where an effective densityn* is used to take account o
donor correlations,44 as discussed in Sec. III E. For the di
tribution P described by Eqs.~B12!–~B16!, the integrals of
Eq. ~B11! may be performed to obtain our final expressi
for the distribution of minima of the disorder potential
which we are interested

Pmin~V,Vjj ,Vhh!}Q~Vjj!Q~Vhh!D2~D1
2 2D2

2 !

3expF2
15V218s4D1

2 112s2VD1

21V2

2
8s4D2

2

15V2 G , ~B17!

which we have simplified by definingD6[(Vjj6Vhh)/2.
As emphasized in Ref. 50, with a suitable rescaling of ene
and lengthscale, the distribution~B12! depends on the spatia
correlations of the disorder only through the dimensionl
parametera[Vxy

2 V2/(Vx
2)2 (55/3 for the form of disorder

we study!; this is also true forPmin(V,Vjj ,Vhh).
The spectra arising from the recombination of an exci

in a potential minimum characterized by$V,Vjj ,Vhh% ~B3,
B7! may be combined with the above distribution for su
minima ~B17! to obtain the spectral line shapes within o
model

I6~E!5E dVE dVjjE dVhh Pmin~V,Vjj ,Vhh!

3I6~E;V,Vjj ,Vhh!. ~B18!

This equation simply expresses the assumption that rec
bination occurs with equal probability from exciton groun
states in all potential minima. We have not been able to fi
closed form expressions for the integrals~B18!, and have
therefore calculated the line shapes numerically, discretiz
the three-dimensional integral by a lattice with 106 points.
The results are shown in Fig. 5 for the parameter val
appropriate to the conditions under which Fig. 1~b! was mea-
sured. We will now briefly discuss the form of the recomb
nation in each polarization.

In thes1 polarization, the line shape depends on a sin
dimensionless parameter: the ratio of the typical exciton
netic energy to the typical potential-energy fluctuatio

a[(\2/MXs
2)/AV2. For the parameter values we use

compare with experiment this ratio is rather sma
a50.25. If a were to be zero, there would be no kinet
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energy contribution to the exciton energy, and the spect
would simply measure the heights of the minima of the p
tential. In this limit our model for the line shape in th
polarization reduces to that proposed in Ref. 50 for em
quantum wells~with a55/3, as is appropriate for the form o
disorder we consider!. For nonzeroa, the energies of all
states are increased due to the nonzero kinetic energy o
exciton, by an amount that differs for potential minima wi
differing principal curvatures. Strictly speaking, consisten
of our model requires that the kinetic energy of the exci
should always be small compared to the typical poten
fluctuation such that the harmonic approximation is va
this is equivalent to the requirement thata be small.

In the s2 polarization, the line shape depends both
a and on a second dimensionless parameter,b[MX /
MSW, which is a measure of the spin-wave stiffness. F
b50, the spin-wave kinetic energy is negligible, and t
recombination spectrum of each exciton state is a sharp
at the initial exciton energy; the line shape in this polariz
tion becomes identical to that in thes1 polarization. For
nonzerob each exciton transition is broadened to low ene
due to the shakeup of high-momentum, and hence h
energy, spin waves. The extent of this broadening depe
on the size of the initial exciton wave function and therefo
on the principal curvatures of the potential minimum. For t
parameters values we use for experimental comparis
b56.2 is large and this broadening is significant.

APPENDIX C: CORRECTION TO THE EXCITONIC
BINDING ENERGY DUE TO LANDAU LEVEL MIXING

FOR THE ELECTRONS

To determine the lowest-order corrections to the bind
energy of the excitonic state, we explicitly calculate t
changes in energy of~1! a zero momentum exciton forme
from a spin-↓ electron and a valence-band hole,~2! a single
spin-↓ electron, and~3! a single valence-band hole, each
the presence of the filled Landau level of spin-↑ electrons,
and~4! the filled Landau level itself. In this section, we fin
it convenient to work in the Landau gaugeA(r)5Bxŷ, for
which the single-particle states for electrons and ho
^reunk& and^nkurh&, are described by the Landau level ind
n and a wave vectork. In the absence of Landau level mix
ing, the wave functions of each of the above states are

FX5
1

AN(
k
ek↓
† hk

†u0&, ~C1!

Fe5e0↓
† u0&, ~C2!

Fh5h0
†u0&, ~C3!

F05u0&, ~C4!

where ek
† and hk

† create electrons and holes in the lowe
Landau level states with momentumk, andN5n0V is the
number of single-particle states in this Landau level. N
that these energy eigenstates are independent of all m
parameters (d, mh). This is, of course, true for the cases
theF0, Fe , andFh , and is shown in Appendix A for the
zero-momentum exciton state.

The lowest-order corrections to the energy of the sta
Fa (a50,e,h,X) is
m
-

y

the

y
n
l
;

n

r

e
-

y
h-
ds

e
ns

g

s,

t

e
del

s

DEa52 (
F fÞFa

z^F f uHuFa& z2

Ef2Ea
~C5!

where$F f ,Ef% are a complete set of energy eigenstates
eigenvalues the full Hamiltonian,H, which includes the ki-
netic energy of electrons and holes and all interactio
V5Vee1Veh. The only nonzero matrix elements involv
statesF f in which at least one electron has a nonzero Land
level index, so to obtain the energy shift that is correct
orderV2/\ve , it is sufficient to retain only the kinetic en
ergy contribution to the energiesEf andEa .

By explicit summation over all final states we obtain e
pressions for the changes in the exciton, electron, and
energies relative to that of the filled Landau leve
DEa2DE0, in terms of the matrix elements of the electro
electron and electron-hole interactions,

Vn1k1 ,n2k2 ,n3k3 ,n4k4
ee [E E d2rd2r8^n1k1ur&^n2k2ur8&

3Vee~r2r8!^run4k4&^r8un3k3&, ~C6!

Vn1k1 ,n2k2 ,n3k3 ,n4k4
eh [E E d2rd2r8^n1k1ur&^r8un2k2&

3Veh~r2r8!^run4k4&^n3k3ur8&. ~C7!

Making use of the invariance of these coefficients unde
uniform displacement of all momenta, the change in
binding energy of the exciton,

DBX[2~DEX2DE0!1~DEe1DEh22DE0!, ~C8!

is found to be

DBX5 (
neÞ0,nhÞ0,k,ke ,kh

Vneke ,nhkh,00,00
eh Vne~ke1k!,nh~kh1k!,00,00

eh*

ne\ve1nh\vh

1 (
nÞ0,k,k1 ,k2

1

n\ve
2Re@Vnk,0k1,00,0k2

ee Vnk,0k1,00,0k2
eh* #.

~C9!

The first term is the increase in binding energy of the exci
in the absence of the filled Landau level. The second term
a reduction in the binding energy~sinceVee andVeh have
opposite signs!; this may be viewed as the screening of t
electron-hole interaction by this filled Landau level. Depen
ing on the balance of the two terms, the overall bindi
energy of the exciton can either increase or decrease.

Calculating the matrix elements for Coulomb interactio
between the electrons and for the force law~A7! between the
electron and hole and performing the sums over mome
we find

DBX51F (
nÞ0

@I2n~d/l !#2

22nn~n! !2 G~e2/4pee0l !2

\~ve1vh!

2F (
nÞ0

1

nn!22n21I2n21~d/A2l !G~e2/4pee0l !2

\ve
,

~C10!

where we have defined a function
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`

qme2q2/2e2qzdq. ~C11!

For the cased50, the numerical summation of the first ter
has previously been presented in the context of the t
dimensional exciton in an empty quantum well,56 and the
second term may be summed exactly.57 The result is
n-
ite

te

tt.

i-
,

yi,

v

st

tt.

s

-

DBX
~2!~d50!510.440 101 49

p

2

~e2/4pee0l !2

\~ve1vh!

2Fp2

12
2

~ ln2!2

2 G~e2/4pee0l !2

\ve
.

~C12!

For the case of nonzerod, used in Sec. IV A, we have com
puted the sums numerically.
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