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Electron relaxation by LO phonons in quantum wires: An adiabatic approach

C. Ammann
Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

M. A. Dupertuis
Institute of Micro- and Optoelectronics, Department of Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Swi

U. Bockelmann
Walter Schottky Institut, Technische Universita¨t München, D-85748 Garching, Germany

B. Deveaud
Institute of Micro- and Optoelectronics, Department of Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Swi

~Received 7 June 1996; revised manuscript received 3 September 1996!

The electron states of weakly-one-dimensional quantum wires are computed using the adiabatic approxima-
tion in the framework of thek•p theory and the envelope-function approximation. The computed transition
rates of electrons from one confined state to any other, mediated by the longitudinal optical~LO! phonons, are
clearly ordered with respect to the quantum numbers of the states provided by the adiabatic approximation. The
average single electron relaxation time from an excited level is shown to either increase or surprisingly
decrease as a function of initial energy. Finally, the relaxation dynamics of an excited population of electrons
is analyzed. We show that a fast phenomenological intrasubband thermalization, simultaneous to the LO
phonon-mediated relaxation, lowers the final average energy and may in some cases significantly speed up the
whole relaxation.@S0163-1829~97!07004-5#
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I. INTRODUCTION

A principal axis of research on electronic devices rel
on the inclusion of low-dimensional semiconductor hete
structures, because of their potential ability to tailor the el
tronic states and the electronic phase space. Such poss
ties were recognized long ago, but it is only recently that
technology has begun to deliver quality structures suita
for conclusive experimentation. In the fields of both electro
ics ~transport! and optics, faster and more economic devic
may be expected.1,2 Such features partly result from reduce
or enhanced carrier scattering rates.

In typical optical experiments, the excited charge carri
~electrons and holes! relax to the bottom of their respectiv
bands before they recombine, since the radiative recomb
tion is a slow process (;350 ps! ~Ref. 3! obeying
k-selection rules. Many processes contribute to the relaxa
~Coulomb interaction, impurity scattering, phonon emissi
etc.!. In quantum wires, longitudinal optical~LO! phonon
emission is the most efficient one, while carrier-carrier Co
lomb interaction is drastically reduced with respect to
bulk.4–6

Many specific theoretical studies of the mechanism
phonon emission in quantum wires are available.4–34 Rid-
doch and Ridley7 and Leburton8 first considered relaxation
by LO phonons in rectangular quantum wires. They read
showed the singularities which arise from the on
dimensional~1D! density of states. In later papers, Leburt
showed that high carrier mobility can be achieved un
electrical field4,9,10 and that ‘‘phonon pumping’’ can induc
an optical gain coefficient.11,12 He also emphasized that LO
phonons maintain nonthermal charge carrier populations4
550163-1829/97/55~4!/2420~9!/$10.00
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Bockelmann and Bastard13 compared LO and acousti
phonon scattering in rectangular structures of different
mensionality~2D, 1D, and 0D!. They showed that the LO
phonon 1D scattering rates and energy-loss rates osci
around the 2D values as a function of the energy.

Many groups have studied the relevance of using bulk
phonon dispersion relations for scattering rate computa
in 1D structures instead of confined and interface opti
phonons.14–19 The conclusion reached by Jiang an
Leburton20 and confirmed by Rossiet al.21 is that the scat-
tering rates obtained using GaAs bulk LO phonons rep
duce well those due to both confined and interface opt
phonons for AldGa12dAs-GaAs wires of diameters exceed
ing 50 Å. Furthermore, polarons have been shown to be
irrelevant refinement for scattering rate calculations.22 The
effects of hot phonon saturation are more important23,24 and
reduce the cooling rate for high-density carriers.

The emission of acoustic phonons has also been ex
sively investigated12,13,25–29but, in that case, the scatterin
rates are about three orders of magnitude below the ones
to LO phonon interactions. However, the linear dispers
relation of acoustic phonons makes them necessary for
energy (,\vLO) dissipation processes.

The purpose of the present work is to specify qualitativ
as well as quantitatively the characteristic features of rel
ation processes of electrons in realistic semiconductor qu
tum wires mediated by LO phonons. In order to classify t
electron states in terms of quantum numbers and to ob
reasonable computing times, we have used an adiab
model of the quantum wire.30,31Such a model is particularly
suitable for ‘‘weakly 1D’’ structures,31 i.e., heterostructures
unconfined in some direction~translational symmetry!,
2420 © 1997 The American Physical Society
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55 2421ELECTRON RELAXATION BY LO PHONONS IN . . .
strongly confined in another, and weakly confined in the l
one. This approximation allows the dynamics to be inve
gated in detail, including excited states. To be as realistic
possible, the model types chosen are crescent-shaped q
tum wires30,32 or V-grooved quantum wires3 which have
been manufactured and studied experimentally. This st
concentrates on the relaxation of electrons, disregard
holes and many-body interactions. This assumption rest
the applicability of our results to the cases where the e
tronic relaxation dominates, as in low-density electron inj
tion experiments or situations in which large screening
fects weaken the excitonic behavior.

Two Monte Carlo works are connected with the pres
paper. Vurgaftman and Singh33 have studied the duration o
electron relaxation in rectangular wires assisted by carr
carrier and LO phonon-carrier interaction. Kieneret al.34

have shown that capture processes from extended stat
bound states of a specific V-grooved wire can be espec
quick ~a few ps!.

Figure 1 shows an example of the cross section of a qu
tum wire described by our theoretical approach. Such st
tures can be grown on V-grooved GaAs substrates eithe
metal organic chemical vapor deposition~MOCVD!30,32 or
by molecular beam epitaxy~MBE!.3 The quantum wire con-
sists of the GaAs potential well surrounded
Al dGa12dAs barriers. Along the growth axisz, the quantum
wire is in the range 5–30 nm thick in the central regi
(x50) and becomes thinner on the sides. Its character
lateral width is typically five to ten times larger. The barrie
of MOCVD structures usually contain a two-dimension
vertical well of low Al concentrationd1 corresponding to a
potential well whose depth is between those of the wire
the barriers~Fig. 1!.

We use the envelope-function approximation and
adiabatic approximation to describe the electronic states.
rates of electronic transitions mediated by optical phon
between the compatible bound states of the conduction b
are computed using the Fermi golden rule. These data
collected to describe the dynamics of cooling in adiaba
quantum wires. This approach simplifies the computation
order to give a deeper insight into the physics.

II. THEORY

The quantum wire cross section is described by thz
position of its centerz5 f (x) ~dot-dashed line on Fig. 1! and

FIG. 1. Schematic section of a V-groove AldGa12dAs quantum
wire as an example of an adiabatic quantum wire. The vertical w
~Al concentrationd1,d0) is present only in MOCVD grown wires
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its half-widthd(x). The effective massm* (x,z) and the po-
tential V(x,z) experienced by the conduction electrons a
steplike functions, whose values increase with the Al co
centrationd of each domain. In the effective mass appro
mation, the envelope wave functions alongy are plane waves
~of wave vectorky[k) as a result of translational invarianc
and the Schro¨dinger equation for the conduction band ele
trons becomes two-dimensional,

Hck~x,z!5H 2
\2

2
¹

1

m* ~x,z!
¹1

\2k2

2m* ~x,z!
1V~x,z!J

3ck~x,z!5Ekck~x,z! , ~1!

where¹ is the two-dimensional gradient operator,ck(x,z)
the two-dimensional wave function, andEk the eigenenergy
of the electron. One approach consists in diagonalizing
HamiltonianH numerically. The adiabatic method present
in the following has two major qualities: it is numericall
simple to handle and it classifies the wave functions natur
in terms of two quantum numbers. This classification giv
indications on how to interpret the results, as will be sho
in Sec. III.

A. Adiabatic approximation

The adiabatic approximation only applies to structu
with smoothf (x) andd(x). The wave function is quasifac
torized in ck(x,z)5fk(x)xk

x(z) and the effective mass
Hamiltonian is divided into an operatorHL , local in x, plus
a nonlocal one,HNL , including all thex derivatives. The
local operator acts only onxk

x(z). Its eigenvaluesVk,m
eff (x)

and eigenfunctionsxk,m
x (z) are solutions of

HL xk
x~z!5H 2

\2

2
]z

1

m* ~x,z!
]z1

\2k2

2m* ~x,z!
1V~x,z!J

3xk
x~z!5Vk

eff~x!xk
x~z! , ~2!

with x treated as a parameter. Equation~2! is that of an
electron in a one-dimensional potential well given
\2k2/2m* (x,z)1V(x,z) and its solutions are a set of Ben
Daniel-Duke wave functions numbered by thez quantum
numberm.35. Inserting the right-hand side~rhs! of Eq. ~2!
into Eq. ~1! gives the 1D Schro¨dinger equation for an effec
tive potentialVk

eff(x) alongx ~Fig. 2! acting onfk(x),

H 2
\2

2
]x

1

mk,m~x!
]x1Vk,m

eff ~x!J fk~x!5Ekfk~x! . ~3!

At k50, the final eigenvaluesEk,m,i , wherei is thex quan-
tum number, are edges of 1D subbands. In Eq.~3!,
mk,m(x) is a ponderated reduced mass given by35

mk,m
21 ~x!5mGaAs

21 E
D~GaAs)

dzuxk,m
x ~z!u2

1m
AldGa12dAs
21 E

D~AldGa12dAs)

dzuxk,m
x ~z!u2 . ~4!

D~GaAs) @D(Al dGa12dAs)] stands for the one-dimensiona
domain atx, along a line parallel to thez axis, where the
effective mass equals a constantmGaAs (mAldGa12dAs

).

ll
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2422 55AMMANN, DUPERTUIS, BOCKELMANN, AND DEVEAUD
In the Appendix we show analytically that the paraboli
dispersion alongy is governed by a ponderated effective
massmmi which reads

mmi
215E dx mk50,m

21 ~x!ufk50,m,i~x!u2 . ~5!

We checked thatmmi obtained in this way is perfectly con-
sistent with the dispersion of the numerical solutions wit
kÞ0 in the vicinity ofk50. In the following we shall, there-
fore, treat only the pointk50 and drop thek subscript. It
should be noticed that this corresponds to making an a
proximation ofk-independent phonon matrix elements sinc
all wave functionsck(x,z) are evaluated atk50.

The effective potentialsVeff(x) are plotted in Figs. 2~a!
and 2~b! for the two types of quantum wires studied. In cas
~a!, typical of the structures grown by MBE,3 the wire is
fairly large and has a thickness of about 20 nm~at x50):
three values of thez quantum numberm are possible. In~b!,
typical of structures grown by MOCVD,30,32 the wire is thin-
ner (.7 nm! andm equals 0 or 1. The horizontal lines iden
tify the subband edgesEm,i . The origin of the energies is
defined atEm50,i5050.0 meV. The confinement width of
any subband$m,i % is defined as the difference between th
abscissas of both sides ofVm

eff(x) at energyEm,i .
The adiabatic approximation is reliable when the nature

the wave functionxx(z) does not vary too much withx.36

FIG. 2. Lateral electronic effective potentialsVk50,m
eff (x). The

corresponding eigenvaluesEk50,m,i ~subband edges! are displayed
as horizontal bars. The two graphs~a! and~b! refer to two different
quantum wires~large and small!. In the two cases the origin of the
energies is the ground subband edgeE0050.0 meV.
p-

f

The presence of a vertical well~see Fig. 1! induces a rapid
variation of the barrier potential alongx. However, since the
ratio of the barrier concentrationsd1 /d0 is larger than
90%, the vertical well is shallow. We have verified that t
eigenenergies and wave functions are only slightly pertur
by the fact thatd1 /d0Þ1.

B. Fermi golden rule

In this work the electronic transitions are mediated
longitudinal optical phonons since this is the most efficie
of the various possible relaxation processes~impurity scat-
tering, acoustic phonon scattering, carrier-carrier inter
tions, etc.!. We assume that the LO phonons are not affec
by the wire and have the characteristics of dispersion
bulk GaAs LO phonons as suggested by the sufficiently la
thickness of the quantum wire.21

In the following, the basis statesus& of the electron-
phonon system are denoted by three quantum numbers
the electron and by an occupation number set~in a Fock
space! for the phonons

us&5um,i ,k& ^ u$nq%&. ~6!

The energy of these bare states is

Ee-ph5Em,i1
\2k2

2 mmi
1(

q
nq\vLO , ~7!

where \vLO is the energy of the dispersionless optic
phonons.

The interaction between electrons and longitudinal opti
phonons in polar crystals is the electric dipolar interactio
which can be described by the Fro¨hlich Hamiltonian

HF5 ia(
q

q21~aqe
iqr2aq

1e2 iqr ! ~8!

with

a5H \vLOe
2

2e0V
@e`

212e21~0!#J 1/2, ~9!

where e` is the dielectric constant at infinite frequenc
e(0) the static dielectric constant,V is the global volume of
the system, andaq is the annihilation operator of a phonon o
wave vectorq. The Fermi golden rule gives the transitio
rate t21 of an electron from an initial stateu in& to all the
final onesufi& in the framework of the first-order perturbatio
theory ~first Born approximation!, as

t215
2p

\ (
ufi &,q

d~Efi
e-ph2Ein

e-ph!z^fiuHFu in& z2 . ~10!

At low temperatures only phonon emission processes ar
importance. Inserting the adiabatic electron wave functio
ck50,m,i(x,z)exp(iky), we get the transition rate

t215(
kfi

t in→ fi
21 5(

kfi

Va2mfi

~2p!2\3kfi
~nq11!I in→ fi~kfi2kin!,

~11!
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55 2423ELECTRON RELAXATION BY LO PHONONS IN . . .
with kfi determined by the requirement of energy conser
tion. The divergent prefactorkfi

21 comes from the electronic
density of states and is typical of 1D structures. The fo
factor I in→ fi reads

I in→ fi~kfi2kin!5E E dqxdqzuM in→ fi~qx ,kfi2kin ,qz!u2,

~12!

with the transition matrix element given by

M in→ fi~qx ,kfi2kin ,qz!

5uqu21E dx^xmfi

x ue2 iqzzuxmin

x &fmfii fi
~x!*

3fmini in
~x!e2 iqxx . ~13!

The phonons are assumed to be in equilibrium and, he
follow a Bose-Einstein distributionnq5„exp(\vLO /kBT)
21…21, whereT is the lattice temperature.

III. RESULTS

To characterize the electronic relaxation by LO phono
in quantum wires, we first present results on the transiti
rates between different pairs of quantum wire bound state
order to establish the dominant relaxation channels in S
III A. Such results will be used to interpret the calculation
the global average relaxation time of a single electron p
sented in Sec. III B. In Sec. III C, we analyze the relaxat
dynamics of an excited electron population. The case o
large quantum wire with many subbands is compared w
the case of a small quantum wire which provides mu
stronger confinement and fewer available states. Lastly,
introduce a fast simultaneous phenomenological intras
band thermalization process.

A. Transition rates

Transition rates between different bound states of the w
are shown in Figs. 3 and 4 for the wire denoted by~a! in Fig.
2. The z quantum numbermin51 and x quantum number
i in53 refer to the subband of the initial states: for each va
of the initial energyEin , the transition rate to every subban
is evaluated using Eq.~11!. The final subbandz quantum
number ismfi51 in Fig. 3 andmfi50 in Fig. 4. Both final
subband quantum numbersmfi and i fi are marked along the
curves.

It can be seen by comparison with Fig. 2~a! that diver-
gences of the transition rate appear when the initial energ
\vLO above a subband edge. This comes from the o
dimensional density of the final statesufi& in the expression
for t21. Such singularities can be avoided by introducing
energetic broadening of the states. However, this is deli
ately omitted here to allow a precise resolution of the pea
It can be added at a later stage for comparison with exp
mental data.

We see that intrasubband transitions (mfi5min and
i fi5 i in) are more probable than intersubband processes.
means that the electrons lose preferentially their longitud
momentum~alongy) before changing subbands, unless th
kinetic energy is smaller than\vLO or if, accidentally,Ein is
-
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approximately\vLO above a subband edge. The duration
the relaxation through a definite channel is approximately
sum of the intersubband jumping times.

It can be seen in Fig. 3 that thelateral transition rates,
characterized by initial and final subbands with identicaz

FIG. 3. LO-phonon scattering rates as a function of the ini
energy of an electron placed in subband$min51,i in53% of the large
quantum wire@Fig. 2~a!#. The z-quantum numbermfi of the final
subbands is 1. Divergence happens\vLO above each final subban
edge, due to the divergent 1D density of states.m-conserving tran-
sitions (mfi5min51) are ordered with respect to thex quantum
number i fi , the maximum being reached fori fi5 i in53: intrasub-
band transition is the most probable~except for divergences!.

FIG. 4. LO-phonon scattering rates as a function of the ini
energy of an electron placed in subband$min51,i in53% as in Fig.
3, but for transitions to states with a final quantum numb
mfi50. The rates are much reduced with respect to Fig. 3 and
not well ordered, e.g., the transition rate towards state$0,2% is
higher than towards other states due to the fact that the wave f
tions have a larger overlap linked to ‘‘more compatible’’ peaks.
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quantum numbers (mfi5min), are well ordered in terms o
i fi , in the sense that the relaxation rate function is shif
upwards asi fi increases up toi fi5 i in , and then downwards
for higher values ofi fi ~Fig. 3!. This order, provided by the
form factor I in→ fi , disappears formixed transitions charac-
terized bymfiÞmin ~Fig. 4!. Since the confinement width o
the states alongx varies withm @differentVm

eff(x) in Fig. 2#,
the overlap of the initial and final wave functionsf(x) may
be very large and enhance the form factorI in→ fi . For ex-
ample, the wave functions of states$1,3% and $0,2% have
compatible peaks and, hence, the transition rate betw
them is particularly high~Fig. 4!.

In Fig. 5, the intrasubband transition rates are presen
for the first few subbands. The energy values of the div
gences are indicated on the curves. For all subbands with
samem value, a hierarchy appears: the transition rate fu
tion shifts downward wheni increases. This behavior is du
to the fact that the operator exp(2iqxx) in the matrix element
M in→ fi @Eq. ~13!# acts as a translation operator on the r
wave functionfmini in

(x). The interference at smallqx be-

comes increasingly destructive with increasingx quantum
numberi .

Any quantitative comparison of our results with previo
papers concerning rectangular8,13,15,22or cylindrical37 geom-
etries is made difficult due to the particular dimensions c
sen by each author. While the confinement area of the st
depends only weakly on the quantum numbers in rectang
or cylindrical wires, it is strongly affected by their values
the adiabatic wires. This can be seen in Fig. 2~the confine-
ment width alongx varies with the quantum numbers!. In
adiabatic wires, the difference of the energies of two succ
sive subband edges is nearly constant, contrary to tha
rectangular or cylindrical quantum wires. If it matches a
visor of the LO phonon energy, resonance effects will sp
up the relaxation.

The results concerning the quantum wire can be compa
with corresponding calculations on quantum w
structures.38–41Apart from the divergences due to the 1/AE

FIG. 5. Intrasubband transition rates for the subbands$m,i % as a
function of the initial energy. Thin-solid~dashed and thick-solid!
curves refer to subbands withz-quantum numberm50 ~1 and 2,
respectively!. The energy values at the divergences are indica
The shift of the rate function wheni increases is evident.
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peaks of the density of states, the mixed-transition scatte
rates are smaller than intersubband rates in quantum w
by factors varying from 15 up to 50~Fig. 4!. The intrasub-
band rates shown in Fig. 5 are two to six times smaller th
intrasubband rates in the wells. The lateral transition ra
~Fig. 3! lie between these two cases because they do
change thez quantum number. It is instructive to note th
the sum of the lateral and intrasubband transition rates
quantum wires is quite comparable with the intrasubba
transition rates in quantum wells. This order-of-magnitu
analysis can be supplemented by two considerations:
quantum wire, the transitions~intrasubband, lateral, o
mixed! involve only a finite number of final states, instead
an infinity as in quantum wells, and this implies that the 1
relaxation rates will, in general, be smaller than in 2D stru
tures; however, the momentum conservation rule has onl
be applied in one direction in quantum wires instead of t
in quantum wells, which weakens the preceding argume

B. Average global relaxation time of a single electron

The lifetime of a state$m,i ,k% is determined by the sum
of the transition rates to all the accessible final states. In
section, we study a closely related quantity which charac
izes the complete relaxation to the bottom of the conduct
band of asingle electron with initial energyEin , initially
placed in subband$min ,i in%. This process involves cascade
of transitions through all the available channels and it
characterized by the ‘‘average global relaxation timeQ of a
single electron’’ by LO phonon emission to the lowest a
cessible energy state. The set of all the states involved
this process is called a class and, clearly, the energies o
states of a same class differ by a multiple of\vLO . The
following recurrence relation is used to evaluate the aver
time Q:

Q~S!215(
C

@tS→C1Q~C!#21, ~14!

whereS stands for a state$m,i ,k% and C for all the states
accessible by one LO phonon emission (C for ‘‘child’’ !. As
we consider only LO phonon scattering, an electron with
energy below\vLO cannot decay further and has alrea
reached its lowest state.

In Fig. 6, Q is represented as a function of the initi
energy of an electron placed in subband$min ,i in%. The wire
@case~b! of Fig. 2# has a subband separation of about
meV and the initial subbands are$0,1% and $0,0%, respec-
tively, in the upper and lower parts.

Two main quantities determine the general behavior
Q: the number of ‘‘steps’’~number of successive transition!
needed for complete decaynst5 int(Ein /\vLO) ~here int de-
notes the integral part function! and the number of available
relaxation channelsnch. nst is incremented by one unit a
each\vLO above the ground subband edge andnch at each
\vLO above all other subband edges.Q is a continuous
monotonic increasing function ofEin in the initial energy
interval where these two numbers are constant, because
transition rates are decreasing functions of the ene
WheneverEin5Em,i1n\vLO @with n an integer and (m,i )
Þ(0,0)#, a new channel opens andQ decreases discontinu

d.



a
n
1
n

a

e
f
e

um
rte
re
th
to

a
d

d

th

vel
ay-
we

nd
he

-

in
hil-
s
-

pti-
pu-
the

s
the

into
s dif-

en-

ts
ned

l
er.
pu-

te

ife-

x-
aph
ub-
-
ties

d

e
d

ep

te

55 2425ELECTRON RELAXATION BY LO PHONONS IN . . .
ously to a lower value~Fig. 6!. This discontinuity is impor-
tant because, when a new channel opens, the first avail
state is located at the final subband edge and the transitio
necessarily associated with a divergent rate due to the
density of states. Each time a new step is added, a disco
nuity of dQ/dEin appears as clearly visible in Fig. 6.

Concerning the global trend, on the one handQ is length-
ened withEin due to the step number increase and the r
decrease, while on the other handQ is shortened by the
opening of new channels. The competition between th
processes does not allow any simple general tendency
Q as a function ofEin to be recognized, as shown by th
comparison of the two cases given in Fig. 6.

The mean value ofQ is remarkably small whenmin50.
Even if the transition rates are smaller than for quant
wells, the time needed by electrons to cool down is sho
than for 2D structures, because the presence of diffe
channels offers many ways for the electrons to relax. If
z quantum number has to change in order to reach the bot
of the conduction band, the basic value ofQ is more than
one order of magnitude larger, as predicted by the rate an
sis. For example, the average global relaxation time nee
by an electron to decay from$1,0% to the lowest accessible
state amounts to.10 ps, while it is in the subpicosecon
range for all initial subbands withz quantum number
min50. This is not observed for the wider wire because
$1,0% subband lies.\vLO above the$0,2% one.

FIG. 6. Average global relaxation timeQ needed by a single
electron of initial energyEin placed in subbands$0,0% ~lower graph!
and$0,1% ~upper graph! to reach the bottom of the conduction ban
by LO-phonon emission. The jumps~dashed vertical lines! are due
to the divergences of the transition rates at the opening of n
channels, i.e., at energies lyingn(\vLO) above an excited subban
edge (n integer!. The discontinuities ofdQ/dEin ~dotted vertical
lines! are due to the increase of the number of relaxation st
which occurs whenever the ground subband edge isn(\vLO) below
the initial energy. Comparing the upper and lower cases, no sys
atic tendency of the average behavior ofQ(Ein) to increase or
decrease can be distinguished.
ble
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C. Population relaxation dynamics

The above considerations do not take into account le
population effects occurring when many electrons are dec
ing simultaneously in the system. To study such effects,
shall solve the rate equations~Boltzmann equation! related to
an initial distribution of electrons in an excited subband a
the dynamics of its decay. The equation of evolution of t
populations is

dnS~E,t !

dt
5(

P
tP→S

21 ~E1\vLO!nP~E1\vLO ,t !

3@12nS~E,t !#rP~E1\vLO!

2(
C

tS→C
21 ~E!nS~E,t !

3@12nC~E2\vLO ,t !#rC~E2\vLO! .

~15!

In this equation,nS(E,t) is the probability of finding an elec
tron of energyE in subbandS at timet; the first term on the
rhs represents the filling from the parent states located
subbandsP; the second term represents the emptying to c
dren states in subbandsC; tS→C

21 (E) are the LO-phonon rate
appearing in Eq.~11!; rS(E) is the density of states in sub
bandS.

We now assume that a Gaussian excitation, e.g., an o
cal pulse, provides in a unique high subband an initial po
lation of electrons given by the ratio of the Gaussian to
density of states of the subband concerned.

The average energŷE&, as well as the population
nS(E,t) in each subband, are computed at each step of
Runge-Kutta-Merson integration of Eq.~15!. Like previ-
ously, the complete set of all the states can be divided
classes by grouping together those states whose energie
fer by a multiple of\vLO . Longitudinal optical scattering
does not couple different classes which evolve indep
dently.

In Figs. 7~a! and 7~b! we present the numerical resul
corresponding, respectively, to the two structures mentio
as~a! and~b! in Fig. 2. The figures~a! and~b! display in the
lower part the average energy^E& as a function of time and
in the upper parts the populationsnS(E,t) in initial and final
subbands. The case~ii ! includes the effects of an additionna
phenomenological relaxation which will be discussed lat
The present discussion relates to the evolution of the po
lations due to LO phonon emission only@case~i!#: the evo-
lution of the population in the initial subband at timet50
and at an early stage@ t528 fs for the case of Fig. 7~a! and
t50.4 ps for Fig. 7~b!# reveals discontinuities due to the ra
singularities towards the subband edgesEm,i @graph~i!#. It is
also closely related to the discontinuous behavior of the l
time of the states in the initial subband@obtained as the in-
verse of the sum of the rates ((fit in→ fi

21 )21# and it looks like
a product of this lifetime and the initial population, as e
pected. On the low energy side of the same part of the gr
is presented the asymptotic population in the final few s
bands$m,i % with Em,i,\vLO . It only extends over one op
tical phonon energy, as it should, and exhibits discontinui
corresponding to the different filling rates.
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In the case of a ‘‘large’’ wire@Fig. 7~a!#, the initial sub-
band is the eighth excited one:E0,7584.5 meV. The average
energy shown in the lower part of the figure decreases q
fast and reaches after 0.4 ps its asymptotic value of 2
meV, corresponding to the energy of the asymptotic fi
population shown att51.8 ps in inset~i!. This final popula-
tion involves the subbands$0,0% ~solid line!, $0,1% ~dashed
line!, and$0,2% ~dotted line! with respective subband edge
E0,050.0 meV,E0,1513.6 meV, andE0,2525.6 meV. The
ordering of the rates according to the quantum numbers m
tioned in Sec. III A is responsible for the structure of t
final population: this population is predominant in the mo
excited available subband because it is easier for electron
change theirx quantum number by only one, as compared
several, units. Only a few electrons populate subband$1,0%

FIG. 7. Relaxation dynamics of an electron population initia
placed in a high subband for the two cases of Fig. 2:~a! large wire,
~b! small wire. The two upper graphs show the populations in
lected subbands; the lower graph shows the average energy^E& as
a function of time. The graph and the curve denoted by~i! refer to
a decay exclusively due to LO phonon scattering, while for~ii ! a
phenomenological intrasubband thermalization is added.~a! The
population of the initial subband$0,7% at time t50 ps and at an
early stage (t528 fs! is shown in the high energy side: the fin
population att51.8 ps in the lowest subbands is plotted in the lo
energy side.~b! The population of the initial subband$1,0% is
shown at timest50 ps andt50.4 ps: the final population at time
t514.4 ps@7.2 ps for the graph~ii !# only involves the subband
$0,0% since the splitting is greater than\vLO .
ite
.6
l

n-

t
to
o

during the relaxation process since transitions fromm50
subbands tom51 subbands have a small probability.

Figure 7~b! shows the same quantities as Fig. 7~a! for the
small quantum wire, where the initial subband is now t
fourth excited one,$1,0%, which differs from the lowest sub
band by thez quantum number. A slow relaxation process
observed, since the decay rate is much lower when the
z quantum number has to change in the process. The fe
available channels also affect this result since the typ
level spacing now reaches 50 meV as shown in Fig. 2~b!.
The average energy relaxes in about 15 ps down to the
ymptotic value of 18.8 meV@bottom of Fig. 7~b!#. The initial
population decreases particularly slowly. We observe t
once the electrons reach a subband with zeroz quantum
number, they join the bottom of the subband nearly as fas
for the large structure. Hence, the intermediate subb
populations are always small. The final population in th
case involves only the ground subband, since the first exc
subband edgeE0,1556 meV lies higher than\vLO .

Finally let us consider, for both quantum wires~a! and
~b!, the effect of a fast phenomenological intrasubband th
malization. Such a phenomenon is present in all availa
experimental time-resolved measurements where one see
minescence mainly issuing from the subba
edges.3,32,34,42–44According to a simple theoretical argumen
the two particle electron-electron Coulomb interaction is u
able to provide kinetic energy redistribution in a strictly on
dimensional structure: conservation of both energy and m
mentum allows only a final pair state which is identical to t
initial one.4 The energetic broadening of the electronic sta
due to their finite lifetimes could slightly ‘‘bend’’ this rule
The investigation of other more complicated processes wh
could eventually explain a fast intrasubband relaxation
beyond the scope of the present paper. Instead, we intro
a fastphenomenologicalintrasubband thermalization proce
conserving the number of particles and the total kinetic
ergy within a given subband. This is achieved by adding
following term to Eq.~15!:

@nS
0
„E,mS~ t !,TS~ t !…2nS~E,t !#

t th
, ~16!

where t th570 fs is the phenomenological thermalizatio
time,nS

0
„E,mS(t),TS(t)… is the asymptotic equilibrium Ferm

distribution function in subbandS, mS(t) andTS(t) are the
chemical potential and the temperature, respectively,
they are evaluated self-consistently at each step of the
lution from the knowledge of the number of particles and t
total energy in each subband. The different classes n
couple together, in opposition to what happened in the c
without thermalization, since bothmS andTS depend on all
the states belonging to theS subband. From the physica
point of view, it is important to note that the expression~16!
is not a diffusion or detailed balance term ink space as one
might expect, but it is simply a term that forces the distrib
tion of each subband to relax to an internal thermal equi
rium during a typical time scalet th . The introduction of this
kind of term is justified since our aim is not to describe t
unknown microscopic dynamics on the 10 fs time scale
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to obtain an insight into the possible accelerating effect o
fast intrasubband thermalization mechanism on the slo
LO-phonon relaxation.

In Figs. 7~a! and 7~b! the curves and graphs including th
effect of a fast intrasubband thermalization are labeled~ii !.
The lower parts of the figures show that the decay of
average energy is accelerated@dashed curves~ii !#. This effect
is much more pronounced for the narrow wire where few
channels are available. However, from this it cannot be
duced that the observed acceleration of the decay is un
sal, since one of the effects of the thermalization is to mod
the feeding or emptying of the channels: if the thermalizat
feeds fast channels and empties slow channels it accele
the decay, but the opposite could also happen with the op
site consequence. The two trends compete and the effec
pends on the population. The final energy is clearly see
be significantly lower in both examples of wires, since t
second effect of fast intrasubband thermalization is to re
range the low-lying subbands and feed upper levels
which LO-phonon transitions are allowed. The lowering
the average energŷE& lasts until the electron densities in a
subbands become negligible for energies above\vLO . In the
case of the large wire@Fig. 7~a!#, this seems to happen as
second phase in the relaxation process bringing the ov
relaxation time up to 1 ps and the final energy down to
meV. Graph~ii ! also shows that the predominance of t
final population in the highest available excited subband
still present. In Fig. 7~b!, the thermalization has a muc
stronger accelerating effect on the relaxation time: after
ps, the population can be considered as completely rela
and the final energy is especially low~5.6 meV! since there
is no trapping in higher subbands@graph~ii !#. Nevertheless
the relaxation remains slower than in the larger wire.

IV. CONCLUSION

The LO-phonon mediated relaxation dynamics of h
electrons in weakly-one-dimensional quantum wires
been investigated. In a first step, the electronic states
geometrically complex wire have been computed in
framework of the adiabatic approximation. This techniq
capitalizes on the smoothness of the curves describing
cross section of weakly-one-dimensional wires. The rel
ation rates between any pair of LO-phonon coupled sta
were then evaluated using the Fermi golden rule, and
interpretation in terms of quantum numbers, allowed by
adiabatic approach, was presented. The single-electron
decay time was determined with respect to the initial exci
state. The last section treated the investigation of the elec
population dynamics for two different wires, large and sm
with or without a phenomenological intrasubband therm
zation.

We have shown that the relaxation rate functions
clearly ordered with respect to the quantum numbers of
states involved. As expected, the intrasubband relaxatio
always the most rapid, i.e., the kinetic energy is quickly lo
For intersubband relaxation, the rates are smaller, but of
same order of magnitude, when the quantum number in
strongest confinement direction is preserved, and orde
with respect to the quantum number in the weak confinem
direction. If the quantum number of the strong confinem
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direction is changed in the relaxation process, the transi
rates are about one order of magnitude smaller.

The average global relaxation time needed by a sin
excited electron to reach the lowest accessible conduc
band state presents discontinuities as a function of the in
electron energy, due to the divergence of the relaxation
towards a subband edge at the opening of a new chan
Contrary to our first intuition, this time does not inevitab
increase as a function of the initial energy because the n
ber of available channels increases too. We observed tha
average global relaxation time is less than a picosec
when the initial electron is in the ground state in the direct
of strong confinement, but can be one order of magnitu
greater otherwise.

The dynamics of an ensemble of excited electrons incl
ing level population effects has been investigated. The ch
acteristic decay time can vary significantly, depending on
initial subband, the resonance conditions with LO phono
and the dimensions of the wire. However, it is inevitab
smaller in larger wires due to the larger number of availa
channels.

When a fast phenomenological intrasubband thermal
tion process is added, the populations rearrange rapidly t
Fermi distributions in each subband. This process lowers
final energy and this lowering might appear as a sec
phase in the overall relaxation, especially in large wires.
small wires, the intrasubband thermalization may also s
nificantly speed up the relaxation.
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APPENDIX: PONDERATED REDUCED MASS

The expression~5! of the ponderated reduced massmmi is
derived directly from the three-dimensional Schro¨dinger
equation

F2
\2

2
¹

1

m* ~x,z!
¹1V~x,z!Gxk

x~z!fk~x!eiky

5Exk
x~z!fk~x!eiky. ~A1!

Using the adiabatic approximation, thez-dependent part of
the kinetic energy operator and the potentialV(x,z) are ab-
sorbed by the effective potentialVk,m

eff (x) and the function
xk
x(z) becomes xk,m

x (z). Projecting on xk,n
x (z), the

x-dependent part of the kinetic energy operator applied to
envelope function becomes

2
\2

2 E dzxk,n
x ~z!*

]

]x

1

m* ~x,z!

]

]x
xk,n
x ~z!fk~x!eiky.

~A2!
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Owing to the slowx dependence ofxk,n
x thex derivatives can

be permuted withxk,n
x . A local ponderated effective mass

defined as

mk,n
21~x!5E dzxk,n

x ~z!*m*21~x,z!xk,n
x ~z! ~A3!

and only the kinetic symmetric term
d/dx @mk,n(x)

21d„fk(x)e
iky
…/dx# is retained in the result

ing Schrödinger equation, giving

F2
\2

2

1

mk,n~x!

d2

dy2
2

\2

2

d

dx

1

mk,n~x!

d

dx
1Vk,n

eff ~x!G
3fk~x!eiky5Efk~x!eiky. ~A4!
,

.

.

s

ys
Expanding to second order ink neark50, the last two terms
in the square brackets are then replaced by the energy o
band edge Ek50,n,i and fk(x) by the eigenfunction
fk50,n,i(x). Projection onfk50,n, j (x) gives

2
\2

2

1

mnj

d2

dy2
eiky5~E2Ek50,n, j !e

iky, ~A5!

where

mnj
215E dxfk50,n, j~x!*mk50,n

21 ~x!fk50,n, j~x!. ~A6!

This last expression is precisely Eq.~5!.
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