PHYSICAL REVIEW B VOLUME 55, NUMBER 4 15 JANUARY 1997-11

Electron relaxation by LO phonons in quantum wires: An adiabatic approach
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The electron states of weakly-one-dimensional quantum wires are computed using the adiabatic approxima-
tion in the framework of the&-p theory and the envelope-function approximation. The computed transition
rates of electrons from one confined state to any other, mediated by the longitudinal @@icahonons, are
clearly ordered with respect to the quantum numbers of the states provided by the adiabatic approximation. The
average single electron relaxation time from an excited level is shown to either increase or surprisingly
decrease as a function of initial energy. Finally, the relaxation dynamics of an excited population of electrons
is analyzed. We show that a fast phenomenological intrasubband thermalization, simultaneous to the LO
phonon-mediated relaxation, lowers the final average energy and may in some cases significantly speed up the
whole relaxation[S0163-18287)07004-5

I. INTRODUCTION Bockelmann and Bastart compared LO and acoustic
phonon scattering in rectangular structures of different di-
A principal axis of research on electronic devices reliesmensionality(2D, 1D, and 0OD. They showed that the LO
on the inclusion of low-dimensional semiconductor heterofphonon 1D scattering rates and energy-loss rates oscillate
structures, because of their potential ability to tailor the elecaround the 2D values as a function of the energy.
tronic states and the electronic phase space. Such possibili- Many groups have studied the relevance of using bulk LO
ties were recognized long ago, but it is only recently that thgphonon dispersion relations for scattering rate computation
technology has begun to deliver quality structures suitablén 1D structures instead of confined and interface optical
for conclusive experimentation. In the fields of both electron-phonons*~*® The conclusion reached by Jiang and
ics (transport and optics, faster and more economic deviced eburtorf® and confirmed by Rosst al?! is that the scat-
may be expecteti? Such features partly result from reduced tering rates obtained using GaAs bulk LO phonons repro-
or enhanced carrier scattering rates. duce well those due to both confined and interface optical
In typical optical experiments, the excited charge carrierphonons for AlGa; _ s;As-GaAs wires of diameters exceed-
(electrons and holgselax to the bottom of their respective ing 50 A. Furthermore, polarons have been shown to be an
bands before they recombine, since the radiative recombinarrelevant refinement for scattering rate calculatiéh3he
tion is a slow process 4350 p3 (Ref. 3 obeying effects of hot phonon saturation are more imporftafftand
k-selection rules. Many processes contribute to the relaxatioreduce the cooling rate for high-density carriers.
(Coulomb interaction, impurity scattering, phonon emission, The emission of acoustic phonons has also been exten-
etc). In quantum wires, longitudinal opticdLO) phonon sively investigatetf32°=?°put, in that case, the scattering
emission is the most efficient one, while carrier-carrier Coutates are about three orders of magnitude below the ones due
lomb interaction is drastically reduced with respect to theto LO phonon interactions. However, the linear dispersion

bulk.*~® relation of acoustic phonons makes them necessary for low
Many specific theoretical studies of the mechanism ofenergy K% w, o) dissipation processes.
phonon emission in quantum wires are availdbfé.Rid- The purpose of the present work is to specify qualitatively

doch and Ridle{ and Leburtof first considered relaxation as well as quantitatively the characteristic features of relax-
by LO phonons in rectangular quantum wires. They readilyation processes of electrons in realistic semiconductor quan-
showed the singularities which arise from the one-tum wires mediated by LO phonons. In order to classify the
dimensional1D) density of states. In later papers, Leburtonelectron states in terms of quantum numbers and to obtain
showed that high carrier mobility can be achieved undereasonable computing times, we have used an adiabatic
electrical field>°and that “phonon pumping” can induce model of the quantum wirg’3! Such a model is particularly

an optical gain coefficiert!? He also emphasized that LO suitable for “weakly 1D” structures: i.e., heterostructures
phonons maintain nonthermal charge carrier populaftons. unconfined in some directior{translational symmetjy
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its half-width d(x). The effective masm* (x,z) and the po-
tential V(x,z) experienced by the conduction electrons are
steplike functions, whose values increase with the Al con-
centrationé of each domain. In the effective mass approxi-
mation, the envelope wave functions algngre plane waves
(of wave vectok,=Kk) as a result of translational invariance,
and the Schidinger equation for the conduction band elec-
trons becomes two-dimensional,

} I S S s
W(x2)=1 =% m* (x,2) +2m*(x,z)

+V(X,2)

FIG. 1. Schematic section of a V-groove Ma;  ;As quantum X (x2)=Bh(x.2) @
wire as an example of an adiabatic quantum wire. The vertical welivhereV is the two-dimensional gradient operat@i(X,z)
(Al concentrations; < &) is present only in MOCVD grown wires. the two-dimensional wave function, afg, the eigenenergy
of the electron. One approach consists in diagonalizing the
one. This approximation allows the dynamics to be investij_|am"tonian|_.| numerically. The adiapatic me_thod pre;ented
' ly the following has two major qualities: it is numerically

gated in detail, including excited states. To be as realistic a mple to handle and it classifies the wave functions naturall
possible, the model types chosen are crescent-shaped qu P . e raily
in terms of two quantum numbers. This classification gives

tum wires®32 or V-grooved quantum wirdswhich have . dicati h . " I il be <h

been manufactured and studied experimentally. This studg écat'olﬂs on how to interpret the results, as will be shown

concentrates on the relaxation of electrons, disregardin ec. fil.

holes and many-body interactions. This assumption restricts o o

the applicability of our results to the cases where the elec- A. Adiabatic approximation

tronic relaxation dominates, as in low-density electron injec- The adiabatic approximation only applies to structures

tion experiments or situations in which large screening efwith smoothf(x) andd(x). The wave function is quasifac-

fects weaken the excitonic behavior. _ torized in ¢ (x,2)=(X)xX(z) and the effective mass
Two Monte Carlo works are connected with the preseniyamiitonian is divided into an operatét, , local inx, plus

paper. Vurgaftman and Singhhave studied the duration of a nonlocal oneH,, , including all thex derivatives. The

elec_tron rzlafgtmnhm rectangula.r ;/wrest.asssthdne?ry lcgamerroca operator acts only ox(2). Its eigenvalues)/ﬁffm(x)
carrier an phonon-carrier interaction. Kienetal: %Bd eigenfunctions! ,(z) are solutions of

have shown that capture processes from extended states
bo_unkd( stfates gf a specific V-grooved wire can be especially " D ﬁza 1 - 72K2
quick (a few ps. L x(2)=1——=9, 2

Figure 1 shows an example of the cross section of a quan- “ 2 *m*(x,2) 2m* (x,2)
tum wire described by our theoretical approach. Such struc- Xxﬁ(z)zvﬁﬁ(x)xﬁ(z) , )
tures can be grown on V-grooved GaAs substrates either by
metal organic chemical vapor depositiglOCVD)3%32 or  with x treated as a parameter. Equati® is that of an
by molecular beam epitaxMBE).2 The quantum wire con- electron in a one-dimensional potential well given by
sists of the GaAs potential well surrounded by %2k?/2m* (x,z)+V(x,z) and its solutions are a set of Ben-
Al ;Ga, _ sAs barriers. Along the growth axig the quantum Daniel-Duke wave functions numbered by thequantum
wire is in the range 5-30 nm thick in the central regionnumberm.®. Inserting the right-hand sidehs) of Eq. (2)
(x=0) and becomes thinner on the sides. Its characteristitito Eq. (1) gives the 1D Schidinger equation for an effec-
lateral width is typically five to ten times larger. The barrierstive potentialVE'(x) alongx (Fig. 2) acting ongy(x),
of MOCVD structures usually contain a two-dimensional 42 L
vertical well of low Al concentrations; corresponding to a off .
potential well whose depth is between those of the wire and | ~ 2 % My m(X) 0X+Vk’m(x)] AO=Eid0) . (3
the barrierg(Fig. 1). _ . .

We use the envelope-function approximation and the®t k=0, the final eigenvalueg, r;, wherei is thex quan-
adiabatic approximation to describe the electronic states. TH&m number, are edges of 1D SUbb?‘”dg- In E8),
rates of electronic transitions mediated by optical phonon&m(X) is & ponderated reduced mass giverby
between the compatible bound states of the conduction band
are computed using the Fermi golden rule. These data are mk_rln(x):mééAsf dzx% (2)|2
collected to describe the dynamics of cooling in adiabatic ’ D(GaAs) ’
guantum wires. This approach simplifies the computation in

order to give a deeper insight into the physics. +m;IiGai,ﬁAs

+V(X,2)

dZxikm(2I* - 4
D(Al sGay _ sAs)
D(GaAs) [D(Al ;Ga _ sAs)] stands for the one-dimensional

The quantum wire cross section is described by zhe domain atx, along a line parallel to the axis, where the
position of its centez=f(x) (dot-dashed line on Fig)lnd  effective mass equals a constangaas (Mai ca, ,as)-

Il. THEORY
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The presence of a vertical wekee Fig. 1 induces a rapid
2000 | variation of the barrier potential along However, since the
ratio of the barrier concentrationg; /&y is larger than
90%, the vertical well is shallow. We have verified that the
S eigenenergies and wave functions are only slightly perturbed

N\ f by the fact thats,;/5y# 1.
1000 | — 7 y 1790

N\ "/ B. Fermi golden rule
'0/

E [meV]

In this work the electronic transitions are mediated by
00 & longitudinal optical phonons since this is the most efficient
of the various possible relaxation processespurity scat-
-50.0 -25.0 0.0 25.0 50.0 tering, acoustic phonon scattering, carrier-carrier interac-
x [nm] tions, etc). We assume that the LO phonons are not affected

by the wire and have the characteristics of dispersionless
bulk GaAs LO phonons as suggested by the sufficiently large
thickness of the quantum wif@.

In the following, the basis statels) of the electron-
phonon system are denoted by three quantum numbers for
the electron and by an occupation number @eta Fock

100.0 - \ / space for the phonons
Iy |s)=|m,i,k)@[{ng}). (6)

ff
200.0 vi

E [meV]

0 () .
The energy of these bare states is

-10.0 -5.0 0.0 5.0 10.0 . 2k?
x [nm] ESPh=E i+ >——+ > nghoo 7
' 2 My q
FIG. 2. Lateral electronic effective potentia‘l&ﬁioym(x). The
corresponding eigenvaluds,_,,; (subband edgé¢sare displayed
as horizontal bars. The two grapt@ and(b) refer to two different
quantum wireglarge and sma)l In the two cases the origin of the
energies is the ground subband edg=0.0 meV.

where fiw, o is the energy of the dispersionless optical
phonons.

The interaction between electrons and longitudinal optical
phonons in polar crystals is the electric dipolar interaction,
which can be described by the Tfich Hamiltonian

In the Appendix we show analytically that the parabolic
dispersion alongy is governed by a ponderated effective He=ia, q Yase —aie ') (8)
massm,,; which reads q a

with
My = f dx MeZom()] Sr=omiCO? . (5

1/2

ﬁ 2
D% -1 1)), )

We checked thain,,,; obtained in this way is perfectly con- “” 2e0V

sistent with the dispersion of the numerical solutions with . ) ) o
k0 in the vicinity ofk=0. In the following we shall, there- Where €. is _the_ dlele_ctrlc constant at infinite frequency,
fore, treat only the poink=0 and drop thek subscript. It ~ €(0) the static d|glectr|c cop;tar}f, is the global volume of
should be noticed that this corresponds to making an aphe system, and, is the annihilation operator of a phonon of
proximation ofk-independent phonon matrix elements sincewave vectorq. The Fermi golden rule gives the transition
all wave functionsy(x,z) are evaluated d=0. rate 1 of_ an electron from an |n|t|a_1l statgn) to all the_
The effective potential&/®f(x) are plotted in Figs. @) final onegﬁ) in the framgwor!( of the first-order perturbation
and 2b) for the two types of quantum wires studied. In casetheory (first Born approximatioy as
(a), typical of the structures grown by MBEthe wire is
fairly large and has a thickness of about 20 (@ x=0):
three values of the quantum numbem are possible. Irib),
typical of structures grown by MOCVEP*2the wire is thin- o
ner (=7 nm) andm equals 0 or 1. The horizontal lines iden- At low temperatures only phonon emission processes are of
tify the subband edgeE,,;. The origin of the energies is importance. Inseytmg the adiabatic elgptron wave functions
defined atEq—o;—o=0.0 meV. The confinement width of ¥ik=om,i(X.z)exp(ky), we get the transition rate
any subbandm,i} is defineftfj as the difference between the Ve?
abscissas of both sides Wf;(x) at energyE,; . —1_ -1 _ @ Mg L
The adiabatic approximation is reliable when the nature of - % Tin — f % (27)%h 3Ky (Mg Dlin — (ki —kin)
the wave functiony*(z) does not vary too much witk.® (11

2
F12TS SET-ERfHE . (10
fi ),q
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with ki determined by the requirement of energy conserva-
tion. The divergent prefactdq]1 comes from the electronic
density of states and is typical of 1D structures. The form
factorl,_, 5 reads

1013 b

Iinefi(kfi_kin):‘[ J’dqxdqz|Minﬂfi(qX1kfi_kinaqz)|2!

1012 L

(12) z
with the transition matrix element given by T: :
[ F i
Minﬂfi(qukfi_kinaqz) 101t |- -]
L ) 150.0 175.0 200.0 225.0
“lal [ dxciy e 5, ) g (0" B, (meV]
X b (x)e_iqxx _ (13) FIG. 3. LO-phonon scattering rates as a function of the initial

inlin energy of an electron placed in subbdnal,= 1,i;,= 3} of the large
guantum wire[Fig. 2(a)]. The z-quantum numbem;; of the final
Subbands is 1. Divergence happéns, o above each final subband
edge, due to the divergent 1D density of statasonserving tran-
sitions (m;=m;,=1) are ordered with respect to thequantum
numberi;, the maximum being reached fog=i;,=3: intrasub-

lll. RESULTS band transition is the most probalflexcept for divergences

The phonons are assumed to be in equilibrium and, henc
follow a Bose-Einstein distributiom = (expfw o/KgT)
—1)~1, whereT is the lattice temperature.

To characterize the electronic relaxation by LO phonons
in quantum wires, we first present results on the transitiong@pPproximately o o above a subband edge. The duration of
rates between different pairs of quantum wire bound states ifhe relaxation through a definite channel is approximately the
order to establish the dominant relaxation channels in Segum of the intersubband jumping times.

Il A. Such results will be used to interpret the calculation of It can be seen in Fig. 3 that tHateral transition rates,
the global average relaxation time of a single electron precharacterized by initial and final subbands with identizal
sented in Sec. Il B. In Sec. lll C, we analyze the relaxation
dynamics of an excited electron population. The case of a
large quantum wire with many subbands is compared with
the case of a small quantum wire which provides much
stronger confinement and fewer available states. Lastly, we
introduce a fast simultaneous phenomenological intrasub-
band thermalization process.

A. Transition rates 10!

Transition rates between different bound states of the wire
are shown in Figs. 3 and 4 for the wire denoted@yin Fig.

2. The z quantum numbem;,=1 andx quantum number
i;,=3 refer to the subband of the initial states: for each value
of the initial energyE;,, the transition rate to every subband
is evaluated using Eq11). The final subband quantum
number ism;=1 in Fig. 3 andm;=0 in Fig. 4. Both final
subband quantum numbeng; andiy are marked along the
curves.

It can be seen by comparison with FigiaRthat diver-
gences of the transition rate appear when the initial energy is
hw o above a subband edge. This comes from the one-
dimensional density of the final statg in the expression 10 | I : |
for 7~ 1. Such singularities can be avoided by introducing an 150.0 175.0 200.0
energetic broadening of the states. However, this is deliber- Eip[meV]
ately omitted here to allow a precise resolution of the peaks.
It can be added at a later stage for comparison with experi-

mental data. , N energy of an electron placed in subbgmad,=1,i;,=3} as in Fig.
We see that intrasubband transitionsng&Emy, and 3 pyt for transitions to states with a final quantum number

ii=1i,) are more probable than intersubband processes. Thig,=0. The rates are much reduced with respect to Fig. 3 and are
means that the electrons lose preferentially their longitudinahot well ordered, e.g., the transition rate towards st@e is
momentum(alongy) before changing subbands, unless theirhigher than towards other states due to the fact that the wave func-
kinetic energy is smaller thafiw g or if, accidentallyE;, is  tions have a larger overlap linked to “more compatible” peaks.

7'_1(13;-401;[3—1]

>{00

FIG. 4. LO-phonon scattering rates as a function of the initial
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peaks of the density of states, the mixed-transition scattering
rates are smaller than intersubband rates in quantum wells,
by factors varying from 15 up to 5(Fig. 4). The intrasub-
band rates shown in Fig. 5 are two to six times smaller than
intrasubband rates in the wells. The lateral transition rates
(Fig. 3 lie between these two cases because they do not
change thez quantum number. It is instructive to note that
the sum of the lateral and intrasubband transition rates in
quantum wires is quite comparable with the intrasubband
transition rates in quantum wells. This order-of-magnitude
analysis can be supplemented by two considerations: in a
quantum wire, the transitiongintrasubband, lateral, or
1018 — " mixed) involve only a finite number of final states, instead of

' ' . ' an infinity as in quantum wells, and this implies that the 1D
500 e [mev]15°'° 2000 relaxation rates will, in general, be smaller than in 2D struc-

n tures; however, the momentum conservation rule has only to

FIG. 5. Intrasubband transition rates for the subbdmds} asa P& applied in one direction in quantum wires instead of two
function of the initial energy. Thin-soliddashed and thick-solid N quantum wells, which weakens the preceding argument.
curves refer to subbands witiqguantum numbem=0 (1 and 2,

respectively. The energy values at the divergences are indicated. B Average global relaxation time of a single electron
The shift of the rate function wheinincreases is evident.

Ego thw,

1013 |—

The lifetime of a statdm,i,k} is determined by the sum
of the transition rates to all the accessible final states. In this
guantum numbersnf;=m;,), are well ordered in terms of section, we study a closely related quantity which character-
i, in the sense that the relaxation rate function is shiftedzes the complete relaxation to the bottom of the conduction
upwards as; increases up to;=i;,, and then downwards band of asingle electron with initial energyg;,, initially
for higher values of; (Fig. 3. This order, provided by the placed in subbandim;,,i;,}. This process involves cascades
form factorl;, , ;, disappears fomixedtransitions charac- of transitions through all the available channels and it is
terized bymg;#my, (Fig. 4). Since the confinement width of characterized by the “average global relaxation tief a
the states along varies withm [different Vef(x) in Fig. 2],  single electron” by LO phonon emission to the lowest ac-
the overlap of the initial and final wave functioggx) may  cessible energy state. The set of all the states involved by
be very large and enhance the form factgr.q. For ex- this process is called a class and, clearly, the energies of the
ample, the wave functions of staté$,3} and{0,28 have States of a same class differ by a multiple/ob o. The
Compatib|e peaks and' hence, the transition rate betweéﬁ”OWing recurrence relation is used to evaluate the average
them is particularly highFig. 4). time ©:
In Fig. 5, the intrasubband transition rates are presented
for the first few subbands. The energy values of the diver-
gences are indicated on the curves. For all subbands with the
samem value, a hierarchy appears: the transition rate func-
tion shifts downward when increases. This behavior is due where S stands for a statém,i,k} andC for all the states
to the fact that the operator expig,X) in the matrix element accessible by one LO phonon emissighfér “child” ). As
Mi, _. 1 [EQ. (13)] acts as a translation operator on the rhswe consider only LO phonon scattering, an electron with an
wave functiong, ; (x). The interference at smatly be-  energy belowfw o cannot decay further and has already
comes increasingly destructive with increasingquantum  reached its lowest state.
numberi. In Fig. 6, ® is represented as a function of the initial
Any quantitative comparison of our results with previousenergy of an electron placed in subbgmad, ,i;,}. The wire
papers concerning rectangfta®*>?%or cylindricaf” geom-  [case(b) of Fig. 2] has a subband separation of about 50
etries is made difficult due to the particular dimensions chomeV and the initial subbands af®,1} and{0,0}, respec-
sen by each author. While the confinement area of the statdiyely, in the upper and lower parts.
depends only weakly on the quantum numbers in rectangular Two main quantities determine the general behavior of
or cylindrical wires, it is strongly affected by their values in ®: the number of “steps’{number of successive transitions
the adiabatic wires. This can be seen in Fidtie confine- needed for complete decay=int(E;,/% w o) (here int de-
ment width alongx varies with the quantum numberdn notes the integral part functipand the number of available
adiabatic wires, the difference of the energies of two succeselaxation channels,. ng is incremented by one unit at
sive subband edges is nearly constant, contrary to that farach# w o above the ground subband edge amglat each
rectangular or cylindrical quantum wires. If it matches a di-%Zw, o above all other subband edge8. is a continuous
visor of the LO phonon energy, resonance effects will spee@nonotonic increasing function dt;, in the initial energy
up the relaxation. interval where these two numbers are constant, because the
The results concerning the quantum wire can be comparetlansition rates are decreasing functions of the energy.
with  corresponding calculations on quantum well WheneverE;,=E,;+nfw o [with n an integer andrf,i)
structures®=*! Apart from the divergences due to the/El  #(0,0)], a new channel opens ai decreases discontinu-

@(srl:; [7s.c+O(0] Y (14)
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C. Population relaxation dynamics

08 [ : :50'13 'If l : : The above considerations do not take into account level
| A P R population effects occurring when many electrons are decay-
| R Ly . ing simultaneously in the system. To study such effects, we
S I P I shall solve the rate equatiofBoltzmann equatiorrelated to
R S Pt L an initial distribution of electrons in an excited subband and
04 i 1o b R P the dynamics of its decay. The equation of evolution of the
P P e T et e populations is
HENE I T I
oz gy o & & & g 2% g dng(E,t) 1
¥l iy S S TZE Tp_s(Etfiw o)np(Etfiw o,t)
& gl g g g 8 8§ g P
0.0 24 ST e, Jel T, R e
E oa : 1£0,0} o | | ] X[1-ng(E,t)]pp(E+Tiw o)
— : | | ¢°o°°°| 00°°| ! o1 00°°
® o e _
- T et T — 2 75 c(E)ng(E,)
02 i 1 e e ! B ¢
D e co | o
e | Lo X[1=nc(E-fiwo0,) ]pc(E-fiw o)
* ! | | L
00 50.0 100.0 150.0 (19
E, [meV] In this equationng(E,t) is the probability of finding an elec-

tron of energyE in subbands at timet; the first term on the

FIG. 6. Average global relaxation tim® needed by a single rhs represents the filling from the parent states located in
electron of initial energy;, placed in subband®,0} (lower graph  subband#; the second term represents the emptying to chil-
and{0,1} (upper graphto reach the bottom of the conduction band dren states in subban@s 75* -(E) are the LO-phonon rates
by LO-phonon emission. The jumpgdashed vertical lingsare due  appearing in Eq(11); ps(E) is the density of states in sub-
to the divergences of the transition rates at the opening of newy;nqs.
channels, i.e., at energies lying% v, o) above an excited subband We now assume that a Gaussian excitation, e.g., an opti-
edge 0 integed. The discontinuities ofl®/dE;, (dotted vertical cal pulse, provides in a unique high subband an initial popu-

lines) are due to the increase of the number of relaxation Step?ation of electrons given by the ratio of the Gaussian to the
which occurs whenever the ground subband edgéfiso, o) below density of states of the subband concerned

the initial energy. Comparing the upper and lower cases, no system- .
& paring PP 4 The average energyE), as well as the populations

gggr;igieggz t?; é?;i:ggr;%%_behawor O(E,) to increase or ns(E,t) in each subband, are computed at each step of the
Runge-Kutta-Merson integration of E@15). Like previ-
ously to a lower valudFig. 6). This discontinuity is impor- ously, the complete set of all the states can be divided into
tant because, when a new channel opens, the first availabidasses by grouping together those states whose energies dif-
state is located at the final subband edge and the transition ier by a multiple offw . Longitudinal optical scattering
necessarily associated with a divergent rate due to the 10oes not couple different classes which evolve indepen-
density of states. Each time a new step is added, a discontilently.
nuity of d®/dE;, appears as clearly visible in Fig. 6. In Figs. 1a) and 71b) we present the numerical results
Concerning the global trend, on the one h&hdk length-  corresponding, respectively, to the two structures mentioned
ened withE;, due to the step number increase and the rat@s(a) and(b) in Fig. 2. The figuresa) and(b) display in the
decrease, while on the other hafd is shortened by the lower part the average energf) as a function of time and
opening of new channels. The competition between thesi the upper parts the populationg(E,t) in initial and final
processes does not allow any simple general tendency faubbands. The cagg) includes the effects of an additionnal
as a function ofE;, to be recognized, as shown by the phenomenological relaxation which will be discussed later.
comparison of the two cases given in Fig. 6. The present discussion relates to the evolution of the popu-
The mean value 00 is remarkably small whem;,=0. lations due to LO phonon emission orjlgase(i)]: the evo-
Even if the transition rates are smaller than for quantunlution of the population in the initial subband at tinhe:0
wells, the time needed by electrons to cool down is shorteand at an early stage= 28 fs for the case of Fig.(@ and
than for 2D structures, because the presence of differerit=0.4 ps for Fig. Tb)] reveals discontinuities due to the rate
channels offers many ways for the electrons to relax. If thesingularities towards the subband ed@gs; [graph(i)]. It is
z quantum number has to change in order to reach the bottomiso closely related to the discontinuous behavior of the life-
of the conduction band, the basic value @fis more than time of the states in the initial subbafdbtained as the in-
one order of magnitude larger, as predicted by the rate analyerse of the sum of the rateE,(ri;iﬁ)‘l] and it looks like
sis. For example, the average global relaxation time needeal product of this lifetime and the initial population, as ex-
by an electron to decay frofi,0} to the lowest accessible pected. On the low energy side of the same part of the graph
state amounts te=10 ps, while it is in the subpicosecond is presented the asymptotic population in the final few sub-
range for all initial subbands wittz quantum number bands{m,i} with E;,i<#%w o. It only extends over one op-
m,,=0. This is not observed for the wider wire because thetical phonon energy, as it should, and exhibits discontinuities
{1,0} subband lies=% w g above the{0,2} one. corresponding to the different filling rates.
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—{ont =28 f}(/ﬂ/\subband subbands tan=1 subbands have a small probability.
1023 Figure 1b) shows the same quantities as Fi¢g)7#for the
(i1) small quantum wire, where the initial subband is now the
W fourth excited one{1,0}, which differs from the lowest sub-
band by thez quantum number. A slow relaxation process is
observed, since the decay rate is much lower when the first
z quantum number has to change in the process. The fewer
available channels also affect this result since the typical
level spacing now reaches 50 meV as shown in Fi@).2
() The average energy relaxes in about 15 ps down to the as-
e (i) ymptotic value of 18.8 meYbottom of Fig. 7b)]. The initial
PPN RPN SR P population decreases particularly slowly. We observe that
05 075 10 185 15 once the electrons reach a subband with zerquantum
t[ps] number, they join the bottom of the subband nearly as fast as
— - for the large structure. Hence, the intermediate subband
(b) /] fimal e oo nittel i e @ populations are always small. The final population in this
~_ case involves only the ground subband, since the first excited
(i) subband edg&, ;=56 meV lies higher thafh v o .
Finally let us consider, for both quantum wirés and
, , , (b), the effect of a fast phenomenological intrasubband ther-
0.0 50.0 100.0 E[mev]150.0  200.0 malization. Such a phenomenon is present in all available
200.0 experimental time-resolved measurements where one sees lu-
150.0 b minescence  mainly issuing from the subband
‘ edges>®23442-4according to a simple theoretical argument,
‘ the two particle electron-electron Coulomb interaction is un-
50.0 - () able to provide kinetic energy redistribution in a strictly one-
(11)+ . | , dimensional structure: conservation of both energy and mo-
0.0 50 T 100 150 20.0 mentum allows only a final pair state which is identical to the
t[ps] initial one.“_ The_env_arg_etic broadening of the electronic states
due to their finite lifetimes could slightly “bend” this rule.
. . . ... The investigation of other more complicated processes which
FIG. 7. Relaxation dynamics of an electron population initially . . : .
could eventually explain a fast intrasubband relaxation lies

placed in a high subband for the two cases of Figaplarge wire, .
(b) small wire. The two upper graphs show the populations in se-beyond the scope of the present paper. Instead, we introduce

lected subbands; the lower graph shows the average etEjggs & fastph_enomenologicaihtrasub_band thermalization_propess
a function of time. The graph and the curve denotedibyefer to ~ CONServing the number of particles and the total kinetic en-
a decay exclusively due to LO phonon scattering, while(fora €9y Within a given subband. This is achieved by adding the
phenomenological intrasubband thermalization is addadThe  following term to Eq.(15):
population of the initial subban{0,7} at timet=0 ps and at an
early stage {=28 fg) is shown in the high energy side: the final
population at=1.8 ps in the lowest subbands is plotted in the low [ng(E,,uS(t),Ts(t))— ng(E,t)]
energy side.(b) The population of the initial subbanfil,0} is - ) (16)
shown at timeg=0 ps andt=0.4 ps: the final population at time
t=14.4 ps[7.2 ps for the grapHii)] only involves the subband
{00 since the splitting is greater thdiw, ¢ . where 7,=70 fs is the phenomenological thermalization
time, n2(E, u(t), T5(t)) is the asymptotic equilibrium Fermi

In the case of a “large” wirdFig. 7(a)], the initial sub-  distribution function in subban®, ug(t) and Tg(t) are the
band is the eighth excited oney ;=84.5 meV. The average chemical potential and the temperature, respectively, and
energy shown in the lower part of the figure decreases quitthey are evaluated self-consistently at each step of the evo-
fast and reaches after 0.4 ps its asymptotic value of 23.6ution from the knowledge of the number of particles and the
meV, corresponding to the energy of the asymptotic finakotal energy in each subband. The different classes now
population shown at=1.8 ps in inseti). This final popula- couple together, in opposition to what happened in the case
tion involves the subband®,0 (solid line), {0,1} (dashed without thermalization, since boths and Tg depend on all
line), and{0,2} (dotted ling with respective subband edges the states belonging to th® subband. From the physical
Eo0=0.0 meV,E;=13.6 meV, andE,,=25.6 meV. The point of view, it is important to note that the express{as)
ordering of the rates according to the quantum numbers meris not a diffusion or detailed balance termkirspace as one
tioned in Sec. Il A is responsible for the structure of the might expect, but it is simply a term that forces the distribu-
final population: this population is predominant in the mosttion of each subband to relax to an internal thermal equilib-
excited available subband because it is easier for electrons tium during a typical time scale,,. The introduction of this
change theix quantum number by only one, as compared tokind of term is justified since our aim is not to describe the
several, units. Only a few electrons populate subbghn6} unknown microscopic dynamics on the 10 fs time scale but

@) el omanas /@1 ) during the relaxation process since transitions from 0
{07}

n;(a.uw.)

23 )
100.0 [6.0 500 E[mev] 100.0

50.0

(E)[meV]

0.0

n;(a.u.)

100.0 |+

(E)[meV]

0.0
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to obtain an insight into the possible accelerating effect of alirection is changed in the relaxation process, the transition
fast intrasubband thermalization mechanism on the slowerates are about one order of magnitude smaller.
LO-phonon relaxation. The average global relaxation time needed by a single
In Figs. 1a) and 1b) the curves and graphs including the excited electron to reach the lowest accessible conduction
effect of a fast intrasubband thermalization are labéled  band state presents discontinuities as a function of the initial
The lower parts of the figures show that the decay of theelectron energy, due to the divergence of the relaxation rate
average energy is accelerafeldshed curve§i)]. This effect towards a subband edge at the opening of a new channel.
is much more pronounced for the narrow wire where fewerContrary to our first intuition, this time does not inevitably
channels are available. However, from this it cannot be deincrease as a function of the initial energy because the num-
duced that the observed acceleration of the decay is univeber of available channels increases too. We observed that the
sal, since one of the effects of the thermalization is to modifyaverage global relaxation time is less than a picosecond
the feeding or emptying of the channels: if the thermalizationwhen the initial electron is in the ground state in the direction
feeds fast channels and empties slow channels it acceleratet strong confinement, but can be one order of magnitude
the decay, but the opposite could also happen with the opp@reater otherwise.
site consequence. The two trends compete and the effect de- The dynamics of an ensemble of excited electrons includ-
pends on the population. The final energy is clearly seen ting level population effects has been investigated. The char-
be significantly lower in both examples of wires, since theacteristic decay time can vary significantly, depending on the
second effect of fast intrasubband thermalization is to rearinitial subband, the resonance conditions with LO phonons,
range the low-lying subbands and feed upper levels foand the dimensions of the wire. However, it is inevitably
which LO-phonon transitions are allowed. The lowering of smaller in larger wires due to the larger number of available
the average energiE) lasts until the electron densities in all channels.
subbands become negligible for energies abfouwgg . In the When a fast phenomenological intrasubband thermaliza-
case of the large wirFig. 7(a)], this seems to happen as a tion process is added, the populations rearrange rapidly to fit
second phase in the relaxation process bringing the overafiermi distributions in each subband. This process lowers the
relaxation time up to 1 ps and the final energy down to 8.4inal energy and this lowering might appear as a second
meV. Graph(ii) also shows that the predominance of thephase in the overall relaxation, especially in large wires. In
final population in the highest available excited subband ismall wires, the intrasubband thermalization may also sig-
still present. In Fig. ), the thermalization has a much nificantly speed up the relaxation.
stronger accelerating effect on the relaxation time: after 7.0
ps, the population can be considered as completely relaxed
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been investigated. In a first step, the electronic states of a
geometrically complex wire have been computed in the APPENDIX: PONDERATED REDUCED MASS
framework of the adiabatic approximation. This technique
capitalizes on the smoothness of the curves describing the The expressioi) of the ponderated reduced masg; is
cross section of weakly-one-dimensional wires. The relaxderived directly from the three-dimensional Satirger
ation rates between any pair of LO-phonon coupled stateggquation
were then evaluated using the Fermi golden rule, and an
interpretation in terms of quantum numbers, allowed by the h2 1
adiabatic approach, was presented. The single-electron total [— ?Vm
decay time was determined with respect to the initial excited ’
state. The last section treated the investigation of the electron =Ex{(2) p(x)e'. (A1)
population dynamics for two different wires, large and small,

with or without a phenomenological intrasubband thermali-ysing the adiabatic approximation, tzedependent part of
zation. _ . the kinetic energy operator and the potentigk,z) are ab-
| WF ha(;/e Sdho"_m that tk][et r?rl]axatlontrate f“ngt'onsfi‘rr]%orbed by the effective potentialf™ (x) and the function

clearly ordered with respect to the quantum numbers o X X g X
statesy involved. As expgcted the ir?trasubband relaxation (5.2 DECOMES Xim(2). Projecting on xiy(2), the

: o e : . -dependent part of the kinetic energy operator applied to the
always the most rapid, i.e., the kinetic energy is quickly Iost.envelope function becomes
For intersubband relaxation, the rates are smaller, but of the
same order of magnitude, when the quantum number in the

i irection | h? a a _
strongest confinement direction is preserved, and ordered __j A2y’ (2)*— T (2) )
with respect to the quantum number in the weak confinement 2 Xionte) 5y m* (X,z) gxXen k '
direction. If the quantum number of the strong confinement (A2)

V+V(%,2) | xi(2) pr(x)e"
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Owing to the slowx dependence ofy , thex derivatives can Expanding to second order knneark=0, the last two terms
be permuted withj ,. A local ponderated effective mass is in the square brackets are then replaced by the energy of the

defined as band edge Ey_q,; and ¢y (x) by the eigenfunction
dr=0n,i(X). Projection ongy—q, j(X) gives
Moo= [ dzg @t o B3) oy g
— = — ——eW=(E-Ey_qn )€Y, (A5)
and only the  kinetic symmetric term 2 man ( =on,)
d/dx [my o(x) "1d(¢p(x)eY)/dx] is retained in the result- h
ing Schralinger equation, giving where
#2 1 d* a*d 1 d _ _
S R A IR m-lzfdx —on O0*M 2y (X) o (X). (A6
[ 2 Mhn(X) dy2 2 dx My a(X) dX+Vk’n(X) nj o O,n,j( ) 7O,n( ) Pk O,n,]( ). (A6)
X i (x) €M =E ¢y (x)e'. (A4)  This last expression is precisely E@).
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