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Thermoelectric response of an interacting two-dimensional electron gas
in a quantizing magnetic field

N. R. Cooper,* B. I. Halperin, and I. M. Ruzin†

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
~Received 26 June 1996!

We present a discussion of the linear thermoelectric response of an interacting electron gas in a quantizing
magnetic field. Boundary currents can carry a significant fraction of the net current passing through the system.
We derive general expressions for the bulk and boundary components of the number and energy currents. We
show that the local current density may be described in terms of ‘‘transport’’ and ‘‘internal magnetization’’
contributions. The latter carry no net current and are not observable in standard transport experiments. We
show that although Onsager relations cannot be applied to the local current, they are valid for the transport
currents and hence for the currents observed in standard transport experiments. We relate three of the four
thermoelectric response coefficients of a disorder-free interacting two-dimensional electron gas to equilibrium
thermodynamic quantities. In particular, we show that the diffusion thermopower is proportional to the entropy
per particle, and we compare this result with recent experimental observations.@S0163-1829~97!02304-7#
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I. INTRODUCTION

It is well known that surface~boundary! currents can pro-
vide significant contributions to the thermoelectric respo
of an electronic system in a quantizing magnetic field. T
importance of such boundary contributions for the nonint
acting electron gas was demonstrated by Obraztsov1 but was
made particularly evident in recent years by studies of
thermoelectric properties of two-dimensional systems in
integer quantum Hall regime. Calculations of the therm
electric response of noninteracting electrons in the inte
quantum Hall regime have been presented by a numbe
authors using various approaches,2–7 and show that, in these
systems, the net currents carried on the boundary of
sample can outweigh the net currents carried through
bulk. Measurements of the intrinsic, ‘‘diffusion-and-dri
thermopower’’ in the integer quantum Hall regime are co
sistent with existing theories for noninteracting electro
once disorder is introduced.~For a review of experiments
and theories of the intrinsic and phonon-drag thermopo
for noninteracting electrons, see Ref. 8!.

Recently, however, there have been reports of meas
ments of the diffusion thermopower in the fractional qua
tum Hall regime.9,10 It is clear, both from these measur
ments and from what is known of the fractional quantu
Hall effect, that interactions must play an important role
determining the transport properties in this regime.

In this paper we discuss the thermoelectric response o
interacting electron gas, paying particular attention to
importance of the boundary currents. In Sec. II we restate
general expressions for the linear response, following an
proach first proposed by Luttinger,11 and since discussed fo
the quantum Hall regime by Oji and Streda.6 We extend this
analysis by deriving general expressions for the local ene
current and number-current distributions in gradients of te
perature and chemical potential. We argue that, even w
electron-electron interactions are included, both the num
and energy currents in the bulk of the sample may be se
rated into ‘‘transport’’ and ‘‘internal magnetization’’ contri
550163-1829/97/55~4!/2344~16!/$10.00
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butions. The magnetization contribution causes no net c
rent to flow through the sample. However, it can have
significant effect on the local current density. We show th
Onsager relations may still be applied, in a quantizing m
netic field, for the transport currents, and hence for the
currents through the sample.~The Onsager relations canno
in general, be applied directly to the local current densitie!

In Sec. III we consider a two-dimensional electron syst
in the limit of zero impurity scattering, and we derive th
forms of various transport coefficients in this case. In p
ticular, the thermopower coefficient is shown to be equa
the entropy per carrier divided by the charge of the carrie
result first derived by Obraztsov for noninteracting electro
In Sec. IV we compare these results with recent data, at v
low temperatures, onp-type samples with Landau-level fill
ing fractions nearn51/2 andn53/2.9 We find that the data
at n51/2 are consistent with an interpretation based o
model of spin-polarized ‘‘composite fermions,’’ with a rea
sonable value of the effective mass, but this does not see
be the case atn53/2.

Many of the results of Sec. II, particularly for the n
currents, have been obtained previously by Oji and Stre6

at least for the case where the gradients of the potentials
the temperature are constant throughout the sample. M
details were omitted from their presentation, however, a
many of the underlying assumptions were not stated exp
itly. Because there are a number of subtle points in the d
vation, because there appears to have been some conf
in the literature,12 and because the results are of fundamen
importance, we give here a detailed and general derivati

II. GENERAL EXPRESSIONS FOR LINEAR RESPONSE

A. General considerations

We begin by reviewing the ‘‘hydrodynamic’’ assumption
inherent in any theoretical discussion of transport coe
cients such as the thermal and electrical conductivities, th
mopower, etc. We restrict our attention to small deviatio
from thermal equilibrium, in samples which are very lar
compared to atomic distances or other microscopic len
2344 © 1997 The American Physical Society



er

or
ec
ns
er

m
de
m
nt
y
n

t
th
s
ra
x
he
ve
n
gt

on

s

te
n
ba
cy
-

ity

pa
,

l
o
-
o
a
ie
th

e
er
ics
a
tio

.

ly

e-
of
f-
er-
b-
by
re-

a
at

al
-

tro-
-
in

c
n-

he
y be
dy-
n-

ten-
e
he

iza-

arp
ne-
r-
ere

55 2345THERMOELECTRIC RESPONSE OF AN INTERACTING . . .
scales, and we shall investigate the response to weak ext
perturbations which vary slowly in space and in time.

We assume here that particles interact only via sh
range forces, deferring until Sec. II G the modifications n
essary in the presence of long-range Coulomb interactio

The fundamental hydrodynamic assumption is that th
exists a microscopic relaxation ratetm , such that for pertur-
bations which vary on a time scale slow compared totm , the
system relaxes to a state that is close to local thermodyna
equilibrium, and where all properties of interest may be
scribed in terms of an expansion about local equilibriu
More particularly, one identifies a set of conserved qua
ties, which in the systems of interest to us are the energE
and particle numberN, and one defines corresponding co
served densities, such as the energy densitye(r) and particle
densityn(r). On time scales large compared totm , one as-
sumes that all physical quantities localized near a poinr
relax to values which are determined by the values of
conserved densities and their low-order spatial derivative
the vicinity of r. On the other hand, one cannot in gene
assume that the conserved quantities themselves rela
their equilibrium values in a microscopic time scale. T
conservation laws relate the time derivatives of conser
quantities to the divergence of associated transport curre
and these time derivatives may be very small if the len
scale of the system is large.

In systems with short-range forces, the slowest relaxati
are typically characterized by a diffusion coefficientD, so
that the slowest relaxation time for the conserved densitie
given bytM'L2/D, whereL is either the size of the system
or the wavelength of the perturbation, whichever is shor
Clearly, if L is very large,tM may be very much larger tha
tm . Although the overall response to an external pertur
tion may be quite different in the limits where the frequen
is large or small compared totM

21 , the hydrodynamic equa
tions themselves are assumed to apply for time scalest large
compared totm , regardless of whethert is large or small
compared totM .

Our central focus will be on the particle current dens
J(r) and the energy-current densityJE(r). At least in cases
where there are only short-range interactions between
ticles, the hydrodynamic assumptions imply, in particular
locality hypothesisfor J andJE, viz., thatJ andJE are de-
termined by the values ofe(r) andn(r) and their variations,
only in the immediate vicinity of pointr. The currents may
also depend onlocal material parameterssuch as the loca
chemical composition, impurity concentration, etc., and
the applied magnetic fieldB. We assume the material param
eters to be independent of time, but they may depend
position in cases of interest. If the material parameters
independent of position, then the locality hypothesis impl
that for variations on a time scale slow compared to
microscopic relaxation ratetm

21 , the current densitiesJ and
JE at pointr may be considered to be functions ofe, n, and
their gradients at pointr.

The locality assumption, central to any hydrodynamic d
scription, is difficult or impossible to prove rigorously und
general conditions. One important piece of the phys
which enters the case of quantum systems in a strong m
netic field, is that a sample can have nonzero ‘‘magnetiza
nal
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currents’’ even in a situation of thermodynamic equilibrium
In this case, a proof that the electron number currentJ(r) is
independent of conditions far fromr is equivalent to proving
that the equilibrium magnetizationM(r) ~defined below! de-
pends only on local conditions. For a small sample,M(r)
may in fact be rather sensitive to conditions at relative
large distances fromr. For example, for a small metallic
loop, at very low temperatures, the equilibrium current d
pends on the magnetic flux through the loop, modulo units
the flux quantumhc/e, because of the Aharonov-Bohm e
fect. Such effects, however, become negligible in the ‘‘th
modynamic’’ limit of large sample sizes. Since the equili
rium magnetization density can be related
thermodynamics to a derivative of the free energy with
spect to the applied magnetic field@cf. Eq.~9! below# a proof
of the locality ofM reduces to proving that a system has
well-behaved thermodynamic limit for the free energy,
any nonzero temperature.

In our analysis, it will be convenient to eliminaten(r) and
e(r), in favor of two suitably defined ‘‘statistical’’ fields: a
local chemical potentialm(r) and a local temperatureT(r).
We shall also introduce shortly, external ‘‘mechanic
fields’’: a potentialf(r) which couples to the number den
sity, and a fictitious ‘‘gravitational potential’’c(r) which
couples to the energy density. We also define an elec
chemical potentialj5m1f. We shall see that in thermody
namic equilibrium~even if the material parameters vary
space! j and (11c)T are constants in space.

In cases where there is time-reversal symmetry~hence
B50), the currentsJE andJ must vanish in thermodynami
equilibrium. Therefore the first terms in the gradient expa
sions forJE andJ must be proportional to“j and“T ~as-
suming c50). For a quantum mechanical system in t
presence of an applied magnetic field, however, there ma
nonzero circulating currents even in a situation of thermo
namic equilibrium, as was noted above. We shall find it co
venient to break the currentsJ andJE into a ‘‘transport’’ part
and a ‘‘magnetization’’ part according to

J~r!5Jtr~r!1Jmag~r!, ~1!

JE~r!5Jtr
E~r!1Jmag

E ~r!, ~2!

whereJtr andJtr
E vanish in thermodynamic equilibrium and

Jmag~r!5“3MN~r!, ~3!

Jmag
E ~r!5“3ME~r!. ~4!

The ‘‘magnetization densities’’MN(r) and ME(r) are de-
fined to be functions of the temperature and chemical po
tial only at the given pointr. These functions, in turn, may b
computed in thermal equilibrium; i.e., we may compute t
values ofMN(r) andME(r) assuming thatm andT are in-
dependent of position.~Any applied ‘‘mechanical potential’’
may also be taken independent ofr.!

We make a number of observations about the magnet
tion currents.

~1! If we consider a homogeneous sample with sh
boundaries, in thermodynamic equilibrium, then the mag
tizationsMN andME are uniform and the magnetization cu
rents vanish in the interior of the sample. However, th
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will in general be currents flowing on the surface of t
sample. As one can readily derive from Eqs.~3! and~4!, the
surface current densities at a pointt on the boundary are
given by

I5MN3n̂, ~5!

IE5ME3n̂, ~6!

where n̂ is the unit vector normal to the surface, pointin
outward from the sample. The same expressions for
boundary currents are also valid for an inhomogene
sample, in which case the magnetizationsMN,ME vary in the
sample. Their values in Eqs.~5! and ~6! should be deter-
mined at a point inside the boundary close tot.

We are assuming here, and throughout this paper, tha
material exterior to the sample is either a vacuum or
‘‘ideal’’ material with no magnetization of its own. Other
wise, we would have a second contribution to the edge c
rent from the magnetization of the exterior medium.

~2! For a two-dimensional conducting layer in a semico
ductor system, the magnetizationsMN andME are normal to
the layer. If the magnetization lies in the positiveẑ direction,
then the boundary currents will point parallel to the sam
edge in the counterclockwise direction, looking down at
sample.

~3! The integrated boundary currents given by Eqs.~5!
and~6! depend on the magnetization at a point just inside
sample, but are independent of such details as whethe
boundary is sharp or diffuse on the atomic scale, the conc
tration of impurities near the boundary, etc. In the case
thermodynamic equilibrium, in a uniform sample, where t
magnetizations are independent of position, the surface
rents are divergence-free. This is of course necessary s
there should be no bulk currents in this case. Alternative
we see that the condition of divergence-free surface curre
Eqs. ~5! and ~6!, for arbitrary surface treatments, requir
that the magnetizations are truly bulk properties, independ
of any details of the surface.

~4! In our discussion of electron systems, the onlypar-
ticleswhich are allowed to move over macroscopic distan
are the conduction electrons. The electrical currentJe is re-
lated to the particle currentJ of the electrons byJe52eJ,
where (2e) is the electron charge. For a sample at equil
rium the magnetizationMN is related to the conventiona
magnetic moment densityM, in Gaussian units, by

M5~2e/c!MN. ~7!

To avoid confusion, we note that the quantityM, defined
by Eqs.~1! and~7!, has a direct physical meaning in terms
the magnetic moment per unit volume only if the sample is
equilibrium. In the nonequilibrium case, the total magne
momentM is determined by the total current density d
tribution J, including both the ‘‘transport’’ componentJtr
and the ‘‘magnetization’’ componentJmag, as given by the
general formula

M5
2e

c E d3r$r3@J~r!2 J̄#%, ~8!
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where the overline denotes the volume average. Moreo
since Jtr cannot, in general, be expressed as the curl o
vector field, the magnetic moment of the sample in the n
equilibrium case cannot be expressed as an integral of
local magnetization density.

~5! For a uniform macroscopic sample, in thermal eq
librium, the magnetization may be related to other therm
dynamic quantities. By definition, the magnetizationM is
equal to2(1/V)dE/dB, when the entropyS, the volume
V, and the electron numberN are held fixed. More generally
we may write

TdS5dE1PdV1MV•dB2mdN, ~9!

wherem is the chemical potential of the electrons, andP is
the electron ‘‘pressure.’’~We are assuming here short-ran
forces between the electrons.! From the extensivity proper
ties ofS, E, andN, it then follows that

nm5e2Ts1P, ~10!

wheree ands are the energy and entropy per unit volum
Then using Eq.~7! we find

MN52
c

e

]P

]BU
m,T

, ~11!

P5E
2`

m

n~m8,T,B!dm8. ~12!

~6! If there are temperature or electrochemical poten
gradients, there may be nonvanishing magnetization curr
in the interior of an otherwise uniform sample. Alternative
if there are gradients in the material parameters, bulk m
netization currents can be present even at thermodyna
equilibrium.

~7! Under all conditions, the magnetization currentsJmag
and Jmag

E are divergence-free. As a consequence, these
rents do not make any contribution to thenet current flows
that are measured by conventional transport experime
Specifically, consider any closed curveC that encircles the
sample but is exterior to it, and letS be a surface spannin
this contour. The total magnetization currents crossing
surface must be zero, by Stokes’s theorem, and the total
rentsI S and I S

E crossing the surface are obtained by cons
ering the transport currents alone:

I S[E
S
n̂•Jd2S5E

S
n̂•Jtr d

2S, ~13!

I S
E[E

S
n̂•JEd2S5E

S
n̂•Jtr

E d2S, ~14!

where n̂ is the local normal toS. In a dc transport experi-
ment, where“–J5“–JE50, the currentsI S and I S

E will be
independent of the particular surface chosen. This argum
applies equally well to a singly or multiply connected samp
including the case whereC threads a hole in the sample, a
in Fig. 1. In the case of a two-dimensional sample, the s
faceS becomes a curve traversing the sample, whileI S and
I S
E are the total currents across the curve.
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In the remainder of this section, we shall apply the abo
considerations to the general hydrodynamic description o
electron system in a strong magnetic field. Our goal is
obtain some relations among the various transp
coefficients—both for the transport currentsJtr(r) and
Jtr
E(r) and for the total local currentsJ(r) andJE(r). We also
relate the transport coefficients to microscopic express
involving correlation functions for currents in the equilib
rium state.

Our strategy can be best illustrated by considering
simple example where the electrons are subject to a w
external potentialf(r), while the temperature is maintaine
constant, say by contact with a substrate. Then inside
sample we may write

Jtr~r!52N̂~1!
“m~r!2L̂ ~1!

“f~r!, ~15!

wherem(r) is the local chemical potential for the electron
andN̂(1) and L̂ (1) are second-rank tensors, which we den
‘‘transport coefficients.’’ In thermodynamic equilibrium, th
electrochemical potentialj(r)5m(r)1f(r) is independent
of position, andJtr , by definition, is zero. Since this must b
true for arbitraryf(r), we immediately obtain the ‘‘Einstein
relation’’ N̂(1)5L̂ (1).

Macroscopic equations for the response of the system
time-dependent perturbationf(r,t) are obtained by combin
ing Eq. ~15! with the conservation law (]n/]t)52“•Jtr .
~Recall that“•Jmag50.! If there is a periodic disturbance i
j(r) with a wave vectorquux̂, then the electron density wil
relax towards the equilibrium state, withj(r)5 const, at a
rategq5Dq2, where the diffusion constantD is given by

D5Lxx
~1!/~]m/]n!. ~16!

~Again, we assume short-range interactions between the e
trons, so]m/]n is finite for q→0.! A microscopic expres-
sion for L̂ (1) can be obtained by using quantum mechanics
calculate the response of the system to an infinitesimal ti
dependent perturbationf, applied at a frequencyv which is
small compared to microscopic frequenciestm

21 , but high
compared togq , so that the densityn does not have time to
change significantly. One thus obtains an expression
L̂ (1) in terms of a two-time correlation function for fluctua
tions in J in the equilibrium state.

In order to generalize this procedure to the case of n
uniform temperature, we follow the work of Luttinger11

which involves the introduction of a fictitious ‘‘gravitationa

FIG. 1. ContourC, external to sample, is spanned by surfa
S. The total current throughS is equal to the transport curren
acrossS, as the magnetization current gives no contribution. T
illustration shows a multiply connected sample.
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potential’’ c(r), which enters the Hamiltonian through it
coupling to the energy density. If linear response toc is
calculated, the response to a temperature gradient ma
obtained from the Einstein relations. Our situation is mo
complicated than the case considered by Luttinger, howe
because the Einstein relations apply only to the transp
currents, and not to the total currents.

B. Current operators in the presence
of electrical and gravitational fields

The linear response to mechanical fields~electrostatic and
gravitational! in a quantizing magnetic field has been pr
sented previously.6 However, since it is important to the res
of our discussion, we shall review this here. We conside
Hamiltonian of the form

H0[(
i51

N

hi5(
i51

N H @pi1eA~r i !/c#2

2m
1V~r i !1

1

2 (
j ~Þ i !51

N

ui j J ,
~17!

whereA(r) is the magnetic vector potential,V(r) is the sca-
lar potential energy including the confinement and disor
potentials and the periodic potential of atomic cores, a
ui j describes the interparticle interactions. Following Lu
tinger, we introduce the number and energy dens
operators11,13

r~r![(
i

d i , ~18!

h~r![
1

2(i $hi ,d i%, ~19!

whered i[d(r2r i), hi is defined in Eq.~17!, and the curly
brackets indicate the anticommutator,$A,B%[AB1BA.

We are interested in the response of the current densit
time varying external ‘‘electrostatic’’ and ‘‘gravitational’
potentialsf andc, respectively. These fields couple to th
number and energy densities according to the Hamiltonia

HT5E d3r hT~r!, ~20!

hT~r![h~r!1f~r!r~r!1c~r!h~r!. ~21!

@We call the functionc(r) defined by Eqs.~20! and~21! the
‘‘gravitational potential’’ to follow the terminology of the
original work by Luttinger,11 although the true gravitationa
potential would also be coupled to the mass density ra
than just to the first-order term of the relativistic energy e
pansion.#

The conservation laws for energy and particle number
ply that the Heisenberg equations of motion forr andhT ,
under the HamiltonianHT , may be written in the form11

dr~r!

dt
52

i

\
@r,HT#52“•J~r!, ~22!

dhT~r!

dt
52

i

\
@hT ,HT#1

]hT
]t

52“•JE~r!1
]hT~r!

]t
,

~23!

e
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whereJ andJE are here operators for the particle and ene
currents. The second term on the right-hand side of Eq.~23!
occurs when there is a time dependence tof(r) or c(r). The
above equations constrain, but do not determine uniqu
the forms of the operatorsJ andJE, as we may in principle
add to them an arbitrary function whose divergence is id
tically zero. A requirement of strict locality for the particl
current, however, together with Eqs.~20! and ~21!, imposes
the form

J~r!5 j~r!@11c~r!#, ~24!

wherej(r) is the particle current forc50:

j~r![
1

2(i $vi ,d i%, ~25!

vi[@pi1eA~r i !/c#/m. ~26!

The requirement of strict locality cannot be applied eith
to the energy current or the energy density in a nonrelati
tic theory with interactions of nonzero range. However,
form of the energy current is adequately restricted for
purposes if we require that it depends only on the positi
and velocities of particles in a small neighborhood ofr. Al-
though various forms of the energy current may still be w
ten down, which are consistent with this requirement a
with a requirement that Eq.~23! be satisfied exactly on th
microscopic scale, we shall adopt here the particular de
tions

JE~r ![ jE~r!1f~r!j~r!12c~r!jE~r!, ~27!

j a
E~r![

1

4(i $hi ,$v i
a ,d i%%1

1

8(i5” j (g
$~v i

g1v j
g!,t i j

ag~r!%,

~28!

t i j
ag~r![~r i

a2r j
a!Fi j

g D i j ~r!, ~29!

D i j ~r![E
0

1

dsd@r2r j2~r i2r j !s#, ~30!

whereFi j
a [2]ui j /]r i

a is the force on particlei due to its
interaction withj . We note that by definitionjE is the energy
current associated with the unperturbed HamiltonianH0, and
Eq. ~27! is valid to first order inc, with the requirement tha
f andc vary very slowly in space compared to the range
the interactionui j . It is not difficult to show, under thes
circumstances, thatJE exactly satisfies the Heisenberg equ
tion of motion ~23!. To demonstrate this, it is convenient
integrate Eq.~23! over a small volumedV, and to write the
integral of “•JE as an integral over the surfaceS of the
volume. We also note that

E
S
D i j ~r!~r i2r j !•dS5x j2x i , ~31!

wherex i[1, if particle i is inside the volume enclosed b
S, and zero otherwise.

With our definitions, the contribution to the energy cu
rent from the interaction potentialui j is distributed along the
straight-line segment joiningr i and r j , similar to the distri-
y

y,

-

r
s-
e
r
s

-
d

i-

f

-

bution of the energy current adopted in Ref. 14. By contra
in Ref. 11, Luttinger employed a different form forjE, where
the energy current is supposed to be localized at the
points r i and r j . Luttinger’s expression is only approximat
on the microscopic level, since it does not strictly satisfy E
~23!. Our more precise formula and Luttinger’s are equiv
lent, however, when integrated over any volume large co
pared to the range ofui j . In fact, in the present paper w
have no real need for a precise form forjE(r), but will only
make essential use of Eq.~27!.

C. Thermodynamic equilibrium

We first consider the situation of thermodynamic equil
rium. A grand-canonical ensemble, for the perturbed Ham
tonianHT may be described by a density matrix

w5Z21e2b~HT2jN!, ~32!

where j and b[T0
21 are Lagrange multipliers, which we

may describe, respectively, as the ‘‘electrochemical pot
tial’’ and the ‘‘inverse thermodynamic temperature.’’

The properties ofw are particularly simple in the cas
wherec andf are constants, independent of position. Th
the eigenstates ofHT are the same as the eigenstates ofH0,
and the density matrixw is identical to a density matrix
w0, of the form

w05Z21e2~H02mN!/T, ~33!

with

T215b~11c!, ~34!

m5~j2f!/~11c!. ~35!

We denoteT as the ‘‘internal temperature,’’ andm as the
‘‘internal chemical potential.’’ The internal energy densi
e(r)[^h(r)& and the particle densityn(r)[^r(r)& are the
same in the two cases, as is the entropyS[2tr(wlnw). Note
thate andn may depend on position, even in equilibrium,
the material parameters vary in space.

The particle and energy currents are not the same in
two cases, however, because the operators themselve
modified by the presence ofc andf. Using Eqs.~24! and
~27!, we see that

^J~r!&5^ j~r!&1c^ j~r!&, ~36!

^JE~r!&5^ jE~r!&1f^ j~r!&12c^ jE~r!&. ~37!

The expectation values on the right-hand side represent
particle and energy currents in the ‘‘unperturbed’’ state, w
f5c50, temperatureT, and chemical potentialm. @Note:
in Eq. ~37!, as in Eq.~27! we have dropped terms of orde
c2, since we always considerc to be small.#

The currents in Eqs.~36! and ~37! are purely magnetiza
tion currents, since the transport currents vanish, by de
tion, in equilibrium. In the case of a uniform sample, th
magnetization currents are confined to the boundaries. M
generally, they are given by Eqs.~3! and ~4!. This implies
that in the equilibrium state, with constantf andc, we have,
to first order in the perturbations, at any pointr in the sample
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MN5~11c!M0
N~m,T!, ~38!

ME5~112c!M0
E~m,T!1fM0

N~m,T!, ~39!

whereM0
N andM0

E are the unperturbed magnetizations~cor-
responding toc5f50), which we have written explicitly
as functions of the chemical potentialm and internal tem-
peratureT. ~The functionsM0

N andM0
E are also implicitly

functions of the material parameters, such as chemical c
position and impurity concentration, in the neighborhood
the pointr.!

The results~34!, ~35!, ~38!, and~39! can be generalized to
the case whenf andc vary in space. Equation~32! is still
valid in this case. If the length scale of the variation is s
ficiently large, the entire system can be considered, wit
the standard approach, as consisting of small subsys
weakly interacting with each other at imaginary borde
Each of these subsystems, if allowed, will reach a local eq
librium state which depends on the local valuesn(r) and
e(r). We assume, of course, that the magnetic field is c
stant. One can then introduce local thermodynamic par
eters~chemical potential, temperature, entropy density, e!
which are functions of the two independent variables,n and
e. The values of extensive thermodynamic parameters
be then given by the integral of the corresponding local d
sities over the sample area. In particular, for the total ene
total entropy, and total number of particles we have

ET[^HT&5E @e~r!1n~r!f~r!1e~r!c~r!#d3r, ~40!

S5E s„e~r!,n~r!…d3r, ~41!

N5E n~r!d3r, ~42!

wheres(e,n), the local entropy density, is the same functi
of e and n as for a uniform system. The accuracy of th
approximation is limited by terms (“e)2, (“n)2 which re-
flect the interaction between adjacent subsystems.

It is more convenient to choose, instead ofe andn, a local
‘‘internal’’ temperatureT(r) and chemical potentialm(r) as
independent thermodynamic variables. Following Lutting
we define these parameters in the same way as it is con
tionally done for a homogeneous system,

T215
]s

]eU
n

, m52T
]s

]nU
e

. ~43!

@Of course, these definitions are consistent with the ther
dynamic relation~9!, interpreted in a local sense, withV and
B fixed.#

The equilibrium state defined by the density matrix~32!
is the state which maximizes the functionalF[S
2b(ET2jN). Using Eqs.~40!–~42!, and setting the varia
tional derivatives ofF equal to zero, we find

T21~r!5b@11c~r!#, ~44!

m~r!5@j2f~r!#/@11c~r!#, ~45!
-
f

-
n
ms
.
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-
-
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which is the generalization of Eqs.~34! and~35! to the non-
uniform case. The equilibrium conditions may be altern
tively written as

d~m/T!52f~r!/T0 , ~46!

d~1/T!5c~r!/T0 , ~47!

whereT0
215b is the unperturbed temperature of the samp

If T0 is replaced by the perturbed temperatureT, these con-
ditions reduce to the conditions for thermal equilibrium o
tained by Luttinger,11 which are valid for small changes i
f andc.

We now consider the magnetization currents. By defi
tion, the transport currents vanish in an equilibrium state,
the magnetization currents are the total local currents in
case. Iff(r), c(r), T(r), andm(r) vary sufficiently slowly
in space, it is clear thatMN(r) andME(r) will be still given
by Eqs. ~38! and ~39!, provided that the argumentsm and
T of the functionsM0

N andM0
E are evaluated at the positio

r. ~Corrections will be at least second order in the gradien
if one is away from the boundary of a sample.! Then using
Eqs. ~3! and ~4!, for a sample with uniform chemical com
position, far from the boundaries, we find

Jmag
bulk52

]M0
N

]m
3“m2

]M0
N

]T
3“T2M0

N3“c, ~48!

Jmag
E,bulk52

]M0
E

]m
3“m2

]M0
E

]T
3“T2M0

N3“f22M0
E

3“c, ~49!

to leading order inf andc. There will also be additiona
magnetization currents at the boundaries, given by Eqs.~5!,
~6!, ~38!, and~39!.

D. Nonequilibrium states

We now consider the nonequilibrium situation, whe
Eqs.~46! and ~47! are not satisfied and wheref, c, T, and
m may be in general time dependent. The local temperatu
T(r) andm(r) are defined to be the same functions ofe(r)
andn(r) as in the equilibrium case. We continue to defi
the magnetization currents and magnetizations by Eqs.~38!,
~39!, ~48!, and ~49!, and we define the remaining contribu
tions to the currents to be the transport contributions.

By the locality hypothesis, the transport currents must
given by a sum of terms proportional to the gradients“f,
“c, “T, and“m, in the limit where the applied fields ar
small. Our aim is to determine the coefficients of the
terms. The requirement that the transport currents van
when Eqs.~46! and ~47! are satisfied means that the grad
ents enter only in the combinations@“f1T“(m/T)# and
@“c2T“(1/T)#. This observation is the generalization
the ‘‘Einstein relation’’ to the case in which there is a no
uniform c, and allows the response to the statistical fie
m andT to be related to the response to the mechanical fie
f andc.

To determine the remaining unknown coefficients, w
consider a particular situation, where the potentialsf and
c vary periodically in time, with a characteristic frequenc
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v small compared to the microscopic relaxation ratetm
21 but

large compared to the size-dependent relaxation ratestM
21 for

the energy and particle density.~This is the ‘‘rapid case’’ of
Ref. 11.! In this situation the local values ofe andn are not
changed from their initial values, so thatm and T remain
constant throughout the sample.

We concentrate on a region far from the boundaries. Si
“T5“m50, we may write the total currents as

Jbulk5L̂ ~1!~2“f!1L̂ ~2!~2“c!, ~50!

JE,bulk5L̂ ~3!~2“f!1L̂ ~4!~2“c!, ~51!

with transport coefficients that can be expressed in term
time-dependent correlation functions in the framework of
standard Kubo formula:11

Lag
~1!5 lim

s→0
1
VE0

`

dte2stE
0

b

db8^ j 0
g~2t2 ib8! j 0

a~0!&,

~52!

Lag
~2!5 lim

s→0
1
VE0

`

dte2stE
0

b

db8^ j 0
gE~2t2 ib8! j 0

a~0!&,

~53!

Lag
~3!5 lim

s→0
1
VE0

`

dte2stE
0

b

db8^ j 0
g~2t2 ib8! j 0

aE~0!&,

~54!

Lag
~4!5 lim

s→0
1
VE0

`

dte2stE
0

b

db8^ j 0
gE~2t2 ib8! j 0

aE~0!&.

~55!

Here the subscript 0 on each time-dependent current ope
j0 andj0

E indicates theq→0 limit of its spatial Fourier trans-
form, and the angular brackets denote the quantum mech
cal and thermodynamic average in the equilibrium state o
infinite system at temperatureb215T and chemical poten
tial m.

In order to find the transport currents when
“T5“m50, we subtract from Eqs.~50! and ~51! the bulk
magnetization currents, given by~48! and~49!. We thus find

Jtr52L̂1
~1!
“f2@ L̂ ~2!2M0

N
• ê#“c, ~56!

Jtr
E52~ L̂ ~3!2M0

N
• ê!“f2@ L̂ ~4!22M0

E
• ê#“c, ~57!

where ê is the unit antisymmetric three-tenso
( ê)abg51(21) if the abg is an even~odd! permutation of
xyz, and zero if two indices are equal. By definition, tran
port currents flow only in the bulk of the sample. To simpli
notation, we have therefore dropped the label ‘‘bulk’’ in th
above equations, and will do so for all subsequent trans
current densities.

Now we can consider the general case, for an arbitr
value of vtM , where“m, “T, “c, and“f may be all
nonzero. As remarked earlier, the condition that the trans
currents vanish in equilibrium requires that the gradients
ter only in the combinations@“f1T“(m/T)# and
@“c2T“(1/T)#. ~In other words, the Einstein relations, e
tended to the case where“T and“c are different from zero,
apply to thetransportcurrents in the presence of finite ma
netic field.! Thus we have, in the general case,
e
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Jtr52L̂ ~1!@“f1T“~m/T!#1~ L̂ ~2!2M0
N
• ê!

3@2“c1T“~1/T!#, ~58!

Jtr
E52~ L̂ ~3!2M0

N
• ê!@“f1T“~m/T!#1~ L̂ ~4!22M0

E
• ê!

3@2“c1T“~1/T!#. ~59!

Of course, Eqs.~58! and ~59! reduce to the Luttinger
formulas11 when the magnetic field is absent, so th
M0

N5M0
E50.

To obtain the local currents, in a uniform sample far fro
the boundaries, in the general case where“T, “m, “f, and
“c are all independent, we must add the magnetization c
rents, given by Eqs.~48! and ~49! to the transport currents
given by Eqs.~58! and~59!. In addition, there will be bound-
ary currents from the magnetization. In the absence of
fictitious gravitational potential (c50) the change in the
integrated boundary currents at a pointt, Eqs.~5! and~6!, is
determined by the changes in the temperature and chem
potential at that point, according to

dI52n̂3F]M0
N

]m
dm1

]M0
N

]T
dTG , ~60!

dIE52n̂3F]M0
E

]m
dm1

]M0
E

]T
dT1f~r!M0

NG . ~61!

Although we have introduced the fictitious fieldc to derive
linear response, we will have no further need of it, and he
shall setc50 for the remainder of this paper.

It is convenient to introduce the electrochemical potent
defined by

j~r![m~r!1f~r!. ~62!

An ideal voltmeter~with leads that have no thermopowe!
will measure the difference inj between two contact points
In a thermodynamic equilibrium state, the value ofj, as well
as the temperatureT, will be constant throughout the system

It is also convenient to define a transport heat curr
density as

Jtr
Q[Jtr

E2jJtr . ~63!

Then we may rewrite Eqs.~58! and ~59! in the form

Jtr52N̂~1!
“j2N̂~2!~“T!/T, ~64!

Jtr
Q52N̂~3!

“j2N̂~4!~“T!/T, ~65!

where

N̂~1!5L̂ ~1!, ~66!

N̂~2!5L̂ ~2!2mL̂ ~1!2M0
N
• ê, ~67!

N̂~3!5L̂ ~3!2mL̂ ~1!2M0
N
• ê, ~68!

N̂~4!5L̂ ~4!2m~ L̂ ~3!1L̂ ~2!!1m2L̂ ~1!22~M0
E2mM0

N!• ê.
~69!

Although our derivation has assumedf to be infinitesimal,
the final results for the transport currents, given by E
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~62!–~69! and ~52!–~55! are written in a form that remain
valid whenf is not small. This accounts for the slight di
ferences~which are beyond leading order in the drivin
fields! between the above coefficients,N̂( i ), and those ob-
tained by direct substitution of Eqs.~58! and ~59! into Eq.
~63!. Whenf is not small, the expressions~50! and ~51!
should contain additional higher-order terms inf; the coef-
ficients L̂ appearing above cannot therefore be defined
these expressions, but are assumed to be defined by the
formulas~52!–~55!. In the case of finitef, Eq. ~49! for the
bulk magnetization currentJmag

E,bulk must also be modified by
the addition to the right-hand side of a termfJmag

bulk ; the edge
currentIE is still given by Eqs.~6! and ~39!.

E. Onsager relations

The transport coefficients forJtr and Jtr
Q , given by Eqs.

~64!–~69!, obey Onsager symmetry relations15,16of the form

Nag
~1!~B!5Nga

~1!~2B!, ~70!

Nag
~2!~B!5Nga

~3!~2B!, ~71!

Nag
~4!~B!5Nga

~4!~2B!. ~72!

To see that this is the case, we first establish that the co
cientsLag

( i ) ( i51,2,3,4) obey Onsager relations of the sa
form as Eqs.~70!–~72!. This follows from the expression
relating Lag

( i ) to the current correlation functions~52!–~55!,
and the invariance of the HamiltonianH0 under simulta-
neous reversal of time and magnetic field. Secondly, we n
that the magnetizationsMN andME reverse sign under rever
sal ofB. Equations~70!–~72! follow directly.

In contrast thelocal current densities do not satisfy th
Onsager relations. The local current densities differ from
local transport current densities by the bulk ‘‘magnetizat
currents.’’ These additional magnetization contributions
the local response in general depend on which driving fiel
applied~e.g., whether it is“m or“f), and give rise to a se
of transport coefficients, one for each driving field, whi
differ by terms proportional to the gradients of magnetizat
densities. Since no general symmetries relate these addit
magnetization terms, neither the Einstein relations nor
Onsager relations hold locally for the total current respon

As a specific example, consider the local bulk currentJ
andJQ[JE2jJ in terms of“m and“T, under conditions
where “f5“c50. By combining Eqs.~63!–~69!, with
Eqs.~1!, ~2!, ~48!, and~49!, one may readily obtain expres
sions for the appropriate coefficientsLag

( i ) ,

L̂~2!5N̂~2!1T
]M0

N

]T
• ê, ~73!

L̂~3!5N̂~3!1S ]M0
E

]m
2m

]M0
N

]m D • ê. ~74!

As far as we are aware, there is no symmetry relating
derivatives ofM0

E andM0
N with respect tom andT, so these

coefficients apparently do not satisfy the usual Onsager r
tions.
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Moreover, if we consider instead a situation where
“m5“T50, but “fÞ0, we find according to Eqs.~50!
and ~51!, JQ52(L̂ (3)2mL̂ (1))“f. This coefficient, which
is different fromL̂(3), is also clearly not related toL̂(2) by
Onsager symmetry in the general case.

Although the contribution of the magnetization current
does not appear in standard transport experiments, the lo
electric current distribution is measurable, at least in prin
ciple, by a sufficiently sensitive measurement of the mag
netic field generated by currents in the sample. Since th
magnetization current does not dissipate Joule heat, it cou
not be detected using the well-known technique based o
local luminescence intensity.17 Measurements of the local
electric field distribution by means of the electro-optic
effect18 do not serve this purpose either, since the magnet
zation current is related to the ‘‘statistical fields’’“m and
“T rather than to the electric field (1/e)“f. In the case of
the energy current or heat current, we are not aware of an
reasonable method for direct measurement of the local cu
rents.

We illustrate our results further with the example of the
number currentJ for a two-dimensional electron system with
no disorder, at a Landau-level filling fractionn* for which
the electron system is incompressible atT50. At the filling
fraction n* , we haven5n* euBu/hc. Then we have

]MN

]m U
T,B

52
c

e

]n

]BU
T,m

→2
n*

h
ẑ sgn~Bz!, ~75!

where the last equality follows from the incompressibility
condition forT→0. Hereẑ is a unit vector directed upward
from the plane.

The coefficientL̂ (1) for this system is given by the Hall
conductivity:L̂ (1)5(n* /h)sgn(Bz)( ẑ• ê). On the other hand,
substitutingj5m1f into Eqs.~1!, ~48!, and ~58!, we see
that the coefficient describing the local response to“m van-
ishes, and all number-current flow in the bulk is due to th
electric field:Jbulk52(n* /h)sgn(Bz)@ ẑ3“f#. The current
driven by an inhomogeneous chemical potential is
localized at the edge, and is given bydI5(n* /
h)sgn(Bz)dm(r)@ n̂3 ẑ#, wheren̂ is a unit vector in the plane,
perpendicular to edge, in the outward direction.

F. Inhomogeneous samples

Although we have concentrated so far on the case of
homogeneous sample with boundaries that are sharp co
pared with the overall length scale, it is easy to generaliz
our results to the case of a sample whose material param
eters, such as chemical composition, vary on a macroscop
length scale. The formulas~64! and~65! still hold locally for
the transport currents in this case, with the qualification tha
the transport coefficientsN̂( i ) depend on the local material
parameters, and can therefore vary from one place to anoth
in the sample. The magnetization currents at the boundary
the sample are still given by Eqs.~60! and ~61!, with the
qualification that the functionsM0

N andM0
E may also vary

from one place to another because of their implicit depen
dence on the local material parameters. The magnetizati
currents in the bulk of the sample are no longer given simpl
by Eqs. ~48! and ~49!, however. If we denote the material
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parameters by a set of variables$h i%, and we set“c50,
then Eqs.~48! and ~49! should be replaced by

Jmag
bulk52

]M0
N

]m
3“m2

]M0
N

]T
3“T2(

i

]M0
N

]h i
3“h i ,

~76!

Jmag
E,bulk52

]M0
E

]m
3“m2

]M0
E

]T
3“T2(

i

]M0
E

]h i
3“h i2M0

N

3“f1fJmag
bulk. ~77!

@These expressions follow directly from Eqs.~3!, ~4!, ~38!,
and ~39!.# In the quantities]M0

N/]h i and ]M0
E/]h i , which

appear in Eqs.~76! and~77!, it is necessary to keep not onl
the zeroth-order terms, but also the first-order changes
gendered by the deviationsdm(r) anddT(r).

G. Long-range forces

The derivation in the previous subsections, and vari
intermediate results, require modification when there
long-range forces due to unscreened Coulomb interacti
In two-dimensional structures, this is the case when the
tallic gate is either absent or is situated farther than the c
acteristic length scale of the fields applied.

If uncompensated electric charges are present, there
be energy transport over long distances via the macrosc
electric field, and the total energy current at a given poin
space does not, in general, depend solely on the state o
particle system in the immediate neighborhood of that po
Moreover, the convention of Eq.~28!, in which the interac-
tion contribution to the energy current is concentrated alo
the line segments joining each pair of particles, is not gen
ally used in this case.

The most convenient approach is to break up the inter
ticle interactions into a long-range piece, mediated by
macroscopic electric fieldE(r), and a short-range piece
which includes everything else. The macroscopic field
supposed to be averaged over a region sufficiently large
fluctuations in the field, arising from thermal or quantu
fluctuations in the microscopic electronic charge density,
be neglected. Thus there is no entropy transport via the m
roscopic field. As a result, we find that with appropriate de
nitions we can write local hydrodynamic equations for t
heatcurrent and particle current which are similar in form
the equations derived for short-range forces.~We assume
here that we are working at a temperature sufficiently l
that heat transport via the radiation field may be comple
neglected. Formally, this assumption is imposed by tak
the limit where the speed of lightc is infinite.!

To make these points clearer, we note that since charg
locally conserved, charge fluctuations with the longest-ra
effects are electric dipole fluctuations. In the absence of
radiation field, the interaction between dipoles at two diff
ent points falls off as the inverse cube of the separation,
the rate of energy transfer due to random thermal mo
would be expected to fall off as the inverse sixth power
the separation. At large distances this process will be m
slower than the conventional process of heat conduction~al-
ready taken into account in our discussions! wherein energy
is transported diffusively via a series of many short jump
n-
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To proceed formally, we redefine the interactionui j ap-
pearing in Sec. II B to include only the short-range part
the Coulomb interaction, after effects of the macrosco
electric fieldE are subtracted out. First, we choose a trun
tion radiusr cut which is much larger than the average inte
particle distance but much smaller than the macrosco
scales of external fields and, if the sample is not uniform,
scale of the equilibrium density variation. We split the Co
lomb interaction potential into the sum of two term
ui j
tot(r)5ui j

short(r)1ui j
long(r), whereui j

short(r) decays rapidly at
r@r cut, andui j

long(r) contains the long-range tail of the inte
action and changes smoothly at distancesr!r cut. Then we
replaceui j by ui j

short in the definition ofH0 andhi , Eq. ~17!,
and include the long-range componentui j

long(r) in the self-
consistent macroscopic fieldE.

We continue to defineh(r) by Eq. ~19!, and define the
internal energy densitye(r) as the expectation valu
^h(r)&. Thene may be interpreted as the matter contributi
to the energy density. The total energy~with c5f50) is
then given by

E5E d3rFe1
kuEu2

8p
1

uBu2

8p G , ~78!

wherek is the dielectric constant of the background mater
and we assume the background magnetic permeabilit
unity. The energy current will similarly be broken up int
two parts

jtot
E 5 jE1

cE3B

4p
, ~79!

where the second term is the standard contribution from
macroscopic electromagnetic fields, andjE, which we may
think of as the matter contribution to the energy current,
defined by Eqs.~28!–~30!, with ui j replaced byui j

short in the
definition of Fi j

a . Of course,E andB are determined self-
consistently from the macroscopic current and charge dis
butions using Maxwell’s equations in the static limit. Equ
tions ~78! and ~79! are asymptotically correct in the limi
where r cut is large compared to the microscopic scale b
small compared to the scale of variation ofE.

For a two-dimensional electron system in an exter
magnetic field, the magnetic fields arising from currents
the sample are generally very small, and may be omit
from the termuBu2/8p in Eq. ~78!. Thus this term is inde-
pendent of the state of the electron system and may be
nored if desired. On the other hand, the magnetic fields g
erated by the currents in the sample must be included in
second term on the right-hand side of Eq.~79!, because the
speed of light appears as a prefactor. Note also thate and
jE are restricted to the two-dimensional layer, but the el
tromagnetic contributions to Eqs.~78! and ~79! extend into
the space outside. Below we focus on the matter partjE of
the energy current.

It is now possible to redo the arguments of the preced
section with little modification. We restrict our attention
the situation where the applied magnetic field is independ
of time and assume that the macroscopic electric field m
be derived from a scalar potential
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E~r!52“F~r!. ~80!

The potentialF is obtained self-consistently, and includ
effects of any macroscopic time-dependent variations
n(r), as well as the effects of any static charges presen
equilibrium and the external perturbations embodied inf. In
general, we cannot consider thatF is infinitesimal, even in
equilibrium.

In order to repeat our previous derivations, one need
consider a nonzero gravitational potentialc; we present here
the final result, and hence setc50. We redefine the electro
chemical potential as

j~r!5m~r!2eF~r!. ~81!

The definition ~27! of the energy current in the perturbe
system is now replaced by

JE5 jE2eFJ, ~82!

whereJ5 j is the particle current density, andjE was defined
above. As we did in previous sections, we split the lo
currentsJ andJE into magnetization and transport parts, a
we define a transport heat current as given by Eq.~63!. Then
Jtr
Q and Jtr obey equations identical to Eqs.~64!–~69!, with
Lag
( i ) defined by Eqs.~52!–~55! in terms of the correlators fo

the matter currentsj(r) and jE(r) under the Hamiltonian
H0 for a uniform system in equilibrium, withf5c50. The
transport coefficientsNag

( i ) obey the same Onsager relatio
as before.

Note that different definitions of the macroscopic elect
field, as may be obtained by different choices of the trun
tion radiusr cut, will generally cause an exchange of cont
butions between the chemical potentialm(r) and the electro-
static potentialF(r). This will also transfer contributions
between the first and second terms in Eq.~82!, leaving the
sum JE unchanged. As long as the different values ofr cut
remain sufficiently large, the change in the truncation sho
not affect the coefficientsL̂ ( i ) since the correlators in Eqs
~52!–~55! are sensitive only to short-range properties of
system.

We also note that in realistic two-dimensional system
the component of the electric field perpendicular to the e
tron layer, arising from charges on gates or from ioniz
impurities displaced from the layer, may play an importa
role in confining the electrons to the layer. It is therefo
important to include this part of the macroscopic elect
field in the unperturbed HamiltonianH0 and in the definition
of the energy currentjE when calculating the correlatio
functions that appear in Eqs.~52!–~55!. Formally this can be
done by including the perpendicular confining field in t
one-body potentialV which enters Eq.~17!, and excluding it
from the macroscopic potentialF(r). Then the equilibrium
F(r) is a constant in the direction perpendicular as well
parallel to the layer, and can be safely omitted fromH0. In
fact, it may be convenient to include the entire equilibriu
value of the electrostatic potential inV, even in an inhomo-
geneous system, so thatF describes only long-wavelengt
fluctuations about equilibrium.
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H. Additional remarks

Throughout this section, we have treated the fieldsm, T,
c, and f ~or F, in Sec. II G! as independent variables
which can be arbitrary functions of position, subject to t
constraints that gradients are small, and thatf and c are
infinitesimal.~The fictitious fieldc was set equal to zero in
the latter part of the section.! The transport currents depen
on gradients ofm andf ~or F) only through the combina-
tion “j. In a dc transport experiment, there are strong ad
tional constraints arising from the requirements that the c
rents must be divergence-free in the interior of the sam
and must satisfy appropriate constraints at the bounda
Typically, these conditions completely determine the spa
variations ofj andT throughout the sample interior, whe
boundary values of the fields are specified, or when curr
flows through the boundaries are given.

For the case of a two-dimensional electron system o
three-dimensional substrate, the situation is slightly m
complicated. We shall be concerned with situations wh
the substrate is an electrical insulator, so that the diverge
of the two-dimensional electric current is required to be z
in the analysis of experiments. On the other hand, we c
sider the thermal coupling to the substrate, via absorption
emission of phonons, to be small but not zero. Then
length scales large compared to (DTtep)

1/2, wheretep is the
electron-phonon relaxation time andDT an appropriate ther-
mal diffusion constant for the isolated electron system,
divergence ofJQ is not necessarily zero. Instead, one sho
take the value ofT(r) to be an independent variable dete
mined by conditions in the substrate.

Although our previous discussions assumed the samp
be isolated from its environment except at its edges,
transport equations derived above should remain valid p
vided the electron-phonon coupling is sufficiently weak th
tep is large compared to the microscopic times necessar
establish local equilibrium in the electron system.

In order to calculate the transport currents, it is not ge
erally necessary to find the separate portions of“j arising
from “m and from the electric field. This is necessary, ho
ever, if one wishes to obtain the local current distribution.
practical situations, where the nearest external conducto
far from the electron layer compared to the mean spac
between electrons in the layer, the value ofu“mu will be
relatively small compared to the value ofu“fu or u“F/eu.
This is due to the fact that, in the absence of external scre
ing, perturbations inf andm are not really independent an
their characteristic magnitudes can be expressed via e
other. Suppose that a nonequilibrium perturbation in
chemical potentialdm(r) with a large length scalelm is cre-
ated in a two-dimensional system. The resulting variation
the particle density has a magnitudedn;dm/(dm/dn). The
magnitude of the potential variation caused by this accum
lation and depletion of electrons can be estimated
df;(e2/k)dnlm . Thus, in a compressible system, we fin
the ratio of gradients“m/“f to be of the order of
;dm/df;r s / lm , which is small in the limit of largelm . In
an incompressible system~for instance, a macroscopicall
wide strip of a system in the middle of a quantized H
plateau, if there are no localized states in the energy gap!, the
accumulation of electrons due to the perturbation in
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chemical potential occurs only at the edges of the syst
The accumulated charge creates an electric field that slo
~as 1/r ) vanishes into the interior of the sample. The resu
ing ratio dm/df is as small as 1/ln(W/rs) whereW is the
width of the strip.19

The above observation has an impact on the issue of
edge-versus-bulk current distribution. Since, in the abse
of a temperature gradient, the boundary currents arise so
due todm, and the bulk currents are due to bothdm and
df, the nonequilibrium current in a system without gat
flows predominately in the bulk. The situation changes, ho
ever, if the temperature is not uniform. As we shall see
Sec. IV, the boundary fraction of the net thermocurrent is
least as significant as its bulk counterpart.

III. LINEAR RESPONSE
IN THE ABSENCE OF DISORDER

In the preceding section, the local current response to
electric and statistical fields was expressed in terms of
coefficients of the mechanical response in the bulkL̂ ( i ) de-
fined by the general expressions~52!–~55!. Now we derive
explicitly three of the four response coefficientsL̂ ( i ) for a
simple case of a uniform disorder-free sample. Since the
ternal magnetization currents and the boundary currents
already expressed in terms of the equilibrium magnetizati
and their derivatives as given by Eqs.~11!, ~12!, ~81!, and
~82!, here we consider only the ‘‘transport’’ components
the bulk currents. We restrict our attention to the case o
two-dimensional electron system, with magnetic fieldB in
the ẑ direction, perpendicular to the layer.

Our main result is the expression for the number curr
density

Jtr5
nc

eB
ê“j1

sc

eB
ê“T, ~83!

which shows that, in the absence of disorder, the trans
contribution to the number-current density is fully dete
mined by the equilibrium number and entropy densities.~In
this section, the symbolê represents the two-dimension
antisymmetric tensorexy52eyx51.!

Equation~83! is valid locally for any interacting electron
system, provided it does not have a shear modulus, i.e.,
fluid, and the energy spectrum of electrons is quadratic.
present two different ways to obtain this result. In Sec. III
we derive Eq.~83!, and hence the coefficientsL̂ (1) and L̂ (2)

directly, using arguments based on fluid dynamics. In
alternative proof given in Sec. III B, we first derive the c
efficientsL̂ (1) andL̂ (3) by studying the current response in
uniform electric field, and then obtainL̂ (2) from the Onsager
symmetry. The advantage of the second derivation is th
deals with a homogeneous nonequilibrium syste
“T5“m50.

Both derivations that follow employ the physical notio
of internal pressure, which is not quite obvious in the pr
ence of a magnetic field and which we now discuss brie
In the presence of a uniform magnetic fieldBuuẑ the equation
for conservation of momentum on the microscopic scale m
be written
.
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]J~r!

]t
52r~r!“V~r!2

e

c
J~r!3B2“•p̂~r!, ~84!

whereV(r) is the one-body potential andp̂(r) is the internal
stress tensor at pointr. As in the case of the energy curre
discussed in Sec. II, there is not a unique definition ofp̂ for
a system with finite range forces. However, a definition co
sistent with Eq.~84! and with the requirement of quasiloca
ity is

pga~r!5
m

4(
i
ˆv i

a ,$v i
g ,d i%‰1

1

2(i5” j t i j
ga~r!, ~85!

where t i j
ga is defined by Eq.~29!. Equation ~85! may be

checked by integrating both sides of Eq.~84! over an infini-
tesimal volume, to obtain the rate of change of the mom
tum inside the volume. The integral of the last term on t
right-hand side of Eq.~84! is equal to the integral of the
stress tensor over the surface enclosing the volume. The
term of Eq.~85! then gives the change in momentum due
particles crossing the surface, while the second term g
the force exerted on particles inside the volume by partic
outside the volume@cf. Eq. ~31!#.

In applying the above equations to the present proble
we interpretm as the band mass rather than the bare mas
the electron, andV(r) excludes the periodic potential of th
ions. Thus, when there are no impurities present and no
plied electric field,V(r) is a constant in the interior of the
sample, and“V arises only from the confining potential a
the boundaries. We also assume thatui j depends only on the
distance between the electrons, so thatF i j is parallel to
(r i2r j ) and the stress tensor is symmetric. We specialize
the case of a two-dimensional electron system and thus
notation appropriate to two dimensions.

In thermal equilibrium, far from the boundaries, in a
isotropic system, the stress tensor must be proportional to
unit tensor, so we may write

^pag~r!&5Pintdag , ~86!

wherePint , the ‘‘internal pressure,’’ depends on the chem
cal potential and temperature. In the presence of a magn
field, Pint is not equal to the pressureP which appeared in
the thermodynamic equations~9!–~12! and which is equal to
the force per unit length exerted by the boundaries on
contained electron gas. Rather, we have

Pint5P2MB. ~87!

The difference betweenPint andP arises from the Lorentz
force exerted byB on the boundary currentI5(c/e)n̂3M.

Equation ~87! may be obtained directly from Eqs.~84!
and~86! if we integrate the right-hand side of Eq.~84! along
a line segment from a pointr1 in the interior of the sample to
a point r2 wherer(r)50, passing through a pointt on the
boundary. Since ]J/]t50 in equilibrium, and since
p̂(r)50 at pointr2, we find

Pint1MB5E
r1

r2
dr•r~r!“V~r!. ~88!

The right-hand side of Eq.~88! is just the force per unit
length exerted by the boundary at pointt. The fact that the
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pressure entering the thermodynamic equations is indeed
same as the force per unit length exerted by the bounda
follows from the well-known fact that a magnetic field co
stant in time cannot produce work on charged partic
Hence, although there is a momentum exchange betwee
system and the source of the field via the Lorentz force, th
is no energy exchange atB5const. Therefore the term
PdV in Eq. ~59! represents the work done by the expand
system on the external confinement. To avoid confusion,
note that the work done by the expanding system agains
Lorentz force actually goes to increase the internal energ
the system itself.20

A. Fluid dynamics approach

Consider an electron liquid in a uniform magnetic fie
and in the presence of an electric potential, chemical po
tial, and temperature all of which vary smoothly in space.
the fields and currents in the system are assumed to be e
constant in time or varying at a small frequency as discus
in Sec. II A. We concentrate on a small macroscopic elem
of the liquid with areadA in the interior of the sample
which we choose to be of a size much less than the len
scales of the fields and much larger than the average in
electron distance.

Then, settingV5f in the right-hand side of Eq.~84!, and
setting ]J/]t50, as is appropriate for a quasiequilibriu
situation, we find

n“f1“•p̂1
e

c
J3B50, ~89!

wheren, p̂, andJ are averaged over the elementdA. If the
induced current is small, then the correction top̂ arising
from the current should be second order inJ, and therefore
negligible. Thusp̂ may be replaced by its equilibrium value
Pintdab , evaluated for the local values ofm andT. To first
order, Eq.~89! becomes

v[
J

n
5

c

eB
êS“f1

1

n
“PintD . ~90!

Apart from the additional term resulting from the pressu
gradient, the right-hand side of Eq.~90! represents the clas
sical drift velocity in the crossed magnetic and electric fiel
Substituting Eq.~87! into Eq. ~90! and using the relation
n“m5“P2s“T which follows from Eqs.~9! and~10!, we
finally obtain

J5nv5Jtr2~c/e!ê“M , ~91!

whereJtr coincides with the right-hand side of Eq.~83!, and
the second term is the internal magnetization current as
fined by Eqs.~3! and ~7!.

We note that our arguments do not apply to an elect
solid. In a solid, a nonuniform drift current will cause a she
deformation which will increase until the stress forces s
press the local drift. Equation~89! determines the force act
ing on an element of a liquid and does not include the sh
stress contribution when we use Eq.~86!. In addition, the
pinning effects which arise in the presence of even a w
disorder potential make our considerations completely in
plicable in the case of an electron solid.
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B. Derivation using Onsager symmetry

We now study a homogeneous system,“T5“m50,
which is driven out of equilibrium by an external electr
field E5(1/e)“f. Since we study coefficients of the bul
response, we can assume that the electric field is uniform
the system itself is infinite. In addition to the original lab
ratory frame, we consider the system in the ‘‘primed’’ refe
ence frame moving at a velocity

v5c@E3B#/B25cê“f/~eB!, ~92!

in which the applied electric field vanishes. Since the syst
is homogeneous, and disorder potential is absent, Gali
invariance requires that the properties of the system in b
reference frames be exactly the same. Due to the absen
electric field in the moving frame, the system with respect
this frame is in equilibrium. The number- and energy-curre
densities in this frame are therefore zero,J85JE850. In the
laboratory frame, the system moves as a whole at a velo
v. Hence the number-current density defined as the ave
number of electrons passing through unit length per unit ti
is given by

J5nv. ~93!

To determine the energy-current density, we split the wh
system in two parts by an imaginary straight line perpendi
lar to the drift velocityv and find out how much energ
DE is transferred, in the laboratory frame, from one part
the system to another in timeDt. The energyDE has two
contributions, one from the direct transfer of an element
the system across the line, and another due to the work d
by one part of the system on the other part while moving

DE5eDxDL1PintDxDL, ~94!

whereDx5vDt is displacement of the system in timeDt,
DL is the length of the line segment which we consider, a
Pint is the pressure in the interior of the sample. Substitut
Eq. ~87! for the internal pressure into Eq.~94!, for the
energy-current densityJE5DE/(DLDt) we obtain

JE5~e1Pint!v5~e1P2MB!v. ~95!

One can also obtain Eq.~95! directly from the micro-
scopic expression for the energy current, given by Eqs.~27!–
~30!. Let us writevi5vi81v, wherevi8 is the velocity of
particlei in the frame moving with velocityv. In the moving
frame, the system is at local equilibrium with an energy de
sity e0 and a stress tensorPintd i j . Comparing Eqs.~28!–~30!
with Eq. ~85!, we see that Eq.~95! is correct to first order in
v.

Identifying Eqs.~93! and~95! with the expressions for the
bulk current response~50!, ~51!, and substitutingv from Eq.
~92!, we find the response coefficients

L̂ ~1!52
nc

eB
ê, ~96!

L̂ ~3!52
c~e1P2BM!

eB
ê. ~97!
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As one can see from the last formula,L̂ (3) is an odd function
of the magnetic field. From this fact, and from the symme
relationLab

(3)(B)5Lba
(2)(2B) discussed in Sec. II E, we hav

L̂ ~2!5L̂ ~3!52
c~e1P2BM!

eB
ê. ~98!

Substituting the obtained coefficientsL̂ (1), L̂ (2), andL̂ (3) into
Eqs. ~66!–~68!, and using Eqs.~7! and ~10!, we find
N̂(1)5L̂ (1), and

N̂~2!5N̂~3!52
sc

eB
ê. ~99!

Then using Eq.~64! we arrive at Eq.~83! for the transport
number current.

IV. THERMOPOWER MEASUREMENTS

A. Thermopower measurements and current distributions

We now turn to discuss the thermoelectric properties
real samples, in which temperature gradients are mainta
by the coupling of the electron gas to the phonons of
substrate. To use the results of the previous sections,
shall assume that the sample is homogeneous, and tha
coupling to the substrate is sufficiently weak that the cor
sponding thermal relaxation rate is much slower than
microscopic relaxation rate of the electron gastm

21 , and the
response of the electron gas is well described by the trans
properties of the isolated electron gas. However, we ass
that the thermal coupling to the substrate is sufficien
strong that on a macroscopic scale we may assume tha
local temperature of the two-dimensional electron gas
equal to the local temperature of the substrate, and we n
not impose the condition that“•JE50 in the electron gas
The substrate is assumed to be an electrical insulator, h
ever, so that“•J50 in the electron system. We do not di
cuss the energy current in this section.

A convenient way in which to study the thermoelect
response of a sample is through the thermopower. A th
mopower measurement involves the application of a unifo
temperature gradient“T to a sample which is disconnecte
from current leads. Since there can be no average elec
current flow, an electrochemical potential gradie
“j5“(f1m) develops. The thermopower tensorŜ is de-
fined in terms of this potential gradient.

If the diagonal matrix elements ofN̂(1) and N̂(2) are dif-
ferent from zero, it can be shown that the conditio
“•Jtr50, with n̂•Jtr50 at the sample boundaries, togeth
with Eq. ~64!, require thatJtr50 everywhere. This is the
case only if

“j5
1

e
Ŝ“T ~100!

everywhere in the sample, where

Ŝ52~eT!21@N̂~1!#21@N̂~2!#. ~101!

In the special situation whereN̂(1) and N̂(2) are propor-
tional to the antisymmetric tensorê, as occurs, for instance
in the case of zero impurities, the value ofj(r) is not prop-
y
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erly determined by the conservation equations, together w
Eq. ~64! and the boundary conditions. For example, one m
add toj any functionf (r) which vanishes at the boundarie
of the sample, without affecting the values of“•Jtr in the
interior or n̂•Jtr at the boundary. The average value of“j is
still given correctly by Eq.~100!, however, for any solution
of the equations, and the value ofj at any point of the
boundary will be the same as if“j were uniform in the
sample. Thus the experimentally measured thermopowe
which the voltage drop is measured between two points
the boundary, would still be given by Eq.~100! in this case.

For the remainder of this section, we will focus on th
thermopower of systems in which the disorder potentia
weak. In the limit of vanishing disorder, one can use t
response coefficients we have derived in the preceding
tion, and the thermopower tensor takes a particularly sim
form

Sab52
s

en
dab . ~102!

Thus the thermopower tensor is diagonal, with a magnitu
given by the entropy per particle,s/n, divided by the charge
per particle,2e. This result is familiar for noninteracting
electrons.1,4,5

Unfortunately it is difficult to provide a general criterio
for how weak the impurity scattering must be in order that
effects on the thermopower can be neglected and Eq.~102!
applies. Rather, the form of such a criterion depends on
nature of the low-lying charged excitations of the syste
which may be quite different at different filling fraction
~compare, for example, filling fractions at which the syste
is compressible and incompressible in the zero-tempera
limit !. A necessary condition for Eq.~102! to apply is that
the impurity scattering is sufficiently weak that both of th
tensorsN̂(1) and N̂(2) are almost purely off-diagonal, suc
that the thermopower tensor itself is close to diagonal.
some circumstances this condition may not be sufficient
there may be corrections to the size of the diagonal th
mopower. The form of such corrections depends on the s
cific experimental conditions, and requires a specific cal
lation of the effects of impurity scattering on the carriers.
the following, we will concentrate on the thermopower
systems for which the impurity scattering is sufficient
weak that Eq.~102! applies. In the next subsection we wi
discuss the form of the corrections that can arise due to
purity scattering for filling fractions close ton51/2 or 3/2.

Although, under the conditions of the experiment, no n
current passes through the sample, in a quantizing magn
field circulating nonequilibrium currents are induced. In t
bulk, these are internal magnetization currents, whose co
nuity at the edge is provided by the boundary currents.
we shall now show, these currents can be very large, in
sense that the local current density in the presence of b
the temperature gradient and the compensating electric
can be comparable to what it would have been in the p
ence of only one of these fields.

Let us compare the average and the local current dens
induced by a uniform temperature gradient alon
“T5const, with“m5“f50. We consider a filling factor
n51/2 which is an important and much studied example o
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compressible state. The average current density is equ
the transport current density~83!

Jtr5
cs

eB
ê“T. ~103!

The portion of this current that flows in the bulk is given b

Jbulk5Jtr1Jmag
bulk5F cseB2

c

e

]s

]BU
m,T

G ê“T, ~104!

where we used Eq.~48! and the thermodynamic relation
~9!–~11!.

In a strong magnetic field, for which all electrons a
restricted to the lowest spin-polarized Landau level, one m
express the entropy per unit area in the fo
s5n0Sq@n,(e2/kl )/T#, where n05eB/hc is the number
density of flux quanta,Sq is the entropy per flux quantum
n5n/n0 is the filling fraction, and we have assumed a Co
lomb force law, for which the typical energy scale is set
the magnetic length,l [A\c/eB. Using ] ln(e2/kl )/]B
51/2, one can write

]s

]BU
m,T

5
s

B
2
n

B

]Sq
]n

1
T

2B

]s

]TU
n,B

. ~105!

Now, at a filling fraction of one-half, particle-hole symmet
requires that]Sq /]n50. Hence Eq.~104! may be rewritten

Jbulk~n51/2!52
cT

2eB

]s

]TU
n,B

ê“T. ~106!

We shall discuss two cases.
First, for an ideal noninteracting electron gas~for example

k→`), the entropy is independent of the temperature
fixed filling fraction, so the above expression is identica
zero. The temperature gradient induces no number curre
the bulk of the system, and all of the induced current flo
around the edge of the sample.

Secondly, for a system interacting by Coulomb forces,
entropy atn51/2 is believed to be approximately linear
temperature~with a logarithmic correction at very low tem
perature due to the divergence of the effective mass of c
posite fermions!.21 The bulk current induced by the temper
ture gradient is therefore approximatelycs/(2eB) ê“T,
which isone-halfof the total current induced by the temper
ture gradient~103!; the remaining current flows around th
edge of the sample.

In both of the above cases the current driven by the te
perature gradient is found to be very inhomogeneous, w
all or half of the total current flowing on the edge of th
sample.

In contrast, the distribution between edge and bulk of
current driven by“j in a thermopower experiment depen
on the apportionment between“m and “f. The relative
proportions of“j coming from“m and“f depends on the
compressibility of the electron system and on the electr
capacitance per unit area, i.e., on the distance to the ne
conductivity surface. In most practical cases, the contribu
of f will be much larger thanm, so that“f'“j, and
“m'0. In this case, the compensating current driven
“j will be uniformly spread over the sample and a stro
to
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circulatory current is set up by the combination of“j and
“T. The nonequilibrium part of the current density induc
by the thermopower measurement has a form shown s
matically in Fig. 2.

B. Experimental comparison

Finally, we will compare our conclusions concerning t
thermopower of a sample in the limit of weak disorder w
recent thermopower measurements in the fractional quan
Hall regime. At high temperatures, the observed th
mopower is dominated by the phonon-drag contribution
sulting from the momentum exchange between the sys
and the phonons in the substrate. Very low temperatures
required before the intrinsic thermopower caused by the
fusion and drift in the system itself can be observed. It
only very recently that this has been achieved in the fr
tional quantum Hall regime. In Refs. 9 and 10, thermopow
measurements on a hole gas in this regime are reported
it is found that at temperatures below about 100 mK
intrinsic thermopower can be distinguished. The crosso
from aT3 dependence of the thermopower at high tempe
tures to a linear temperature dependence below 100 m
associated with the transition from phonon-drag-domina
to diffusion-and-drift thermopower. At such low temper
tures the signal-to-noise ratio is rather poor in thermoelec
measurements, so it is difficult to resolve much struct
related to the incompressible states at fractional filling fr
tions. One can, however, distinguish dips in the diago
thermopower,Sxx , at n51/3, 2/5, 3/5, 2/3, consistent with
the expectation that the thermopower should vanish at th
filling fractions for which the entropy is exponentially sma

A more interesting issue is the behavior at eve
denominator filling fractions. It is found thatSxx exhibits a
broad maximum atn51/2 and, less clearly, atn53/2. As
explained in Ref. 9, the absolute values of the thermopo
are inconsistent with a single particle picture, and electr
electron interactions must be considered.

It has been argued that, at even-denominator filling fr
tions, the appropriate description of the electron system i
terms of a Fermi liquid of weakly interacting composi
fermions.21 We will use this model in conjunction with Eq
~83! to calculate the thermopower of a disorder-free syste
Let us first assume that electrons are maximally spin po
ized. Thus we assume that at a filling fraction
n i5 i11/2, the lowesti ~spin-split! Landau levels are filled

FIG. 2. Schematic diagram of the distribution of the addition
current induced in a thermopower measurement in the quan
Hall regime. No net current flows. However, a large fraction of t
current induced by the temperature gradient“T is at the edges of
the sample, whereas the compensating current induced by the
tric field “f is spread uniformly over the interior.
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~and therefore contribute zero entropy!, and that the remain
ing half-filled Landau level may be represented by a Fe
liquid of composite fermions with effective massm* . The
entropy of the half-filled level is determined by the dens
of states at the Fermi surface, so we obtain the thermopo
of the system to be

Sab5
p

6

kB
2m*

\2nq
Tdab , ~107!

where the particle chargeq is 2e for electrons and1e for
holes. Note that the same formula applies at all half-inte
filling fractionsn i5 i11/2. However, one must be careful
use the appropriate value for the effective mass, which m
vary for different absolute magnetic fields and for differe
filling fractions n i .

Corrections to Eq.~107! due to impurity scattering may
arise if the scattering ratet i

21 of the composite fermions
from impurities is larger than the microscopic equilibrati
rate tm

21 of the disorder-free composite-fermion syste
Since this equilibration rate becomes very small for comp
ite fermions close to the Fermi surface, it may well be t
case that in experiments at low temperature the impu
scattering rate is sufficiently large,t i

21@tm
21 , that correc-

tions to Eq.~107! arise. Arguments based on a Boltzma
transport theory for the composite fermions suggest tha
this case, impurity scattering will affect the thermopow
~107! if the scattering ratet i

21 is energy dependent.22 Spe-
cifically, if we consider a model of composite fermions wi
conventional parabolic dispersion,E}k2, and a transport
scattering rate that varies with energy asE2p, then the effect
of impurity scattering is to multiply Eq.~107! by a factor
(11p):

Sab'
p

6
~11p!

kB
2m*

\2nq
Tdab . ~108!

This has the same form as the conventional Mott formula
the thermopower of a spinless two-dimensional electron
in zero magnetic field.8

A calculation23 of the scattering of composite fermions
modulation-doped quantum wells suggests that it is o
weakly energy dependent,p.0.13, and the corrections t
Eq. ~107! are small. In the following, we will compare th
experimental observations with Eq.~107!, bearing in mind
that a prefactor (11p).1.13 may arise due to impurity sca
tering.

Comparing Eq.~107! with the measurements ofSxx re-
ported by Yinget al.,9 we find that, at a filling fraction of
n51/2 and at a magnetic fieldB55.6 T, an effective mass o
m*51.360.3m0 is required for consistency, wherem0 is the
free-electron mass. This value is a factor of 2 larger than
valuem*'0.7m0 obtained in Ref. 9 from their own analys
of the data, which used the Mott formula Eq.~108! with an
assumed value ofp.1. However, our value of the effectiv
mass does not seem inconsistent with estimates ofm* based
on other types of transport measurements. For examp
value of m*51.4m0 at n51/2 is quoted in Ref. 9 for a
hole-doped sample with a higher carrier density, such
n51/2 occurred atB513 T. In an ideal system, with no
Landau-level mixing, zero layer thickness, and no impur
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corrections, the effective mass atn51/2 would be expected
to be proportional toAB, which would predict a value
m*'0.9m0 for the sample used for the thermopower me
surements, wheren51/2 occurred at 5.6 T. However, it i
not at all clear that this scaling should apply to the act
samples.~The observed value of the effective mass at 13 T
in any case considerably larger than one would expect ba
on numerical studies of finite systems where Landau-le
mixing, finite thickness, and impurity effects are ignored.!

We note that the valuep.1 assumed in Ref. 9 was ob
tained from calculations of impurity scattering of electrons
zero field, whereas calculations23 for composite fermions
suggest a much smaller valuep.0.13, as was mentione
above.

The difference between our formula and the one used
Ref. 9 is much more serious atn53/2. In that case Ying
et al.9 replace the particle densityn in Eq. ~108! by the den-
sity of composite fermions, which is now three times smal
than the density of holes in the valence band. We belie
however, that whether one uses Eq.~107! or Eq. ~108! the
quantityn should be the total number of carriers, includin
those in any filled Landau levels.

Since the experimental thermopower reported in Ref. 9
larger atn53/2 than atn51/2 by a factor'1.4, Yinget al.
conclude thatm* (3/2).0.5m* (1/2), which they view as
evidence for the validity of a model of spin-polarized com
posite fermions atn53/2. However, we would conclude us
ing Eq. ~107! or Eq. ~108! thatm* (3/2)'1.4m* (1/2). This
is contrary to the expectation for the ideal system t
m* (3/2) should be smaller thanm* (1/2), due to the smaller
value ofB.

Unfortunately, we do not see any justification for th
analysis used by Yinget al. at n53/2. We believe that our
starting formula~107! is correct in the limit of small impu-
rity scattering, and that energy-dependent impurity scatte
leads to an additional prefactor (11p) that is close to unity.
Moreover, the relation m* (3/2)/m* (1/2)5Sxx(3/2)/
Sxx(1/2) holds even allowing such impurity scattering, pr
vided the exponentp is the same at each filling fraction.~In
the absence of any Landau-level mixing this would neces
ily be the case if the magnetic length were the same at e
filling fraction. The change in magnetic length by a factor
A3 that occurs betweenn51/2 and 3/2 at fixed electron
number density is unlikely to affect the exponentp.!

It therefore appears to us that the reported thermopo
measurements atn53/2 are not consistent with a simpl
model based on spin-aligned composite fermions. The fai
of this model may be due to the combined effects of
increasing degree of Landau-level coupling and the sma
Zeeman energy expected atn53/2 as compared ton51/2.
Alternatively, the effects of disorder may be quite different
these two filling fractions. Neglecting any significant effec
of disorder, however, and viewing the diagonal thermopow
as a measure of the entropy, one would conclude that
entropy atn53/2 is larger than what one would expect fro
a model of maximally spin polarized composite fermions.
may be that additional entropy arises from the loss of sp
polarization. A number of experiments indicate that in typ
cal electron-doped GaAs samples, the electron system is
maximally spin polarized atn53/2 even atT50.24–27 It is
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not clear whether this will also occur for hole-dope
samples, where the Zeeman energy may be more impo
due to the largerg factor. To gain better understanding of th
origin of the discrepancy atn53/2, it would be interesting to
investigate the dependence of the thermopower on the ex
of Landau-level coupling~e.g., by studyingn-type samples,
or p-type samples with different densities!, and on the Zee-
man energy~by tilted field measurements!.

V. CONCLUSIONS

We have discussed the linear response of a homogene
bounded interacting electron gas in quantizing magne
field. We studied the number and energy currents which a
in response to gradients in electric and chemical poten
and in temperature. We derived general expressions for
bulk and boundary currents in the presence of mechan
and statistical fields. In general, the boundary of the sam
can carry a finite fraction of the total current passing throu
the sample. The local response in the bulk may be descr
as a sum of ‘‘transport’’ and ‘‘internal magnetization’’ con
tributions. Internal magnetization currents do not contrib
to the net current, are always divergenceless, and canno
revealed in any standard transport experiments performe
either homogeneous or inhomogeneous samples. They
be detected only in special contactless experiments resol
the local current distribution. We found that Onsager sy
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metry relations cannot, in general, be applied directly to t
local current densities in the bulk of the sample. Howeve
they do hold locally for the transport currents, and therefo
for the net currents passing through the sample. We deriv
expressions for three of the four response functions of
interacting system in the limit of weak disorder in terms o
equilibrium properties of the system. In particular, w
showed that, in this case, the thermopower tensor is diago
and is proportional to the entropy per particle. Recent th
mopower measurements on a high-mobility sample sh
that this conclusion is consistent with a model of a Ferm
liquid of spin-polarized composite fermions atn51/2. How-
ever, for the observations to be consistent with this model
n53/2, a very large effective mass is required. An effectiv
mass of this size seems unlikely, and we suggest that
spin-polarized composite-fermion state may not be a go
description of the system at that filling fraction.
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