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Thermoelectric response of an interacting two-dimensional electron gas
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We present a discussion of the linear thermoelectric response of an interacting electron gas in a quantizing
magnetic field. Boundary currents can carry a significant fraction of the net current passing through the system.
We derive general expressions for the bulk and boundary components of the number and energy currents. We
show that the local current density may be described in terms of “transport” and “internal magnetization”
contributions. The latter carry no net current and are not observable in standard transport experiments. We
show that although Onsager relations cannot be applied to the local current, they are valid for the transport
currents and hence for the currents observed in standard transport experiments. We relate three of the four
thermoelectric response coefficients of a disorder-free interacting two-dimensional electron gas to equilibrium
thermodynamic quantities. In particular, we show that the diffusion thermopower is proportional to the entropy
per particle, and we compare this result with recent experimental observd&@i63-182607)02304-1

I. INTRODUCTION butions. The magnetization contribution causes no net cur-

. Ik h ¢ d rent to flow through the sample. However, it can have a
Itis well known that surfacéboundary currents can pro-  gjgniicant effect on the local current density. We show that

vide significant contributions to the thermoelectric responseypsager relations may still be applied, in a quantizing mag-
of an electronic system in a quantizing magnetic field. Thenetic field, for the transport currents, and hence for the net
importance of such boundary contributions for the nonintercurrents through the sampléhe Onsager relations cannot,
acting electron gas was demonstrated by ObraZtsowas  in general, be applied directly to the local current densities.
made particularly evident in recent years by studies of the In Sec. Ill we consider a two-dimensional electron system
thermoelectric properties of two-dimensional systems in thén the limit of zero impurity scattering, and we derive the
integer quantum Hall regime. Calculations of the thermo-forms of various transport coefficients in this case. In par-
electric response of noninteracting electrons in the integeficular, the thermopower coefficient is shown to be equal to

guantum Hall regime have been presented by a number 6Pe entropy per carrier divided by the charge Of. the carrier, a
. : _ . result first derived by Obraztsov for noninteracting electrons.
authors using various approacieéand show that, in these

. In Sec. IV we compare these results with recent data, at ver
systems, the net currents carried on the boundary of th b y

X : fow temperatures, op-type samples with Landau-level fill-
sample can outweigh the net currents carried through thﬁ1g fractions neaw=1/2 andv=13/2° We find that the data
bulk. Measurements of the intrinsic, “diffusion-and-drift :

Y . . at v=1/2 are consistent with an interpretation based on a
thermopower” in the integer quantum Hall regime are con-pqqe| of spin-polarized “composite fermions,” with a rea-

sistent with existing theories for noninteracting electronsgonaple value of the effective mass, but this does not seem to
once disorder is introducedFor a review of experiments pe the case at=3/2.
and the_ories o_f the intrinsic and phonon-drag thermopower Many of the results of Sec. II, particularly for the net
for noninteracting electrons, see Ref. 8 currents, have been obtained previously by Oji and Stfeda,
Recently, however, there have been reports of measurey |east for the case where the gradients of the potentials and
ments of the diffusion thermopower in the fractional quan-the temperature are constant throughout the sample. Many
tum Hall regime’' It is clear, both from these measure- etails were omitted from their presentation, however, and
ments and from what is known of the fractional quantummany of the underlying assumptions were not stated explic-
Hall effect, that interactions must play an important role injtly. Because there are a number of subtle points in the deri-
determining the transport properties in this regime. vation, because there appears to have been some confusion
In this paper we discuss the thermoelectric response of & the literature'? and because the results are of fundamental

interacting electron gas, paying particular attention to themportance, we give here a detailed and general derivation.
importance of the boundary currents. In Sec. Il we restate the

general expressions for the linear response, following an ap- Il. GENERAL EXPRESSIONS FOR LINEAR RESPONSE
proach first proposed by Luttingétand since discussed for
the quantum Hall regime by Oji and StretisVe extend this
analysis by deriving general expressions for the local energy- We begin by reviewing the “hydrodynamic” assumptions
current and number-current distributions in gradients of teminherent in any theoretical discussion of transport coeffi-
perature and chemical potential. We argue that, even whecients such as the thermal and electrical conductivities, ther-
electron-electron interactions are included, both the numbamopower, etc. We restrict our attention to small deviations
and energy currents in the bulk of the sample may be sepdrom thermal equilibrium, in samples which are very large
rated into “transport” and “internal magnetization” contri- compared to atomic distances or other microscopic length

A. General considerations
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scales, and we shall investigate the response to weak exterr@lrrents” even in a situation of thermodynamic equilibrium.
perturbations which vary slowly in space and in time. In this case, a proof that the electron number curdny is
We assume here that particles interact only via shortindependent of conditions far fromis equivalent to proving
range forces, deferring until Sec. Il G the modifications necthat the equilibrium magnetizatiavi(r) (defined below de-
essary in the presence of long-range Coulomb interactionspends only on local conditions. For a small samr)
The fundamental hydrodynamic assumption is that therénay in fact be rather sensitive to conditions at relatively
exists a microscopic relaxation ratg,, such that for pertur- large distances fromr. For example, for a small metallic
bations which vary on a time scale slow compared o the loop, at very low temperatures, the equilibrium current de-

system relaxes to a state that is close to local thermodynamR€nds on the magnetic flux through the loop, modulo units of

equilibrium, and where all properties of interest may be deil€ flux quanturhc/e, because of the Aharonov-Bohm ef-

scribed in terms of an expansion about local equilibrium.féct: Such effects, however, become negligible in the “ther-

More particularly, one identifies a set of conserved quanti-mOdyn"“mIC limit of large sample sizes. Since the equilib-

ties, which in the systems of interest to us are the enérgy fium ~ magnetization d.ens_|ty can be related_ by
) ! : thermodynamics to a derivative of the free energy with re-
and particle numbeN, and one defines corresponding con-

h li ic fidlef. Eq. I f
served densities, such as the energy dergity and particle spect 1o the applied magnetic fidlef. Eq.(9) below] a proo

: i of the locality of M reduces to proving that a system has a
densityn(r). On time scales large comparedtg, one as-

i 9 - - well-behaved thermodynamic limit for the free energy, at
sumes that all physical quantities localized near a point any nonzero temperature.

conserved densities and their low-order spatial derivatives ig(r) in favor of two suitably defined “statistical” fields: a
the V|C|n|ty of r. On the other hand, one cannot in general|oca| chemical potentialu(r) and a local temperatur'é(r)_
assume that the conserved quantities themselves relax {§e shall also introduce shortly, external “mechanical
their equilibrium values in a microscopic time scale. Thefields”: a potential¢(r) which couples to the number den-
conservation laws relate the time derivatives of conservedity, and a fictitious “gravitational potential’y(r) which
quantities to the divergence of associated transport currentgouples to the energy density. We also define an electro-
and these time derivatives may be very small if the lengthchemical potentiak= .+ ¢. We shall see that in thermody-

scale of the system is large. ~namic equilibrium(even if the material parameters vary in
In systems with short-range forces, the slowest relaxationspacg ¢ and (1+ )T are constants in space.
are typically characterized by a diffusion coefficiedt so In cases where there is time-reversal symmehgnce

that the slowest relaxation time for the conserved densities ig=0), the currents® andJ must vanish in thermodynamic
given by my~L?/D, whereL is either the size of the system equilibrium. Therefore the first terms in the gradient expan-
or the wavelength of the perturbation, whichever is shortersions forJ® andJ must be proportional t&% £ and VT (as-
Clearly, if L is very large,ry may be very much larger than suming =0). For a quantum mechanical system in the
7m. Although the overall response to an external perturbapresence of an applied magnetic field, however, there may be
tion may be quite different in the limits where the frequencynonzero circulating currents even in a situation of thermody-
is large or small compared tqg,*, the hydrodynamic equa- namic equilibrium, as was noted above. We shall find it con-
tions themselves are assumed to apply for time scalasge  venient to break the currenisandJE into a “transport” part
compared tor,,, regardless of whether is large or small and a “magnetization” part according to

compared tory, .

Our central focus will be on the particle current density I(r) =3y (1) +Imad 1), (1)
J(r) and the energy-current densii§f(r). At least in cases . e e
where there are only short-range interactions between par- J5(r) =35(r) + Jmad 1), 2

ticles, the hydrodynamic assumptions imply, in particular, a L . A
locality hypgthesiﬁor 3 and JE vFi)z. thatha);ldJEpare de- whereJ,, anthEr vanish in thermodynamic equilibrium and

termined by the values af(r) andn(r) and their variations, Imad 1) =V X MN(r) 3)
only in the immediate vicinity of point. The currents may ma ’
also depend oiocal material parametersuch as the local Jﬁag(r)=V><ME(r). (4)

chemical composition, impurity concentration, etc., and on

the applied magnetic field. We assume the material param- The “magnetization densities’MN(r) and M&(r) are de-

eters to be independent of time, but they may depend ofined to be functions of the temperature and chemical poten-

position in cases of interest. If the material parameters aréal only at the given point. These functions, in turn, may be

independent of position, then the locality hypothesis impliescomputed in thermal equilibrium; i.e., we may compute the

that for variations on a time scale slow compared to thevalues ofMN(r) and ME(r) assuming thap. and T are in-

microscopic relaxation rate,*, the current densitied and  dependent of positior/Any applied “mechanical potential”

JE at pointr may be considered to be functionsgfn, and  may also be taken independentrof

their gradients at point. We make a number of observations about the magnetiza-
The locality assumption, central to any hydrodynamic detion currents.

scription, is difficult or impossible to prove rigorously under (1) If we consider a homogeneous sample with sharp

general conditions. One important piece of the physicspoundaries, in thermodynamic equilibrium, then the magne-

which enters the case of quantum systems in a strong magjzationsMN andME are uniform and the magnetization cur-

netic field, is that a sample can have nonzero “magnetizatioments vanish in the interior of the sample. However, there
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will in general be currents flowing on the surface of thewhere the overline denotes the volume average. Moreover,
sample. As one can readily derive from E¢®.and(4), the  since J;, cannot, in general, be expressed as the curl of a
surface current densities at a poiton the boundary are vector field, the magnetic moment of the sample in the non-

given by equilibrium case cannot be expressed as an integral of any
local magnetization density.
[=MNxn, (5) (5) For a uniform macroscopic sample, in thermal equi-
librium, the magnetization may be related to other thermo-
IE— MExX A, 6) dynamic quantities. By definition, the magnetizatibh is

equal to —(1NV)dE/dB, when the entropys, the volume

wheref is the unit vector normal to the surface, pointing V> @nd the electron numbét are held fixed. More generally,
outward from the sample. The same expressions for th&/€ may write
boundary currents are also valid for an inhomogeneous _
sample, in which case the magnetizatidf® ME vary in the TdS=dE+PdV+MV-dB—udN, ©)
sample. Their values in Eqg$5) and (6) should be deter- wherey is the chemical potential of the electrons, @hds
mined at a point inside the boundary closerto the electron “pressure.(We are assuming here short-range

We are assuming here, and throughout this paper, that tiferces between the electropg&rom the extensivity proper-
material exterior to the sample is either a vacuum or anijes of S, E, andN, it then follows that
“ideal” material with no magnetization of its own. Other-
wise, we would have a second contribution to the edge cur- nu=e—Ts+P, (10
rent from the magnetization of the exterior medium. )

(2) For a two-dimensional conducting layer in a semicon-Wheree ands are the energy and entropy per unit volume.
ductor system, the magnetizatiok! andME are normal to ' nen using Eq(7) we find
the layer. If the magnetization lies in the posit&direction,

then the boundary currents will point parallel to the sample MN= — ¢ ﬁ ' (11)
edge in the counterclockwise direction, looking down at the e JB T
sample.
(3) The integrated boundary currents given by E@s. © , )
and(6) depend on the magnetization at a point just inside the P= f_wn(:“ ,T.B)du’. (12

sample, but are independent of such details as whether the

boundary is sharp or diffuse on the atomic scale, the concen- (g) |f there are temperature or electrochemical potential
tration of impurities near the boundary, etc. In the case ofyadients, there may be nonvanishing magnetization currents
thermodynamic equilibrium, in a uniform sample, where thej, the interior of an otherwise uniform sample. Alternatively,
magnetizations are independent of position, the surface Cuf there are gradients in the material parameters, bulk mag-

rents are divergence-free. This is_of course necessary SiNgRtization currents can be present even at thermodynamic
there should be no bulk currents in this case. AIternanverequ”ibrium_

we see that the condition of divergence-free surface currents, (7) Under all conditions, the magnetization curred{g,
Egs. (5) and (6), for arbitrary surface treatments, requires 5, € 9

o o mag are divergence-free. As a consequence, these cur-
that the magnetizations are truly bulk properties, independeng s 4o not make any contribution to thet current flows
of any details of the surface.

Ny di . f ol h that are measured by conventional transport experiments.
(4) In our discussion of electron systems, the opby- Specifically, consider any closed cur@that encircles the

ticleswhich are allowed to move over macroscopic distance@)ample but is exterior to it, and & be a surface spanning
lare éhe C;])ndUCtIF)T electrcl)q?s.fTEe ellectrlcal (E)UI’EFIB r\e]z- this contour. The total magnetization currents crossing the
ated to the particle current of the electrons by"= —eJ, surface must be zero, by Stokes’s theorem, and the total cur-

vyhereth(— €)is thf. eltgc':‘r\;l)n ghargl;et. I;otr atﬁample at f.qu'l'lb'rentsl s and 1§ crossing the surface are obtained by consid-
rium the magnetizatio is related to the conventiona ering the transport currents alone:

magnetic moment densityl, in Gaussian units, by
M=(—e/c)MN. (7 ls= Jsﬁ-JdZS= fsﬁ"]" ds, (13

To avoid confusion, we note that the quantity defined
by Egs.(1) and(7), has a direct physical meaning in terms of lng ﬁ-JEdZS=f n-JE d?s, (14)
the magnetic moment per unit volume only if the sample is at S S
equilibrium. In the nonequilibrium case, the total magnetic\yheref is the local normal tS. In a dc transport experi-
moment.M is determined by the total current density dis- ment, whereV -J=V -JE=0, the currents g andIE will be
tribution J, including both the “transport” component,,
and the “magnetization” componerd,,q, as given by the
general formula

independent of the particular surface chosen. This argument
applies equally well to a singly or multiply connected sample
including the case wher€ threads a hole in the sample, as
in Fig. 1. In the case of a two-dimensional sample, the sur-
face S becomes a curve traversing the sample, whiland

_e JR—
= — 3 X —
M c f dr{rx[3(n =]}, ® I£ are the total currents across the curve.
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Gurrent Curent potential” ¢(r), which enters the Hamiltonian through its

coupling to the energy density. If linear responseytds
calculated, the response to a temperature gradient may be
obtained from the Einstein relations. Our situation is more
complicated than the case considered by Luttinger, however,
because the Einstein relations apply only to the transport
currents, and not to the total currents.

_ B. Current operators in the presence
FIG. 1. ContourC, external to sample, is spanned by surface of electrical and gravitational fields

S. The total current througt® is equal to the transport current ) ) ) .
acrossS, as the magnetization current gives no contribution. The 1he linear response to mechanical fie{dkectrostatic and

illustration shows a multiply connected sample. gravitationa) in a quantizing magnetic field has been pre-
sented previousl§.However, since it is important to the rest
In the remainder of this section, we shall apply the aboveof our discussion, we shall review this here. We consider a
considerations to the general hydrodynamic description of ahlamiltonian of the form
electron system in a strong magnetic field. Our goal is to

N N N
obtain some relations among the various transpory; _ %\ _ 3 [pi+eA(ri)/C]2+V(r')+l S
coefficients—both for the transport currentk(r) and E A 2m Y 2i e
JtEr(r) and for the total local current¥r) andJE(r). We also 7

relate the transport coefficients to microscopic expression

involving correlation functions for currents in the equilib- \%/hereA(r) is the magnetic vector potential(r) is the sca-

fium state lar potential energy including the confinement and disorder
) é)otentials and the periodic potential of atomic cores, and

. Our strategy can be best illustrated by (_:on5|der|ng i describes the interparticle interactions. Following Lut-
simple example where the electrons are subject to a wegk

external potentialp(r), while the temperature is maintained ong(raar\:[orvévfn introduce  the number and energy - density
constant, say by contact with a substrate. Then inside thaP
sample we may write

. . p(N=2 &, (18)
Jp(N==NDV u(r) = LDV (1), (15) '
where w(r) is the local chemical potential for the electrons, _ 1 .
andN® andL(® are second-rank tensors, which we denote h(n= 22 {hi. i}, (19

“transport coefficients.” In thermodynamic equilibrium, the
electrochemical potentiad(r) = w(r) + ¢(r) is independent
of position, andl,,, by definition, is zero. Since this must be

true for arbitrarye(r), we immediately obtain the “Einstein i b - o o ,,
time varying external “electrostatic” and *“gravitational

relation” N(=L ). otentials¢ and ¢, respectively. These fields couple to the
Macroscopic equations for the response of the system to B ' P Y. b

time-dependent perturbatiaf(r t) are obtained by combin- number and energy densities according to the Hamiltonian

where §;=8(r—r;), h; is defined in Eq(17), and the curly
brackets indicate the anticommutatof,B}=AB+BA.
We are interested in the response of the current density to

ing Eqg. (15) with the conservation lawdn/dt)=—V - J,.

(Recall thatV - J,,05=0.) If there is a periodic disturbance in HT:J d® hy(r), (20)
&(r) with a wave vectoq||X, then the electron density will

relax towards the equilibrium state, wigf{r)= const, at a he(r)=h(r)+ (1) p(r)+ $(r)h(r). (22)

rate y,= Dg?, where the diffusion constam is given by
[We call the functiony(r) defined by Eqs(20) and(21) the

D=L§§<)/(z9,u/¢9n). (16) “gravitational potential” to follow the terminology of the
original work by Luttingert! although the true gravitational

(Again, we assume short-range interactions between the elepetential would also be coupled to the mass density rather
trons, sodu/dn is finite for g—0.) A microscopic expres- than just to the first-order term of the relativistic energy ex-
sion forL(}) can be obtained by using quantum mechanics tgansion}
calculate the response of the system to an infinitesimal time- The conservation laws for energy and particle number im-
dependent perturbatiop, applied at a frequency which is  ply that the Heisenberg equations of motion foand h,
small compared to microscopic frequenciqﬁll but high  under the Hamiltoniatd, may be written in the forft
compared toy,, so that the density does not have time to

change significantly. One thus obtains an expression for dp(r) :_'_[p H{]=—V.J(r) (22)
L™ in terms of a two-time correlation function for fluctua- dt O '
tions inJ in the equilibrium state. ]

In order to generalize this procedure to the case of non- dhr(r) i he H dhy V. ah+(r)
uniform temperature, we follow the work of Luttindér at — pthmbelt 5 ==V O+ —,

which involves the introduction of a fictitious “gravitational (23
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whereJ andJE are here operators for the particle and energybution of the energy current adopted in Ref. 14. By contrast,

currents. The second term on the right-hand side of(Z8).
occurs when there is a time dependenceto) or (r). The

in Ref. 11, Luttinger employed a different form fir, where
the energy current is supposed to be localized at the two

above equations constrain, but do not determine uniquelypointsr; andr;. Luttinger's expression is only approximate
the forms of the operatord and JE, as we may in principle on the microscopic level, since it does not strictly satisfy Eq.
add to them an arbitrary function whose divergence is iden¢23). Our more precise formula and Luttinger's are equiva-
tically zero. A requirement of strict locality for the particle lent, however, when integrated over any volume large com-
current, however, together with EqR0) and (21), imposes  pared to the range dafj; . In fact, in the present paper we

the form have no real need for a precise form jb¢r), but will only
) make essential use of E(7).
J(N)=j(N[1+ ()], (24)
wherej(r) is the particle current fory=0: C. Thermodynamic equilibrium
1 We first consider the situation of thermodynamic equilib-
i(n==> {v;,5}, (25)  fium. A grand-canonical ensemble, for the perturbed Hamil-
25 tonianH; may be described by a density matrix
vi=[p;+eA(r;)/c]/m. (26) w=2Z"le AlHr=&N) (32

The requirement of strict locality cannot be applied eitherwhere ¢ and ,BETal are Lagrange multipliers, which we
to the energy current or the energy density in a nonrelativismay describe, respectively, as the “electrochemical poten-
tic theory with interactions of nonzero range. However, thetial” and the “inverse thermodynamic temperature.”
form of the energy current is adequately restricted for our The properties ofw are particularly simple in the case
purposes if we require that it depends only on the positionsvherey and ¢ are constants, independent of position. Then
and velocities of particles in a small neighborhood oAl- the eigenstates dfl; are the same as the eigenstate$igf
though various forms of the energy current may still be writ-and the density matrixv is identical to a density matrix
ten down, which are consistent with this requirement andv, of the form
with a requirement that Eq23) be satisfied exactly on the

microscopic scale, we shall adopt here the particular defini- Wo=2Z"te” (Hom#NI/T, (33
tions .
with
E —iE i iE
M) =10+ d(N)j(r) + 2g(r)j=(r), (27 T2 B(1+4 ). (34
1 1
o=z th fof 6l g3 XAl +eD. 70}, p=(E=P)(L+y). (35
1 1#]

(28)  We denoteT as the “internal temperature,” ang as the
“internal chemical potential.” The internal energy density

i (D=(r{'=r)FHA;(r), (29 ¢(r)=(h(r)) and the particle densitn(r)=(p(r)) are the
. same in the two cases, as is the entr8pgy— tr(winw). Note
Ai'(f)Ef dso[r—r,—(r;—r:)s], (30) thate and'n may depend on pqsmon, even in equilibrium, if
! 0 ! ! the material parameters vary in space.

N - o ) The particle and energy currents are not the same in the
whereFj=—adu;;/ri" is the force on particle due to its  two cases, however, because the operators themselves are

interaction withj. We note that by definitiojf is the energy  modified by the presence af and ¢. Using Eqgs.(24) and
current associated with the unperturbed Hamiltoignand  (27), we see that

Eq. (27) is valid to first order iny, with the requirement that

¢ and vary very slowly in space compared to the range of Q)=+ (), (39
the interactionu;; . It is not difficult to show, under these
circumstances, thal® exactly satisfies the Heisenberg equa- (JEM)Y=(EM)Y+ ¢((r)) + 20(E(N)). (37

tion of motion(23). To demonstrate this, it is convenient to
integrate Eq(23) over a small volumesV, and to write the ~The expectation values on the right-hand side represent the
integral of V-JE as an integral over the surfa& of the  Particle and energy currents in the “unperturbed” state, with
volume. We also note that ¢= =0, temperaturdl, and chemical potentigk. [Note:
in Eqg. (37), as in Eq.(27) we have dropped terms of order
2, since we always consider to be small}
LAii(r)(ri_rJ)'dSZXi_Xi , 31 The currents in Eq936) and (37) are purely magnetiza-
tion currents, since the transport currents vanish, by defini-
where y;=1, if particlei is inside the volume enclosed by tion, in equilibrium. In the case of a uniform sample, the
S, and zero otherwise. magnetization currents are confined to the boundaries. More
With our definitions, the contribution to the energy cur- generally, they are given by EgE) and (4). This implies
rent from the interaction potential; is distributed along the that in the equilibrium state, with constaptandy, we have,
straight-line segment joining andr;, similar to the distri- to first order in the perturbations, at any paint the sample
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MN=(1+ ¢)MY (2, T), (38)  which is the generalization of Eq&34) and(35) to the non-
uniform case. The equilibrium conditions may be alterna-
ME=(1+2¢)ME(,T)+ ¢MY(n, T), (39  fively written as
whereM} andM§ are the unperturbed magnetizatigisr- Sl T)=— ()T, (46)
responding togy= ¢=0), which we have written explicitly
as functions of the chemical potential and internal tem- S(LT)=(r)/To, (47)

. N E . ..

peratureT. (The functionsMgy and Mg are also implicitly  \yhereT 1= g is the unperturbed temperature of the sample.
functions of the material parameters, such as chemical comy T, is replaced by the perturbed temperatiirehese con-
position and impurity concentration, in the neighborhood ofitions reduce to the conditions for thermal equilibrium ob-

the pointr.) _ tained by Luttinget* which are valid for small changes in
The resultg34), (35), (38), and(39) can be generalized to é and .

the case wherp and ¢ vary in space. Equatio(82) is still We now consider the magnetization currents. By defini-

valid in this case. If the length scale of the variation is suf-jjo, the transport currents vanish in an equilibrium state, so
ficiently large, the entire system can be considered, withif,e magnetization currents are the total local currents in that

the standard approach, as consisting of small subsystemsq Ifb(r), w(r), T(r), and u(r) vary sufficiently slowly

weakly interacting with each other at imaginary borders;, space, it is clear tha@™(r) andME(r) will be still given

Each of these subsystems, if allowed, will reach a local equib :
O . y Egs.(38) and (39), provided that the argumenjs and
librium state which depends on the local valueg) and "¢ e functionsM{) andM§ are evaluated at the position

€(r). We assume, of course, that the magnetic f'el.d IS cong. (Corrections will be at least second order in the gradients,
stant. One can then introduce local thermodynamic paramz o o ic away from the boundary of a sampl&hen using

eters(chemical potential, temperature, entropy density,) etc. : : - )
which are functions of the two independent variablesnd ngsltl(g’% afl;? E‘f()),rr:cotrh: sg&%griv:sthxg |]1‘icr:]r(;n chemical com

e. The values of extensive thermodynamic parameters wil

be then given by the integral of the corresponding local den- aMN MmN
sities over the sample area. In particular, for the total energy, Jf’n“;'éz -0 ><V,u——O XVT— Mg‘x Vy, (48
total entropy, and total number of particles we have I JT
E, bulk Mg Mg N E
ETE<HT>=f [e(D+n(N @D +e(DFNIAr, (40 Imag"= =5 =X V== XVT=Mgx V ¢—2Mg
XV, (49
— 3
S_f S(e(n,n(n)d°r, (41) to leading order ing and . There will also be additional
magnetization currents at the boundaries, given by Ejs.
6), (38), and(39).
sz n(r)dr, (42) ©). (38 39

L . D. N ilibri tat
wheres(e,n), the local entropy density, is the same function onequiibriim states

of e andn as for a uniform system. The accuracy of this We now consider the nonequilibrium situation, where
approximation is limited by termsWe)?, (Vn)2 which re-  Egs.(46) and (47) are not satisfied and wheg, , T, and
flect the interaction between adjacent subsystems. p may be in general time dependent. The local temperatures
It is more convenient to choose, insteackaindn, alocal ~ T(r) and u(r) are defined to be the same functionse¢f)
“internal” temperatureT(r) and chemical potentigk(r) as andn(r) as in the equilibrium case. We continue to define
independent thermodynamic variables. Following Luttingerthe magnetization currents and magnetizations by B,
we define these parameters in the same way as it is convef89), (48), and(49), and we define the remaining contribu-
tionally done for a homogeneous system, tions to the currents to be the transport contributions.
By the locality hypothesis, the transport currents must be
given by a sum of terms proportional to the gradie¥its,
(43) Vi, VT, andV u, in the limit where the applied fields are
small. Our aim is to determine the coefficients of these
[Of course, these definitions are consistent with the thermaterms. The requirement that the transport currents vanish
dynamic relatior(9), interpreted in a local sense, withand ~ when Eqs.(46) and (47) are satisfied means that the gradi-
B fixed.] ents enter only in the combination¥ ¢+TV (w/T)] and
The equilibrium state defined by the density mati32) [V¢y—TV(1/T)]. This observation is the generalization of
is the state which maximizes the functionab=S the “Einstein relation” to the case in which there is a non-
— B(E1— €N). Using Eqs.(40)—(42), and setting the varia- uniform ¢, and allows the response to the statistical fields

fJs
T de

-1 —

) M=

n

Té’S
on

€

tional derivatives ofP equal to zero, we find w andT to be related to the response to the mechanical fields
¢ and .
T Yr)=8[1+ ()], (44) To determine the remaining unknown coefficients, we

consider a particular situation, where the potentialsind
m(r)=[&E—p(r)I/[1+ (r)], (45) ¢ vary periodically in time, with a characteristic frequency
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o small compared to the microscopic relaxation rgfg but Jy=— I:(1>[V¢+TV(,u/T)] + (|:<2>_ MY €)
large compared to the size-dependent relaxation n{ﬂésﬁor
the energy and particle densithis is the “rapid case” of X[=Vy¢g+TV(1T)], (58

Ref. 11) In this situation the local values efandn are not £ - 3) ~ ~ 4 E -
changed from their initial values, so that and T remain Jy=— (L' =Mg-€)[VI+TV(u/T)]+ (L =2Mg- €)
constant throughout the sample.

We concentrate on a region far from the boundaries. Since X[=Vy+rTVAM] (59)
VT=Vu=0, we may write the total currents as Of course, EQs.(58) and (59 reduce to the Luttinger
A . formulas! when the magnetic field is absent, so that
JPuk=| D(—V )+ L@ (= V), (500  My=M§=0.
. R To obtain the local currents, in a uniform sample far from
JEbUk=| B)(—y )+ LA (=Vy), (51)  the boundaries, in the general case wHéfle V «, V ¢, and

. . . are all independent, we must add the magnetization cur-
with transport coefficients that can be expressed in terms v P g

) ) . ; ents, given by Eqs(48) and (49) to the transport currents
ggﬁgﬁgeggsgtfg?rqﬁ:gf'on functions in the framework of thegiven by Eqs(58) and(59). In addition, there will be bound-

ary currents from the magnetization. In the absence of the
o 8 fictitious gravitational potential ¢=0) the change in the
Lﬁﬂiﬂ})%f dte‘“f dB'(j3(—t—iB")j&(0)), integrated boundary currents at a poinEgs.(5) and(6), is
0 0 (52 determined by the changes in the temperature and chemical
potential at that point, according to

* B
L= tim [ “are [ "ap o -t-igisio), oMy
(53) ol=—nXx W&Mﬁ‘ﬁﬁ-r s (60)
L= timd [ Cate [ "ap s t- i), P N
" 8 Although we have introduced the fictitious fiefdto derive
LA = lim lJ dte*StJ dB’(jgE(—t—iB")j§E(0)). linear response, we will have no further need of it, and hence
7520V o 0 (55) shall setyy=0 for the remainder of this paper

It is convenient to introduce the electrochemical potential,
Here the subscript 0 on each time-dependent current operatdefined by

jo andjg indicates they— 0 limit of its spatial Fourier trans-

form, and the angular brackets denote the quantum mechani- En)=pn(r+¢(r). (62)

cal and thermodynamic average in the equilibrium state of al\n igeal voltmeter(with leads that have no thermopower
infinite system at temperatu@ *=T and chemical poten- il measure the difference i&i between two contact points.

tial w. i In a thermodynamic equilibrium state, the valueiphs well
In order to find the transport currents when 55 the temperatur®, will be constant throughout the system.

VT=Vu=0, we subtract from Eq¢50) and(51) the bulk It is also convenient to define a transport heat current
magnetization currents, given [§48) and(49). We thus find density as

Jy=—LPVe-[L@-MY- vy, (56) 19=3E— ¢3,. 63

JtEr: —(I:(g)—MB‘-%)V(ﬁ—[I:(“)—ZME- vy, 67 Then we may rewrite Eq$58) and (59) in the form
~ __ N1 N2

where € is the unit antisymmetric three-tensor: Jo=—NUVE-NA(VT)/T, (64)
(Ae)aﬁyz 1(—1) if the aBy is an evenodd permutation of - -
xyz, and zero if two indices are equal. By definition, trans- J3=—-NOVE-NDVT)T, (65)

port currents flow only in the bulk of the sample. To simplify \\hare
notation, we have therefore dropped the label “bulk” in the

above equations, and will do so for all subsequent transport N = |“_<1), (66)
current densities.
Now we can consider the general case, for an arbitrary N(2)=L(2)—,U.L(1)—MQ- c (67)

value of wry, whereVu, VT, V¢, and V¢ may be all
nonzero. As remarked earlier, the condition that the transport
currents vanish in equilibrium requires that the gradients en-
ter only in the combinations[V¢+TV(w/T)] and S 4y a ~3y .t 2 201 E N
[V—TV(1/T)]. (In other words, the Einstein relations, ex- NO=LE = (L +L2) + oLl )_Z(MO_MMO)'%Q
tended to the case wheWerl andV ¢ are different from zero, (69
apply to thetransportcurrents in the presence of finite mag- Although our derivation has assumedto be infinitesimal,
netic field) Thus we have, in the general case, the final results for the transport currents, given by Egs.

N®=L®—uLO-MN.¢ (68)
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(62)—(69) and (52)—(55) are written in a form that remains Moreover, if we consider instead a situation where
valid when ¢ is not small. This accounts for the slight dif- Vu=VT=0, butV¢+0, we find according to Eq¢50)
ferences(which are beyond leading order in the driving and (51), J%=— (L®— uL™M)V ¢. This coefficient, which
fields) between the above coefficientd"), and those ob- s different from £(®), is also clearly not related t6® by
tained by direct substitution of Eq¢8) and (59) into Eq. Onsager symmetry in the general case.
(63). When ¢ is not small, the expression$0) and (51) Although the contribution of the magnetization current
should contain additional higher-order termsdnthe coef-  does not appear in standard transport experiments, the local
ficients L appearing above cannot therefore be defined bylectric current distribution is measurable, at least in prin-
these expressions, but are assumed to be defined by the Kubiple, by a sufficiently sensitive measurement of the mag-
formulas(52)—(55). In the case of finitep, Eq. (49) for the  netic field generated by currents in the sample. Since the
bulk magnetization curre Efg“'k must also be modified by magnetization current does not dissipate Joule heat, it could
the addition to the right-hand side of atefﬁﬂf’nU;S; the edge ot be detected using the_ well-known technique based on
current! € is still given by Eqs.(6) and (39). local luminescence intensily. Measurements of the local
electric field distribution by means of the electro-optic
effect® do not serve this purpose either, since the magneti-
zation current is related to the “statistical field&% « and

The transport coefficients fak, andJ?, given by Eqs. VT rather than to the electric field @V ¢. In the case of
(64)—(69), obey Onsager symmetry relatidns® of the form  the energy current or heat current, we are not aware of any

reasonable method for direct measurement of the local cur-

E. Onsager relations

NGH(B)=N{L(~B), (700 rents.
We illustrate our results further with the example of the
N2(B)=N'2(—B), (70)  number currend for a two-dimensional electron system with
no disorder, at a Landau-level filling fractiari® for which
NS‘V)(B)= N%(— B). (72)  the electron system is incompressibleTat 0. At the filling

fraction v*, we haven=v*¢|B|/hc. Then we have
To see that this is the case, we first establish that the coeffi- N
cientsL(), (i=1,2,3,4) obey Onsager relations of the same oM™
form as Eqs/(70)—(72). This follows from the expressions du
relating L)), to the current correlation function&2—(55),

and the invariance of the Hamiltoniad, under simulta-

*

~ zsgr(B,), (79

c Jn
e B

T,B

T.u
where the last equality follows from the incompressibility

neous reversal of time and magnetic field. Secondly, we not ondition forT—0. Herez is a unit vector directed upward

that the magnetizationd™ andMF reverse sign under rever- rom the plarlg. ~ ) o
sal of B. Equations(70)—(72) follow directly. The coefficient_*) for this system is given by the Hall

In contrast thelocal current densities do not satisfy the conductivity:LM=(v*/h)sgn@®,)(z- €). On the other hand,
Onsager relations. The local current densities differ from thesubstitutingé= u+ ¢ into Egs. (1), (48), and (58), we see
local transport current densities by the bulk “magnetizationthat the coefficient describing the local respons¥ fo van-
currents.” These additional magnetization contributions toishes, and all number-current flow in the bulk is due to the
the local response in general depend on which driving field iglectric field: J***= — (v*/h)sgn®,)[2X V ¢]. The current
applied(e.g., whether it i u or V ¢), and give rise to a set driven by an inhomogeneous chemical potential is
of transport coefficients, one for each driving field, whichlocalized at the edge, and is given byl=(v*/
differ by terms proportional to the gradients of magnetizationh)sgn®,) u(r)[nx z], wheren is a unit vector in the plane,
densities. Since no general symmetries relate these additionggrpendicular to edge, in the outward direction.
magnetization terms, neither the Einstein relations nor the
Onsager relations hold locally for the total current response. F. Inhomogeneous samples

As a specific example, consider the local bulk currehts
andJ%=JE—¢J in terms of Vu and VT, under conditions
where V=V ¢=0. By combining Eqs.(63)—(69), with
Egs.(1), (2), (48), and(49), one may readily obtain expres-
sions for the appropriate coefficients) ,

Although we have concentrated so far on the case of a
homogeneous sample with boundaries that are sharp com-
pared with the overall length scale, it is easy to generalize
our results to the case of a sample whose material param-
eters, such as chemical composition, vary on a macroscopic

N length scale. The formula$4) and(65) still hold locally for
z(z):&(z)JrT% ‘e 73 the transport currents in this case, with the qualification that

aT the transport coefficientsl’) depend on the local material
parameters, and can therefore vary from one place to another
~ 3 2 Mg aMg\ in the sample. The magnetization currents at the boundary of
LP=N"+ W‘MW ‘€ (74 the sample are still given by Eq&0) and (61), with the

qualification that the functionMy and M5 may also vary

As far as we are aware, there is no symmetry relating thérom one place to another because of their implicit depen-
derivatives oﬂ\/I(E, andMBl with respect touw andT, so these dence on the local material parameters. The magnetization
coefficients apparently do not satisfy the usual Onsager relaurrents in the bulk of the sample are no longer given simply
tions. by Egs.(48) and (49), however. If we denote the material
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parameters by a set of variablég;}, and we setV =0, To proceed formally, we redefine the interactiofn ap-
then Eqs.(48) and(49) should be replaced by pearing in Sec. Il B to include only the short-range part of
N N N the Coulomb interaction, after effects of the macroscopic
Jpuk_ _ (9M—O><V Mg W VT-S Mg Vo electric fieldE are subtracted out. First, we choose a trunca-
mag I aT T dn, i tion radiusr ., which is much larger than the average inter-
(76) particle distance but much smaller than the macroscopic
scales of external fields and, if the sample is not uniform, the

IME IME IME scale of the equilibrium density variation. We split the Cou-
E,bulk__ 0 0 E 0 N - - L
mag XVu— aT XVT—2 an XV 7i—Mp lomb interaction potential into the sum of two terms,
K ! 7i tot/ .y __ . ,shor long short :
ud(r) =us"(r) +u"Y(r), whereu{r) decays rapidly at
XV o+ pIomas. (77 r>rgy, andu™(r) contains the long-range tail of the inter-

action and changes smoothly at distances ;. Then we
replaceu;; by us""in the definition ofH, andh;, Eq.(17),
and include the long-range componer{\?“g(r) in the self-
[fonsistent macroscopic field.

We continue to defind(r) by Eq. (19), and define the
internal energy densitye(r) as the expectation value
(h(r)). Thene may be interpreted as the matter contribution
to the energy density. The total ener@yith ¢y=¢$=0) is

The derivation in the previous subsections, and varioushen given by
intermediate results, require modification when there are
long-range forces due to unscreened Coulomb interactions.

In two-dimensional structures, this is the case when the me- E=f d3r
tallic gate is either absent or is situated farther than the char-

acteristic length scale of the fields applied. wherex is the dielectric constant of the background material,

If uncompensated electric ch_arges are present, there ca)l | \ve assume the background magnetic permeability is
be energy transport over long distances via the_ macroscop ity. The energy current will similarly be broken up into
electric field, and the total energy current at a given point o WO parts

space does not, in general, depend solely on the state of the
particle system in the immediate neighborhood of that point.

[These expressions follow directly from EdS8), (4), (38),
and (39).] In the quantitiessMy/d7; and dM5/d7;, which
appear in Eqs(76) and(77), it is necessary to keep not only
the zeroth-order terms, but also the first-order changes e
gendered by the deviationgu(r) and 5T(r).

G. Long-range forces

«|E[* |BJ?
8 8

e+ ) (78)

Moreover, the convention of E@28), in which the interac- =i+ el (79

tion contribution to the energy current is concentrated along 0 4

the line segments joining each pair of particles, is not gener- ) o

ally used in this case. where the second term is the standard contribution from the

The most convenient approach is to break up the interpafMacroscopic electromagnetic fields, ajfd which we may
ticle interactions into a long-range piece, mediated by thdhink of as the matter contribution to the energy current, is
macroscopic electric fielE(r), and a short-range piece, defined by Eqs(28)—(30), with u;; replaced byu"in the
which includes everything else. The macroscopic field isdefinition of Fj. Of course,E and B are determined self-
supposed to be averaged over a region sufficiently large th&onsistently from the macroscopic current and charge distri-
fluctuations in the field, arising from thermal or quantum butions using Maxwell's equations in the static limit. Equa-
fluctuations in the microscopic electronic charge density, cations (78) and (79) are asymptotically correct in the limit
be neglected. Thus there is no entropy transport via the magvherer, is large compared to the microscopic scale but
roscopic field. As a result, we find that with appropriate defi-small compared to the scale of variationf
nitions we can write local hydrodynamic equations for the For a two-dimensional electron system in an external
heatcurrent and particle current which are similar in form to magnetic field, the magnetic fields arising from currents in
the equations derived for short-range forcédle assume the sample are generally very small, and may be omitted
here that we are working at a temperature sufficiently lowfrom the term|B|%/8 in Eq. (78). Thus this term is inde-
that heat transport via the radiation field may be completelypendent of the state of the electron system and may be ig-
neglected. Formally, this assumption is imposed by takingiored if desired. On the other hand, the magnetic fields gen-
the limit where the speed of lightt is infinite,) erated by the currents in the sample must be included in the

To make these points clearer, we note that since charge gcond term on the right-hand side of EG9), because the
locally conserved, charge fluctuations with the longest-rangspeed of light appears as a prefactor. Note also ¢hand
effects are electric dipole fluctuations. In the absence of th§ are restricted to the two-dimensional layer, but the elec-
radiation field, the interaction between dipoles at two differ-tromagnetic contributions to Eqé78) and (79) extend into
ent points falls off as the inverse cube of the separation, anthe space outside. Below we focus on the matter jsacf
the rate of energy transfer due to random thermal motiorthe energy current.
would be expected to fall off as the inverse sixth power of It is now possible to redo the arguments of the preceding
the separation. At large distances this process will be muchection with little modification. We restrict our attention to
slower than the conventional process of heat condugaén the situation where the applied magnetic field is independent
ready taken into account in our discussionherein energy of time and assume that the macroscopic electric field may
is transported diffusively via a series of many short jumps. be derived from a scalar potential
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E(r)=—V®(r). (80) H. Additional remarks

Throughout this section, we have treated the figlds,
The potential® is obtained self-consistently, and includes , and ¢ (or ®, in Sec. Il G as independent variables,
effects of any macroscopic time-dependent variations inwvhich can be arbitrary functions of position, subject to the
n(r), as well as the effects of any static charges present igonstraints that gradients are small, and tiaand ¢ are
equilibrium and the external perturbations embodiegiin jnfinitesimal. (The fictitious fieldy was set equal to zero in
general, we cannot consider thhtis infinitesimal, even in  he atter part of the sectionThe transport currents depend
equilibrium. _ o on gradients ofu and ¢ (or ®) only through the combina-

In order to repeat our previous derivations, one needs 1§,y « |n a dc transport experiment, there are strong addi-
cons_lder a nonzero gravitational potenttalwg present here tional constraints arising from the requirements that the cur-
tcmim;?;|r%ifg},§2|d£ence spt=0. We redefine the electro- rents must be divergence-free in the interior of the sample,

and must satisfy appropriate constraints at the boundaries.
Typically, these conditions completely determine the spatial
&(r) = u(r)—ed(r). (81)  variations of¢ and T throughout the sample interior, when
boundary values of the fields are specified, or when current
The definition (27) of the energy current in the perturbed flows through the boundaries are given.

system is now replaced by For the case of a two-dimensional electron system on a
three-dimensional substrate, the situation is slightly more
JE=jE—ed] (82) complicated. We shall be concerned with situations where

the substrate is an electrical insulator, so that the divergence
of the two-dimensional electric current is required to be zero
in the analysis of experiments. On the other hand, we con-
sider the thermal coupling to the substrate, via absorption or
emission of phonons, to be small but not zero. Then on

whereJ=j is the particle current density, ajfdwas defined
above. As we did in previous sections, we split the local
currentsJ andJE into magnetization and transport parts, and

wQe define a transport heat F:urre_nt as given by(E§. Then length scales large compared IID1(Tep)1’2. wherer,, is the
Jt(ri)and Jy obey equations identical to Eq64)—(69), with  g|eciron-phonon relaxation time aly an appropriate ther-
Lo, defined by Eqs(52~(55) In terms of the correlators for mg| diffusion constant for the isolated electron system, the
the matter currentg(r) and j=(r) under the Hamiltonian gjyergence ofi? is not necessarily zero. Instead, one should

H, for a uniform system in equilibrium, with=1¢=0. The  tae the value off(r) to be an independent variable deter-

transport coefficientNS)y obey the same Onsager relations mined by conditions in the substrate.

as before. Although our previous discussions assumed the sample to
Note that different definitions of the macroscopic electriche isolated from its environment except at its edges, the
field, as may be obtained by different choices of the truncatransport equations derived above should remain valid pro-
tion radiusr;, will generally cause an exchange of contri- vided the electron-phonon coupling is sufficiently weak that
butions between the chemical potentiglr) and the electro- 7, is large compared to the microscopic times necessary to
static potential®(r). This will also transfer contributions establish local equilibrium in the electron system.
between the first and second terms in EBR), leaving the In order to calculate the transport currents, it is not gen-
sum JF unchanged. As long as the different valuesrgf,  erally necessary to find the separate portion&gfarising
remain sufficiently large, the change in the truncation shouldrom V x and from the electric field. This is necessary, how-
not affect the coefficients ") since the correlators in Egs. ever, if one wishes to obtain the local current distribution. In
(52—(55) are sensitive only to short-range properties of thepractical situations, where the nearest external conductor is
system. far from the electron layer compared to the mean spacing
We also note that in realistic two-dimensional systemspetween electrons in the layer, the value|¥fu| will be
the component of the electric field perpendicular to the elecrelatively small compared to the value |¥ ¢| or |[V®/e|.
tron layer, arising from charges on gates or from ionizedThis is due to the fact that, in the absence of external screen-
impurities displaced from the layer, may play an importanting, perturbations irp andx are not really independent and
role in confining the electrons to the layer. It is thereforetheir characteristic magnitudes can be expressed via each
important to include this part of the macroscopic electricother. Suppose that a nonequilibrium perturbation in the
field in the unperturbed Hamiltonidr, and in the definition  chemical potentiabu(r) with a large length scalk, is cre-
of the energy currenj® when calculating the correlation ated in a two-dimensional system. The resulting variation in
functions that appear in Eq&2)—(55). Formally this can be the particle density has a magnitude~ sw/(du/dn). The
done by including the perpendicular confining field in the magnitude of the potential variation caused by this accumu-
one-body potentia/ which enters Eq(17), and excluding it lation and depletion of electrons can be estimated as
from the macroscopic potentidh(r). Then the equilibrium  §¢~ (€% k) onl, . Thus, in a compressible system, we find
®(r) is a constant in the direction perpendicular as well aghe ratio of gradientsVu/V¢ to be of the order of
parallel to the layer, and can be safely omitted frbig In ~oul 8p~rgll,, , which is small in the limit of largé,, . In
fact, it may be convenient to include the entire equilibriuman incompressible systeitfior instance, a macroscopically
value of the electrostatic potential \ even in an inhomo- wide strip of a system in the middle of a quantized Hall
geneous system, so thdt describes only long-wavelength plateau, if there are no localized states in the energy, glap
fluctuations about equilibrium. accumulation of electrons due to the perturbation in the
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chemical potential occurs only at the edges of the system. ad(r e ~

The accumulated charge creates an electric field that slowly m——==—p(NVV() =N XB=V.(r), (84)

(as 1t) vanishes into the interior of the sample. The result- A

ing ratio su/d¢ is as small as 1/IWir) whereW is the  whereV(r) is the one-body potential and|(r) is the internal

width of the strip®® stress tensor at poimt As in the case of the energy current
The above observation has an impact on the issue of thdiscussed in Sec. Il, there is not a unique definitionrdbr

edge-versus-bulk current distribution. Since, in the absence system with finite range forces. However, a definition con-

of a temperature gradient, the boundary currents arise soleBistent with Eq(84) and with the requirement of quasilocal-

due to Su, and the bulk currents are due to bafjp and ity is

8¢, the nonequilibrium current in a system without gates

flows predominately in the bulk. The situation changes, how- :T @ s +E ya 85

ever, if the temperature is not uniform. As we shall see in ya(r) 4Ei Wit o, a1} 2; 7y (1, (85)
Sec. IV, the boundary fraction of the net thermocurrent is at a ; , ,

least as significant as its bulk counterpart. where 7} is defined by Eq.(29). Equation(85) may be

checked by integrating both sides of E§4) over an infini-
tesimal volume, to obtain the rate of change of the momen-
IIl. LINEAR RESPONSE tum inside the volume. The integral of the last term on the

IN THE ABSENCE OF DISORDER right-hand side of Eq(84) is equal to the integral of the
stress tensor over the surface enclosing the volume. The first
term of Eq.(85) then gives the change in momentum due to
particles crossing the surface, while the second term gives
the force exerted on particles inside the volume by particles

In the preceding section, the local current response to th
electric and statistical fields was expressed in terms of th
coefficients of the mechanical response in the Huffk de-
fined by the general expressio(&2)—(55). Now we derive outside the volumécf. Eq. (31)].

explicitly three of the four response coefficierts) for a In applying the above equations to the present problem
simple case of a uniform disorder-free sample. Since the inyq interpretm as the band mass rather than the bare mass of
fie electron, and/(r) excludes the periodic potential of the
Mbns. Thus, when there are no impurities present and no ap-
fpIied electric field,V(r) is a constant in the interior of the
sample, andVV arises only from the confining potential at
%he boundaries. We also assume tixatdepends only on the
distance between the electrons, so tRgt is parallel to

already expressed in terms of the equilibrium magnetizatio
and their derivatives as given by Ed4.l), (12), (81), and
(82), here we consider only the “transport” components o
the bulk currents. We restrict our attention to the case of
two-dimensional electron system, with magnetic fi@dn

e ecion, Erpende 0 10 016, e cunefl 1), he S enor s Symmett. e pecalie
densit P he case of a two-dimensional electron system and thus use
y notation appropriate to two dimensions.
In thermal equilibrium, far from the boundaries, in an
nc. sc. i i i
Jy=— eV i+ eV, (83) isotropic system, the stress tensor must be proportional to the

eB eB unit tensor, so we may write

which shows that, in the absence of disorder, the transport (Tay(1))=PintSay, (86)

contribution to the number-current density is fully deter‘wherePim the “internal pressure,” depends on the chemi-
mined by the equilibrium number and entropy densitiés. 4| potential and temperature. In the presence of a magnetic
th|§ section, the symbot represents the two-dimensional field, P, is not equal to the pressufe which appeared in
antisymmetric tensog,y=—e€,,=1.) the thermodynamic equatio8)—(12) and which is equal to

Equation(83) is valid locally for any interacting electron e force per unit length exerted by the boundaries on the
system, provided it does not have a shear modulus, i.e., IS &ntained electron gas. Rather, we have

fluid, and the energy spectrum of electrons is quadratic. We

present two different ways to obtain this result. In Sec. lll A, Pint=P—MB. (87)
we derive Eq(83), and hence the coefficients®) andL(?
directly, using arguments based on fluid dynamics. In th
alternative proof given in Sec. lll B, we first derive the co-

The difference betweeR;,; and P arises from the Lorentz
Sorce exerted byB on the boundary current=(c/e)nx M.
- ~ = . . Equation(87) may be obtained directly from Eq$34
eff!C|entsL(1) gndL‘” by studying the current response in a and(qBG) i Wé iZ\)tegrgte the right-hand sideyof EG4) glsc?n)g
uniform electric field, and then obtalrf®) from the Onsager a line segment from a poimi in the interior of the sample to
symmetry. The advantage of the second derivation is that i pointr, where p(r)=0, passing through a pointon the
deals with a homogeneous nonequilibrium  systemyoundary. Since #J/ot=0 in equilibrium, and since
VT=Vu=0. ) _a(r)=0 at pointr,, we find
Both derivations that follow employ the physical notion
of internal pressure, which is not quite obvious in the pres- r
ence of a magnetic field and which we now discuss briefly. Pintt MB:f dr-p(r)VV(r). (88)
In the presence of a uniform magnetic i@z the equation "
for conservation of momentum on the microscopic scale mayhe right-hand side of Eq88) is just the force per unit
be written length exerted by the boundary at pointThe fact that the
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pressure entering the thermodynamic equations is indeed the B. Derivation using Onsager symmetry

same as the force per unit length exerted by the boundaries \ya now study a homogeneous systeRiT=V u=0
follows from the well-known fact that a magnetic field con- nich s driven out of equilibrium by an external electric

stant in time cannot produce work on charged particlesgeiy £— (1/6)V . Since we study coefficients of the bulk

Hence, although there is a momentum exchange between then,hse we can assume that the electric field is uniform and

system and the source of the field via the Lorentz force, therg,, system itself is infinite. In addition to the original labo-

is no energy exchange d&=const. Therefore the t€rm .1 frame, we consider the system in the “primed” refer-

PdVin Eq. (59) represents the work done by the expandingapnce frame moving at a velocity

system on the external confinement. To avoid confusion, we

note that the work done by the expanding system against the v=C[EXB]/B2=ceV ¢/(eB), (92)

Lorentz force actually goes to increase the internal energy of

the system itself in which the applied electric field vanishes. Since the system

is homogeneous, and disorder potential is absent, Galilean

A. Fluid dynamics approach invariance requires that the properties of the system in both

. L . ... reference frames be exactly the same. Due to the absence of

Consider an electron liquid in a uniform magnetic field |0 tic field in the moving frame, the system with respect to

a_md in the presence of an eIeptric potential, cht_amical POteNis frame is in equilibrium. The number- and energy-current
tial, and temperature all of which vary smoothly in space. All ities in this f theref aib=3E =0 In th
the fields and currents in the system are assumed to be eithg?ns' €S 1N thiS frame are Ineretore zeyos —9.nthe

in Sec. Il A. We concentrate on a small macroscopic elemerf: \ ; e
of the liquid with areasA in the interior of the sample, _nurr_1ber of electrons passing through unit length per unit time
which we choose to be of a size much less than the Iengtl‘? given by
scales of the fields and much larger than the average inter- J=n 93)
electron distance. v.

Then, setting/ = ¢ in the right-hand side of Eq84), and  To determine the energy-current density, we split the whole
setting 9J/9t=0, as is appropriate for a quasiequilibrium system in two parts by an imaginary straight line perpendicu-

situation, we find lar to the drift velocityv and find out how much energy
AE is transferred, in the laboratory frame, from one part of
nV¢+V-%+EJ>< B=0, (89)  the system to another in tim&t. The energyAE has two
c contributions, one from the direct transfer of an element of

the system across the line, and another due to the work done

wheren, 7, andJ are averaged over the elemeiA. If the . ;
by one part of the system on the other part while moving

induced current is small, then the correction #oarising
from the current should be second orderdinand therefore _
negligible. Thusr may be replaced by its equilibrium value, AE=€eAXAL+PinAXAL, (94

Pintdss, evaluated for the local values of andT. To first  \yhere Ax=0vAt is displacement of the system in tim,

order, Eq.(89) becomes AL is the length of the line segment which we consider, and
] e 1 Pint is the pressure in the interior of the sample. Substituting
UE—:—A(V(Z)-I-—VPim). (90)  Eq. (87) for the internal pressure into Ed94), for the
n eB n energy-current density=AE/(ALAt) we obtain

Apart from the additional term resulting from the pressure £
gradient, the right-hand side of E€O) represents the clas- J==(etPinv=(e+P—-MB)v. (99
sical drift velocity in the crossed magnetic and electric fields. _ _ _
Substituting Eq.(87) into Eq. (90) and using the relation  ©ON€ can aiso obtain E95) directly from the micro-
NV =V P—sVT which follows from Eqs(9) and(10), we scopic expression for the energy curren't, given by I@B.—
finally obtain (30). Let us writev;=v] +v, wherev; is the velocity of
particlei in the frame moving with velocity. In the moving
J=nv=1J,—(cle)eVM, (91 frame, the system is at local equilibrium with an energy den-
o ) ] ] sity € and a stress tensé,;5;; . Comparing Eqs(28)—(30)
whereJy coincides with the right-hand side of E@3), and  \ith Eq. (85), we see that Eq95) is correct to first order in
the second term is the internal magnetization current as dg;.

fined by Egs(3) and (7). Identifying Eqs.(93) and(95) with the expressions for the

We note that our arguments do not apply to an electroryjy current responsés0), (51), and substituting from Eq.
solid. In a solid, a nonuniform drift current will cause a shear(gz) we find the response coefficients

deformation which will increase until the stress forces sup-

press the local drift. Equatiof89) determines the force act- ~ nc

ing on an element of a liquid and does not include the shear LM =——F, (96)
stress contribution when we use E&6). In addition, the eB

pinning effects which arise in the presence of even a weak

disorder potential make our considerations completely inap- [B=_ c(e+P—BM) p (97)
plicable in the case of an electron solid. eB '
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As one can see from the last formufé?) is an odd function

N. R. COOPER, B. I. HALPERIN, AND |. M. RUZIN 55

erly determined by the conservation equations, together with

of the magnetic field. From this fact, and from the symmetryEQ. (64) and the boundary conditions. For example, one may
relation L&3,3(B)=L(B23(— B) discussed in Sec. Il E, we have add to& any functionf(r) which vanishes at the boundaries

~ ~ c(e+P—BM),
L@ =1L®=_— (e—B)E' (98)

Substituting the obtained coefficierit&!), L®, andL® into
Egs. (66)—(68), and using Egs.(7) and (10), we find
NO=L®D, and

Qe 3¢

=— —/€.

eB

Then using Eq(64) we arrive at Eq.(83) for the transport
number current.

(99

IV. THERMOPOWER MEASUREMENTS

A. Thermopower measurements and current distributions

We now turn to discuss the thermoelectric properties of
real samples, in which temperature gradients are maintaineph
by the coupling of the electron gas to the phonons of the .
substrate. To use the results of the previous sections,
shall assume that the sample is homogeneous, and that tA
coupling to the substrate is sufficiently weak that the corre
sponding thermal relaxation rate is much slower than th

microscopic relaxation rate of the electron ggs , and the

response of the electron gas is well described by the transpor
properties of the isolated electron gas. However, we assu
that the thermal coupling to the substrate is sufficiently
strong that on a macroscopic scale we may assume that t
local temperature of the two-dimensional electron gas i
equal to the local temperature of the substrate, and we ne
not impose the condition tha&f - JE=0 in the electron gas.

The substrate is assumed to be an electrical insulator, ho
ever, so thaV - J=0 in the electron system. We do not dis-

cuss the energy current in this section.

A convenient way in which to study the thermoelectric
response of a sample is through the thermopower. A the
mopower measurement involves the application of a unifor
temperature gradierN T to a sample which is disconnected
from current leads. Since there can be no average electr
potential  gradient

current flow, an electrochemical

Vé=V(¢+ u) develops. The thermopower tens®iis de-
fined in terms of this potential gradient.

If the diagonal matrix elements MY andN® are dif-

ferent from zero, it can be shown that the conditions
V-J,=0, with n-J,=0 at the sample boundaries, togetherg,

m

of the sample, without affecting the values %f J,, in the
interior orn-J, at the boundary. The average valueVf is

still given correctly by Eq(100), however, for any solution

of the equations, and the value gfat any point of the
boundary will be the same as ¥ ¢ were uniform in the
sample. Thus the experimentally measured thermopower, in
which the voltage drop is measured between two points at
the boundary, would still be given by E(LOO in this case.

For the remainder of this section, we will focus on the
thermopower of systems in which the disorder potential is
weak. In the limit of vanishing disorder, one can use the
response coefficients we have derived in the preceding sec-
tion, and the thermopower tensor takes a particularly simple
form

S

SaB: - a]éaﬁ

(102

us the thermopower tensor is diagonal, with a magnitude

waiven by the entropy per particle/n, divided by the charge

r particle,—e. This result is familiar for noninteracting
electrong:*®
Unfortunately it is difficult to provide a general criterion

efor how weak the impurity scattering must be in order that its

e{fects on the thermopower can be neglected and(Hip
applies. Rather, the form of such a criterion depends on the
nature of the low-lying charged excitations of the system,
which may be quite different at different filling fractions
gompare, for example, filling fractions at which the system
is, compressible and incompressible in the zero-temperature

(?frjnit). A necessary condition for Eq102) to apply is that

the impurity scattering is sufficiently weak that both of the

W- ~

tensorsN® and N are almost purely off-diagonal, such
that the thermopower tensor itself is close to diagonal. In
some circumstances this condition may not be sufficient, as

rI_here may be corrections to the size of the diagonal ther-
nnopower. The form of such corrections depends on the spe-

cific experimental conditions, and requires a specific calcu-

d tion of the effects of impurity scattering on the carriers. In

the following, we will concentrate on the thermopower of
systems for which the impurity scattering is sufficiently
weak that Eq(102 applies. In the next subsection we will
discuss the form of the corrections that can arise due to im-
purity scattering for filling fractions close te=1/2 or 3/2.
Although, under the conditions of the experiment, no net
rrent passes through the sample, in a quantizing magnetic

with Eq. (64), require that),=0 everywhere. This is the fe|q circulating nonequilibrium currents are induced. In the

case only if
Vi= %éVT (100
everywhere in the sample, where
S=—(eD NWI N, (101)

In the special situation wherd® and N® are propor-

bulk, these are internal magnetization currents, whose conti-
nuity at the edge is provided by the boundary currents. As
we shall now show, these currents can be very large, in the
sense that the local current density in the presence of both
the temperature gradient and the compensating electric field
can be comparable to what it would have been in the pres-
ence of only one of these fields.

Let us compare the average and the local current densities
induced by a uniform temperature gradient alone,

tional to the antisymmetric tenset as occurs, for instance, VT=const, withVu=V ¢=0. We consider a filling factor

in the case of zero impurities, the value &f) is not prop-

v=1/2 which is an important and much studied example of a
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compressible state. The average current density is equal to
the transport current densitg3)

Jy= cs evVT (103 \%
The portion of this current that flows in the bulk is given by i
i /
bulk bulk Ccs cJds ~
=Tyt Imag™ B eJB eVT, (104 FIG. 2. Schematic diagram of the distribution of the additional
T current induced in a thermopower measurement in the quantum

where we used Eq(48) and the thermodynamic relations Hall regime. No net current flows. However, a large fraction of the
(9)—(12). current induced by the temperature gradi®nt is at the edges of

In a strong magnetic field, for which all electrons areth_e s_ample, yvhereas the _compensating CL_Jrren_t induced by the elec-
restricted to the lowest spin-polarized Landau level, one maj/'c field V¢ is spread uniformly over the interior.
express the entropy per unit area in the form
s= nosq[,,,(e2/,(@/'r], where np=eB/hc is the number circulatory current is_ set up by the combinationfbg_and
density of flux quantaS, is the entropy per flux quantum, VT. The nonequilibrium part of the current density induced
v=n/n, is the filling fraction, and we have assumed a Cou-by the thermopower measurement has a form shown sche-
lomb force law, for which the typical energy scale is set bymatically in Fig. 2.
the magnetic length/=\Ac/eB. Using dln(€’/x/)/ B

=1/2, one can write B. Experimental comparison

s s nadS, T ds Finally, we will compare our conclusions concerning the
Bl "B B +£ 9Tl (105 thermopower of a sample in the limit of weak disorder with
mT n.B recent thermopower measurements in the fractional quantum
Now, at a filling fraction of one-half, particle-hole symmetry Hall regime. At high temperatures, the observed ther-
requires thavS,/dv=0. Hence Eq(104) may be rewritten mopower is dominated by the phonon-drag contribution re-
sulting from the momentum exchange between the system
and the phonons in the substrate. Very low temperatures are
required before the intrinsic thermopower caused by the dif-
fusion and drift in the system itself can be observed. It is
We shall discuss two cases. only very recently that this has been achieved in the frac-
First, for an ideal noninteracting electron dém example  tional quantum Hall regime. In Refs. 9 and 10, thermopower
k—), the entropy is independent of the temperature ameasurements on a hole gas in this regime are reported, and
fixed filling fraction, so the above expression is identicallyit is found that at temperatures below about 100 mK the
zero. The temperature gradient induces no number current intrinsic thermopower can be distinguished. The crossover
the bulk of the system, and all of the induced current flowsfrom a T dependence of the thermopower at high tempera-
around the edge of the sample. tures to a linear temperature dependence below 100 mK is
Secondly, for a system interacting by Coulomb forces, theassociated with the transition from phonon-drag-dominated
entropy aty=1/2 is believed to be approximately linear in to diffusion-and-drift thermopower. At such low tempera-
temperaturdwith a logarithmic correction at very low tem- tures the signal-to-noise ratio is rather poor in thermoelectric
perature due to the divergence of the effective mass of conmeasurements, so it is difficult to resolve much structure
posite fermions?! The bulk current induced by the tempera- related to the incompressible states at fractional filling frac-
ture gradient is therefore approximatelys/(2eB)eVT, tions. One can, however, distinguish dips in the diagonal
which isone-halfof the total current induced by the tempera- thermopower S,,, at v=1/3, 2/5, 3/5, 2/3, consistent with
ture gradient(103); the remaining current flows around the the expectation that the thermopower should vanish at these
edge of the sample. filling fractions for which the entropy is exponentially small.
In both of the above cases the current driven by the tem- A more interesting issue is the behavior at even-
perature gradient is found to be very inhomogeneous, witllenominator filling fractions. It is found th&,, exhibits a
all or half of the total current flowing on the edge of the broad maximum at=1/2 and, less clearly, at=3/2. As
sample. explained in Ref. 9, the absolute values of the thermopower
In contrast, the distribution between edge and bulk of theare inconsistent with a single particle picture, and electron-
current driven byV ¢ in a thermopower experiment depends electron interactions must be considered.
on the apportionment betweévy and V¢. The relative It has been argued that, at even-denominator filling frac-
proportions ofV £ coming fromV w andV ¢ depends on the tions, the appropriate description of the electron system is in
compressibility of the electron system and on the electricaterms of a Fermi liquid of weakly interacting composite
capacitance per unit area, i.e., on the distance to the neardetmions?! We will use this model in conjunction with Eq.
conductivity surface. In most practical cases, the contributior{83) to calculate the thermopower of a disorder-free system.
of ¢ will be much larger thanu, so thatV¢~V¢, and  Let us first assume that electrons are maximally spin polar-
Vu=~0. In this case, the compensating current driven byized. Thus we assume that at a filling fraction of
V & will be uniformly spread over the sample and a strongy;=i+ 1/2, the lowesi (spin-spli) Landau levels are filled

cT Js

bulk,  _ -
P v=12==3 8 77

evT. (106
n,B
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(and therefore contribute zero entrgpgnd that the remain- corrections, the effective mass =&t 1/2 would be expected

ing half-filled Landau level may be represented by a Fermio be proportional to\B, which would predict a value
liquid of composite fermions with effective mass®. The  m*~0.9m, for the sample used for the thermopower mea-
entropy of the half-filled level is determined by the density syrements, where=1/2 occurred at 5.6 T. However, it is

of states at the Fermi surface, so we obtain the thermopowgnt at all clear that this scaling should apply to the actual
of the system to be samples(The observed value of the effective mass at 13 T is
in any case considerably larger than one would expect based
on numerical studies of finite systems where Landau-level
mixing, finite thickness, and impurity effects are ignoyed.

where the particle chargg is —e for electrons andt e for ‘We note that the valup=1 assumed in Ref. 9 was ob-
holes. Note that the same formula applies at all half-integeFa'”ed,from calculations of impurity scatterlng.of electr_ons in
filing fractions » =i + 1/2. However, one must be careful to 2670 field, whereas calculatidfisfor composite fermions
use the appropriate value for the effective mass, which maguggest a much smaller valye=0.13, as was mentioned
vary for different absolute magnetic fields and for different@bove.
filling fractions v; . The difference between our formula and the one used in
Corrections to Eq(107) due to impurity scattering may Ref. 9 is much more serious at=3/2. In that case Ying
arise if the scattering rate; * of the composite fermions et al? replace the particle densityin Eq. (108 by the den-
from impurities is larger than the microscopic equilibration sity of composite fermions, which is now three times smaller
rate 7;11 of the disorder-free composite-fermion system.than the density of holes in the valence band. We believe,
Since this equilibration rate becomes very small for composhowever, that whether one uses E#07) or Eq. (108) the
ite fermions close to the Fermi surface, it may well be thequantityn should be the total number of carriers, including
case that in experiments at low temperature the impuritthose in any filled Landau levels.
scattering rate is sufficiently large; !>, that correc- Since the experimental thermopower reported in Ref. 9 is
tions to Eq.(107) arise. Arguments based on a Boltzmannlarger atv=3/2 than atv=1/2 by a factor=1.4, Yinget al.
transport theory for the composite fermions suggest that, igonclude thatm* (3/2)=0.5m* (1/2), which they view as
this case, impurity scattering will affect the thermopowerevidence for the validity of a model of spin-polarized com-
(107 if the scattering rater, * is energy dependeff.Spe-  posite fermions av=3/2. However, we would conclude us-
cifically, if we consider a model of composite fermions with ing Eq. (107) or Eq. (108 that m* (3/2)~1.4m* (1/2). This
conventional parabolic dispersioff<k?, and a transport iS contrary to the expectation for the ideal system that
scattering rate that varies with energymsP, then the effect m*(3/2) should be smaller tham* (1/2), due to the smaller
of impurity scattering is to multiply Eq(107) by a factor  value ofB.

S Wkém*T& 10
w6=6 H2ng | O (107

(1+p): Unfortunately, we do not see any justification for the
analysis used by Yingt al. at v=3/2. We believe that our
T kém* starting formula(107) is correct in the limit of small impu-
Sap~ g (1+P) ﬁz—mT5aB- (108 rity scattering, and that energy-dependent impurity scattering

leads to an additional prefactor {1p) that is close to unity.

This has the same form as the conventional Mott formula foMoreover, the relation m*(3/2)/m*(1/2)=S,,(3/2)/
the thermopower of a spinless two-dimensional electron gaS,,(1/2) holds even allowing such impurity scattering, pro-
in zero magnetic field. vided the exponenp is the same at each filling fractiofin

A calculatiorf® of the scattering of composite fermions in the absence of any Landau-level mixing this would necessar-
modulation-doped quantum wells suggests that it is onlily be the case if the magnetic length were the same at each
weakly energy dependenp=0.13, and the corrections to filling fraction. The change in magnetic length by a factor of
Eq. (107 are small. In the following, we will compare the 3 that occurs betweem=1/2 and 3/2 at fixed electron
experimental observations with EGLO7), bearing in mind number density is unlikely to affect the expongmn}
that a prefactor (¥ p)=1.13 may arise due to impurity scat- It therefore appears to us that the reported thermopower
tering. measurements at=3/2 are not consistent with a simple

Comparing Eq.(107) with the measurements &, re- model based on spin-aligned composite fermions. The failure
ported by Yinget al.® we find that, at a filling fraction of of this model may be due to the combined effects of the
v=1/2 and at a magnetic fieB=5.6 T, an effective mass of increasing degree of Landau-level coupling and the smaller
m* = 1.3+ 0.3my is required for consistency, wheng, is the ~ Zeeman energy expected &+ 3/2 as compared te=1/2.
free-electron mass. This value is a factor of 2 larger than thélternatively, the effects of disorder may be quite different at
valuem* ~0.7m, obtained in Ref. 9 from their own analysis these two filling fractions. Neglecting any significant effects
of the data, which used the Mott formula E4G08 with an  of disorder, however, and viewing the diagonal thermopower
assumed value gf=1. However, our value of the effective as a measure of the entropy, one would conclude that the
mass does not seem inconsistent with estimataes*obased entropy atv=3/2 is larger than what one would expect from
on other types of transport measurements. For example, amodel of maximally spin polarized composite fermions. It
value of m*=1.4my at »=1/2 is quoted in Ref. 9 for a may be that additional entropy arises from the loss of spin-
hole-doped sample with a higher carrier density, such thapolarization. A number of experiments indicate that in typi-
v=1/2 occurred aB=13 T. In an ideal system, with no cal electron-doped GaAs samples, the electron system is not
Landau-level mixing, zero layer thickness, and no impuritymaximally spin polarized at=3/2 even aff=0.2*"%"|t is
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not clear whether this will also occur for hole-doped metry relations cannot, in general, be applied directly to the
samples, where the Zeeman energy may be more importatdcal current densities in the bulk of the sample. However,
due to the largeg factor. To gain better understanding of the they do hold locally for the transport currents, and therefore
origin of the discrepancy at=3/2, it would be interesting to for the net currents passing through the sample. We derived
investigate the dependence of the thermopower on the exteakpressions for three of the four response functions of an
of Landau-level couplinde.g., by studyingh-type samples, interacting system in the limit of weak disorder in terms of
or p-type samples with different densitiesand on the Zee- equilibrium properties of the system. In particular, we
man energy(by tilted field measurements showed that, in this case, the thermopower tensor is diagonal
and is proportional to the entropy per particle. Recent ther-
mopower measurements on a high-mobility sample show
that this conclusion is consistent with a model of a Fermi
We have discussed the linear response of a homogeneoq@uid of spin-polarized composite fermions &t 1/2. How-
bounded interacting electron gas in quantizing magnetigver, for the observations to be consistent with this model at
field. We studied the number and energy currents which arisg=3/2 g very large effective mass is required. An effective
in response to gradients in electric and chemical potentialass of this size seems unlikely, and we suggest that the

and in temperature. We derived general expressions for theyin-polarized composite-fermion state may not be a good
bulk and boundary currents in the presence of mechanicgescription of the system at that filling fraction.

and statistical fields. In general, the boundary of the sample
can carry a finite fraction of the total current passing through
the sample. The local response in the bulk may be described
as a sum of “transport” and “internal magnetization” con-  The authors are grateful to M. Shayegan for originally
tributions. Internal magnetization currents do not contributestimulating their interest in this problem, and for helpful sub-
to the net current, are always divergenceless, and cannot Isequent discussions. We would also like to thank P. N.
revealed in any standard transport experiments performed dButcher for helpful comments, and D. V. Khveshchenko for
either homogeneous or inhomogeneous samples. They camoviding us with Ref. 23 prior to publication. This work has
be detected only in special contactless experiments resolvingeen supported in part by NSF Grant No. DMR94-16910 and
the local current distribution. We found that Onsager sym-n part by the NATO Science Fellowship Programme.
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