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We propose a device, consisting of a Hall bar with two weak barriers, that can be used to study quantum
interference effects in a strongly correlated system. We show how the device provides a way of measuring the
fractional charge and fractional statistics of quasiparticles in the quantum Hall effect through an anomalous
Aharanov-Bohm period. We discuss how this disentangling of the charge and statistics can be accomplished by
measurements at fixed filling factor and at fixed density. We also discuss another type of interference effect
that occurs in the nonlinear regime as the source-drain voltage is varied. The period of these oscillations can
also be used to measure the fractional charge, and details of the oscillation patterns, in particular the position
of the nodes, can be used to distinguish between Fermi-liquid and Luttinger-liquid behavior. We illustrate these
ideas by computing the conductance of the device in the framework of edge state theory and use it to estimate
parameters for the experimental realization of this de\i§8163-182€07)02204-2

[. INTRODUCTION Luttinger-liquid behavior of the edges; the former function is
largely independent of and more robust than the latter. This
A considerable amount of work on electronic systems indevice has remarkably rich interferometric possibilities; it
recent years has focused on two distinct sets of problems: tHexhibits conductance oscillations with varying magnetic field
effects of quantum interference on the behavior of mesosand also with varying amplitude of the voltage across it.
copic systems and those of strong correlations in low dimen- The paper is organized as follows. In the balance of the
sional systems. Most of the canonical work on the former Introduction we discuss some related work. In Sec. Il we
has involved single electron physics while work on stronglyde_scr'be the |_nterferometer and.g|ve a qualitative discussion
correlated electrons has, by definition, been concerned witR! ItS Physics in a largely model independent way. In Sec. Il
the effects of interelectron interactions. Recent advances iff® introduce a rT“_’de" defm_ed in terms of edge state theory,
semiconductor device fabrication have led to a convergenc at_ allows explicit calculatlon_s (.)f the condgctance of the
of these streams of work, in that it is now possible to conduc evice. We treat th? r_nodel within p_ertur_batlon thec_)ry _and
experiments that test quantum interference in strongly inte _qlve for the transmission current which displays oscnlat!ons
acting systems of electrons. with both magnetic field an_d volyage. In Sec. IV we con5|d§r
The work reported here takes advantage of this convert-he exa'ctly solvaplg case in which the edge states are chiral
gence. Our principal motivation is the physics of the frac-FE’frm' liquids. This is the case for edge_ states_ of an Integer
tional quantum Hal(FQH) states, which exhibit some of the filling fac_tor state ¢=1), anq helps provide an intuitive un-
most striking effects of strong electronic correlations. Thesélerstanding of the voltage interference patterns for general
are perhaps most evident in the unusual quantum numbers &f Finite temperature effects are treated in Sec. V, where we

FQH quasiparticles: they are fractionally chargedbey show how the oscillations are washed out as the temperature
fractional statisticS:* and couple to curvature with a frac- is raised. In Sec. VI we give numerical estimates for the sizes

tional spin®~’ These correlations also lead to a peculiar dy-°f the parameters at which the Aharonov-Bohm and voltage
namics at the edges of FQH systems which is that of Ongscnlatlor)s occur. The Appendix contains the details of the
dimensional chiral Luttinger liquids. perturbative calculation of the transmission current.

Our chief purpose in this paper is to describe and analyze
a device, the two point-contact interferometer, that would A. Related work
allow direct observation of the fractional charged statis- The direct observation of fractional quantum numbers in
tics of the quasiparticles as well as allow tests of the chiraFQH systems has long been of interest. Kivelson and
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Pokrovsky suggested ways in which the fractional charge
could be detected through a fractional Aharanov-Bohm pe-
riod. This has been elaborated further in the work of
Kivelson'® and of Pokrovsky and PryadRd Strong evidence
of such oscillations was found in the experiment of Simmons
et al,*2 who measured conductance oscillations on the edges
of various QH plateaus. However, it has not been clear what
microscopic details of the transport in that region led to these
oscillations. It is our current belief that most likely their
sample fortuitously realized a version of the interferometer FIG. 1. Two point-contact interferometer. Two gates are placed
discussed here. Recent experiments involving tunneling distance apart. The gate voltages are adjusted so as to bring the
across an antidot in a FQH sampfe'* have provided con- €dges of a FQH state with filling fraction close together, but not
vincing evidence for a fractional local Chailéehat couples pinch the constr_lct_lon. In this way, quasiparticles carrying fractional
to the electrochemical potential. Finally, Kane and Fisher charge and statistics can tunnel from one edge to the other. A mag-
and Chamon, Freed, and WeEnL°have suggested that mea- netlc_quXCD can be inserted in the region between the point contacts
surements of the noise for tunneling currents between thg1at IS bognded by the eglge states. A central gate gllows the charge
edges of a FQH system, i.e., in a single point-contact devic "? the region to be geleCt!Vely depleted. .The transm'tteg Cuftk.'m
could be used to detect the fractional charge; calculations qf'a” currentl ;= ve?/h minus the tunneling currerf +17) oscil-
. T ) ates as a function of the inserted flux, the voltage difference be-
thhe Z%ro frequgngy notljse fordtlhe exa:jctly Integrgg:%g mOdéiween the edges, and the voltage of the central gate. An overall back
a\{'ehe ?ﬂeert]ei?irorf o foflrjfflct?/orlj:Inst:t)i/étli_cus \rlélr?{a?r?s una dgrrésse atte ron the device allows magnetic field sweeps at constant filling
by experiments to date. The theoretical basis for such a de-c or
tection was first discussed by Kivels8rand an intriguing eter differs from the standard noninteracting one in that the
proposal involving flux periodicities for hierarchy droplets Scattering particles cannot be assumed to be independent be-
inside FQH systems has been proposed by Jain, Kivelsogause of the strong correlations. At values of the magnetic
and Thoules$! The observation of the fractional spin seemsfield where the electrons in the bulk of the device are deep in

quite difficult and still awaits a concrete scenario for an ex-& QH phase, the low energy excitatior_ls,_ or quasiparticles, lie
periment. on the edges of the bar. At the constrictions, they can tunnel

Finally, our concrete discussion of the physics of the in-from one edge to another and the resulting tunneling current

terferometer in the framework of edge state thébexpands will cause the Hall conductance to deviate from its quantized
the scope of the work on tunneling in chiral Luttinger liquids Y2!U€: @S in the case for a single point contact. However,
by Wen!” and the work on resonant impurity tunneling in havmg two tunneling sites results in phase sensitivity of the
Luttinge’r liquids by Kane and Fish& A very recent paper tunneling current; tunne!mg events takmg place at one of the
by Geller, Loss, and Kirczeno’\ﬂ/discu.sses resonant tunnel- contacts will interfere with those occurring at the other.

ina th h antidot d althouah theirs is a distinct These interference effects can be modulated in three dis-
Ing through anfidots and afthough theirs 1S a distinct geoms,, ways. The first involves changing the magnetic field
etry, and they consider only electron tunneling, their treat

S ‘and leads to what we shall call Aharanov-BokAB) oscil-
ment is similar to ours. lations for obvious reasons. The second involves changing
the number of quasiparticles enclosed by the interfering or-

Il. DEVICE DESCRIPTION bi';als_ and leads t_c(fractionab statistipal oscillations. The
AND QUALITATIVE DISCUSSION third involves varying the source-,dram vo!tag_e and leads to
what we shall call a set of “Fabry-lpat” oscillations. In the
The device we are proposing consists of three compofollowing we will show how these various effects can be
nents, as illustrated in Fig. *f.The first and primary com- disentangled to provide a means of measuring both the frac-
ponent is a narrow quantum Hall bar with two tunable con-tional charge and fractional statistics of the quasiparticles as
strictions, or point contacts, whose separation is less thanwell as to probe the non-Ferm(tuttinger, liquid behavior
phase coherence length at low temperatures. The secowd the edges of FQH states.
component is a back gate that allows the electron density in  We would like to emphasize that we will always be inter-
the Hall bar to be varied uniformly. The third component isested in the limit where the barriers are weak, so that the
another gatée.g., an air bridgethat would allow the center constrictions are far from being pinched off, as in Fig. 1. In
of the region defined by the two point contacts to be selecthe weak barrier limit we can neglect charging energy effects
tively depleted by the application of a voltage. Estimates forin the middle region, which arise in the strong backscattering
the dimensions of the device, which seem entirely feasiblease'® The opposite limit, where the two point contacts are
with existing fabrication techniques, are discussed in Semear pinch off, is similar to tunneling through a quantum dot,
VI; here we note that these require that the point contacts bexcept that for our geometry the central island would be
a few micrometers apart for operating temperatures of 10Carger(smaller charging effectsThe strong coupling regime
mK and below and that the electron gas be about 1000 A ocan be analyzed using methods similar to those in this paper,
less from the point contacts and the central gate. The badhut we will not address it here. The chief advantage of the
gate is not required to be particularly close to the electrorweak barrier restriction is that we stay far from the regime
gas. near pinch off where, experimentally, poorly understood
The physics of this device is that of a quantum version ofresonances arise already for a single point corftaGbnse-
the Fabry-Peot interferometef® However, our interferom- quently, we expect that the only resonances are the ones
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explicitly created by the two point-contact geometry and theamount to leave the flux through the whole droplet un-
resulting energy and field scales for these are set by the pahanged. Consequently, there are no oscillations as the mag-
rameters of the device and can be chosen to lie in an obseretic field is varied and the period is triviallpy/A. If, in-
able range.(Given the lack of understanding of the nearstead, the electrostatics tends otherwise and the self-
pinch-off resonances, it is hard to say theoretically whetheconsistent potential has a maximum in the interior,
they are absent for weak barriers; however, experiments irguasiholes will be created there as the magnetic field is
volving antidot resonanct'“do strongly suggest thisFur-  increased—one quasihole for each flux quantum. The phase
ther, it becomes possible to probe the internal structure of thpicked up by a quasiparticle encircling the central region is
resonance, i.e., its intermediate energy behavior, without derow the sum of the fractional AB phase and the phase
tailed microscopic knowledge. Finally, the open channel al— 6* = —2#/m due to its(fractiona) statistical interaction
lows one to bring a fraction of an electron chaméo the  with the central quasihole and precisely restores the period-
central island, which would not be possible near pinch officity to AB.
because of Coulomb blockade. Another restriction on our (ii) Field sweeps at fixed filling facto©ne obtains quite
analysis is that we consider only the primary Hall states, i.e.different results if the field is swept at fixed filling factor. In
v=1/m with m odd, where there is only one branch of edgethis case the quasiparticles are affected by an invariant
excitations and life is somewhat simpler; the extension toracuum(in other words, the electron density is changed so
their descendant states does not pose any conceptual prahat quasiholes are not formed in the bulk of the drgplet
lems. The resulting periodicity is thedhB*. The observation of
conductance oscillations with such a fractional AB period
would constitute a measurement of a fractional AB charge
A. Aharonov-Bohm and fractional statistics oscillations for the quasiparticles. Experimentally, keeping the filling

We will first discuss the interference effects which occurfactor constant requires changing the number of particles
when the magnetic field is varied. Consider the transmissio@l0ng with the field, which is why the device requires a back
amplitude for quasiparticles propagating along the rightdate. A!so, preventing the format'lon of quasiholes in the cen-
edge. As they can tunnel to the left edge at the two constrictal region requires that net fractional charge be added to the
tions in Fig. 1, the amplitude will involve a sum over pathsthis area, which is only possible if the contacts are not
that encircle the areA enclosed by the edges and the con-Pinched off. . _
strictions any number of times. As a result, they pick up an Having discussed the observation of fractional charge we
AB phase proportional to the flu through this area. Na- Now turn to the obse_rvatlon of fractional st_atlgtl_cs. We first
ively, this phase is given by2e* BA/(hc), wheree* isthe  Note that the comparison betweer_w the periodidiy when
charge of the quasiparticle. It is convenient to define an efthe number density of electrons is held constant and the
fective flux quantum byd* = (e/e*) ®,, where the usual .perlc.)dllcnyAE.Sf when the filling fractionv is held constant
flux quantum is given byb,=hc/e. Then, in terms of this implicitly vern‘l_es the fractlonall statistics of the quasiparti-
effective flux quantum, we would expect that as the magneti€les and quasiholes, because in one case the period is due to
flux is varied, the current and other properties of the systeni?® combined effects of the Aharonov-Bohm phase and frac-
would undergo oscillations with periodB* =®*/A, and tional statistics, and in the second it is due only to the

thus measurements of these oscillations would provide &haronov-Bohm phase. . o
means of measuring the fractional charge. To more directly see the effect of the fractional statistics,

However, this conclusion is too naive. The quasiparticlegVe Need to consider oscillations that arise from having vary-
derive their properties from the parent liquid which is theing numbers of quasiparticles in the central regionNIf
relevant “vacuum” andonly when the vacuum is invariant quasiholes are present, then the interference phase is modi-

nt - N ; -
can we expect to use arguments based solely on their ABed to 2m(BA/®* —N/m). Itis clear then that it is neces-
phases. Indeed, if the extra flux added is dynamically localSary to addn quasiparticles before the interference condition
ized in the interior of the fluid this would effectively create a IS restored. To this end one can imagine using the central
multiply connected geometry where gauge invariance for th@ate to deplete the central region in steps of charge 1/
constituent electrons implies a flux periodicity of Which would then lead to conductance oscillations with a

AB=®d,/A. As this is smaller than the quasiparticle period Period ofm steps. A better strategy, which requires less con-
AB*, this would exclude oscillations with the latter period- trol over the electrostatics, is to create some unknown num-
icity. We should emphasize that this islgnamicalpossibil- ~ Per of quasiholes in the central region and then look for a
invariance for the geometry at issue here. At any rate, it i$harge measurement. Except when an integer multipte of
clear that we need to be careful about considering changes fiHasiholes are present, there will be a shift in this pattern and
the bulk of the fluid as the flux is varied. To this end we the observation ofn—1 distinct shifts will be a direct sig-
distinguish between two cases. nature of the statistical interaction between the quasiparti-

(i) Field sweeps at fixed particle numbén. this case, as ~cles. For example, at=1/3, there will be two shifted pat-
we just observed, we expect to observe conductance oscill&rns with shifts of (1/3AB* and (2/3AB*.
tions with period®,/A. This can happen in one of two ways

i i [ f th tral re- , .

giez)pner:?lr;% '#]3 g r:n?gen(ej'ﬁ::apiz?d eilse;:;ri:(se':jatlt(;]se OQH Euﬁgr;nr ih;eB. Fabry-Perot oscillations due to finite source-drain voltages
central region shrinks uniformly in order to keep the filling  The third modulation of the interference appears when
fraction constant, then its area decreases by just the rigvarying the source-drain voltagé and again leads to oscil-
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lations in the conductance. The origin of these oscillations isection will occur. At large values of the ratio, the barriers
most transparent for=1, where single-particle consider- enter independently and the AB oscillations are washed out.
ations suffice; this is detailed in Sec. IV. In brief, the con-The third and most interesting conclusion is tleaenfor
ductance at finiteV is determined by the transmission of intermediate values of the ratio there are special points where
electrons in a range of energiA& = eV while the transmis- the AB oscillations disappear. Again, the origin of this dis-
sion itself oscillates with energy. Consequently, the inte@ppearance is most transparent for1: the nodes occur
grated transmission, and hence the conductance itself, oscithenever the bandwidth is equivalent to a phase difference
lates with the source-drain voltage, albeit with an envelop®f an integer multiple of Z across it. In such cases the
that decreases as\ViL/ phase shift between the barriers is immaterial; essentially,
An interesting perspective is afforded by thinking in anal-0ne is integrating the interference pattern over an integral
ogy to the classical wave analysis of the FabryePénter-  humber of periods, so the oscillations cancel.
ferometer, i.e., a device with two parallel partially transmit- The detailed analysis in Sec. Ill, where we consider the
ting barriers; as we shall see in the edge state analysis of ti@se of generat, bears out the same qualitative feature that
device, it is conceptually exact and allows a unified treatthere are special values df where the AB oscillations dis-
ment of the fractional fillings as well. Evidently, the combi- appear. However, the location of these nodes is modified in a
nation w.s= 2/ 7, the inverse time for edge waveéand Very interesting way which depends sensitively upon the na-
hence the quasiparticleto travel from one point contact to ture of correlations in the edges. If the edge dynamics are of
the other, is the characteristic frequency of the device anthe Fermi-liquid variety, as should be the casevatl, our
will set the scale for the oscillations in its transmission due tohaive assertions are correct. However, if the edges are Lut-
multiple reflections within it. The source-drain voltage de-tinger liquids then the locations of the nodes are given by the
fines a second frequency scale, the Josephson frequenggros of Bessel functions which dependw@yy w,s., and the
wy=e*V/h, wheree* is the fractional charge of the quasi- type of Bessel function depends on the Luttinger-liquid ex-
particles living on the edges; this is the bandwidth of theponent g. The nodes occur forw;/wese=(n+&y)/2,
waves incident on the interferometer. It follows then that then=0,1, ..., with the g dependent shif¢ = (1+g)/2. For
transmission will be a function of the ratio;/w,s. as well  quasiparticle tunneling, wheg= v, this shift is not an inte-
as of the reflection/transmission coefficients at the point conger, and can, in principle, be used to measyréGiven an
tacts which are determined by the quasiparticle tunnelingndependent measurementwf this also allows a measure-
amplitudes at them. ment ofe*.) Thus it follows that the interferometer can also
Because the right-moving and left-moving waves lie onbe used to distinguish between Fermi-liq@wdth g=1) and
the edge of a QH droplet, there is a second perspective that isuttinger-liquid behavior at the edges of FQH systems.
very illuminating.(This picture, however, is not as general as  In the qualitative discussions of the Aharonov-Bohm and
the actual calculation of the voltage oscillations, since theé=abry-Peot oscillations above, we have considered the zero
calculation does not explicitly require the left- and right- temperature case for simplicity. The effects of finite tempera-
moving edges to enclose any amount of flux; it would also bdure, particularly the suppression of quantum interference,
valid for a one-dimensiondlLD) wire if the modes were to are treated quantitatively in Sec. V.
have differing chemical potentialsIn this picture, the
Aharonov-Bohm phase is requnsibl_e for the oscillatio_ns in IIl. TUNNELING BETWEEN EDGE STATES
the transmission as the energy is varied because the dlfferent IN THE DOUBLE POINT-CONTACT GEOMETRY
energies lead to different areas enclosed by the interfering
orbits. More specifically, an increase in energys& corre- We will now study the interferometer in the framework of
sponds to a change in the momentum of the quasiparticlegdge states in the quantum Hall effect, which is better cast in
given by sk=vSE/(fv), wherev is the velocity of the edge the bosonic languagéor a thorough review, see Ref. 2
modes’® The momentum at the edge is related to the area oPur starting point for studying tunneling in a double point-
the dropletA and its perimeter & by k= vA/(122a), where ~ contact geometry is the Lagrangian density
| is the magnetic length, so that an increas&Bfin energy
results in an increase in area 6A=2l%adE/(fvv). The

- 2_ .2 2
extra flux enclosed then gives a change in phase of L= 877[(‘?“1’) v (9xh)7]
278D/ D =2adE/fiv=4mwSElfiw,s.. As a result, as the
E;e;r)gy |ngvar|ed, the transmission oscillates with a period set _iZIZ e ots(x—x)e et 4 Hoc., (1)
osc =1,

Three conclusions follow from this description. First, we

recover the result that the net transmission has a componewith the quantization condition [ ¢(t,x),d;¢(t,y)]=

that oscillates with the source-drain voltage. Second, we find i 3(x—Y). [We use this normalization of because it
that there are two distinct regimes as a function ofgives an especially simple expression for the dimensions of
wylwese. For small values of this ratio the device is probedthe tunneling operators in terms gf To translate to the

at low frequencies and hence at a long length scale where ttfg@nventional normalization of a 1D electron gas or the sine-
coherence between the two barriers is important. In this reGordon modelg must be replaced by/(2+/7).] The volt-
gime the phase difference between the reflectionage difference between the two edges of the QH liquid de-
transmission coeffecients at the barriers governs the trangermines the Josephson frequensy=e*V/#, with e*=e
mission. Because this phase difference is determined by tHer electron tunneling and* =e/m for quasiparticle tunnel-
AB phase, the AB oscillations discussed in the precedingng. In the following we will set the edge velocity=1. The
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two point contacts are locatedat andx,, and their tunnel- depend on exactly how the magnetic field is varied; if the

ing amplitudes ard’; andT,, respectively? electron number density is held fixed, the phase is the “elec-

The first term in the Lagrangian, when considered alonetron” Aharonov-Bohm phas&/®, and if the filling frac-
describes the dynamics of a free boson figle o+ ¢, , tion is held fixed, the phase is the *"quasiparticle”
which can be decomposed into its chiral componefys . Aharonov-Bohm phasé/®*.

These components describe right- and left-moving excita- In the absence of tunneling, the currénéquals the Hall
tions a|ong the edges of FQH states. Charge density Operg.urrentl = Ve /hV. In the presence of tunnellng, the trans-

tors can be defined in terms of ther, through mission current satisfiesl =1,—1,, wherel, is the tunnel-
' ing current. Treating the tunneling term perturbatively in the
PR,L:e(\/;/ZW)axd’R,L- 9 9 g P y

The second term in the Lagrangian comes from the tunEnOdel above, we can solve for the tunneling currgrds a

i e g T elny otr o ] g e e e .
written asW¥ ¥ and WL, . Right- and left-moving elec- g amp : P

tron and quasiparticle operators on the edges of a FQH quuiI ng asl, 'S small compared to the Hall curreiy. Itis casy
. CGdr L (LX) atikex . 0 generalize the problem tN contacts located at; with
are given by¥g  (t,x)xe RLMe=I"FX whereg is re-

._tunneling amplitude$’;, fori=1,... N, and in the Appen-
lated tq th.e.FQH bglk state. For example, for a Laughlmdix we solve this general problem. The result can be cast in
state with filling fractionr = 1/m we haveg=m for electrons

. ; : . a form very similar to the one point-contact result. At zero
and g=1/m for quasiparticles carrying fractional charge temperature, it is given by
. T _ L]
e/m. One can verify that [pg (t,X),¥g (t,Y)]=
e\ugWl (t,y)8(x—y), so that indeed the cases=v * , 2m p1
andg=v correspond to the electrore{=e) and quasipar- le=e* el rzg)| wy| % sgrwy), ()
ticle (e* = ve) creation operators, respectively. ) ) _

The flux @ in the area enclosed by the edge branchedvhere, for several point contactS is the effective cou-
between the two point contacts is taken into account by th@/ing which includes the interference between the couplings
phase of the tunneling amplitudds,, in Eq.(1). This phase L'i» i=1,... N. The effective coupling is given by
comes from the quasiparticle’s momentlkmin the defini- N
tion of ¢r . From this definition, the tunneling operator IT o 2= 2 T Hy(wylx—xi|) 3)

! (X) yr(X) has the phase? ™, where X; is equal to the el g TR A
momentum difference between the right-moving edge and .
the left-moving edge. The momentum differenck;2be- with

tween electrons on the two edges is directly related to the I'(29) Jg_19X)
perimeterL and areaA of the QH liquid confined between Hg(x)= \/;r— W %)
the two point contacts. It is given b .L =27BA/D . If the (9 (

distance between the two edges at each of the point contadfthereJ,_ 1, is a Bessel function of the first kind. In the case
is much smaller than the distanaealong an edge between of a single point contact, the effective coupling is given by
the two contacts, then the perimeter can be set equaato 2T =T, independent of frequency, and we recover the famil-
For v=1/m, with m an integer, the momentum of the quasi- iar results of Ref. 17.
particles is then given by R=v2k;.=27d/(P*a). Be- In the case of the two point-contact geometry, we have an
causel’; is the amplitude for tunneling at=—a/2, it has effective coupling
the phasee'2™®/(2®") and similarly I', has the phase
e 127¥2%%) Thys the flux can be introduced in E@) by |Feﬁ|2=|F1|2+|F2|2+(F1F’2*+FIF2)Hg<w—Ja
taking T'y,=T;2%27®(%") " where I'y, are couplings v
which do not include the phase due to the magnetic fluxwherea=|x;—x,| is the linear distance along the edge be-
Combining these together, we find that a quasiparticle thativeen the contacts, and we have restored the velacity
circles the area between the two constrictions offigetun-  the equation(If the path length between the point contacts
neling from the left-moving edge to the right-moving edge atfor the left and right edges are different, theeis the average
x=—a/2 and tunneling back to the left-moving edge atof the two lengths and there is an extra contribution to the
x=a/2) picks up the amplitud&* ,=I*T,e 27®*" 5o relative phase betwedr, andI',.) The separatioa sets the
that the phase of the tunneling amplitudes determines théme scale r=al/v, and thus the frequency scale
Aharonov-Bohm phase. wqs 27/ 7 for oscillations in the value of the effective cou-
The form of the phases appearing in the amplitugs pling I'cs. It is easy to check thatly(x) —1 asx—0, and
andI", can also be viewed as coming from the interaction ofthat Hy(x) =0 asx—c, so that the effective coupling has
the bosonic edge states with the electric and magnetic the asymptotic values
fields. In particular, the electric and magnetic potentials act
as sources which the fielgp interacts with via its optical 5
charge\/ve.?® In this way, one can show that the full phase T el “=
due to the magnetic flup and theN quasiholes in the area
between the two constrictions can be accounted for by taking/hich correspond to coherent and incoherent interference be-
[3T,=I*T,e 27" ~N») 'whenp is equal to one over tweenI'; andl',. In the first casd .« depends on the relative
an integer. Then, according to Sec. I, the full phase willphase betweei’; andI',, so the tunneling current should

)

|F1+F2|21 03 Woge

|F1|2+|F2|21 ® 3> Woge
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1.0 —r——p———F——T7—"—TF——T7 vides a clean(interferometri¢ way of probing Luttinger-
08 —g=1 liquid behavior. Such an interferometric measurement fo-
N e g=1/3 cuses on the behavior between the two contacts, and may be
0.6 E PO g=1/5 ] free of parasitic effects elsewhere that can mask the anoma-
04} i _ _ 4 lous scaling behavior of Luttinger liquids.
oz B [N L Finally, the location of the nodes could also provide an-
R FAN /\ ﬂ\ /_\\ /;\ ' :;';' By i other method of measuring fractional charge. The position of
x o0 ST T~ ~F T the nodes depends @na/v, where the Josephson frequency
T oz} "«;.l i>' ! N [N w;=¢e*V/h depends on the fractional charge. If there were
ol &/ e E an independent measurement of the velocity the of edge
modesv, then the location of the nodes would yield a value
Rl 1 for e*.
-0.8 -
1.0 PR S S S E—— L IV. FREE FERMIONS
0 1 2 3 4 5 6
x/2n To better understand the behavior of our perturbative so-

lution for the current, we will look at the exact solution for
FIG. 2. ModulationHy(x) for g=1,1/3,1/5. Notice that the de- theg=1 case with two constrictions. This case reduces to a
cay rate of the modulation is™9. Also, the position of the zeros of Simple problem that is essentially the same as wave trans-
Hg(x) [those of Jy_1(x)] are approximately given by mission through a Fabry-Rat interferometer. We can solve
X,~m(n+&g), n integer, where,=(1+9)/2 is ag dependent for the transmission and reflection amplitudes at a single
shift. impurity, which, forg=1, are independent of the energy of
the incident waves. Then, in addition to using these ampli-
clearly exhibit the Aharonov-Bohm oscillations, and in the tudes to account for the scattering at each of the two impu-
second case the Aharonov-Bohm effect is washed out. rities, we must also propagate the waves from one impurity
For the intermediate range of frequencies comparable te another, which is the part responsible for the interference
wosc: there will be oscillations in the effective coupling as a effects. Each frequency will then be transmitted with a
function of ;. This interference term depends on the rela-different coefficienfT (). For an applied voltag¥ between
tive phase betweel'; andI',, which can be adjusted by the edges, there will be a whole range of frequencies of
varying the magnetic fluxb through the area between the width w;=eV/# in the incident wave packet. We must then
two point contacts. If an experimental apparatus is set up tintegrate the final transmission coefficients over the energies
detect the component of the current that oscillates with thén this band that contribute to the total current.
flux @, the magnitude of the oscillations will be Consider, to begin with, a single point contact with tun-
neling amplitudel’, which can either transmit or scatter a

- @, icle. Forg=1 kin t f free fermi
12| =e*|Ty[|T w297 H [ 22 6 particle. Forg=1, we can work in terms of free fermions
1=l 2|F(29)| i 9 © given by ¢g | = (12 m)e* *rLO with Hamiltonian

The behavior ofI| as a function of the source-drain volt-
age can be understood by looking at the plotHf(x), for f dx‘ zp (x)| —i i__},ﬂ (X)
differentg, in Fig. 2. The envelope of the decaying oscilla- R R
tions inHgy(x) is algebraic (-x"9), so that the envelope of
IN scales a9~ ! or in other words|1{|oc\V9™L, . +yl 0| -~ z/rL(x)

The zeros ong(x) are those of the Bessel function
Jg-12(X), which are separated by a distance approximately
equal torr. The zeros are approximately given by +2m$(x)[l“i¢[(x) Yr(X)+ H.c.]]. (8

, 1+g . . . .
Xp=m(n+§&;), n=0,1,... with gng, (7) Once again, we have set the veloaityf the chiral fermions

to 1. It is then a straightforward wave mechanics problem to
which fits the graphs in Fig. 2 very well. Notice that for solve for the scattering matri8, which gives the transfor-

g=1, the position of the zeros is exactly given by mation from the incoming mOdeﬂ{R (w), ¢ +(w) to the

Xp= w(n+ 1),n=0,1,..., and alkeros are equally spaced. outgoing modesyr. (), ¢, _(w). We find that
The ratioxy /xq between the first two zeros is 2. Fg#- 1,

even though the zeros are approximately equally separated, t; r

they are shifted, and,/xyo~(g+3)/(g+1)#2. This ex- s:( . )

ample illustrates how the position of the zeros can be used to LT

probe Luttinger-liquid behavior.

Experimentally, the position of these nodes can be o
served precisely by measuring those source-drain voItage@/
for which the Aharonov-Bohm oscillations simply disappear. o (2 ) .
We would like to stress that the experimental measurement __1_ 7| and .= —izal
of the position of the nodes of the interference patterns pro- "1+ 722 IV

bwhere the transmission and reflection amplitudes are given

(€)
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The transmission and reflection coefficients @re|t|2 and  flected into right moverg[1—T(w)]n-(w). Similarly, the
R=|r|?, respectively[We note here thal’; in Eq. (9) is total left-moving current at energy is just the total incom-
renormalized so that the strong barrier limit or total reflectioning left-moving currenn‘(w), wheren®(w) are the occu-
(R=1) occurs wherI';| =1/7. This is in contrast with the pation numbers of right and left movers. In this simple model
case wheng=1/2 or 1/3, when total reflection occurs as we can easily include the temperature dependence of the
I'—co. Technically, this difference arises becausedetl  transmission because it can be completely accounted for by
the tunneling operator is infrared relevant whence short disthe Fermi-Dirac distribution of the left and right movers:
tance behavior does not matter, whereasgferl it is mar-
ginal.] RL 1

When there is more than one scatterer, it is convenient to n"H(w)= PUCE (13
use the transmission matrix approach to find the transmission
through and reflection out of the two point contacts separate@he expression for the current through the droplet then re-
by a distance. Recall that the transmission matii4; gives  duces to
the transformation from the states on the left of the barrier,
Yr-(0), Y (o), to the states on the right of the barrier, (7 do R L
Yr+ (o), ¥+ (), and can be obtained directly fro8 Af- I—ef 2 (@ (e)=n(o)] (14
ter passing through the first constriction, the waves propagate
to the right a distanca, which results in multiplying the At zero temperature, the integral in Ed4) yields
modes

— o

_ 1_|r1|2|r2|23in(w a)
(fR(w)> | e |t1|?]to]? 1 1+(rqf?r, ’
(o) 2ma 1—|rq|?ry|* rirz+rire
cofwya)+ 712
by 1+ [rqf%[ryl
eiaw 0
D:( 0 e-iav]" Notice that if t;=t,=1 (total transmission |=(e/

2m) wy=(€?/h)V. For small tunneling amplitudek,; and
Finally, the waves are scattered again by the second poirt, (|r,|2,|r,|?<1), we find thatl = (e?/h)V—1,, where
contact, so the waves on the right-hand side depend on the

waves to the left of the scatterers as follows: li=e*|T el ?2m 0y, (16)
e (@) r- (@) with
~ = 2 1| ~ . (10)
U+ (w) - (o) sin(w;a)

Note that the matri contains the phase"'*%, and it is this |Terl?= T4+ |To|?+(T'aI'3 +Ffrz)—(wJa) - (A7)

phase which is responsible for the voltage oscillations. In

particular, the right-moving and left-moving modes that scat-This is the same as the result obtained perturbatively in Sec.
ter between the two point contacts have opposite phasef if we set g=1 in Eq.(5).

which interfere with each other. Multiplying out the matrices  |f we expand the transmission coefficiefitw) in Eq.

in Eq. (10), we find that the transmission amplitude for the (12) for small tunneling amplitudes, we can easily obtain the
two point-contact geometry Is finite temperature tunneling currept It is still given by Eq.
(16), but the effective coupling is now

P p— (1)
W)= ——F% >3 =,
SUULES |Pe?= T 4|2 +|T|2
wheret, , andr , are the transmission and reflection ampli- 27Ta  sin(w,a)
tudes for the two contacts, as given by E9). The transmis- +(I I3 +T75Ty)

sion coefficientT (w) through the whole droplet is then sinh(27Ta)  (w,3)

214 |2 (18)
T(w)= |ta |t2|_ _ _ _
T+]r A2+ (15 €208t ¥ e 20a) Nofuce tha_t the distanca sets* the*temperature scale for
(12) which the interference teriI'; +I'7T'» de_cgys. _
In the general case, such as for other filling fractions, the
With this frequency dependent transmission coefficientcurrent should still be obtainable by an expression like Eq.
we can calculate the current for an energy differeage  (14), whereT(w) is the transmission coefficient amf(w)
between the right- and left-moving edges. It is given by theandn'(w) are the number densities of filled states at energy
total right-moving current minus the total left-moving cur- w. If the behavior of the system deviates from the result in
rent passing through a poirt If we choose the point to be to  Eq. (15), this should indicate that the transmission and re-
the right of the barrier, then the total right-moving current atflection amplitudes for a single point contact depend on en-
energy w is given by the transmitted right-moving current ergy and that the density of states no longer has the simple
eT(w)nR(w) plus the total left-moving current that was re- Fermi-liquid form.
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V. FINITE TEMPERATURE EFFECTS v of the underlying FQH state affects the decay of the oscil-
lations with temperature.

In Sec. lll we have found that, at zero temperature, the To lowest order in the tunneling amplitudie the tunnel-
effect of the two point contacts can be completely absorbed g amp

into an effective couplind’ ¢, which describes all the inter- ing current betwggn edge states ‘F‘ th_e presence of a single

ference between the two contacts. In this section we wiIIpOInt contact at finite temperature is given'by

show that wherT # 0, this is still the case, but noWg will ©; ®; ®;

depend on temperature also. l,=e*|T'|24(#T)%9 1B g—i —,g+i—) sin?-(—),
The finite temperaturd brings another energy scale to 2aT 2T 2T19

the problem. This energy scale should be compared to the (19

one set by the separation between the contactwhich is  whereB is the beta function. In the Appendix we show that

given bywqs=2muv/a. Thus, wherkT>% w.s, the interfer-  the same expression gives the current Kbpoint contacts

ence effects should be washed out. One should also keep with couplingsI';, i=1,... N if we use an effective cou-

mind the energy scale associated with the Josephson freling

guency w;=e*V/#f, so that the decay of the interference

effects with temperature will depend on the ratios of the ) N .

three energy scal€, w;, and w,s.. The interesting ques- | et Ii_}::l Til Hg(@y,[xi=x[,T), (20

tion to ask is how the differerg affect the way the interfer- !

ence is washed out, or, equivalently, how the filling factorwith

e_inlxlF g g_|_| ﬂl_{_l @3 -e—47TT|X|
H Too L(20) e S 2w 2a T .
o @3.%,T)= "T(g) sinf(wJIZT)'m o, o) (21)
Moo N\ T

In this expressionF is a hypergeometric function. Notice that the functidg depends o, x, and w; only through the
combinationsw;x and w;/(27T). We can thus cast the modulatibhy(w X, w,/27T) in terms of the following function of
two variables:

T(2g) e 91/ {eiylF(g,g+iy2;1+iy2;eZyl’VZ)]
o(Y1.Y2) =27 T(g) sinh(my,) I'(g—iy,)I'(1+iy,) 22
|
The effective coupling for a two point-contact geometry is | 4|2=|T";|?+|I',|?+ (', T}
then
e 4772T2/wosc sin(waJ/wosc).
SiNN 47T/ wesd (2mw;lwegd
2wy  w; (25)

|reﬁ|2=|rl|2+|r2|2+(rlr§+FIF2)HQ< P '2771-)'

(23) This is the same as the expression obtained in Sec. IV di-
rectly from the free fermion transmission approach. Notice
, o ) that forg=1 the finite temperature correction appears only
In this form, it is clear that the interference term depends on,g 4 multiplicative factor in front of the modulation for
the ratios of the three energy scales in the problem. T=0. This is not necessarily the case for otigeras shown
We begin to explore how different values@ichange the  pejow in Fig. 4. This multiplicative factor decays exponen-
behavior of the modulatlom9 by con5|der|ng Fe_rml-llqmd tially [1/sinh(4rT/w.)] with temperature, with the scale
(9=1) edge states associated with a QH filling factor(,, 3 set by the two point-contact separatianin Fig. 3 we
v=1. In this case, Eq22) can be shown to simplify to show the decay oH, with temperature fow;=0 in a log
plot. From this plot we can extract how the modulation de-
cays with temperaturd@ for different g. Using asymptotic
yily siny expressions for the hypergeometric function, we find that for
_J17r2 1 24) TS wee the functionHy(27w;/ wese, w5/27T) decays as
sinh(y;/y>) ' (24) 2 g
Yilya) Y1 e 4™ 9Twose whereas forT<wge., the fall off is much
slower.
so that Another interesting quantity is presented in Fig. 4, where

Hi(y1,y2) =
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FIG. 3. Temperature decay of the modulatiady for
g=1,1/3,1/5. The quantity plotted id4(w,=0a,T) vs T, with T 0.8 H
measured in units ob,s=27(v/a) (the energy scale associated
with the point-contact separatiom). Notice that the modulation - 08F
decays exponentially witd™ for large temperatures, and that the |c—5 04k
decay rate is faster for larger. ~%
I o2}
~
we display the ratioHy(w;,a,T)/Hq(0,a,T) between the = oo
modulation atw; and atw;=0, for different temperatures. \s:’
The natural variables for displaying this dependence are theI°’ 02r
ra}tiosT/wOSC andw;/ g (put differently, we measure ener- oal
gies as compared to the scalg. set by the separatioa
between the contagtsNotice that, for generaj, the curves 06
move around as a function @ The curves collapse into one
only forg=1. Also notice that as the temperature increases, (b)
the position of the zeros fay=1/3 andg=1/5 approaches
those forg=1, so that increasing temperature masks the 0
Luttinger-liquid behavior, with a crossover temperature 08 bt
roughly equal tow .
—_ 06
VI. NUMERICAL ESTIMATES - B
S oarh
[o}
In this section, we will give estimates of the sizes of pa- T o2} |
rameters at which the interference effects could be observed.E
First, we will consider the change in magnetic fieliiB, 2 00
required for one Aharonov-Bohm period, which is given by 8 02
= o0z}
I
0.4 |-
Ape S d, e 41lum?G o6
= — = — -0.6
e* A e* A (26) 0

(©) @ / Rpsc

If the number of electrons is held constant, then in this equa-
tion @ is equal to one flux quantum amd is the charge of
an electronge. If, instead, the filling fraction is held fixed,

then @, is e/e* times one flux quantum, where® is the different T. The quantity plotted is the rescalét [Hy(w,,a,T)/
charge of the quasiparticle. In this equatidnis the area of H,(0,a,T)] so as to show how the shape of the modulation curve
the FQH liquid between the two contacts, and is roughlychanges withT for differentg. Notice that all curves collapse for
given byA=ad, whered is the width of the sample aralis g=1, i.e., all frequencies get suppressed uniformly as temperature
the distance between the two contacts. If we assume thieincreased. Fog=1/3 andg= 1/5, however, notice that the curves
width is d=1um, then the period is related to the distancedo not collapse together anymore, and that higheare suppressed
between the contacts by more strongly than lowew; asT is increased.

FIG. 4. Dependence of the modulatiéty(w;,a,T) on w, for
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A 41 um-G/a for fixed number of electrons )
B= . - .
120 um-G/a for fixed filling fraction v=1/3. @

Fora=1 um or 10 um, the “electron” Aharonov-Bohm electron gas. For gate diameters of about 1000 A, this con-
period isAB=41 G and 4.1 G, respectively, and the “qua- dition could be met by placing them about 1000 A from the
siparticle” Aharonov-Bohm period iAB=120 G and 12 G, electron gas.
respectively.

Next, we consider the voltage fluctuations. The separation VII. CONCLUSIONS
between the zeros of the Bessel functidpn ,(x) is ap-
proximately equal tor and the location of the nodes in the
voltage fluctuations roughly occur when

In this paper we have proposed a device, the two point-
contact interferometer, consisting of a Hall bar with two
weak barriers, that can be used to study quantum interference
effects in a strongly correlated system. The device allows for
n=01,... with &= 1+_9 _ (29) the study of three types of interference effects: Aharanov-

” ¢ 2 Bohm oscillations with magnetic field, statistical oscillations
with quasiparticle number, and FabryrBeoscillations with
As noted earlier, depending on the valuegfthe precise source-drain voltage. These interference effects can be used
location of these nodes will be shifted a little, which may to measure the fractional charge and statistics of quasiparti-
provide a way of distinguishing between Luttinger-liquid be- cles in the quantum Hall effect. They also provide a new way
havior and other types of behavior. In this equation, we havef searching for non-Fermi-liquid behavior in the dynamics
restored the velocity of the edge modeswhich earlier was  of the edges. We would like to emphasize that much of our
set to 1. Forg=1/3, an estimate forv (Ref. 32 is  account of the physics of the device is quite robust, in that it
v~10° m/s. Usingw;=e€*V/%, we find that the voltage at depends upon quite general “topological” properties of QH
the nodes and the distance between the point contacts mugliasiparticles; our proposals for measuring charge and sta-
satisfy tistics fall in this category. Other features, such as the details
of the Fabry-Peot nodes, are more specific to the simplest
e version of edge state dynamics used in the calculations and
Va=(n+&) X200 uV-—um, (29 as such are subject to the caveat that they represent the be-
havior of the system only at the lowest energies.

(,l)Ja
-~ (T &),

whereV has units of micrometers amal has units of mi-
crometers. Forv=1/3, we take e*/e=1/3. Thus, for

a=1 umor 10 um the voltage at the first node is roughly  s.|.S. would like to thank Philip Phillips for introducing
400 wV and 40 uV, respectively. Lastly, we will estimate him to resonances in interacting systems and for suggesting
the coherence length, or the amount by which the temperanat the two barrier problem might be a good thing to look at.
ture reduces the signal. However, we note that phonons caWe would also like to thank several colleagues who gave us
also lead to dephasing, althought we do not consider theminportant suggestions and constructive criticism on the ex-
here. For temperatures greater thafi>/iwosc/(47°), the  perimental implications of this work: David Abusch-Magder,
interference effects fall off asTe 47 9KT(hivosd \where Ray Ashoori, Marc Kastner, Beth Parks, and Nikolai Zhit-
wosc=2mv/a. Thus for enev at MIT; Hari Manoharan, Kathryn Moler, Dan Shahar,
Mansour Shayegan, and Lydia Sohn at Princeton; Hong-Wen
o Jiang at UCLA. This work is supported by NSF Grants No.
(30 DMR-94-00334(C.C.C), No. DMR-93-12606(S.A.K.) and
No. DMR-94-11574X.G.W.). X.G.W. and S.L.S. acknowl-
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the signal is not affected much by temperature. We can d
fine the coherence length, by the spacing for which the
signal has decreased roughly by a factor oé, 140 that
a.=vhl/(g27kT). Then, forv~10° m/s andg=1/3, at
T=100 mK the coherence length ®=4 wum, and for
T=30 mK, the coherence length & =12 um. Thus the We derive here the correction to the Hall current due to
signal for a separation of Jum should not be noticeably tunneling at the point contacts. We will assume the general
affected at either temperature, and even for a separation @hse of N contacts at locations; and coupling I';,
10 um the signal will be attenuated by a factor of 2 ati=1,... N.
30 mK and by a factor of 15 at 100 mK. The first step in the calculation is to obtain the tunneling
It follows then that a separation of a few micrometerscurrent operatolj(t). This operator includes the tunneling
should be sufficient to allow observation of the inteferencecurrents flowing from one edge to the other throughMll
effects at temperatures around and below 100 mK. The repoint contacts in the problem. The tunneling operator can be
quirement on the gates is that they be close enough that thedbtained from the time evolution of the total charge opera-
electrostatic “shadows” do not overlap in the plane of thetors Qg | on theR,L edges:

APPENDIX: PERTURBATIVE CALCULATION
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(1(0)=(0[S"(t,—=)j(1)S(t,—=)|0), (A4)

whereS(t, — ) is the time evolution operator. The next step
(% to calculatg(j) perturbatively in the tunneling amplitudes
i . Because there is a voltage difference betweerRtlamd
L terminals, the system is out of thermodynamical equilib-
rium, and we must use field theoretical tools appropriate for
N such nonequilibrium problentg. However, nonequilibrium
Htunzz I‘ie‘i‘”J‘ei VOo(tX) 4 H.c. (A2) effects appear only to second and higher orders in perturba-
=1 tion theory. Because we will calculate the tunneling current
Using the commutation relations for the bosonic fieldsOnlY to first order in perturbation theory, we will not have to
br L, We obtain use noneqwhbnum_ﬁeld theory in this partlcuilar calculation.
' To lowest order in the tunneling perturbation we have

1 1
i(0=-Z[QuHI=Z[QrH].  (AD

The charge operator commutes with the free part of th
Hamiltonian, so that the only contribution comes from the
tunneling term

N
im=ie” 2 MBIk He  (A3) Gy==i [ ar Il Hut Iy (a5)

The expectation value for the current at titnis given by  In the calculation of

N N
(O]} () Hur(t)]0y=€* >, > (0(iTje™ @ateh THtX) — i} gleste 1 Va2tx))
i=1j=1

X([je 1otel V‘5"5("“141“}* eleat’ @ 1aa(t' X)) ) (A6)

the nonvanishing terms are those that transfer zero total charge when apglied\tée then have

N
(0]j(t)Hyr(t)]|0)=ie* X, (Lirs e~ iwa(t=t")( 0] @B (tx) =1 GA(t' X))| 0y — I Fjein(t—t')<O|e—i V34(1x) g B4t X)) o))
=1

N
=je* (I‘ir]*e*iwj(t*t’)_ri*rjeiwJ(t*t’))eg<0|¢(t,xi)¢(t’,xj)|0>_ (A7)

i,j=1

The ¢ field correlation is

(0] ¢(t,x) $(0,0)|0) = (0| pr(t,X) Pr(0,0)[0) +(0| b, (t,X) $..(0,0|0)

=—In[6+i(t—x)]—In[s+i(t+Xx)], (A8)
where § is an ultraviolet cutoff scale. Let us define
Py(t,x) =30 ¢t0d0010) —[ 54 (t+x)]" 9 S+i(t—x)] 9. (A9)

Notice thatPg(t,x) =Pg4(t,—X). Using the expression above, we can write

N
—i([j(t),Htun(t’)])ze*iJZ:l (Fil“]?*e*in“*t')—FfFjein(‘*t'))[Pg(t—t’,xi—xj)— Po(—t+t' x—x))].  (A10)

Inserting the above expression into B45) and performing  respect to time. The problem is then reduced to the calcula-
thet’ integration, we obtain the current expectation value: tion of the Pg's. Itis easy to calculate

_ N 4T P (a),O):fw dpel.—wp2
<J(t)>=e*ElT ¢ —w | (6+ip)*?
L,]=
_ _ 2w
X[Pg(@y,Xi—X) = Pg(— wy,%—X)], (A11) =F(zg)|w|29*1e*\w|50(w), (A12)

Whereﬁg(wJ ,X) is the Fourier transform of thgy(t,x) with and we can express the cas#0 in terms of thel'%(w,O):
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!

= do ' ’ —i(2w' —w)x
Pg(a),X)= 7WEP9/2(0) ,O)Pglz(w—w ,0)e

w !
:a(w)f ldo wrgfl(w_wr)gflefi(Zw'fw)x
0

2
=Py(@,0)Hg(wX), (A13)
where
1'(29) Jg-1/2Y)
Hy(Y) =g oot (A14)

The tunneling current between the edge statesj(t)) is
then simply

N
|wJ|nglsgr(wJ)ij2:l [T Hg(w] X —xj)).
(A15)

2
*

I'(29)

It:e
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| = €% a2 0, T5gr{ ) (A16)
t eff| F(zg) J J)

but with an effective couplind o+ due to the interference
betweenl’;, i=1,... N of the N contacts:

N
IFeﬁ|2=ijE:1FiFTHg,(lexi—ij)- (A17)

The calculations folf =0 can be extended for finite tem-
perature. Basically, the algebraic correlationsTat0 are
mapped to the correlations at#0 by a conformal
transformatiort

1 T 9
[6+i(t=x)]9  |si{aT[o+i(t=x)]}]

(A18)

The expression for the tunneling current can be cast exactlysing this transformation, we can recalculate ﬁgés and

in the same form as that for a single contact,

© -9

siffwT[o+i(t+x)]}

obtain their finiteT version:

sifflwT[s+i(t—x)]}H] ¢

dteiwt

— oo

Eg(w,x,T)zf

After calculating the integral above, we find that it can be written as

where thex=0 difference is

and the scaling factafd g(w,x, T) for x#0 is

T mT (A19)
=(wT)29f dte @te H(729sgmt=x)+sgt+ X[ siny 7 T|t— x| )sin( 7 T|t+x])] 9. (A20)
What we need for the calculation of the currents is the differd?@i@,x,T)—Eg(—w,x,T), which simplifies to
Eg(w,x,T)—Eg(—w,x,T)=4(wT)295imwg)|m(fl Idte*i“’t[sink(77T|t—x|)sinl‘(77T|t+x|)]’g . (A21)
X
Py(0,X,T) = Py(— @, T)=[Py(@,x=0,T) = Py(— @,x=0,T) JHq(,x,T), (A22)
Po(0X=0T)—Py(wx=0T)=4(7T)2 1B| g—i - g+i - |cosH — (A23)
S ' e ' 27T’ 27T 2T)’

i w|x| @Y aaTiN

1'*(29) e—297TT|X| € F(g,g I27TT'1 I27TT'e )
(A24)

Ho(0 X, 1) =275y Sinfwrzr ™

r

o rl1-i ) ’
9T "o
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whereF is the hypergeometric function. but with an effective coupling
Again, the tunneling current can be written as the tunnel-
ing through a single contact: N

" " " el = 2 il Ho(ws =X T), (A26)
—a* 2 2g—-1 i ; inh — e

li=e*|Teq|“4(7wT)*9"'B| g |277T’g+|27TT)SIm—<2T)’

(A25)  much in the same way as in tie=0 case.
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