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We propose a device, consisting of a Hall bar with two weak barriers, that can be used to study quantum
interference effects in a strongly correlated system. We show how the device provides a way of measuring the
fractional charge and fractional statistics of quasiparticles in the quantum Hall effect through an anomalous
Aharanov-Bohm period. We discuss how this disentangling of the charge and statistics can be accomplished by
measurements at fixed filling factor and at fixed density. We also discuss another type of interference effect
that occurs in the nonlinear regime as the source-drain voltage is varied. The period of these oscillations can
also be used to measure the fractional charge, and details of the oscillation patterns, in particular the position
of the nodes, can be used to distinguish between Fermi-liquid and Luttinger-liquid behavior. We illustrate these
ideas by computing the conductance of the device in the framework of edge state theory and use it to estimate
parameters for the experimental realization of this device.@S0163-1829~97!02204-2#
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I. INTRODUCTION

A considerable amount of work on electronic systems
recent years has focused on two distinct sets of problems
effects of quantum interference on the behavior of mes
copic systems and those of strong correlations in low dim
sional systems. Most of the canonical work on the form1

has involved single electron physics while work on stron
correlated electrons has, by definition, been concerned
the effects of interelectron interactions. Recent advance
semiconductor device fabrication have led to a converge
of these streams of work, in that it is now possible to cond
experiments that test quantum interference in strongly in
acting systems of electrons.

The work reported here takes advantage of this con
gence. Our principal motivation is the physics of the fra
tional quantum Hall~FQH! states, which exhibit some of th
most striking effects of strong electronic correlations. The
are perhaps most evident in the unusual quantum numbe
FQH quasiparticles: they are fractionally charged2, obey
fractional statistics,3,4 and couple to curvature with a frac
tional spin.5–7 These correlations also lead to a peculiar d
namics at the edges of FQH systems which is that of
dimensional chiral Luttinger liquids.8

Our chief purpose in this paper is to describe and ana
a device, the two point-contact interferometer, that wo
allow direct observation of the fractional chargeand statis-
tics of the quasiparticles as well as allow tests of the ch
550163-1829/97/55~4!/2331~13!/$10.00
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Luttinger-liquid behavior of the edges; the former function
largely independent of and more robust than the latter. T
device has remarkably rich interferometric possibilities;
exhibits conductance oscillations with varying magnetic fie
and also with varying amplitude of the voltage across it.

The paper is organized as follows. In the balance of
Introduction we discuss some related work. In Sec. II
describe the interferometer and give a qualitative discuss
of its physics in a largely model independent way. In Sec.
we introduce a model, defined in terms of edge state the
that allows explicit calculations of the conductance of t
device. We treat the model within perturbation theory a
solve for the transmission current which displays oscillatio
with both magnetic field and voltage. In Sec. IV we consid
the exactly solvable case in which the edge states are c
Fermi liquids. This is the case for edge states of an inte
filling factor state (n51), and helps provide an intuitive un
derstanding of the voltage interference patterns for gen
n. Finite temperature effects are treated in Sec. V, where
show how the oscillations are washed out as the tempera
is raised. In Sec. VI we give numerical estimates for the si
of the parameters at which the Aharonov-Bohm and volta
oscillations occur. The Appendix contains the details of
perturbative calculation of the transmission current.

A. Related work

The direct observation of fractional quantum numbers
FQH systems has long been of interest. Kivelson a
2331 © 1997 The American Physical Society
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Pokrovsky9 suggested ways in which the fractional char
could be detected through a fractional Aharanov-Bohm
riod. This has been elaborated further in the work
Kivelson10 and of Pokrovsky and Pryadko.11 Strong evidence
of such oscillations was found in the experiment of Simmo
et al.,12 who measured conductance oscillations on the ed
of various QH plateaus. However, it has not been clear w
microscopic details of the transport in that region led to th
oscillations. It is our current belief that most likely the
sample fortuitously realized a version of the interferome
discussed here. Recent experiments involving tunne
across an antidot in a FQH sample,13,14 have provided con-
vincing evidence for a fractional local charge15 that couples
to the electrochemical potential. Finally, Kane and Fishe16

and Chamon, Freed, and Wen17–19have suggested that me
surements of the noise for tunneling currents between
edges of a FQH system, i.e., in a single point-contact dev
could be used to detect the fractional charge; calculation
the zero frequency noise for the exactly integrable mo
have been carried out by Fendley, Ludwig, and Saleur.20

The detection of fractional statistics remains unaddres
by experiments to date. The theoretical basis for such a
tection was first discussed by Kivelson10 and an intriguing
proposal involving flux periodicities for hierarchy drople
inside FQH systems has been proposed by Jain, Kivel
and Thouless.21 The observation of the fractional spin seem
quite difficult and still awaits a concrete scenario for an e
periment.

Finally, our concrete discussion of the physics of the
terferometer in the framework of edge state theory22 expands
the scope of the work on tunneling in chiral Luttinger liqui
by Wen,17 and the work on resonant impurity tunneling
Luttinger liquids by Kane and Fisher.23 A very recent paper
by Geller, Loss, and Kirczenow24 discusses resonant tunne
ing through antidots and although theirs is a distinct geo
etry, and they consider only electron tunneling, their tre
ment is similar to ours.

II. DEVICE DESCRIPTION
AND QUALITATIVE DISCUSSION

The device we are proposing consists of three com
nents, as illustrated in Fig. 1.33 The first and primary com-
ponent is a narrow quantum Hall bar with two tunable co
strictions, or point contacts, whose separation is less tha
phase coherence length at low temperatures. The se
component is a back gate that allows the electron densit
the Hall bar to be varied uniformly. The third component
another gate~e.g., an air bridge! that would allow the cente
of the region defined by the two point contacts to be se
tively depleted by the application of a voltage. Estimates
the dimensions of the device, which seem entirely feas
with existing fabrication techniques, are discussed in S
VI; here we note that these require that the point contacts
a few micrometers apart for operating temperatures of
mK and below and that the electron gas be about 1000 Å
less from the point contacts and the central gate. The b
gate is not required to be particularly close to the elect
gas.

The physics of this device is that of a quantum version
the Fabry-Pe´rot interferometer.26 However, our interferom-
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eter differs from the standard noninteracting one in that
scattering particles cannot be assumed to be independen
cause of the strong correlations. At values of the magn
field where the electrons in the bulk of the device are dee
a QH phase, the low energy excitations, or quasiparticles
on the edges of the bar. At the constrictions, they can tun
from one edge to another and the resulting tunneling cur
will cause the Hall conductance to deviate from its quantiz
value, as in the case for a single point contact. Howev
having two tunneling sites results in phase sensitivity of
tunneling current; tunneling events taking place at one of
contacts will interfere with those occurring at the other.

These interference effects can be modulated in three
tinct ways. The first involves changing the magnetic fie
and leads to what we shall call Aharanov-Bohm~AB! oscil-
lations for obvious reasons. The second involves chang
the number of quasiparticles enclosed by the interfering
bitals and leads to~fractional! statistical oscillations. The
third involves varying the source-drain voltage and leads
what we shall call a set of ‘‘Fabry-Pe´rot’’ oscillations. In the
following we will show how these various effects can b
disentangled to provide a means of measuring both the f
tional charge and fractional statistics of the quasiparticles
well as to probe the non-Fermi-~Luttinger-! liquid behavior
of the edges of FQH states.

We would like to emphasize that we will always be inte
ested in the limit where the barriers are weak, so that
constrictions are far from being pinched off, as in Fig. 1.
the weak barrier limit we can neglect charging energy effe
in the middle region, which arise in the strong backscatter
case.16 The opposite limit, where the two point contacts a
near pinch off, is similar to tunneling through a quantum d
except that for our geometry the central island would
larger~smaller charging effects!. The strong coupling regime
can be analyzed using methods similar to those in this pa
but we will not address it here. The chief advantage of
weak barrier restriction is that we stay far from the regim
near pinch off where, experimentally, poorly understo
resonances arise already for a single point contact.27 Conse-
quently, we expect that the only resonances are the o

FIG. 1. Two point-contact interferometer. Two gates are plac
a distancea apart. The gate voltages are adjusted so as to bring
edges of a FQH state with filling fractionn close together, but no
pinch the constriction. In this way, quasiparticles carrying fractio
charge and statistics can tunnel from one edge to the other. A m
netic fluxF can be inserted in the region between the point conta
that is bounded by the edge states. A central gate allows the ch
in the region to be selectively depleted. The transmitted current~the
Hall current I H5ne2/h minus the tunneling currentI t

11I t
2) oscil-

lates as a function of the inserted flux, the voltage difference
tween the edges, and the voltage of the central gate. An overall
gate on the device allows magnetic field sweeps at constant fi
factor.
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explicitly created by the two point-contact geometry and
resulting energy and field scales for these are set by the
rameters of the device and can be chosen to lie in an obs
able range.~Given the lack of understanding of the ne
pinch-off resonances, it is hard to say theoretically whet
they are absent for weak barriers; however, experiments
volving antidot resonances13,14do strongly suggest this.! Fur-
ther, it becomes possible to probe the internal structure of
resonance, i.e., its intermediate energy behavior, without
tailed microscopic knowledge. Finally, the open channel
lows one to bring a fraction of an electron chargee to the
central island, which would not be possible near pinch
because of Coulomb blockade. Another restriction on
analysis is that we consider only the primary Hall states,
n51/m with m odd, where there is only one branch of ed
excitations and life is somewhat simpler; the extension
their descendant states does not pose any conceptual
lems.

A. Aharonov-Bohm and fractional statistics oscillations

We will first discuss the interference effects which occ
when the magnetic field is varied. Consider the transmiss
amplitude for quasiparticles propagating along the ri
edge. As they can tunnel to the left edge at the two cons
tions in Fig. 1, the amplitude will involve a sum over pat
that encircle the areaA enclosed by the edges and the co
strictions any number of times. As a result, they pick up
AB phase proportional to the fluxF through this area. Na
ively, this phase is given by 2pe*BA/(hc), wheree* is the
charge of the quasiparticle. It is convenient to define an
fective flux quantum byF*5 (e/e* ) F0, where the usua
flux quantum is given byF05hc/e. Then, in terms of this
effective flux quantum, we would expect that as the magn
flux is varied, the current and other properties of the sys
would undergo oscillations with periodDB*5F* /A, and
thus measurements of these oscillations would provid
means of measuring the fractional charge.

However, this conclusion is too naive. The quasipartic
derive their properties from the parent liquid which is t
relevant ‘‘vacuum’’ andonly when the vacuum is invarian
can we expect to use arguments based solely on their
phases. Indeed, if the extra flux added is dynamically loc
ized in the interior of the fluid this would effectively create
multiply connected geometry where gauge invariance for
constituent electrons implies a flux periodicity
DB5F0 /A. As this is smaller than the quasiparticle peri
DB* , this would exclude oscillations with the latter perio
icity. We should emphasize that this is adynamicalpossibil-
ity, there are no general, nontrivial consequences of ga
invariance for the geometry at issue here. At any rate, i
clear that we need to be careful about considering change
the bulk of the fluid as the flux is varied. To this end w
distinguish between two cases.

~i! Field sweeps at fixed particle number.In this case, as
we just observed, we expect to observe conductance osc
tions with periodF0 /A. This can happen in one of two way
depending upon the detailed electrostatics of the centra
gion. If, as the magnetic field is raised, the QH fluid in t
central region shrinks uniformly in order to keep the fillin
fraction constant, then its area decreases by just the r
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amount to leave the flux through the whole droplet u
changed. Consequently, there are no oscillations as the m
netic field is varied and the period is triviallyF0 /A. If, in-
stead, the electrostatics tends otherwise and the s
consistent potential has a maximum in the interi
quasiholes will be created there as the magnetic field
increased—one quasihole for each flux quantum. The ph
picked up by a quasiparticle encircling the central region
now the sum of the fractional AB phase and the pha
2u*522p/m due to its~fractional! statistical interaction
with the central quasihole and precisely restores the per
icity to DB.

~ii ! Field sweeps at fixed filling factor.One obtains quite
different results if the field is swept at fixed filling factor. I
this case the quasiparticles are affected by an invar
vacuum~in other words, the electron density is changed
that quasiholes are not formed in the bulk of the drople!.
The resulting periodicity is thenDB* . The observation of
conductance oscillations with such a fractional AB peri
would constitute a measurement of a fractional AB cha
for the quasiparticles. Experimentally, keeping the fillin
factor constant requires changing the number of partic
along with the field, which is why the device requires a ba
gate. Also, preventing the formation of quasiholes in the c
tral region requires that net fractional charge be added to
this area, which is only possible if the contacts are n
pinched off.

Having discussed the observation of fractional charge
now turn to the observation of fractional statistics. We fi
note that the comparison between the periodicityDB when
the number densityn of electrons is held constant and th
periodicityDB* when the filling fractionn is held constant
implicitly verifies the fractional statistics of the quasipar
cles and quasiholes, because in one case the period is d
the combined effects of the Aharonov-Bohm phase and fr
tional statistics, and in the second it is due only to t
Aharonov-Bohm phase.

To more directly see the effect of the fractional statisti
we need to consider oscillations that arise from having va
ing numbers of quasiparticles in the central region. IfN
quasiholes are present, then the interference phase is m
fied to 2p(BA/F*2N/m). It is clear then that it is neces
sary to addm quasiparticles before the interference conditi
is restored. To this end one can imagine using the cen
gate to deplete the central region in steps of chargem
which would then lead to conductance oscillations with
period ofm steps. A better strategy, which requires less c
trol over the electrostatics, is to create some unknown nu
ber of quasiholes in the central region and then look fo
shifted fractional AB pattern at fixed filling factor, as in th
charge measurement. Except when an integer multiple om
quasiholes are present, there will be a shift in this pattern
the observation ofm21 distinct shifts will be a direct sig-
nature of the statistical interaction between the quasipa
cles. For example, atn51/3, there will be two shifted pat-
terns with shifts of (1/3)DB* and (2/3)DB* .

B. Fabry-Pérot oscillations due to finite source-drain voltages

The third modulation of the interference appears wh
varying the source-drain voltageV, and again leads to oscil
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lations in the conductance. The origin of these oscillation
most transparent forn51, where single-particle conside
ations suffice; this is detailed in Sec. IV. In brief, the co
ductance at finiteV is determined by the transmission
electrons in a range of energiesDE5eVwhile the transmis-
sion itself oscillates with energy. Consequently, the in
grated transmission, and hence the conductance itself, o
lates with the source-drain voltage, albeit with an envelo
that decreases as 1/V.

An interesting perspective is afforded by thinking in an
ogy to the classical wave analysis of the Fabry-Pe´rot inter-
ferometer, i.e., a device with two parallel partially transm
ting barriers; as we shall see in the edge state analysis o
device, it is conceptually exact and allows a unified tre
ment of the fractional fillings as well. Evidently, the comb
nation vosc52p/t, the inverse time for edge waves~and
hence the quasiparticles! to travel from one point contact to
the other, is the characteristic frequency of the device
will set the scale for the oscillations in its transmission due
multiple reflections within it. The source-drain voltage d
fines a second frequency scale, the Josephson frequ
vJ5e*V/\, wheree* is the fractional charge of the quas
particles living on the edges; this is the bandwidth of t
waves incident on the interferometer. It follows then that
transmission will be a function of the ratiovJ /vosc as well
as of the reflection/transmission coefficients at the point c
tacts which are determined by the quasiparticle tunne
amplitudes at them.

Because the right-moving and left-moving waves lie
the edge of a QH droplet, there is a second perspective th
very illuminating.~This picture, however, is not as general
the actual calculation of the voltage oscillations, since
calculation does not explicitly require the left- and righ
moving edges to enclose any amount of flux; it would also
valid for a one-dimensional~1D! wire if the modes were to
have differing chemical potentials.! In this picture, the
Aharonov-Bohm phase is responsible for the oscillations
the transmission as the energy is varied because the diffe
energies lead to different areas enclosed by the interfe
orbits. More specifically, an increase in energy ofdE corre-
sponds to a change in the momentum of the quasiparti
given bydk5ndE/(\v), wherev is the velocity of the edge
modes.28 The momentum at the edge is related to the are
the dropletA and its perimeter 2a by k5nA/( l 22a), where
l is the magnetic length, so that an increase ofdE in energy
results in an increase in area ofdA52l 2adE/(\nv). The
extra flux enclosed then gives a change in phase
2pdF/F0*52adE/\v54pdE/\vosc. As a result, as the
energy is varied, the transmission oscillates with a period
by vosc.

29

Three conclusions follow from this description. First, w
recover the result that the net transmission has a compo
that oscillates with the source-drain voltage. Second, we
that there are two distinct regimes as a function
vJ /vosc. For small values of this ratio the device is prob
at low frequencies and hence at a long length scale where
coherence between the two barriers is important. In this
gime the phase difference between the reflecti
transmission coeffecients at the barriers governs the tr
mission. Because this phase difference is determined by
AB phase, the AB oscillations discussed in the preced
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section will occur. At large values of the ratio, the barrie
enter independently and the AB oscillations are washed
The third and most interesting conclusion is thateven for
intermediate values of the ratio there are special points wh
the AB oscillations disappear. Again, the origin of this d
appearance is most transparent forn51: the nodes occur
whenever the bandwidth is equivalent to a phase differe
of an integer multiple of 2p across it. In such cases th
phase shift between the barriers is immaterial; essentia
one is integrating the interference pattern over an integ
number of periods, so the oscillations cancel.

The detailed analysis in Sec. III, where we consider
case of generaln, bears out the same qualitative feature th
there are special values ofV where the AB oscillations dis-
appear. However, the location of these nodes is modified
very interesting way which depends sensitively upon the
ture of correlations in the edges. If the edge dynamics ar
the Fermi-liquid variety, as should be the case atn51, our
naive assertions are correct. However, if the edges are
tinger liquids then the locations of the nodes are given by
zeros of Bessel functions which depend onvJ /vosc, and the
type of Bessel function depends on the Luttinger-liquid e
ponent g. The nodes occur forvJ /vosc'(n1jg)/2,
n50,1, . . . , with the g dependent shiftjg5(11g)/2. For
quasiparticle tunneling, whereg5n, this shift is not an inte-
ger, and can, in principle, be used to measureg. ~Given an
independent measurement ofv, this also allows a measure
ment ofe* .! Thus it follows that the interferometer can als
be used to distinguish between Fermi-liquid~with g51) and
Luttinger-liquid behavior at the edges of FQH systems.

In the qualitative discussions of the Aharonov-Bohm a
Fabry-Pe´rot oscillations above, we have considered the z
temperature case for simplicity. The effects of finite tempe
ture, particularly the suppression of quantum interferen
are treated quantitatively in Sec. V.

III. TUNNELING BETWEEN EDGE STATES
IN THE DOUBLE POINT-CONTACT GEOMETRY

We will now study the interferometer in the framework
edge states in the quantum Hall effect, which is better cas
the bosonic language~for a thorough review, see Ref. 22!.
Our starting point for studying tunneling in a double poin
contact geometry is the Lagrangian density

L5
1

8p
@~] tf!22v2~]xf!2#

2 (
i51,2

G ie
2 ivJtd~x2xi !e

iAgf~ t,xi !1H.c., ~1!

with the quantization condition @f(t,x),] tf(t,y)#5
4p id(x2y). @We use this normalization off because it
gives an especially simple expression for the dimensions
the tunneling operators in terms ofg. To translate to the
conventional normalization of a 1D electron gas or the si
Gordon model,f must be replaced byf/(2Ap).# The volt-
age difference between the two edges of the QH liquid
termines the Josephson frequencyvJ[e*V/\, with e*5e
for electron tunneling ande*5e/m for quasiparticle tunnel-
ing. In the following we will set the edge velocityv51. The
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two point contacts are located atx1 andx2, and their tunnel-
ing amplitudes areG1 andG2, respectively.

30

The first term in the Lagrangian, when considered alo
describes the dynamics of a free boson fieldf5fR1fL ,
which can be decomposed into its chiral componentsfR,L .
These components describe right- and left-moving exc
tions along the edges of FQH states. Charge density op
tors can be defined in terms of thefR,L through
rR,L5e(An/2p)]xfR,L .

The second term in the Lagrangian comes from the t
neling between the edges. The tunneling operators can
written asCL

†CR andCR
†CL . Right- and left-moving elec-

tron and quasiparticle operators on the edges of a FQH liq
are given byCR,L(t,x)}e

6 iAgfR,L(t,x)e6 ikFx, whereg is re-
lated to the FQH bulk state. For example, for a Laugh
state with filling fractionn51/m we haveg5m for electrons
and g51/m for quasiparticles carrying fractional charg
e/m. One can verify that @rR,L(t,x),CR,L

† (t,y)#5

eAngCR,L
† (t,y)d(x2y), so that indeed the casesg5n21

andg5n correspond to the electron (e*5e) and quasipar-
ticle (e*5ne) creation operators, respectively.

The flux F in the area enclosed by the edge branc
between the two point contacts is taken into account by
phase of the tunneling amplitudes,G i , in Eq. ~1!. This phase
comes from the quasiparticle’s momentumkf in the defini-
tion of cR,L . From this definition, the tunneling operato
cL
†(x)cR(x) has the phasee2ik fx, where 2kf is equal to the

momentum difference between the right-moving edge
the left-moving edge. The momentum difference 2kfe be-
tween electrons on the two edges is directly related to
perimeterL and areaA of the QH liquid confined between
the two point contacts. It is given bykfeL52pBA/F0. If the
distance between the two edges at each of the point con
is much smaller than the distancea along an edge betwee
the two contacts, then the perimeter can be set equal toa.
For n51/m, with m an integer, the momentum of the quas
particles is then given by 2kf5n2kfe52pF/(F* a). Be-
causeG1 is the amplitude for tunneling atx52a/2, it has
the phaseei2pF/(2F* ), and similarly G2 has the phase
e2 i2pF/(2F* ). Thus the flux can be introduced in Eq.~1! by
taking G1,25Ḡ1,2e

6 i2pF/(2F* ), where Ḡ1,2 are couplings
which do not include the phase due to the magnetic fl
Combining these together, we find that a quasiparticle
circles the area between the two constrictions once~by tun-
neling from the left-moving edge to the right-moving edge
x52a/2 and tunneling back to the left-moving edge
x5a/2) picks up the amplitudeG1*G25Ḡ1* Ḡ2e

22p iF/F* , so
that the phase of the tunneling amplitudes determines
Aharonov-Bohm phase.

The form of the phases appearing in the amplitudesG1
andG2 can also be viewed as coming from the interaction
the bosonic edge statesf with the electric and magneti
fields. In particular, the electric and magnetic potentials
as sources which the fieldf interacts with via its optical
chargeAne.25 In this way, one can show that the full pha
due to the magnetic fluxF and theN quasiholes in the are
between the two constrictions can be accounted for by tak
G1*G25Ḡ1* Ḡ2e

2 i2p(F/F*2Nn), when n is equal to one over
an integer. Then, according to Sec. II, the full phase w
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depend on exactly how the magnetic field is varied; if t
electron number density is held fixed, the phase is the ‘‘el
tron’’ Aharonov-Bohm phaseF/F0, and if the filling frac-
tion is held fixed, the phase is the ‘‘quasiparticle
Aharonov-Bohm phaseF/F* .

In the absence of tunneling, the currentI equals the Hall
currentI H5ne2/hV. In the presence of tunneling, the tran
mission currentI satisfiesI5I H2I t , whereI t is the tunnel-
ing current. Treating the tunneling term perturbatively in t
model above, we can solve for the tunneling currentI t as a
function of the voltageV between the edges, to low orders
the tunneling amplitude. This perturbative result is valid
long asI t is small compared to the Hall currentI H . It is easy
to generalize the problem toN contacts located atxi with
tunneling amplitudesG i , for i51, . . . ,N, and in the Appen-
dix we solve this general problem. The result can be cas
a form very similar to the one point-contact result. At ze
temperature, it is given by

I t5e* uGeffu2
2p

G~2g!
uvJu2g21sgn~vJ!, ~2!

where, for several point contacts,Geff is the effective cou-
pling which includes the interference between the couplin
G i , i51, . . . ,N. The effective coupling is given by

uGeffu25 (
i , j51

N

G iG j*Hg~vJuxi2xj u!, ~3!

with

Hg~x!5Ap
G~2g!

G~g!

Jg21/2~x!

~2x!g21/2, ~4!

whereJg21/2 is a Bessel function of the first kind. In the cas
of a single point contact, the effective coupling is given
Geff5G, independent of frequency, and we recover the fam
iar results of Ref. 17.

In the case of the two point-contact geometry, we have
effective coupling

uGeffu25uG1u21uG2u21~G1G2*1G1*G2!HgS vJa

v D , ~5!

wherea5ux12x2u is the linear distance along the edge b
tween the contacts, and we have restored the velocityv to
the equation.~If the path length between the point contac
for the left and right edges are different, thena is the average
of the two lengths and there is an extra contribution to
relative phase betweenG1 andG2.! The separationa sets the
time scale t5a/v, and thus the frequency sca
vosc52p/t for oscillations in the value of the effective cou
pling Geff . It is easy to check thatHg(x)→1 asx→0, and
that Hg(x)→0 asx→`, so that the effective coupling ha
the asymptotic values

uGeffu25H uG11G2u2, vJ!vosc

uG1u21uG2u2, vJ@vosc

which correspond to coherent and incoherent interference
tweenG1 andG2. In the first caseGeff depends on the relative
phase betweenG1 and G2, so the tunneling current shoul
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clearly exhibit the Aharonov-Bohm oscillations, and in t
second case the Aharonov-Bohm effect is washed out.

For the intermediate range of frequencies comparabl
vosc, there will be oscillations in the effective coupling as
function ofvJ . This interference term depends on the re
tive phase betweenG1 and G2, which can be adjusted b
varying the magnetic fluxF through the area between th
two point contacts. If an experimental apparatus is set u
detect the component of the current that oscillates with
flux F, the magnitude of the oscillations will be

uI t
Fu5e* uG1uuG2u

2p

G~2g!
uvJu2g21UHgS vJa

v D U. ~6!

The behavior ofuI t
Fu as a function of the source-drain vol

age can be understood by looking at the plot ofHg(x), for
different g, in Fig. 2. The envelope of the decaying oscill
tions inHg(x) is algebraic (;x2g), so that the envelope o
uI t

Fu scales asvJ
g21 or in other words,uI t

Fu}Vg21.
The zeros ofHg(x) are those of the Bessel functio

Jg21/2(x), which are separated by a distance approxima
equal top. The zeros are approximately given by

xn'p~n1jg!, n50,1, . . . with jg5
11g

2
, ~7!

which fits the graphs in Fig. 2 very well. Notice that fo
g51, the position of the zeros is exactly given b
xn5p(n11), n50,1, . . . , and allzeros are equally spaced
The ratiox1 /x0 between the first two zeros is 2. ForgÞ1,
even though the zeros are approximately equally separa
they are shifted, andx1 /x0'(g13)/(g11)Þ2. This ex-
ample illustrates how the position of the zeros can be use
probe Luttinger-liquid behavior.

Experimentally, the position of these nodes can be
served precisely by measuring those source-drain volta
for which the Aharonov-Bohm oscillations simply disappe
We would like to stress that the experimental measurem
of the position of the nodes of the interference patterns p

FIG. 2. ModulationHg(x) for g51,1/3,1/5. Notice that the de
cay rate of the modulation isx2g. Also, the position of the zeros o
Hg(x) @those of Jg21/2(x)# are approximately given by
xn'p(n1jg), n integer, wherejg5(11g)/2 is a g dependent
shift.
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vides a clean~interferometric! way of probing Luttinger-
liquid behavior. Such an interferometric measurement
cuses on the behavior between the two contacts, and ma
free of parasitic effects elsewhere that can mask the ano
lous scaling behavior of Luttinger liquids.

Finally, the location of the nodes could also provide a
other method of measuring fractional charge. The position
the nodes depends onvJa/v, where the Josephson frequen
vJ5e*V/\ depends on the fractional charge. If there we
an independent measurement of the velocity the of e
modesv, then the location of the nodes would yield a val
for e* .

IV. FREE FERMIONS

To better understand the behavior of our perturbative
lution for the current, we will look at the exact solution fo
theg51 case with two constrictions. This case reduces t
simple problem that is essentially the same as wave tra
mission through a Fabry-Pe´rot interferometer. We can solv
for the transmission and reflection amplitudes at a sin
impurity, which, forg51, are independent of the energy
the incident waves. Then, in addition to using these am
tudes to account for the scattering at each of the two im
rities, we must also propagate the waves from one impu
to another, which is the part responsible for the interfere
effects. Each frequencyv will then be transmitted with a
different coefficientT(v). For an applied voltageV between
the edges, there will be a whole range of frequencies
width vJ5eV/\ in the incident wave packet. We must the
integrate the final transmission coefficients over the ener
in this band that contribute to the total current.

Consider, to begin with, a single point contact with tu
neling amplitudeG, which can either transmit or scatter
particle. Forg51, we can work in terms of free fermion
given bycR,L5(1/A2p)e6 ifR,L(x,t), with Hamiltonian

H5E dxH cR
†~x!F2 i

]

]x
2

v0

2 GcR~x!

1cL
†~x!F i ]

]x
1

v0

2 GcL~x!

12pd~x!@G icL
†~x!cR~x!1H.c.#J . ~8!

Once again, we have set the velocityv of the chiral fermions
to 1. It is then a straightforward wave mechanics problem
solve for the scattering matrixS, which gives the transfor-
mation from the incoming modes,c̃R2(v), c̃L1(v) to the
outgoing modes,c̃R1(v), c̃L2(v). We find that

S5S t i r i

2r i* t i
D ,

where the transmission and reflection amplitudes are gi
by

t i5
12p2uG i u2

11p2uG i u2
and r i5

2 i2pG i*

11p2uG i u2
. ~9!
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The transmission and reflection coefficients areT5utu2 and
R5ur u2, respectively.@We note here thatG i in Eq. ~9! is
renormalized so that the strong barrier limit or total reflect
(R51) occurs whenuG i u51/p. This is in contrast with the
case wheng51/2 or 1/3, when total reflection occurs a
G→`. Technically, this difference arises because forg,1
the tunneling operator is infrared relevant whence short
tance behavior does not matter, whereas forg51 it is mar-
ginal.#

When there is more than one scatterer, it is convenien
use the transmission matrix approach to find the transmis
through and reflection out of the two point contacts separa
by a distancea. Recall that the transmission matrixMi gives
the transformation from the states on the left of the barr
c̃R2(v), c̃L2(v), to the states on the right of the barrie
c̃R1(v), c̃L1(v), and can be obtained directly fromS. Af-
ter passing through the first constriction, the waves propa
to the right a distancea, which results in multiplying the
modes

S c̃R~v!

c̃L~v!
D

by

D5S eiav 0

0 e2 iavD .
Finally, the waves are scattered again by the second p
contact, so the waves on the right-hand side depend on
waves to the left of the scatterers as follows:

S c̃R1~v!

c̃L1~v!
D 5M2DM1S c̃R2~v!

c̃L2~v!
D . ~10!

Note that the matrixD contains the phasee6 ivx, and it is this
phase which is responsible for the voltage oscillations.
particular, the right-moving and left-moving modes that sc
ter between the two point contacts have opposite pha
which interfere with each other. Multiplying out the matric
in Eq. ~10!, we find that the transmission amplitude for th
two point-contact geometry is

t~v!5
t1t2

11r 1r 2* e
2iva , ~11!

wheret1,2 andr 1,2 are the transmission and reflection amp
tudes for the two contacts, as given by Eq.~9!. The transmis-
sion coefficientT(v) through the whole droplet is then

T~v!5
ut1u2ut2u2

11ur 1u2ur 2u21~r 1r 2* e
2iva1r 1* r 2e

22iva!
.

~12!

With this frequency dependent transmission coefficie
we can calculate the current for an energy differencevJ
between the right- and left-moving edges. It is given by
total right-moving current minus the total left-moving cu
rent passing through a pointx. If we choose the point to be to
the right of the barrier, then the total right-moving current
energyv is given by the transmitted right-moving curre
eT(v)nR(v) plus the total left-moving current that was r
s-

to
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flected into right moverse@12T(v)#nL(v). Similarly, the
total left-moving current at energyv is just the total incom-
ing left-moving currentnL(v), wherenR,L(v) are the occu-
pation numbers of right and left movers. In this simple mod
we can easily include the temperature dependence of
transmission because it can be completely accounted fo
the Fermi-Dirac distribution of the left and right movers:

nR,L~v!5
1

eb~v7vJ/2!11
. ~13!

The expression for the current through the droplet then
duces to

I5eE
2`

` dv

2p
T~v!@nR~v!2nL~v!#. ~14!

At zero temperature, the integral in Eq.~14! yields

I5
e

2pa

ut1u2ut2u2

12ur 1u2ur 2u2
tan21S 12ur 1u2ur 2u2

11ur 1u2ur 2u2
sin~vJa!

cos~vJa!1
r 1r 2*1r 1* r 2
11ur 1u2ur 2u2

D .

~15!

Notice that if t15t251 ~total transmission!, I5(e/
2p)vJ5(e2/h)V. For small tunneling amplitudesG1 and
G2 (ur 1u2,ur 2u2!1), we find thatI5(e2/h)V2I t , where

I t5e* uGeffu22pvJ , ~16!

with

uGeffu25uG1u21uG2u21~G1G2*1G1*G2!
sin~vJa!

~vJa!
. ~17!

This is the same as the result obtained perturbatively in S
III if we set g51 in Eq. ~5!.

If we expand the transmission coefficientT(v) in Eq.
~12! for small tunneling amplitudes, we can easily obtain t
finite temperature tunneling currentI t . It is still given by Eq.
~16!, but the effective coupling is now

uGeffu25uG1u21uG2u2

1~G1G2*1G1*G2!
2pTa

sinh~2pTa!

sin~vJa!

~vJa!
.

~18!

Notice that the distancea sets the temperature scale f
which the interference termG1G2*1G1*G2 decays.

In the general case, such as for other filling fractions,
current should still be obtainable by an expression like E
~14!, whereT(v) is the transmission coefficient andnR(v)
andnL(v) are the number densities of filled states at ene
v. If the behavior of the system deviates from the result
Eq. ~15!, this should indicate that the transmission and
flection amplitudes for a single point contact depend on
ergy and that the density of states no longer has the sim
Fermi-liquid form.
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V. FINITE TEMPERATURE EFFECTS

In Sec. III we have found that, at zero temperature,
effect of the two point contacts can be completely absor
into an effective couplingGeff , which describes all the inter
ference between the two contacts. In this section we
show that whenTÞ0, this is still the case, but nowGeff will
depend on temperature also.

The finite temperatureT brings another energy scale
the problem. This energy scale should be compared to
one set by the separation between the contactsa, which is
given byvosc52pv/a. Thus, whenkT@\vosc, the interfer-
ence effects should be washed out. One should also kee
mind the energy scale associated with the Josephson
quencyvJ5e*V/\, so that the decay of the interferenc
effects with temperature will depend on the ratios of t
three energy scalesT, vJ , andvosc. The interesting ques
tion to ask is how the differentg affect the way the interfer-
ence is washed out, or, equivalently, how the filling fac
is

o

to
e
d

ll

he

in
re-

r

n of the underlying FQH state affects the decay of the os
lations with temperature.

To lowest order in the tunneling amplitudeG, the tunnel-
ing current between edge states in the presence of a s
point contact at finite temperature is given by17

I t5e* uGu24~pT!2g21BS g2 i
vJ

2pT
,g1 i

vJ

2pTD sinhS vJ

2TD ,
~19!

whereB is the beta function. In the Appendix we show th
the same expression gives the current forN point contacts
with couplingsG i , i51, . . . ,N if we use an effective cou-
pling

uGeffu25 (
i , j51

N

G iG j*Hg~vJ ,uxi2xj u,T!, ~20!

with
Hg~vJ ,x,T!52p
G~2g!

G~g!

e22gpTuxu

sinh~vJ/2T!
ImH e2 ivJuxuFS g,g1 i

vJ

2pT
;11 i

vJ

2pT
;e24pTuxu D

GS g2 i
vJ

2pTDGS 11 i
vJ

2pTD J . ~21!

In this expression,F is a hypergeometric function. Notice that the functionHg depends onT, x, andvJ only through the
combinationsvJx andvJ /(2pT). We can thus cast the modulationHg(vJx,vJ/2pT) in terms of the following function of
two variables:

Hg~y1 ,y2!52p
G~2g!

G~g!

e2gy1 /y2

sinh~py2!
ImH e2 iy1F~g,g1 iy2 ;11 iy2 ;e

22y1 /y2!

G~g2 iy2!G~11 iy2!
J . ~22!
di-
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The effective coupling for a two point-contact geometry
then

uGeffu25uG1u21uG2u21~G1G2*1G1*G2!HgS 2pvJ

vosc
,

vJ

2pTD .
~23!

In this form, it is clear that the interference term depends
the ratios of the three energy scales in the problem.

We begin to explore how different values ofg change the
behavior of the modulationHg by considering Fermi-liquid
(g51) edge states associated with a QH filling fac
n51. In this case, Eq.~22! can be shown to simplify to

H1~y1 ,y2!5
y1 /y2

sinh~y1 /y2!

siny1
y1

, ~24!

so that
n

r

uGeffu25uG1u21uG2u21~G1G2*

1G1*G2!
4p2T/vosc

sinh~4p2T/vosc!

sin~2pvJ /vosc!

~2pvJ /vosc!
.

~25!

This is the same as the expression obtained in Sec. IV
rectly from the free fermion transmission approach. Not
that for g51 the finite temperature correction appears o
as a multiplicative factor in front of the modulation fo
T50. This is not necessarily the case for otherg, as shown
below in Fig. 4. This multiplicative factor decays expone
tially @1/sinh(4p2T/vosc)# with temperature, with the scal
(vosc) set by the two point-contact separationa. In Fig. 3 we
show the decay ofHg with temperature forvJ50 in a log
plot. From this plot we can extract how the modulation d
cays with temperatureT for different g. Using asymptotic
expressions for the hypergeometric function, we find that
T@vosc, the functionHg(2pvJ /vosc,vJ/2pT) decays as
e24p2gT/vosc, whereas forT!vosc, the fall off is much
slower.

Another interesting quantity is presented in Fig. 4, whe
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we display the ratioHg(vJ ,a,T)/Hg(0,a,T) between the
modulation atvJ and atvJ50, for different temperatures
The natural variables for displaying this dependence are
ratiosT/voscandvJ /vosc ~put differently, we measure ener
gies as compared to the scalevosc set by the separationa
between the contacts!. Notice that, for generalg, the curves
move around as a function ofT. The curves collapse into one
only for g51. Also notice that as the temperature increas
the position of the zeros forg51/3 andg51/5 approaches
those forg51, so that increasing temperature masks t
Luttinger-liquid behavior, with a crossover temperatu
roughly equal tovosc.

VI. NUMERICAL ESTIMATES

In this section, we will give estimates of the sizes of p
rameters at which the interference effects could be observ
First, we will consider the change in magnetic field,DB,
required for one Aharonov-Bohm period, which is given b

DB5
e

e*
F0

A
5

e

e*
41 mm2 G

A
. ~26!

If the number of electrons is held constant, then in this eq
tion F0 is equal to one flux quantum ande* is the charge of
an electron,e. If, instead, the filling fraction is held fixed,
thenF0 is e/e* times one flux quantum, wheree* is the
charge of the quasiparticle. In this equation,A is the area of
the FQH liquid between the two contacts, and is rough
given byA5ad, whered is the width of the sample anda is
the distance between the two contacts. If we assume
width is d51mm, then the period is related to the distan
between the contacts by

FIG. 3. Temperature decay of the modulationHg for
g51,1/3,1/5. The quantity plotted isHg(vJ50,a,T) vs T, with T
measured in units ofvosc52p(v/a) ~the energy scale associate
with the point-contact separationa). Notice that the modulation
decays exponentially withT for large temperatures, and that th
decay rate is faster for largerg.
he

s,

e

-
d.
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y

he

FIG. 4. Dependence of the modulationHg(vJ ,a,T) on vJ for
differentT. The quantity plotted is the rescaledHg @Hg(vJ ,a,T)/
Hg(0,a,T)# so as to show how the shape of the modulation cu
changes withT for different g. Notice that all curves collapse fo
g51, i.e., all frequencies get suppressed uniformly as tempera
is increased. Forg51/3 andg51/5, however, notice that the curve
do not collapse together anymore, and that highervJ are suppressed
more strongly than lowervJ asT is increased.
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DB5H 41 mm-G/a for fixed number of electronsn

120 mm-G/a for fixed filling fraction n51/3.
~27!
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For a51 mm or 10 mm, the ‘‘electron’’ Aharonov-Bohm
period isDB541 G and 4.1 G, respectively, and the ‘‘qu
siparticle’’ Aharonov-Bohm period isDB5120 G and 12 G,
respectively.

Next, we consider the voltage fluctuations. The separa
between the zeros of the Bessel functionJg21/2(x) is ap-
proximately equal top and the location of the nodes in th
voltage fluctuations roughly occur when

vJa

v
'p~n1jg!, n50,1, . . . with jg5

11g

2
. ~28!

As noted earlier, depending on the value ofg, the precise
location of these nodes will be shifted a little, which m
provide a way of distinguishing between Luttinger-liquid b
havior and other types of behavior. In this equation, we h
restored the velocity of the edge modesv, which earlier was
set to 1. For g51/3, an estimate forv ~Ref. 32! is
v'105 m/s. UsingvJ5e*V/\, we find that the voltage a
the nodes and the distance between the point contacts
satisfy

Va5~n1jg!
e

e*
3200 mV2mm, ~29!

whereV has units of micrometers anda has units of mi-
crometers. Forn51/3, we take e* /e51/3. Thus, for
a51 mm or 10 mm the voltage at the first node is rough
400 mV and 40 mV, respectively. Lastly, we will estimate
the coherence length, or the amount by which the temp
ture reduces the signal. However, we note that phonons
also lead to dephasing, althought we do not consider th
here. For temperatures greater thankT.\vosc/(4p2), the
interference effects fall off asTe24p2gkT/(\vosc), where
vosc52pv/a. Thus for

kT,
\v

2pga
~30!

the signal is not affected much by temperature. We can
fine the coherence lengthac by the spacing for which the
signal has decreased roughly by a factor of 1/e, so that
ac5v\/(g2pkT). Then, for v'105 m/s andg51/3, at
T5100 mK the coherence length isac54 mm, and for
T530 mK, the coherence length isac512 mm. Thus the
signal for a separation of 1mm should not be noticeably
affected at either temperature, and even for a separatio
10 mm the signal will be attenuated by a factor of 2
30 mK and by a factor of 15 at 100 mK.

It follows then that a separation of a few micromete
should be sufficient to allow observation of the inteferen
effects at temperatures around and below 100 mK. The
quirement on the gates is that they be close enough that
electrostatic ‘‘shadows’’ do not overlap in the plane of t
n

e

ust

a-
an
m

e-

of

e
e-
eir

electron gas. For gate diameters of about 1000 Å, this c
dition could be met by placing them about 1000 Å from t
electron gas.

VII. CONCLUSIONS

In this paper we have proposed a device, the two po
contact interferometer, consisting of a Hall bar with tw
weak barriers, that can be used to study quantum interfere
effects in a strongly correlated system. The device allows
the study of three types of interference effects: Aharan
Bohm oscillations with magnetic field, statistical oscillatio
with quasiparticle number, and Fabry-Pe´rot oscillations with
source-drain voltage. These interference effects can be
to measure the fractional charge and statistics of quasip
cles in the quantum Hall effect. They also provide a new w
of searching for non-Fermi-liquid behavior in the dynami
of the edges. We would like to emphasize that much of
account of the physics of the device is quite robust, in tha
depends upon quite general ‘‘topological’’ properties of Q
quasiparticles; our proposals for measuring charge and
tistics fall in this category. Other features, such as the det
of the Fabry-Pe´rot nodes, are more specific to the simple
version of edge state dynamics used in the calculations
as such are subject to the caveat that they represent the
havior of the system only at the lowest energies.
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APPENDIX: PERTURBATIVE CALCULATION

We derive here the correction to the Hall current due
tunneling at the point contacts. We will assume the gene
case of N contacts at locationsxi and coupling G i ,
i51, . . . ,N.

The first step in the calculation is to obtain the tunneli
current operatorj (t). This operator includes the tunnelin
currents flowing from one edge to the other through allN
point contacts in the problem. The tunneling operator can
obtained from the time evolution of the total charge ope
torsQR,L on theR,L edges:
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j ~ t !52
1

i\
@QL ,H#5

1

i\
@QR ,H#. ~A1!

The charge operator commutes with the free part of
Hamiltonian, so that the only contribution comes from t
tunneling term

H tun5(
i51

N

G ie
2 ivJteiAgf~ t,xi !1H.c. ~A2!

Using the commutation relations for the bosonic fie
fR,L , we obtain

j ~ t !5 ie*(
i51

N

G ie
iAgf~ t,xi !1H.c. ~A3!

The expectation value for the current at timet is given by
:

e

^ j ~ t !&5^0uS†~ t,2`! j ~ t !S~ t,2`!u0&, ~A4!

whereS(t,2`) is the time evolution operator. The next ste
is to calculatê j & perturbatively in the tunneling amplitude
G i . Because there is a voltage difference between theR and
L terminals, the system is out of thermodynamical equil
rium, and we must use field theoretical tools appropriate
such nonequilibrium problems.18 However, nonequilibrium
effects appear only to second and higher orders in pertu
tion theory. Because we will calculate the tunneling curre
only to first order in perturbation theory, we will not have
use nonequilibrium field theory in this particular calculatio

To lowest order in the tunneling perturbation we have

^ j ~ t !&52 i E
2`

t

dt8^0u@ j ~ t !,H tun~ t8!#u0&. ~A5!

In the calculation of
^0u j ~ t !H tun~ t8!u0&5e*(
i51

N

(
j51

N

^0u~ iG ie
2 ivJteiAgf~ t,xi !2 iG i* e

ivJte2 iAgf~ t,xi !!

3~G je
2 ivJt8eiAgf~ t8,xj !1G j* e

ivJt8e2 iAgf~ t8,xj !!u0& ~A6!

the nonvanishing terms are those that transfer zero total charge when applied tou0&. We then have

^0u j ~ t !H tun~ t8!u0&5 ie* (
i , j51

N

~G iG j* e
2 ivJ~ t2t8!^0ueiAgf~ t,xi !e2 iAgf~ t8,xj !u0&2G i*G je

ivJ~ t2t8!^0ue2 iAgf~ t,xi !eiAgf~ t8,xj !u0&!

5 ie* (
i , j51

N

~G iG j* e
2 ivJ~ t2t8!2G i*G je

ivJ~ t2t8!!eg^0uf~ t,xi !f~ t8,xj !u0&. ~A7!

Thef field correlation is

^0uf~ t,x!f~0,0!u0&5^0ufR~ t,x!fR~0,0!u0&1^0ufL~ t,x!fL~0,0!u0&

52 ln@d1 i ~ t2x!#2 ln@d1 i ~ t1x!#, ~A8!

whered is an ultraviolet cutoff scale. Let us define

Pg~ t,x!5eg^0uf~ t,x!f~0,0!u0&5@d1 i ~ t1x!#2g@d1 i ~ t2x!#2g. ~A9!

Notice thatPg(t,x)5Pg(t,2x). Using the expression above, we can write

2 i ^@ j ~ t !,H tun~ t8!#&5e* (
i , j51

N

~G iG j* e
2 ivJ~ t2t8!2G i*G je

ivJ~ t2t8!!@Pg~ t2t8,xi2xj !2Pg~2t1t8,xi2xj !#. ~A10!
ula-
Inserting the above expression into Eq.~A5! and performing
the t8 integration, we obtain the current expectation value

^ j ~ t !&5e* (
i , j51

N
G iG j*1G i*G j

2

3@ P̃g~vJ ,xi2xj !2 P̃g~2vJ ,xi2xj !#, ~A11!

whereP̃g(vJ ,x) is the Fourier transform of thePg(t,x) with
respect to time. The problem is then reduced to the calc
tion of the P̃g’s. It is easy to calculate

P̃g~v,0!5E
2`

`

dp
eivp

~d1 ip !2g

5
2p

G~2g!
uvu2g21e2uvudu~v!, ~A12!

and we can express the casexÞ0 in terms of theP̃g(v,0):
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P̃g~v,x!5E
2`

` dv8

2p
Pg/2~v8,0!Pg/2~v2v8,0!e2 i ~2v82v!x

5u~v!E
0

uvudv8

2p
v8g21~v2v8!g21e2 i ~2v82v!x

5 P̃g~v,0!Hg~vx!, ~A13!

where

Hg~y!5Ap
G~2g!

G~g!

Jg21/2~y!

~2y!g21/2. ~A14!

The tunneling current between the edge statesI t5^ j (t)& is
then simply

I t5e*
2p

G~2g!
uvJu2g21sgn~vJ! (

i , j51

N

G iG j*Hg~vuxi2xj u!.

~A15!

The expression for the tunneling current can be cast exa
in the same form as that for a single contact,
tly

I t5e* uGeffu2
2p

G~2g!
uvJu2g21sgn~vJ!, ~A16!

but with an effective couplingGeff due to the interference
betweenG i , i51, . . . ,N of theN contacts:

uGeffu25 (
i , j51

N

G iG j*Hg~vJuxi2xj u!. ~A17!

The calculations forT50 can be extended for finite tem
perature. Basically, the algebraic correlations atT50 are
mapped to the correlations atTÞ0 by a conformal
transformation:31

1

@d1 i ~ t6x!#g
→F pT

sin$pT@d1 i ~ t6x!#%G
g

. ~A18!

Using this transformation, we can recalculate theP̃g’s and
obtain their finiteT version:
P̃g~v,x,T!5E
2`

`

dteivtFsin$pT@d1 i ~ t1x!#%

pT G2gFsin$pT@d1 i ~ t2x!#%

pT G2g

~A19!

5~pT!2gE
2`

`

dteivte2 i ~p/2!g[sgn~ t2x!1sgn~ t1x!]@sinh~pTut2xu!sinh~pTut1xu!#2g. ~A20!

What we need for the calculation of the currents is the differenceP̃g(v,x,T)2 P̃g(2v,x,T), which simplifies to

P̃g~v,x,T!2 P̃g~2v,x,T!54~pT!2gsin~pg!ImH E
uxu

`

dte2 ivt@sinh~pTut2xu!sinh~pTut1xu!#2gJ . ~A21!

After calculating the integral above, we find that it can be written as

P̃g~v,x,T!2 P̃g~2v,x,T!5@ P̃g~v,x50,T!2 P̃g~2v,x50,T!#Hg~v,x,T!, ~A22!

where thex50 difference is

P̃g~v,x50,T!2 P̃g~v,x50,T!54~pT!2g21BS g2 i
v

2pT
,g1 i

v

2pTD coshS v

2TD , ~A23!

and the scaling factorHg(v,x,T) for xÞ0 is

Hg~v,x,T!52p
G~2g!

G~g!

e22gpTuxu

sinhv/2T
ImH eivuxuFS g,g2 i

v

2pT
;12 i

v

2pT
;e24pTuxu D

GS g1 i
v

2pTDGS 12 i
v

2pTD J , ~A24!
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whereF is the hypergeometric function.
Again, the tunneling current can be written as the tunn

ing through a single contact:

I t5e* uGeffu24~pT!2g21BS g2 i
v

2pT
,g1 i

v

2pTD sinhS v

2TD ,
~A25!
s

c

l-
but with an effective coupling

uGeffu25 (
i , j51

N

G iG j*Hg~vJ ,uxi2xj u,T!, ~A26!

much in the same way as in theT50 case.
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