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Influence of isotopic disorder on phonon frequencies and phonon linewidths
of an anharmonic crystal

Th. Held, I. Pfeiffer, and W. Kuhn*
Institut für Physik, Pädagogische Hochschule Erfurt, PF 307, D-99006 Erfurt, Germany

~Received 13 June 1996!

Based on a perturbation theory using Matsubara functions and a diagrammatic treatment, it is shown that the
phonon linewidths of an anharmonic crystal with isotopic impurities include two different contributions, a
disorder-induced temperature-independent part, caused by harmonic scattering processes of phonons at isotopic
impurities, and a disorder-influenced temperature-dependent part, caused by anharmonic decay processes.
Whereas in case of an anharmonic ideal crystal it is usual to restrict the corresponding self-energy on diagonal
elements only, this is no longer sufficient in the presence of impurities. For that reason it is shown that only
nondiagonal elements of the effective vertex function of the harmonic phonon propagator contribute to the
disorder-induced contribution to the phonon linewidth, whereas the corresponding harmonic and the anhar-
monic frequency shifts are determined by diagonal and nondiagonal elements as well. As an application,
numerical results of the disorder-induced temperature-independent as well as the disorder-influenced
temperature-dependent contribution to the phonon linewidths of a diatomic linear chain with a single mass
defect are presented.@S0163-1829~96!01346-X#
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I. INTRODUCTION

In a recently published article,1 which is the basis of our
further theoretical consideration, the authors have inve
gated the influence of isotopic disorder on the phon
phonon interaction in anharmonic crystals and some num
cal calculations have been carried out to test the results
application to a diatomic linear chain with a single isotop
impurity. Taking explicitly into account anharmonic contr
butions of the potential expansion as well as mass chan
between impurities and host-lattice particles, it was sho
that the anharmonic phonon propagator can be written
sum of terms, which are added up within a Dyson equat
To get the phonon frequency shifts and linewidths by solv
the Dyson equation and subsequently analytical continua
into the complex frequency plane, we made use of the u
approximation to consider the diagonal elements of both
harmonic as well as the anharmonic self-energy matrix o
The harmonic self-energy, which describes the influence
isotopic disorder on the harmonic ideal structure, is kno
as the effective vertex function and will be denoted in t
same way in the following. By making use of the appro
mation mentioned above, which can be substantiated by
physical reason, the damping and with it the linewidth o
certain lattice mode are determined by anharmonic inte
tions only in contrast to the corresponding frequency sh
which includes two different contributions, a defect-induc
temperature-independent part, caused by harmonic scatt
processes of phonons at isotopic impurities and a def
influenced temperature-dependent part, caused by an
monic scattering and decay processes. In this paper, h
ever, it is shown that the consideration of nondiago
elements of the effective vertex function causes a sec
defect-induced temperature-independent contribution wi
the damping function and a modification of the defe
induced temperature-independent frequency shift, mentio
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above. Taking into account this contribution of the harmo
crystal to the phonon linewidths of an anharmonic real str
ture, it is possible to get a more satisfactory description
recent experimental results of relaxation processes in crys
with isotopic impurities.

II. THEORY

A. Model

The starting point of our consideration is the nonprimiti
anharmonic crystalline structure with randomly distribut
isotopic impurities as recently described in Ref. 1, where
harmonic ideal crystal has been chosen as the refere
structure and both anharmonic interactions as well as
influence of isotopic impurities are considered as pertur
tions.

B. The phonon propagator
of the harmonic crystalline structure

with isotopic impurities

To study the influence of isotopic impurities onto th
spectral properties of a crystalline ideal structure we cons
the harmonic ideal crystal at first, which is modified by t
presence of isotopic impurities. That means that anharmo
interactions are neglected and we restrict ourselves on re
ation processes, caused by the harmonic scattering
phonons at impurities only. Within the context of a pertu
bation theory using Matsubara functions and a diagramm
treatment it is possible then to evaluate the phonon propa
tor Gll8

h ( iv l) of the corresponding harmonic crystallin
structure with isotopic impurities, as it has been shown
Refs. 1–3. The indicesl andl8 are collective symbols for
both the wave vector labelqW and the branch labelj or qW 8 and
231 © 1997 The American Physical Society



ra
to
-

n
ing

232 55TH. HELD, I. PFEIFFER, AND W. KUHN
j 8, respectively, whereasv l denotes the so-called Matsuba
frequency. As a result of this, the phonon propaga
Gll
h ( iv l) is given by the following infinite sum of contri
8

al
e
rd
r
butions, whereas Eq.~1! obtains the analytical representatio
of these contributions and Fig. 1 shows the correspond
diagrammatic representation:1
Gll8
h

~ iv l !5gl~ iv l !dl2l822bzl~ iv l !C2l2l8zl8~ iv l !14b2(
l1

zl~ iv l !C2ll1
gl1

~ iv l !C2l12l8zl8~ iv l !

28b3(
l1l2

zl~ iv l !C2ll1
gl1

~ iv l !C2l1l2
gl2

~ iv l !C2l22l8zl8~ iv l !1•••, ~1!
re-

ture
lt

in-
f a

u-

f the

ar-

ason
nal
in
nal
with

gll8~ iv l !5gl~ iv l !dl2l85
1

b\

2vl

vl
21v l

2 dl2l8, ~2a!

zll8~ iv l !5zl~ iv l !dl2l85
1

b\

2iv l

vl
21v l

2 dl2l8 ~2b!

and

Cll85
\

4N
Avlvl8(

lWk i
SMk

Mk
lW

21D
3ei~k,l!ei~k,l8!ei ~q

W 1qW 8!rW l
W

. ~3!

The first term in Eq.~1! describes the harmonic ideal cryst
and is known as the harmonic phonon propagator of the id
structure, whereas the remaining contributions are diso
induced owing to the relative mass change in Eq.~3!. Using
Eqs.~2a! and ~2b! as well as the identity

~ iv l !
2

vlvl8
52

2

b\vl
gl8

21
~ iv l !1

vl8
vl

, ~4!

it is possible to rewrite Eq.~1! into the following Dyson
equation~matrix representation!

Gh~ iv l !5g~ iv l !1g~ iv l !E~ iv l !G
h~ iv l ! ~5!

and

Gll8
h

~ iv l !5gl~ iv l !dl2l8

1gl~ iv l !(
l1

E2ll1
~ iv l !Gl1l8

h
~ iv l !, ~6!

FIG. 1. Diagrammatic representation of Eq.~1!.
al
er

respectively.1 According to Eq.~1!, Fig. 2 shows the dia-
grammatic representation of Eq.~5!. The nondiagonal matrix
E( iv l) with

El1l2
~ iv l !52b\(

l3

@11C̃#l1l3

21 C̃l3l2

~ iv l !
2

2vl2

,

C̃l3l2
5

4

\vl3

Cl3l2
, ~7!

usually described as an effective vertex function, cor
sponds to the complex self-energyS( iv l) of an anharmonic
crystal and disappears in the case of an ideal struc
(Cll850). Equation~5! coincides completely with the resu
of Maradudin and Califano,4 who used the formalism of the
double-time retarded Green’s functions to investigate the
fluence of isotopic impurities onto the spectral properties o
harmonic ideal structure.

To simplify the evaluation of the self-energy contrib
tions of the anharmonic crystal, the approximation

El1l2
~ iv l !5El12l1

~ iv l !dl12l2
~8!

has been used in Ref. 1 to evaluate the matrix elements o
phonon propagatorGll8

h ( iv l) from Eq. ~3!. This restriction
of the effective vertex functionEl1l2

( iv l) on diagonal ele-
ments only diagonalizes the phonon propagator of the h
monic crystalline real structure andGll8

h ( iv l) is then given
by

Gll8
h

~ iv l !5
dl2l8

gl
21~ iv l !2E2ll~ iv l !

. ~9!

It has to be emphasized here that there is no physical re
for the approximation mentioned above, like the diago
behavior of the pure anharmonic self-energy contributions
crystals of cubic symmetry or the ratio between the diago

FIG. 2. Diagrammatic representation of Eq.~5!.
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55 233INFLUENCE OF ISOTOPIC DISORDER ON PHONON . . .
and the nondiagonal elements. Actually, as it has been m
in Ref. 2, the calculation of the effective vertex functio
elements of simple defect configurations within a diatom
linear chain shows that nondiagonal elements may be
large as the corresponding diagonal elements. Moreover,
assumption is responsible for the vanishing of the disord
induced temperature-independent damping of phono
caused by harmonic scattering processes at isotopic imp
ties, which will be shown in the following. Therefore, to g
a sufficient description of the influence of isotopic impu
ties, one has to take into account diagonal and nondiag
elements of the effective vertex function as well.

To go beyond the approximation~8!, it is necessary
to evaluate the nondiagonal inverse mat
@12g( iv l)E( iv l)#

21, which appears in

Gh~ iv l !5@12g~ iv l !E~ iv l !#
21g~ iv l ! ~10!

and

Gll8
h

~ iv l !5
1

det@12g~ iv l !E~ iv l !#

3(
l1

@12g~ iv l !E~ iv l !#ll1

adj gl1l8~ iv l !,

~11!

respectively. This is very complicated in general and lead
a nondiagonal structure of the phonon propagatorGh( iv l).
For that reason only a special case of the matrix structur
lt
tie
-

de

c
as
is
r-
s,
ri-

al

to

of

E( iv l) will be discussed in the following to investigate th
influence of corresponding nondiagonal elements onto
spectral properties ofGh( iv l), for which is it possible to get
a closed form expression of the phonon propagator:

E5S E11̄ E12̄ E13̄ . . . E1~n21! E1 n̄

E21̄ E22̄ 0 . . . 0 0

E31̄ 0 E33̄ . . . 0 0

A A A � A A

E~n21!1̄ 0 0 . . . E~n21!~n21! 0

En1̄ 0 0 . . . 0 En n̄

D .

~12!

Here 1 ton denote the collective symbolsl5qW j51 and
2l52qW j52151̄, respectively, where for a three
dimensional crystal withN primitive unit cells per periodic-
ity volume ands lattice particles within the unit celln counts
to 3sN. The structure ofE( iv l), chosen in Eq.~12!, corre-
sponds to the case of a defect-induced interaction of the
lected model51, appropriately the optical-active mod
l50W j opt with all other lattice modes, but no interaction o
the modes withlÞ1 among each other.

After evaluation of det@12g( iv l)E( iv l)# as well as
@12g( iv l)E( iv l)#

adj, one obtains for an arbitrary diagona
element of the phonon propagatorG

11̄

h
( iv l) of the harmonic

crystalline structure:2
G
11̄

h
~ iv l !5

1

g
11̄

21
~ iv l !2E11̄~ iv l !2(k52

n $E1 k̄~ iv l !Ek1̄~ iv l !/@gk k̄
21

~ iv l !2Ek k̄~ iv l !#%
,

gk k̄~ iv l !5gk~ iv l !. ~13!
The neglection of nondiagonal elements ofE( iv l) produces
the expression~9!, discussed in Ref. 1. To connect the resu
obtained above with the corresponding physical proper
~defect-induced frequency shift and damping! one has to ana
lytically continue function~13! into the complex frequency
half plane (iv l→v1 ig,g.0).1 With neglection of terms
quadratic ing or of even higher order ing and using the
abbreviation
s
s

El1l2
~ iv l !52b\(

l3

@11C̃#l1l3

21 C̃l3l2

~ iv l !
2

2vl2

52b\Al1l2

~ iv l !
2

2vl2

, ~14!

G1 1̄
h (v1 ig) is given by
har-
G1 1̄
h

~v1 ig!5
2v1

b\

1

v1
22~12A1 1̄!v22 i ~12A11̄!2vg2(k52

n $A1 k̄Ak1̄v
4/@vk

22~12Ak k̄!v
22 i ~12Ak k̄!2vg#%

.

~15!

Carrying out the limiting process (iv l→v1 ig,g.0) and some further transformations, the phonon propagator of the
monic crystalline structure with isotopic impuritiesG1 1̄

h (v) can be written as

G
11̄

h
~v!5 lim

g→01

G
11̄

h
~v1 ig!5

2v1

b\

v1
22v212v1D1

h~v!1 i2v1G1
h~v!

@v1
22v212v1D1

h~v!#21@2v1G1
h~v!#2

~16!

with



234 55TH. HELD, I. PFEIFFER, AND W. KUHN
D1
h~v!5

1

2v1 H A11̄v
22 lim

g→01
(
k52

n

A1 k̄Ak1̄v
4

vk
22~12Ak k̄!v

2

@vk
22~12Ak k̄!v

2#21@~12Ak k̄!2vg#2 J
5

1

2v1
FA11̄v

22 (
k52

n

A1 k̄Ak1̄v
4PS 1

vk
22~12Ak k̄!v

2D G ~17!

and

G1
h~v!5

1

2v1
lim

g→01
(
k52

n

A1 k̄Ak1̄v
4

~12Ak k̄!2vg

@vk
22~12Ak k̄!v

2#21@~12Ak k̄!2vg#2
5

p

2v1
(
k52

n

A1 k̄Ak1̄v
4d~vk

22~12Ak k̄!v
2!,

~18!
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whereP(1/x) denotes the principal value of 1/x. From the
structure of expression~16!, D1

h(v) has to be interpreted as
defect-induced temperature-independent shift of the frequ
cies of the harmonic ideal structure andG1

h(v) functions as a
defect-induced temperature-independent damping of the
responding lattice mode. It is easy to see now that un
restriction on diagonal elements of the effective vertex fu
tion only @A1 k̄5Ak1̄50,kÞ1; Eq. ~8!#, the first contribution
of expression ~17! remains, whereas the correspondi
damping completely disappears. That means both the m
fication of the defect-induced frequency shift as well as
defect-induced finite phonon lifetime are determined by n
diagonal elements of the effective vertex functionE( iv l)
only. Equation~18! shows that there is not a damping
phonons only in anharmonic structures, but even in a h
monic crystal exists a damping of lattice modes, althou
defect induced. According to its analytical structure, t
damping functionG1

h(v) corresponds to the spectral dens

G~v2!5(
l

d~vl
22~12Al2l!v2!, ~19!

modified byAik( iÞk) andv4.

FIG. 3. Defect-induced frequency shift of a diatomic line

chain with a single mass defect (M1
0W580 a.m.u.,

N520,g510 cm21). Dotted line: contribution, caused by diagon
elements ofE( iv l). Thin line: contribution, caused by nondiagon
elements ofE( iv l). Thick line: sum of both contributions.
n-

r-
er
-

di-
e
-

r-
h

To summarize it, even in a harmonic crystal a relaxat
of lattice modes takes place, which is caused by scatte
processes of phonons at impurities. Accordingly,D1

h(v) and
G1
h(v) go to zero if the influence of the isotopic disord

vanishes (Cll850).
As an application Figs. 3 and 4 show the defect-induc

temperature-independent frequency shift and damping of
optical active mode (l50W j opt) of the diatomic linear chain
with a single mass defect, described in detail with numeri
parameters in Ref. 1. As seen from Fig. 3, taking into
count of nondiagonal elements ofE( iv l) modifies consider-
ably the frequency shift of the optical-active mod
Dh

0W j opt
(v). Whereas the diagonal elements simply produc

pure negative frequency shift determined byv2, the consid-
eration of nondiagonal elements leads to a frequency s
which is determined by the frequency distribution of latti
modes of the corresponding harmonic ideal structure
may be positive as well as negative. Figure 4 shows
defect-induced damping functionGh

0W j opt
(v) for two sets of

numerical parameters, whereas only for the second set
320 unit cells per periodicity volume and a value of t
parameterg of 0.5 cm21, which is used to deal with the
principal values and the Diracd functions, the structure o
the spectral density is really visible. The defect ‘‘concent
tion’’ ~one isotopic impurity per 640 ideal lattice particles!,

FIG. 4. Defect-induced damping function of a diatomic line

chain with a single mass defect (M1
0W580 a.m.u.). Thin line: calcu-

lated with N5320,g50.5 cm21. Thick line: calculated with
N520, g510 cm21.
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55 235INFLUENCE OF ISOTOPIC DISORDER ON PHONON . . .
however, is then much lower and according to this the dam
ing values too. Because the defect-induced damping func
G0 j opt
h (v) is explicitly determined by the modified spectr

density of the harmonic ideal crystal, damping values diff
ent from zero are only possible within the harmonic fr
quency areas ifg goes to zero. Therefore, localized lattic
modes, caused by impurities if the perturbation is la
enough, must have infinite lifetimes, what is sufficiently co
firmed by other theoretical investigations of a harmonic cr
talline structure.

C. The influence of nondiagonal elements ofE„ iv l…

on frequency shifts and linewidths
of an anharmonic crystalline structure

To get the phonon propagatorG( iv l) of an anharmonic
crystalline structure with isotopic impurities, it is possible
renormalize the phonons of the harmonic ideal structure c
cerning the isotopic disorder by rearranging all connec
diagrams and putting them together in a different way, a
was shown in Refs. 1 and 2. Within the diagrammatic rep
sentation this means the transition to new diagrams, con
ing of one kind of phonon lines only~Fig. 5!. The summing
up of all diagrams leads to the Dyson equation@Eq. ~27! in
Ref. 1#:

G~ iv l !5Gh~ iv l !1Gh~ iv l !S~ iv l !G~ iv l !, ~20!

where S( iv l) is the anharmonic self-energy of the corr
sponding crystallinereal structure. As a result of the reno
malization, mentioned above, Eq.~20! may be alternatively
considered as the perturbation of a harmonicreal crystal as
reference structure by anharmonic scattering and decay
cesses. In contrast to the harmonic ideal crystal, however
phonon propagatorGh( iv l) of the harmonic ideal structure
modified by the presence of isotopic impurities, possess
nondiagonal structure, according to Sec. II B.

To evaluate the total frequency shiftD total(v) and damp-
ing functionG total(v) of the harmonic ideal crystal, cause
by isotopic impurities and anharmonic interactions, one
to rearrange Eq.~20! to get the diagonal elements of th
anharmonic phonon propagatorGll8( iv l). But a closed-
form expression is only achievable with the following a
sumptions:~1! restriction on diagonal elements ofGh( iv l),
though modified by nondiagonal elements ofE( iv l),

Gll8
h

~ iv l !5Gl2l
h ~ iv l !dl2l8, ~21!

FIG. 5. Diagrammatic representation of the Dyson equation~20!
and the corresponding self-energy contributions.
p-
n

-
-

e
-
-

n-
d
it
-
st-

ro-
he

a

s

and ~2! restriction on diagonal elements of the anharmo
self-energy matrixS( iv l),

Sll8~ iv l !5Sl2l~ iv l !dl2l8. ~22!

The phonon propagator of the anharmonic crystalline str
ture with isotopic impuritiesGll8( iv l) is thus given by

Gll8~ iv l !5
1

@Gl2l
h ~ iv l !#

212S2ll~ iv l !
dl2l8. ~23!

Using Eq.~13! we get

Gl2l~ iv l !5
1

gl2l
21 ~ iv l !2Ul2l~ iv l !

~24!

with

Ul2l~ iv l !5El2l~ iv l !1S2ll~ iv l !

1 (
l1Þl

El2l1
~ iv l !El12l~ iv l !

@gl12l1
~ iv l !#

212El12l1
~ iv l !

.

~25!

Obviously, the special case discussed in Ref. 1@Eqs. ~39!
and ~40!# follows from Eq.~24! by neglecting all nondiago-
nal elements ofE( iv l).

As seen from Eqs.~29!–~31! in Ref. 1, the anharmonic
self-energy contributions include phonon propagators of
harmonic real structure in more or less complex combi
tions, represented by corresponding phonon lines~see Fig.
5!. Taking into account here the approximation~8! leads to
the contributions~33!–~35! of Ref. 1, where the frequencie
of the thermal bath phonons are shifted compared to the
quencies of the corresponding harmonic ideal structure o
Using Eq.~13! instead of Eq.~8! means that the harmoni
phonons of the thermal bath in addition to a certain f
quency shift possess a finite lifetime now, what additiona
modifies the anharmonic self-energy contributions. For
ample, the energy uncertainty related to this has to give
to an increasing number of decay channels available
therefore to an enhanced damping of the correspond
phonons. However, the summation over the independ
Matsubara frequenciesv l , necessary to evaluate the se
energy contributions in Eqs.~33!–~35! of Ref. 1, is even
more complicated and we neglect these modifications in
following numerical calculations.

Finally, the total frequency shiftD total(v) and the total
damping functionG total(v) of the harmonic ideal crystal
caused by isotopic impuritiesandanharmonic interactions, is
given by the analytical continuation of Eq.~25! into the com-
plex frequency half plane (iv l→v1 ig,g.0) followed by
the limiting process (g→0):

lim
g→01

Ul2l~v1 ig!5Ul2l~v!

52b\@Dl
total~v!2 iGl

total~v!#,

~26!

with

Dl
total~v,T!5Dl

h~v!1Dl
anh~T!1Dl

anh~v,T!, ~27!
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236 55TH. HELD, I. PFEIFFER, AND W. KUHN
and

Gl
total~v,T!5Gl

h~v!1Gl
anh~v,T!. ~28!

Therefore, in contrast to well-known results of phonon
quency shifts and linewidths of an anharmonic ideal cry
both the frequency shift as well as the damping func
include different contributions, if isotopic disorder is prese
The first contribution of Eqs.~27! and ~28!, respectively
describes the defect-induced temperature-independen
quency shift and damping function, caused by scattering
cesses at isotopic impurities, whereas the remaining co
butions correspond to the defect-influenced tempera
dependent frequency shift and damping function, cause
anharmonic scattering and decay processes, given, withi
approximation mentioned above and up toO(a2), by ana-
lytical continuation of Eqs.~33!–~35! of Ref. 1. Because th
influence of isotopic disorder on phonons of the thermal b
is temperature-independent, the general temperature d
dence of the anharmonic frequency shift and damping f
tion is equal to that of an anharmonic ideal crystal, for
ample, the linear behavior in the high-temperature regio
toO(a2), but with changed values. This is clearly suppor
by the results of experimental investigations of frequen
and linewidths in natural and pure sulfur,5,6 which show for
both crystals and corresponding bands the same h
temperature behavior with different values. Additionally,
fitting attempts, made by Becucciet al.,6 indicate the pres

FIG. 6. Damping of the optical-active mode of the diatom
linear chain, described in Ref. 1. Dotted line: damping of the
responding ideal structureGanh,ideal(v0W j opt

,T). Thin line: anharmonic
damping contribution of the crystalline structure with a single m

defectGanh(v0W j opt
,T) (M1

0W580 a.m.u.). Thick line: total dampin
G total(v0W j opt

,T).
w

-
l,
n
.

re-
o-
ri-
e-
by
he

h
en-
c-
-
p

s

h-

ence of a defect-induced temperature-independent contr
tion to the linewidth, which of course effects the linewidt
most at low temperatures and sometimes even dominate
According to the results obtained in Ref. 1 and discuss
here, the temperature-independent contribution of the p
nomenological description of Becucciet al.6 @Eq. ~10! of
Ref. 6# is caused by scattering processes of phonons at
topic impurities, whereas the second contribution has to
attributed to anharmonic scattering and decay proces
modified by the isotopic disorder. But the attempt of eva
ating the defect-influenced anharmonic damping contribut
from the corresponding contribution of the anharmonic ide
structure by multiplying it with a defect-determined param
eter only cannot be supported from the point of view of
microscopic theory. Moreover, in contrast to the supposit
of Becucciet al.,6 that the modification of anharmonic deca
processes by isotopic impurities may be described by
dressing of the usual cubic and quartic anharmonic coup
constants by mass-change coefficients only, we have
tained instead a modification of the harmonic bath phono
by the isotopic disorder and therefore a modification of t
decay channels itself.

As an application Fig. 6 shows the total dampin
G total(v0W j opt

,T) as well as the anharmonic damping contrib

tion Ganh(v0W j opt
,T) of the diatomic linear chain mentioned i

Sec. II B as a function of temperature.

III. CONCLUSIONS

Using the theoretical formalism described in Ref. 1 a
further developed within this paper it has been shown t
the frequency shifts as well as the linewidths of an anh
monic crystal with isotopic impurities include two differen
contributions, a defect-induced temperature-independ
one, caused by harmonic scattering processes of phonon
isotopic impurities and a defect-influenced temperatu
dependent one, caused by anharmonic scattering and d
processes. Additionally, it could be demonstrated that non
agonal elements of the effective vertex function have to
considered as well to get a sufficient description of the infl
ence of isotopic impurities on relaxation processes in anh
monic crystals.

As an application both damping contributions of a d
atomic linear chain with a single mass defect has been
culated, which clearly indicates the importance of t
temperature-independent contribution especially at low te
peratures, what is supported by experimental investigatio
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