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Influence of isotopic disorder on phonon frequencies and phonon linewidths
of an anharmonic crystal
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Based on a perturbation theory using Matsubara functions and a diagrammatic treatment, it is shown that the
phonon linewidths of an anharmonic crystal with isotopic impurities include two different contributions, a
disorder-induced temperature-independent part, caused by harmonic scattering processes of phonons at isotopic
impurities, and a disorder-influenced temperature-dependent part, caused by anharmonic decay processes.
Whereas in case of an anharmonic ideal crystal it is usual to restrict the corresponding self-energy on diagonal
elements only, this is no longer sufficient in the presence of impurities. For that reason it is shown that only
nondiagonal elements of the effective vertex function of the harmonic phonon propagator contribute to the
disorder-induced contribution to the phonon linewidth, whereas the corresponding harmonic and the anhar-
monic frequency shifts are determined by diagonal and nondiagonal elements as well. As an application,
numerical results of the disorder-induced temperature-independent as well as the disorder-influenced
temperature-dependent contribution to the phonon linewidths of a diatomic linear chain with a single mass
defect are presentef50163-1826)01346-X]

[. INTRODUCTION above. Taking into account this contribution of the harmonic
crystal to the phonon linewidths of an anharmonic real struc-
In a recently published articlewhich is the basis of our ture, it is possible to get a more satisfactory description of
further theoretical consideration, the authors have investirecent experimental results of relaxation processes in crystals
gated the influence of isotopic disorder on the phononwith isotopic impurities.
phonon interaction in anharmonic crystals and some numeri-
cal calculations have been carried out to test the results by
application to a diatomic linear chain with a single isotopic Il. THEORY
impurity. Taking explicitly into account anharmonic contri-
butions of the potential expansion as well as mass changes
between impurities and host-lattice particles, it was shown The starting point of our consideration is the nonprimitive
that the anharmonic phonon propagator can be written as @anharmonic crystalline structure with randomly distributed
sum of terms, which are added up within a Dyson equationisotopic impurities as recently described in Ref. 1, where the
To get the phonon frequency shifts and linewidths by solvingharmonic ideal crystal has been chosen as the reference
the Dyson equation and subsequently analytical continuatiogtructure and both anharmonic interactions as well as the
into the complex frequency plane, we made use of the usuahfluence of isotopic impurities are considered as perturba-
approximation to consider the diagonal elements of both théions.
harmonic as well as the anharmonic self-energy matrix only.
The harmonic self-energy, which describes the influence of

A. Model

isotopic disorder on the harmonic ideal structure, is known B. The phonon propagator
as the effective vertex function and will be denoted in the of the harmonic crystalline structure
same way in the following. By making use of the approxi- with isotopic impurities

mation mentioned above, which can be substantiated by no To study the influence of isotopic impurities onto the

physical reason, the damping and with it the linewidth of agpectral properties of a crystalline ideal structure we consider
certain lattice mode are determined by anharmonic interaGhe narmonic ideal crystal at first, which is modified by the

tions only in contrast to the corresponding frequency shiftyesence of isotopic impurities. That means that anharmonic
which includes two different contributions, a defect-inducedinieractions are neglected and we restrict ourselves on relax-

temperature-independent part, caused by harmonic scatteriig,, nrocesses, caused by the harmonic scattering of
Processes of phonons at isotopic impurities and a defec bhonons at impurities only. Within the context of a pertur-
influenced temperature-dependent part, caused by anh

; . ; ation theory using Matsubara functions and a diagrammatic
monic scattering and decay processes. In this paper, how-

ever, it is shown that the consideration of nondiagonal reatrr;ent_ itis possible then to evgluate the phonon prOF’aga'
elements of the effective vertex function causes a secontp” Gy (iw)) of the corresponding harmonic crystalline
defect-induced temperature-independent contribution withiptructure with isotopic impurities, as it has been shown in
the damping function and a modification of the defect-Refs. 1-3. The indices and\’ are collective symbols for
induced temperature-independent frequency shift, mentionelgioth the wave vector label and the branch labglor g’ and
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i, respectively, whereas, denotes the so-called Matsubara butions, whereas E@1) obtains the analytical representation
frequency. As a result of this, the phonon propagatonf these contributions and Fig. 1 shows the corresponding
G';)\,(iw,) is given by the following infinite sum of contri- diagrammatic representatidn:

(i) =0x(i0) 8, =2B2(0)C oy y 2 (i0) +4B2X 2, ((0)C sy, Gy (10)C sy 20 (i)
1

_833);;4 2\ (i) Co\\ O (0)C\ \ O\, (10)C —yZy(fw)+ -, D
142
|
with respectively: According to Eq.(1), Fig. 2 shows the dia-
grammatic representation of E@). The nondiagonal matrix
1 2w, E(iw)) with

(10)=0\(10)0\ =55 5 —36h-r» (2
O (fw)=0\(iw) 6\ -y Bh @t @2 M (2a) o?
. _ =1-1 ~
Exp, (@)= Bﬁ% (15 Chi Lo g,

wa('wl)—zx(lw)@ww—%m&ww (2b)
a.nd C)\3)\2: ﬁw)\3 C)\3)\21 (7)
f M, usually described as an effective vertex function, corre-
Caw = mvwxwwz T 1) sponds to the complex self-ener§{i ;) of an anharmonic
I K crystal and disappears in the case of an ideal structure
_ _ N ai(GanT (Cy,=0). Equation(5) coincides completely with the result
xe(k, M) (k)T (3 of Maradudin and Califandwho used the formalism of the

and is known as the harmonic phonon propagator of the idedluence _of _isotopic impurities onto the spectral properties of a
structure, whereas the remaining contributions are disorddarmonic ideal structure.

induced owing to the relative mass change in &). Using To simplify the evaluation of the self-energy contribu-
Egs.(2a and(2b) as well as the identity tions of the anharmonic crystal, the approximation
(iw))? 2 L @y Exp(io)=Ey -\ (o) -\, 8
== v (fo) +——, (4)
W)\ Wy Bhw) h 7wy has been used in Ref. 1 to evaluate the matrix elements of the
h . . ..
it is possible to rewrite Eq(1) into the following Dyson Phonon propagatoB,, ,(iw) from Eq. (3). This restriction
equation(matrix representation of the effective vertex functiof, , (iw;) on diagonal ele-
. _ . ' . ments only diagonalizes the phonon propagator of the har-
G'(iw)=g(iw)+9(iw)E(iw)G (iw) (5 monic crystalline real structure ar@l’, ,(iw,) is then given
and by
Gl (o) =g (i) N uSY
PO NASLY| O\(lw)) oy G)\)\,(Iw|)= (9)

gfl(in_EfM(iwl) .

+gx(iw|)2 E,Ml(iw,)G';lw(im), (6) It has to be emphasized here that there is no physical reason
M for the approximation mentioned above, like the diagonal
behavior of the pure anharmonic self-energy contributions in
crystals of cubic symmetry or the ratio between the diagonal

— = — + -0 + 00O o — @
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FIG. 1. Diagrammatic representation of Ed). FIG. 2. Diagrammatic representation of E§).
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and the nondiagonal elements. Actually, as it has been made(i w,) will be discussed in the following to investigate the
in Ref. 2, the calculation of the effective vertex function influence of corresponding nondiagonal elements onto the
elements of simple defect configurations within a diatomicspectral properties &"(i w,), for which is it possible to get
linear chain shows that nondiagonal elements may be ag closed form expression of the phonon propagator:
large as the corresponding diagonal elements. Moreover, this
assumption is responsible for the vanishing of the disorder- E; Ei Exs
induced temperature-independent damping of phonons, - -
caused by harmonic scattering processes at isotopic impuri- Eai B O ... 0 0
ties, which will be shown in the following. Therefore, to get Eal 0 Ez ... 0 0
a sufficient description of the influence of isotopic impuri- E=
ties, one has to take into account diagonal and nondiagonal
elements of the effective vertex function as well. Em-1 0 O ... En-ym-p O

To go beyond the approximatio(8), it is necessary E; O 0 ... 0 E
to evaluate the nondiagonal inverse  matrix (12)
[1—g(iw)E(iw)] ", which appears in

El(nfl) Eln

G (i) =[1—g(i 0)E(i )] g(iw) (10) Here 1 E(?n denote the collgctive symbols=qgj=1 and
—\N=—qgj=—1=1, respectively, where for a three-
and dimensional crystal witiN primitive unit cells per periodic-
1 ity volume ands lattice particles within the unit celi counts
GQ ()= i i to 3sN. The structure oE(iw|), chosen in Eq(12), corre-
» def1-9g(iw)E(iw)] sponds to the case of a defect-induced interaction of the se-
. lected modeA=1, appropriately the optical-active mode
x> [1—9(iw|)E(iw|)]it>{Jlg>\lw(iw|), A =0j o With all other lattice modes, but no interaction of
M (11)  the modes withh #1 among each other.
After evaluation of dgtl—g(iw)E(iw)] as well as

dj
respectively. This is very complicated in general and leads o1~ 9 @) E(i @) ]*%, one obtains for an arbitrary diagonal
a nondiagonal structure of the phonon propag&@bfiw,).  €lement of the phonon prOpaga@r;pwo of the harmonic
For that reason only a special case of the matrix structure afrystalline structuré:

1
h, .
G fiw)=—1 : n . ; 1. . )
057 (o) —Effio) =2 {Enlio) Efio)/[g9,,(i0) - Eqlio)]}
k(i @) =gk(io)). (13
|
The neglection of nondiagonal elementskdi w,) produces _ _ (iw)?
the expressiof9), discussed in Ref. 1. To connect the results Exp(io)= —ﬁﬁE [1+ C]xlxs N D
obtained above with the corresponding physical properties r2
(defect-induced frequency shift and dampinge has to ana- (iw))?
lytically continue function(13) into the complex frequency = —BhAszz—, (14
half plane {w,— »+i7y,y>0)! With neglection of terms “x,
guadratic iny or of even higher order iny and using the A
abbreviation G f{w+iy) is given by
w+i - .
Sl ) = G A Ao 1= AZer— S AnAS o= (1= A 11— AZ07]
(15

Carrying out the limiting process ¢,— w+ivy,y>0) and some further transformations, the phonon propagator of the har-
monic crystalline structure with isotopic impuriti€s -{ w) can be written as

20, wi—0?+20ANw)+i20 ()
Bl [0~ 02+ 20,A(0) P+ [ 20T (w)]2

Glfw)= lim Glfw+iy)= (16)

y—07
with
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1 . wi—(1- A w?
Aw)=5—1 Ajp?— lm 2 AjAm?
i) 2«»1[ 10t M S A T AP P (1 A 2arT
! 1
=—| Arp®— 2 AA@P| ———— 1
2(01 10 kgz 1k k1w (wi_(l_Aka2>] ( 7)
and
1 " (1-AgJ2wy T
M(w)=s—lim > AjA@* =—> AA@*8(wi— (1-Ag) 0?),
1(“’) 20)17%0+k22 1k kW [wE_(l_Aka2]2+[(1_AkD2(U')/]2 2w1k22 1k k1w (wk ( ka)
(18)
|
where P(1/x) denotes the principal value ofXl/From the To summarize it, even in a harmonic crystal a relaxation

structure of expressiofi6), A"(w) has to be interpreted as a of lattice modes takes place, which is caused by scattering
defect-induced temperature-independent shift of the frequerprocesses of phonons at impurities. Accordingig(w) and

cies of the harmonic ideal structure aﬂﬂw) functions as a r';(w) go to zero if the influence of the isotopic disorder
defect-induced temperature-independent damping of the coranishes C,,,=0).

responding lattice mode. It is easy to see now that under As an application Figs. 3 and 4 show the defect-induced
restriction on diagonal elements of the effective vertex functemperature-independent frequency shift and damping of the
tion only [A;=A,=0k#1; Eq.(8)], the first contribution  gptical active mode X=0j,) of the diatomic linear chain

of expression(17) remains, whereas the correspondingwith a single mass defect, described in detail with numerical
damping completely disappears. That means both the modgarameters in Ref. 1. As seen from Fig. 3, taking into ac-
fication of the defect-induced frequency shift as well as the;ount of nondiagonal elements Bfi w;) modifies consider-
defect-induced finite phonon lifetime are determined by nongply the frequency shift of the optical-active mode
diagonal elements of the effective vertex functiBifi ) Ahﬁiopt(‘“)' Whereas the diagonal elements simply produce a

only. Equatlon_(18) shows that there is not a dam_pmg Ofrpure negative frequency shift determined &%, the consid-
pho’?ons only in _anharmomc_ structures, but even in a ha eration of nondiagonal elements leads to a frequency shift,
monic c_:rystal exists a Qamplng_ of 'a“'c‘? modes, althougthiCh is determined by the frequency distribution of lattice
defect_ mducet_i Ar?cordlng to its analytical structure, t_hemodes of the corresponding harmonic ideal structure and
damping functionl’}(w) corresponds to the spectral density may be positive as well as negative. Figure 4 shows the
defect-induced damping functidﬁhajopt(w) for two sets of
G(wd)=2, S(w2—(1—A,_,)w?), (199  nhumerical parameters, whereas only for the second set with
) 320 unit cells per periodicity volume and a value of the
parametery of 0.5cm !, which is used to deal with the
modified byA; (i #k) and »*. principal values and the Diraé functions, the structure of
the spectral density is really visible. The defect “concentra-
tion” (one isotopic impurity per 640 ideal lattice partigles
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o
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FIG. 3. Defect-induced frequency shift of a diatomic linear o (cm’)

chain with a single mass defect M{=80 a.m.u.,

N:20,’}/: 10 Cm_l). Dotted line: Contribution, caused by diagona| FIG. 4. Defect-induced dampJng function of a diatomic linear

elements oE(iw,). Thin line: contribution, caused by nondiagonal chain with a single mass defedVIf{:SO a.m.u.). Thin line: calcu-

elements ofE(iw;). Thick line: sum of both contributions. lated with N=320,y=0.5cm®. Thick line: calculated with
N=20, y=10 cm %,
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and (2) restriction on diagonal elements of the anharmonic
self-energy matridxs(i w),

S liw) =S \(iw)dy . (22

The phonon propagator of the anharmonic crystalline struc-
ture with isotopic impuritiess, - (i w) is thus given by

B 1
TGN (o] =S (i)
Using Eq.(13) we get

G (i)

S v (23

FIG. 5. Diagrammatic representation of the Dyson equa@h
and the corresponding self-energy contributions. G, _\(iwp)= 1
— | - — . .
M g (o) —Uy (i)

(29)

however, is then much lower and according to this the damp- .

ing values too. Because the defect-induced damping functiodt

FSjopt.(w) is explicitly (.jet'ermined by the mpdified spegtral Uy s(io)=Ey ,(io)+S_ (i)

density of the harmonic ideal crystal, damping values differ-

ent from zero are only possible within the harmonic fre- Ex—r(iw)E\ (o))
quency areas ify goes to zero. Therefore, localized lattice +A % [Or. . (io)] =B, _, (iw) "
modes, caused by impurities if the perturbation is large ! o r
enough, must have infinite lifetimes, what is sufficiently con- (25
firmed by other theoretical investigations of a harmonic Ccryso
talline structure.

bviously, the special case discussed in RefEfs. (39)
and (40)] follows from Eq.(24) by neglecting all nondiago-
nal elements of(iw)).

C. The influence of nondiagonal elements (i) As seen from Eqs(29)—(31) in Ref. 1, the anharmonic
on frequency shifts and linewidths self-energy contributions include phonon propagators of the
of an anharmonic crystalline structure harmonic real structure in more or less complex combina-

To get the phonon propagat@(i ;) of an anharmonic tions, rgpre_sented by corresponding ph_onon liceee Fig.
crystalline structure with isotopic impurities, it is possible to ©)- Taking into account here the approximati@) leads to
renormalize the phonons of the harmonic ideal structure corfhe contributiong33)—(35) of Ref. 1, where the frequencies
cerning the isotopic disorder by rearranging all connecte@f the thermal bath phonons are shifted compared to the fre-
diagrams and putting them together in a different way, as ifluéncies of thg corresponding harmonic ideal structure qnly.
was shown in Refs. 1 and 2. Within the diagrammatic repre!sing Eq.(13) instead of Eq(8) means that the harmonic
sentation this means the transition to new diagrams, consisehonons of the thermal bath in addition to a certain fre-
ing of one kind of phonon lines onl§Fig. 5). The summing duency shift possess a finite lifetime now, what additionally

up of all diagrams leads to the Dyson equatj&u. (27) in ~ Modifies the anharmonic self-energy contributions. For ex-
Ref. 1]: ample, the energy uncertainty related to this has to give rise

to an increasing number of decay channels available and
G(iw)=G"(iw)+G"(iw)Niw)G(iw), (200  therefore to an enhanced damping of the corresponding
phonons. However, the summation over the independent
where S(iw,) is the anharmonic self-energy of the corre- Matsubara frequencies,, necessary to evaluate the self-
sponding crystallingeal structure. As a result of the renor- energy contributions in Eqg33)—(35) of Ref. 1, is even
malization, mentioned above, ER0) may be alternatively more complicated and we neglect these modifications in the
considered as the perturbation of a harmaweial crystal as  following numerical calculations.
reference structure by anharmonic scattering and decay pro- Finally, the total frequency shifA®®(w) and the total
cesses. In contrast to the harmonic ideal crystal, however, thdgamping functionl'*®®(w) of the harmonic ideal crystal,
phonon propagatoB"(i w;) of the harmonic ideal structure, caused by isotopic impuritieend anharmonic interactions, is
modified by the presence of isotopic impurities, possesses given by the analytical continuation of E@5) into the com-
nondiagonal structure, according to Sec. Il B. plex frequency half planei ) — w+i7y,y>0) followed by
To evaluate the total frequency shiff®®(w) and damp- the limiting process ¥—0):
ing functionT°®(w) of the harmonic ideal crystal, caused
by isotopic impurities and anharmonic interactions, one has  Im Uy _\(o+iy)=U,_\(w)
to rearrange Eq(20) to get the diagonal elements of the y—07"
anharmonic phonon propagat@,, (iw,). But a closed- :_Bﬁ[Ag\otal(w)_il-\;\otal(w)]’
form expression is only achievable with the following as-
sumptions:(1) restriction on diagonal elements &(i w,), (26)
though modified by nondiagonal elementskti ), with

Gy (iw) =G _\(iw)8)_y, (21) APR(H T)=AN(w)+AZNT) + 42w, T),  (27)
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ence of a defect-induced temperature-independent contribu-
tion to the linewidth, which of course effects the linewidth
most at low temperatures and sometimes even dominates it.
According to the results obtained in Ref. 1 and discussed
here, the temperature-independent contribution of the phe-
nomenological description of Becucei al® [Eq. (10) of
Ref. 6] is caused by scattering processes of phonons at iso-
topic impurities, whereas the second contribution has to be
attributed to anharmonic scattering and decay processes,
. e . modified by the isotopic disorder. But the attempt of evalu-
20 40 60 80 100 ating the defect-influenced anharmonic damping contribution
T(K) from the corresponding contribution of the anharmonic ideal
structure by multiplying it with a defect-determined param-
FIG. 6. Damping of the optical-active mode of the diatomic €t€r only cannot be supported from the point of view of a
linear chain, described in Ref. 1. Dotted line: damping of the cor-microscopic theory. Moreover, in contrast to the supposition
responding ideal Structuﬂéanh,idea(wéjo .T). Thin line: anharmonic of Becucciet al.? that the modification of anharmonic decay
damping contribution of the crystalline structure with a single masg2f0OCESSEs by isotopic impurities may be described by a
defect ™ wg; T) (MS=80 a.m.u.). Thick line: total damping dressing of the usual cubic and quartic anharmonic coupling
TR g5 ]T)_"‘” constants by mass—c_h_ange coefficients on[y, we have ob-
Yopt tained instead a modification of the harmonic bath phonons

- -
o N

damping (cm )

o N b~ O o

(=2

and by the isotopic disorder and therefore a modification of the
decay channels itself.
r;ota'(w,T):rQ(w)+r§nftw,1—)_ (29 As an application Fig. 6 shows the total damping

_ I g T) as well as the anharmonic damping contribu-
Therefore, in contrast to well-known results of phonon fre- opt

. anh >t ) o . . .
guency shifts and linewidths of an anharmonic ideal crystaltIon r rrw(’jopt’T) Of_ the diatomic linear chain mentioned in
both the frequency shift as well as the damping functionSeC- Il B as a function of temperature.

include different contributions, if isotopic disorder is present.
The first contribution of Egqs(27) and (28), respectively,
describes the defect-induced temperature-independent fre-
guency shift and damping function, caused by scattering pro- Using the theoretical formalism described in Ref. 1 and
cesses at isotopic impurities, whereas the remaining contrfurther developed within this paper it has been shown that
butions correspond to the defect-influenced temperaturaghe frequency shifts as well as the linewidths of an anhar-
dependent frequency shift and damping function, caused bsnonic crystal with isotopic impurities include two different
anharmonic scattering and decay processes, given, within tfeontributions, a defect-induced temperature-independent
approximation mentioned above and upQ@§«?), by ana- one, caused by harmonic scattering processes of phonons at
lytical continuation of Eqs(33)—(35) of Ref. 1. Because the isotopic impurities and a defect-influenced temperature-
influence of isotopic disorder on phonons of the thermal batldependent one, caused by anharmonic scattering and decay
is temperature-independent, the general temperature depgmocesses. Additionally, it could be demonstrated that nondi-
dence of the anharmonic frequency shift and damping funcagonal elements of the effective vertex function have to be
tion is equal to that of an anharmonic ideal crystal, for ex-considered as well to get a sufficient description of the influ-
ample, the linear behavior in the high-temperature region ugnce of isotopic impurities on relaxation processes in anhar-
to O(«?), but with changed values. This is clearly supportedmonic crystals.

by the results of experimental investigations of frequencies As an application both damping contributions of a di-
and linewidths in natural and pure sulfift which show for  atomic linear chain with a single mass defect has been cal-
both crystals and corresponding bands the same higleulated, which clearly indicates the importance of the
temperature behavior with different values. Additionally, thetemperature-independent contribution especially at low tem-
fitting attempts, made by Becucet al.® indicate the pres- peratures, what is supported by experimental investigations.

Ill. CONCLUSIONS
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