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Energy levels of CdSe quantum dots: Wurtzite versus zinc-blende structure

H. H. von Grünberg
Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 13 August 1996!

A simple tight-binding model is used to calculate the energy levels of CdSe quantum dots for two distinct
crystal structures: the wurtzite and the zinc-blende structure. Comparison of both level schemes gives an
estimate of the shift in energies due to the interior bonding geometry of the lattice structure. Our model makes
allowance for the valence-band degeneracy, a finite barrier at the dot boundary, and the full electron-hole
interaction. Also calculated are the oscillator strengths of the dipole-allowed transitions. All results are com-
pared with recent experimental findings.@S0163-1829~97!05303-4#
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I. INTRODUCTION

The energies of electron-hole states in nanometer-
semiconductor quantum dots1 can be regarded as made u
from two contributions, the electron-hole interaction ener
and an energy contribution that is due to the confinemen2,3

While the confinement energy dominates in very small d
with a radiusR appreciably smaller than the bulk excito
radius ~strong-confinement regime!, the attractive Coulomb
interaction between hole and electron becomes the more
portant of the two in the weak-confinement regime, when
dot radius sufficiently exceeds the exciton radius, and w
lead to the formation of the familiar bulk excitons in the lim
R→`. Quantum dots in both size regimes have been
subject of numerous theoretical papers4 and various aspect
of this problem have been studied. We mention just a few
them: While in early works2,3,5–9the problem has been tack
led with a simple two-band model based on the effecti
mass approximation~EMA!, a multiband approach has bee
made in more recent studies12–18 to take account of the
valence-band degeneracy. This has been done either b
sorting again to the EMA,12,13 or, alternatively, by choosing
a tight-binding approach.14–18 Both methods are thoroughl
compared in Ref. 18. Other aspects of the problem are
dielectric mismatch at the dot boundaries,3,8 the presence o
an external magnetic10 or electric11 field, and the significance
of confinement potentials that allow for finite barriers at t
dot boundary.17,19

In a recent absorption experiment on CdSe quantum d
Norris et al.20 have been able to observe not only t
electron-hole ground state but also a series of higher exc
states. They measured the size dependence of the leve
dots in the strong-confinement regime~between 19 and 115
Å diameter! and analyzed their data using a theoretical c
culation made by Ekimovet al.13 In this theory, special ac
count was taken of the valence-band degeneracy and
nonparabolicity of the conduction band, but the electron-h
interaction was approximated very crudely by a consta
Also, these theoretical curves have been calculated for a
size range different from that range actually studied in
experiment so that the experimental data for the sma
sized dots have not yet been theoretically evaluated.

In this paper we repeatedly refer to this experiment,
three reasons. The first is the obvious one and relates to
550163-1829/97/55~4!/2293~10!/$10.00
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questions left unanswered by the analysis of this experim
Can the levels of the smaller dots be equally well explain
with the simple valence-band model applied in Ref. 13? H
important is the electron-hole interaction, is it allowed
take this as a constant in the strong confinement regim
How can the as yet unexplained ground-state energies
theoretically interpreted?

The second reason why these experimental results m
be worth reconsidering is that the newly observed hig
excited states furnish an invaluable testing ground for th
retical predictions, which so far could only be checked w
respect to ground-state data, such as, for instance, the e
of a finite barrier at the dot boundary. Such a barrier h
proven to be essential in the case of CdS quantum dots,17 and
it is therefore reasonable to assume that it is also importan
the CdSe system where it can be expected to provide
missing link required to settle the open question of t
ground-state energies.

However, it is mainly a puzzling inconsistency found
the experimental work of Shianget al.21 that has led us to
analyze the data of Norriset al. again. According to the
theory of Ekimovet al.. one would expect triply degenerat
states to occur~corresponding to the irreducible represen
tion T), while the Raman depolarization data of Shianget al.
have clearly shown that only states of the one- and tw
dimensional representationsA and E but not of the three-
dimensional representationT are present. A possible sourc
of this apparent discrepancy might be the wurtzite struct
of the CdSe crystal, which corresponds to a point symme
group that simply does not possess a three-dimensional
ducible representation. Using a theory where the latt
structure is neglected and replaced by a continuum, the tr
degenerate states would therefore split intoA andE states
when the lattice symmetry is properly taken into accou
Thus the main question to be addressed in this paper is: W
energetic effect is brought about by the interior bonding
ometry of the lattice structure?

Not only is this question relevant to finding a consiste
description for both of the aforementioned experiments,
it is also of some consequence for the tight-binding mod
and in particular the effective-bond-orbital method~EBOM!
introduced by Chang22 that have been used repeatedly f
calculating the energy levels in quantum dots.14–18 All of
these models are based on the samead hocassumption origi-
2293 © 1997 The American Physical Society
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2294 55H. H. VON GRÜNBERG
nally made by Chang that the exact lattice structure is un
portant and that it can thus be replaced by an fcc lattice
is easier to treat. By calculating the energy shifts induced
the lattice structure in the prototypical CdSe system, we
estimate the error produced by this assumption.

The strategy pursued in this paper to answer these q
tions is to compare two calculations, both based on a sim
tight-binding model~basically the same as in Refs. 16–18,
and 23!, but taking the lattice to be of the wurtzite structu
in the one case and of the zinc-blende structure in the ot
The difference in the results of both calculations will th
reveal the energetic effect of the discrete lattice, and co
parison can be made with the experimental data of No
et al.

II. THEORY

A. The Schrödinger equation for an electron-hole pair
in a quantum dot

To calculate the energy levels of an electron-hole pair i
quantum dot, one has to consider the effect of confinem
and electron-hole interaction on the otherwise free hole
electron states. For the CdSe dot, these are derived as
lows: for the hole, from one of the six spin-orbit split valen
bands and for the electron from thes-like conduction band.
With the Hamilton operatorsHh andHe for the non interact-
ing pair, Veh(r eh)52e2/er eh for their statically screened
Coulomb interaction andVe(rWe), Vh(rWh) for the confinement
potentials, the Schro¨dinger equation assumes the form

@Hh1He1Veh~r eh!1Ve~rWe!1Vh~rWh!#ul&5Elul&. ~1!

Both the zinc-blende and the wurtzite structure can be
garded as consisting of two interpenetrating lattices~one for
each kind of atom! displaced along the body diagonal of th
cubic cell by one quarter the length of the diagon

@RW D5 a/4 (1,1,1)#. They differ in their type of sublattice
which is fcc in the zinc blende and hcp in the wurtzite for
If we disregard all other bands and restrict our considera
exclusively to the six valence bands and the one conduc
band ~which can be thought of as arising from the corr
sponding atomicp levels of the Se atoms ands levels of the
Cd atoms!, then hole and electron are each confined to o
sublattice. In other words, the symmetry forHh andHe in
Eq. ~1! is purely fcc or hcp, which is then, on introducing th
confinement potentials, further reduced to the point gro
Oh orD3h , respectively, for the operators@Hh1Vh(rWh)# and
@He1Ve(rWe)#. In this approximation the two sublattices a
not coupled until the electron-hole interaction is switched
However, since this is a small perturbation in the stron
confinement regime considered here, the solutions to Eq~1!
may still be discussed in terms of the symmetry of the
derlying sublattices.

The eigenvalues and eigenvectors of Eq.~1! can be found
numerically once it is transformed into a system of algebr
equations. To do this, we need to define a set of basis st
conveniently one that is chosen in accordance with the s
metry of the problem: Denoting the creation operator o
conduction-band electron~spin se) at the lattice siteRW e by
bRW s
† , and that of the valence-band hole atRW h by aRW ps

†
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~angular momentum and spin quantum numb
p5px ,py ,pz andsh), we first introduce the states

uRW hpsh&5aRW hpsh

† u0&,

uRW ese&5bRW ese
† u0&, ~2!

in terms of which the symmetry-adapted basis is to be
pressed.u0& is the vacuum state consisting of complete
filled valence and empty conduction bands. The states~2! are
taken to be orthogonal to each other. From these states,
hole states may be formed,

uUhGhim&5 (
RW h~Uh!,p,sh

A~UhGhim;RW hpsh!uRW hpsh&,

~3!

transforming according to thei th row of the irreducible rep-
resentationGh of the double point groupsOh* or D3h* where
i51, . . . ,dGh

with dGh
for the dimension ofGh . The sum is

over all lattice vectorsRW h belonging to the same subshe
Uh , where the term ‘‘subshell’’ refers to a subset of latti
vectors of a shell. While a shell consists of all vectors hav
the same distance from the origin, a subshell comprises th
vectors within a shell that span a subspace that is invar
under all operations of the point group of the lattice.m is the
multiplicity index that ~for a given subshell! distinguishes
the states belonging to the same symmetry species.

From the electron expression equivalent to Eq.~3!, we
retain only those states that transform like the totally sy
metric representationA1g (G1) of Oh (D3h). With N(Ue) as
an abbreviation for the number of sites on the subshellUe ,
these are the states:

uUeGese&5
1

AN~Ue!
(

RW e~Ue!

uRW ese&. ~4!

Because the spin transforms like theEg8 (G7) representation
of theOh* (D3h* ) group,Ge can only be theEg8 (G7) repre-
sentation. A multiplicity index, such asm in Eq. ~3!, is now
dispensable because for each subshell there is by defin
exactly one totally symmetric state. Of these states, just
particular linear combination, namely,

ul1s
e Gese&5(

Ue

C~Ue!uUeGese&, ~5!

is of interest to us. This is the ground state~energye1s) of
the electron in the confinement potential, i.e., the grou
state for the reduced problem where in the Schro¨dinger Eq.
~1! only He and Ve(rWe) are retained. This step of takin
account merely of the ground state and discarding all hig
states in the discrete level scheme of the confined elec
represents our main approximation for solving Eq.~1!. It is
made for the obvious reason of reducing the overall num
of states, and will be justified in Sec. III.

The basis that is to be used for Eq.~1! can now be defined
to be the product states of Eqs.~3! and ~5!,

uUhGhim&ul1s
e Gese&. ~6!
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Only the indicesUh andm are variable here while the se
(GhiGese) specifies the symmetry of the electron-hole p
considered and is fixed for each calculation. Considering
spatial dimensions to be so small that the field acting o
can be taken to be uniform over the unit cell of the crys
we may write the interaction operatorVeh(r eh) between
these basis states approximately in the form

2
e2

e
^Uh8Ghim8u^l1s

e Geseu
dRW eRW e8dRW hRW h8

uRW h2RW eu
ul1s

e Gese&

3uUhGhim&52
e2

e
dU

h8Uh
dm8mP~Uh! ~7!

with

P~Uh!5 (
Ue ,R

W
e~Ue!

uC~Ue!u2

N~Ue!

1

uRW Uh
2RW eu

, ~8!

where RW Uh
is any one of the vectorsRW h of the subshell

Uh . Similarly, we also assume that the hole confinem
potentialVh(rWh) of Eq. ~1! is purely diagonal in this basi
with diagonal elements given byVh(RW Uh

)5Vh(Uh). Since
the electron-hole interaction is but a minor correction to
energies compared to the effect of the confinement, the
proximations thus made are certainly very good. Note t
we need not bother aboutRW Uh

becomingRW e in Eq. ~8! on the
grounds that with the electron and hole confined each to
sublattice, they cannot come closer thanRW D .

Expressing Eq.~1! in terms of the basis~6!, we arrive at
an eigenvalue equation,

(
Uh8m8~Uh8!

H S e1s2
e2

e
P~Uh!1Vh~Uh! D dUhUh8

dmm8

1^UhGhimuHhuUh8Ghim8&J c~lGhiGese ;Uh8m8!

5Elc~lGhiGese ;Uhm!, ~9!

from which — for an electron-hole pair of given symmet
(GhiGese) — we can calculate the energy levelsEl and the
expansion coefficients for the final states,

ulGhiGese&5 (
Uhm~Uh!

c~lGhiGese ;Uhm!uUhGhim&

3ul1s
e Gese&. ~10!

Equation~9! is a system of equations whose dimension
given by the number of subshells taken into account. For
confinement potentials other than hard wall potentials
radius of the outer subshell should considerably exceed
radius defining the quantum dot in order to avoid artific
size effects. Hard-wall potentials, on the other hand,
most easily be realized by simply choosing the number
subshells in consistency with the size of the quantum do
r
e
it
l,

t

e
p-
t

e

s
ll
e
he
l
n
f

B. The tight-binding model

It remains to be explained how the matrix elemen

^RW e8se8uHeuRW ese& and ^RW h8p8sh8uHhuRW hpsh& @and thus —
through the transformation~3! — ^Uh8Ghim8uHhuUhGhim&#
are obtained from the band structure of the crystal. For
fcc lattice — which we first concentrate on — this has be
described in detail several times before.16,17,22,23We there-
fore discuss merely the case of thes-like conduction band
Es(kW ) in order to just give an idea of how to derive transf
elements inRW from band-structure data, and leave it at a br
outline for the more complicated case of the valence ban

Es(kW ) has its band extremum atkW50. Whatever might be
its true shape in the entire Brillouin zone, in the vicinity
kW50, Es(kW ) can always be approximated by the neare
neighbor tight-binding expression24

Es~kW !'Etb~kW !54t~32cxcy2cxcz2cycz!, ~11!

with ci5cos(kia/2) (i5x,y,z) and the fcc lattice constan
a, provided only that we chooset to be equal to
\2/(2m* a2). For thenEtb(kW ) will have the same curvature a
kW50 asEs(kW ), namely, that encoded by the effective ma
m* . We know, on the other hand, that in the original tigh
binding theory24 t is the transfer-matrix elementEss(110)
betweens orbitals at adjacent fcc lattice sites, which, in o
notation, is ^RW e8seuHeuRW ese& when RW e82RW e is one of the

nearest-neighbor lattice sitesRW nn . Hence we see that by
choosing

^RW e8se8uHeuRW ese&5
\2

2m* a2
dRW

e82RW e ,R
W
nn

ds
e8,se

we have determined the matrix elements inRW space in such a
way that they are consistent with the band nearkW50.

With an appropriate choice of the zero of energy, t
whole Hamilton matrix for an electron in the dot become

^RW e8se8uHe1Ve~rWe!uRW ese&

'$@12t1Ve~RW e!#dRW
e8R

W
e
2tdRW

e82RW e ,R
W
nn

%ds
e8se
,

~12!

which when transformed according to Eq.~4! and diagonal-
ized, then provides us with both the energye1s used in Eq.
~9! and the coefficientsC(Ue) of Eq. ~5!.

For the valence bands, one pursues the same stra
though this time the fourfold degeneracy of the bands
kW50 requires the simple effective massm* to be replaced
by a mass tensor of rank 4, whose elements may be bro
into correspondence with the set of Luttinger paramete25

g1 ,g2 ,g3. These parameters, along with the constanta from
the spin-orbit~SO! splitting at the center of the Brillouin
zone, can now be used in a tight-binding expression, jus
in Eq. ~11!, to give an approximate description of the who
valence-band structure. From this expression, one then
tains the connection between the Luttinger parameter and
nearest-neighbor tight-binding parameters24 Exx(110),
Exy(110), andExx(011) ~Refs. 22 and 23!. In the original
tight-binding theory, these three quantities are trans
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2296 55H. H. VON GRÜNBERG
matrix elements in aRW basis, a fact that suggests their use
an approximation for the matrix elemen

^RW h8p8sh8uHhuRW hpsh&. In this way, one has again determine
the matrix elements inRW from the data of the band structur
at kW50, which this time are the Luttinger parameters and
SO constanta. One finds

^RW h8p8sh8uHhuRW hpsh&

'@V0dp8pds
h8sh

1VSO~p8sh8;psh!#dRW
h8R

W
h

1D~RW h8p8;RW hp!dRW
h82RW h ,R

W
nn

ds
h8sh

, ~13!

whereV0 is a constant chosen to bring the zero of energy
lie at the top of the valence bands andVSO(p8sh8;psh) an
element of the ordinary 636 SO matrix depending solely o
a and constructed in such a way that its eigenvalues ara

and 22a. The elementsD(RW h8p8;RW hp) of the matrix

D(RW nn) can be obtained either directly from the paramet
Exx(110),Exy(110), andExx(011) with the help of simple
symmetry considerations, or, in a less accurate approxi
tion, through appropriate rotations of thep orbitals by means
of the integrals pps and ppp, to which Exx(110),
Exy(110), andExx(011) reduce in going from the three
center to the two-center approximation:24

Exx~110!5 1
2 ~pps1ppp!, ~14!

Exx~011!5ppp,

Exy~110!5 1
2 ~pps2ppp!.

In this latter case the elementsD(RW h8p8;RW hp) are given by

D~RW nn!5R21~RW nn!S pps

ppp

ppp
D R~RW nn!,

~15!

whereR(RW nn) is a matrix rotating the Hamilton matrix from
a coordinate system whosez axis is directed alongRW nn to a
space-fixed one. To determinepps andppp, we invert Eq.
~14! to find

pps5Exx~110!1Exy~110!,

ppp' 1
2 Exx~011!1 1

2 @Exx~110!2Exy~110!#, ~16!

where for ppp a further approximation was made who
consequences will be discussed in Sec. III.

The quantitiespps for the valence bands andt @or
Ess(110)# for the conduction band can be interpreted as
fectives bonds, and, similarly,ppp as ap bond. Now the
essential idea of this paper is to model not only the z
blende but also the wurtzite form of CdSe crystals with
help of these effective bonds; i.e., we use thesamebonds —
originally derived only for zinc-blende CdSe — also for th
wurtzite form and change in Eqs.~9!, ~12!, ~13!, and ~15!
only the underlying lattice from fcc to hcp. This approxim
tion means ink space that we assume the CdSe crysta
have the same band structure at the center of the Brillo
s

e

o

s

a-

f-

c
e

o
in

zone for both crystal structures~described bym* , the SO
constanta, and the Luttinger parameters of the zinc-blen
structure!. We thereby neglect a small difference in th
conduction-band effective masses for both structures a
more importantly, an additional crystal-field splitting of 2
meV of the valence bands atkW50 in the wurtzite structure.
Compared to the calculated electron-hole pair energies,
splitting energy may, however, be regarded as negligible
making this approximation, we focus solely on the energe
effect brought about by the differently shaped Brillou
zones, or, in other words, by the different interior bondi
geometry.

In both lattices, there are 12 nearest-neighbor sites.
suming the idealc/a ratio for the hcp lattice, nine sites ar
identical. The sets of the three remaining sites are conne
with each other by a rotation through 180° along thec axis
of the hcp lattice. Notice that the calculation of the matric
D(RW nn) using the two-center parameters in Eq.~15! is pos-
sible for both lattices, while the fcc symmetry is required
the case where these matrices are set up with the three-c
parameters.

C. Oscillator strength and symmetry reduction

We next discuss how to determine the oscillator streng
f (El) for a transition from the ground state to the levelEl of
Eq. ~9!. We start from the expression

f ~\v!;(
f

z^c f uTc i& z2d~Ef2Ei2\v! ~17!

for a dipole-allowed transition~operatorT) from the initial
statec i to the final statesuc f&, which in our case is the stat
ulGhiGese& that we have calculated in Eq.~10!. Expressed
through the creation operators introduced in~2!, uTc i& takes
on the form

uTc i&5 (
U,RW ~U !

dsesh
aRW ppolsh
†

bRW se

† u0&, ~18!

and describes a transition proportional to the probability t
electron and hole are at the same site. Since in a finite-
quantum dot, it is pointless to introduce relative electro
hole coordinatesr eh , as usually done for an exciton in
crystal, the single term of the probability amplitude f
r eh50 used in exciton theory must now be replaced by
sum of these amplitudes over all sites.ppol is px , py , or pz
depending on the polarization of the exciting light. From th
equation along with the Eqs.~2!, ~3!, ~4!, ~5!, and~10!, one
then finds

^c f uTc i&5 (
U,RW ~U !,m~U !

c~lGhiGese ;Um!

3A~UGhim;RW ppolse!
C~U !

AN~U !

5K~lGhiGeseppol!, ~19!

so that Eq.~17! after averaging over both spin direction
becomes
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f ~El!5
1

2 (
i ,se

uK~lGhiGeseppol!u2, ~20!

whereEi is set equal to zero. For unpolarized light this e
pression has to be averaged over the threeppol directions.

The last few equations help establish the selection ru
TheOh* group possesses the double-valued irreducible
resentationEg8,Eu8,Eg9,Eu9,Ug8,Uu8 plus the single-valued rep
resentations A1g ,A1u ,A2g ,A2u ,Eg ,Eu ,T1g ,T1u ,T2g ,T2u ,
while the D3h* group ~isomorph to theD6 group! has
G7 ,G8 ,G9 and A18 , A19 , A28 , A29 , E8, E9 as double- and
single-valued representations, respectively. The threep or-
bitals transform asT1u for theOh* group and asA291E8 for
D3h* (A29 for pz) so that state ~18! transforms as
A1g3T1u3Eg83Eg8 or A183(A291E8)3G73G7 while the fi-
nal statesulGhiGese& carry the representationGh3Eg8 or
Gh3G7 @Ge is eitherEg8 or G7, see Eq.~4!#. From this, we
easily infer~i! that for theD3h* group,Gh can only beG8 if
z-polarized light is used, and eitherG8 or G9 for unpolarized
light, but neverG7 (A293G75G8, E83G75G81G9), and
~ii ! that for theOh* group,Gh must be either theEu8 or the
Uu8 representation, irrespective of the polarization directi
In view of these selection rules, we henceforth consider o
the representationsG8, G9, Eu8 andUu8 for Gh . Finally, the
overall symmetry of the electron-hole pair can be found fr
the reduction of the productGh3Ge :

Uu83Eg85Eu1T1u1T2u ,

Eu83Eg85A1u1T1u , ~21!

~G81G9!3G75E81~A291E8!1~A191E9!,

G83G75A191~A291E8!.

Returning to Eq.~3!, we close this section by answerin
the question of how to determine the coefficien
A(UhGhim;RW hpsh), i.e., how to combine the state
uRW hpsh&5uRW h&upsh& of a given subshellUh so that they
transform likeGh . The most convenient strategy is to loo
separately for the superpositions ofuRW h& and upsh& that
transform according to the irreducible representationsGR and
Gp , respectively, and then to determine the linear combi
tions of uRW h&upsh& from the evaluation ofGR3Gp . To
elaborate on this, let us focus on the hcp lattice for a m
ment.Gp is thenG8 or G9 and the states are (u81& short for
uG8,1&)

u81&5upz↓&, u82&5upz↑&, u81&5up1↓&,

u82&5up2↑&, u91&5up1↑&, u92&5up2↓&, ~22!

@p65(px6 ipy)/A2# where the first two states stem fro
A293G7 and the remainder fromE83G7. In Ref. 26, a simple
computational procedure is described as to how to find
linear combinations ofuRW h& for the GR representation. We
denote these new states byuA18&, uA19&, uA28&, uA29& for the
one-dimensional representations ofD3h and by uE8,1&,
uE8,2&, uE9,1&, uE9,2& for the two-dimensional ones. The la
-

s.
p-

.
ly

-

-

e

ter are combined to give u618/9&5(uE8/9,1&
6 i uE8/9,2&)/A2. From the products of these states and
states in Eq.~22!, we may now form the states forGh we
were looking for. They are

u81&uA18&, u81&uA28&, u92&u218&,

u82&u119&, u91&u219&

for the caseGh5G8, and

u91&uA18&, u92&uA19&, u91&uA28&, u92&uA29&,

u82&u219&, u81&u119&

for Gh5G9. Only the first of the two possible states is give
For theOh* group and the fcc lattice, the equivalent inform
tion can be found elsewhere.22,23

III. RESULTS AND DISCUSSION

Now that we have outlined its theoretical background,
are equipped to give the details of the calculation. This
performed in five steps, which are~i! diagonalizing the
Hamilton matrix ~12! for an electron in the dot~with
a56.052 Å andm*50.11 from Ref. 27 for lattice constan
and conduction-band effective-mass! to determineC(Ue)
and e1s , ~ii ! usingC(Ue) for evaluating the hole potential
Eq. ~8! @with the static dielectric constante56.1 ~Ref. 27!#,
~iii ! setting up the hole matrix, Eq.~13! ~with the constant
3a50.42 eV ~Ref. 27! for the valence-bands SO splittin
and the Luttinger parametersg1, g2, g3), ~iv! solving Eq.~9!
for each allowedGh to find c(lGhiGese ;Uhm) andEl , and
finally ~v! using c(lGhiGese ;Uhm) to calculate f values
from Eq. ~20! to weed out all levels with oscillator strength
below a certain threshold value (f T50.05). This calculation
cycle is then repeated for various dot radiiR where the ra-
dius of a spherical quantum dot is computed
R5(3N/16p)1/3a from the numberN of sites in the dot. In
the choice of the Luttinger parameters we follow Ekim
et al.13 who could successfully explain their absorption me
surements on CdSe quantum dots usingg152.1 and
g25g350.55.

We first focus on the case of a fcc lattice for which Fig.
shows the energy levels as a function of the dot size.
experimentally accessible range of dot radii is chosen. T
levels are obtained from Eq.~9! for hard-wall confinement
potentials. Figures 1~a!, 1~b!, and 1~c! differ in the potential
P(Uh) which is switched off@P(Uh)50 for all Uh# in Figs.
1~a! and 1~b!. The levels displayed in Figs. 1~a!, and 1~b! are
then simply the hole energy levels~with e1s50 being set to
zero!, i.e., the eigenvalues of hole band matr
^UhGhimuHhuUh8Ghim8&.

Figure 1~a! gives the first 14 hole levels ofEu8 — and
Uu8 — symmetry for a sequence of various dot radii. Owi
to the confinement, the average spacing between the le
grows with decreasingR. They start off from their asymp-
totical values of the band states of the unconfined crystal,
higher ones from the top of thej53/2 valence bands, the
lower ones from thej51/2 band~split-off band!. Those lev-
els involved in transitions with af value greater thanf T are
marked by an additional symbol. In this way, a subset
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levels observable in an experiment can be extracted from
vast number of eigenvalues of the hole matrix. They
compared in Fig. 1~b! with the levels of Ekimovet al.based
on exactly the same input parameters, yet calculated
continuum theory. The latter are marked in the plot by
notation13 QF whereF is the total momentum of the stat
and Q the momentum of the envelope function, giving
symmetry classification that is obviously compatible to o
(S1/2→A1g3Eu85Eu8 andS3/2→A1g3Uu85Uu8).

The main difference between a continuum based the
and a discrete lattice theory is that the first always assu
an infinite number of states to be present, irrespective of

FIG. 1. Hole energy levels of CdSe quantum dots for vario
dot radii without~a!, ~b!, and with~c! electron-hole interaction.~a!
First 14 allowed levels, connected to give continuous lines~dashed
lines!. Additional symbols for levels involved in transitions wit
sufficiently high oscillator strengths (f. f T). ~b! Comparison of
levels wheref. f T with theoretical results of Ekimovet al. ~Ref.
13! ~c! Effect of the electron-hole interaction. Dashed lines are
the level structure of~b!. To facilitate easy comparison, energi
have been shifted by 200 meV. Note that since the levels are plo
over 1/R2, the zero of the x axis corresponds to the case of
confinement.
he
e

a
e

r

ry
es
e

actual size of the dot~infinite width of the energy spectrum!,
while a discrete-lattice theory correctly takes account of
fact that with decreasing dot size there are fewer states a
able, which are distributed over a finite and size-independ
energy range. Accordingly, both theories differ less for larg
dots with a greater extension to the wave function un
consideration. This explains why in Fig. 1~b! there is virtu-
ally no difference between the two theories for the high
hole level~having the most extended wave function!. How-
ever, they must necessarily differ for the deeper levels h
ing wave functions with growing short-wavelength contrib
tions. This can already be observed in the ran
104/R2,25/Å2 in Fig. 1~b! where the deviations~though
still small! are most prominent between the 3S1/2 and the
lowestEu8 level. Resulting from the discreteness of the la
tice, this energetic effect must become larger if we go
even smaller dot radii. It is these differences that we
interested in and that are to be studied more closely fur
below by comparing the effect of different lattices.

Figure 1~c! demonstrates the effect of the electron-ho
interaction. The levels calculated with the interacti
switched on are shifted up by 200 meV against the le
scheme without interaction in order to make the differen
become more clearly visible. The comparison reveals t
although the electron-hole interaction is certainly of subor
nate importance in the strong-confinement regime conside
here, it is still strong enough to lead to a clearly recogniza
overall distortion of the level scheme~the Coulomb interac-
tion shows linear behavior in a 1/R2-plot! and that taking
account of this interaction by anR-independent constant a
done in Ref. 13 may thus be regarded as a fairly crude
proximation.

Having illuminated its different parts, we are ready no
to turn to the full problem of Eq.~9!, taking into account all
its components: electron, hole, and their mutual interacti
To begin with, we consider the case of hard-wall confin
ment potentials and focus our attention first on the grou
state level~see Fig. 2!. It is evident from the comparison o
this curve with the experimental data of Norriset al. that the

s

r

ed
o

FIG. 2. Size dependence of the ground-state energy of
electron-hole pair in a CdSe quantum dot as calculated from
~9!. Comparison between dashed and solid lines reveals the e
of a finite barrier at the dot boundary. Experimental data from N
ris et al. ~Ref. 20! is shown. Also shown is the transition energy
the 2s electron level.
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theoretical results disastrously fail to account for the exp
mental findings, a fact that according to Norriset al.might
originate in the unjustified assumption of infinite potent
barriers at the dot boundaries. This explanation is suppo
by the results of the theoretical work of Einevoll17 who
showed that when a finite barrier ofVB5500 meV in a
simple confinement potential is taken@V(r )5VBQ(r2R),
with Q for the step function#, then the ground-state energie
of an electron-hole pair in a CdS quantum dot can be nic
reproduced by the theoretical curve. Relying on the simi
ity of CdS and CdSe semiconductors, we repeat our calc
tion using for the electron in Eq.~12! the same confinemen
potential and the same barrier height as in Ref. 17 wh
keeping the infinite barrier for the hole. As can be seen fr
Fig. 2, we then find a curve that shows a remarkably go
agreement with the experimental data, thus confirming
speculation of Norriset al. about the central role played b
the finite barrier.

Introducing the same finite barrier likewise for the ho
leads to a poorer fit for the ground state energies of Fig
and, more importantly, considerably alters the level sche
for the higher excited states so that its good accordance
the experiment~discussed below! is almost completely de
stroyed. In conclusion, we can thus learn from experim
that while the hole in a CdSe quantum dot is effective
confined inside the dot boundaries, the electrons see b
finite barrier allowing them to tunnel into the nearby vicini
of the dot. This is shown in Fig. 3~a! where electron wave
functions for different barrier heights in anR513 Å dot are
compared. The barrier height of 500 meV is obviously qu
low on account of which there is a comparatively high pro
ability for finding the electron outside the volume definin
the dot. It should be possible to explain both barriers —
effectively infinite barrier for the hole and the 500 meV ba
rier for the electron — with the mismatch of the band edg
of the CdSe quantum dot and its surrounding material.

In Figs. 3~b! and 3~c!, we plotted the hole energy leve
and the corresponding oscillator strengths for a dot
R513 Å as a function of the barrier height. Through t
potentialP(Uh) in Eq. ~9!, the changes of the electron wav
function on varying the barrier height also affect the ho
levels, though only to a negligibly small extent, which is n
an unexpected result for such a strongly confined dot.
barrier has by contrast a major effect on the oscilla
strengths: With the electron wave function varying as in F
3~a! and the hole wave function wholly confined to the d
the overall overlap of electron and hole wave functions a
accordingly the oscillator strength must depend sensitiv
on the barrier height, as a glance at Fig. 3~c! will indeed
confirm.

We make two concluding remarks relating to Fig. 2.~i!
Also shown there is the energy for a transition from t
highest hole level to the 2s electron level@from matrix ~12!#
for the 500-meV confinement potential. It lies more than
eV above the ground-state level and is therefore well se
rated from all the transitions to the 1s level. This may justify
the drastic reduction of our basis~6! where we have taken u
only the ground state of Eq.~12!. ~ii ! To make them fit our
theoretical curve, we had to shift the experimental points
Fig. 2 by 1.8 eV. This is then the gap energy required a
i-
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should be compared with the literature value of 1.84
~Ref. 27!.

We next turn our attention to the higher excited electro
hole states of Eq.~9!. They are compared in Fig. 4~a! with
the experimental results of Norriset al. Following these au-
thors, we present our data in a somewhat unconventio
form plotting relative transition energies~excited-state level
minus ground-state level! versus the transition energy to th
ground-state level. The ground-state energies are those
Fig. 2 plus 1.8 eV for the gap energy. The different levels
distinguished by the symmetry of the hole wave functi
with an additional integer counting upwards through the le
els of the same symmetry. Only the levels involved in
transition of sufficient strength are shown (f. f T).

Apart from the slight mismatch of the 3Eu8 level, we find
rather good agreement between experiment and theory.
is not surprising if one bears in mind that the decisive inp
parameters, the Luttinger parameters, have already pro

FIG. 3. Effect of a finite barrier for the electron at the d
boundary for aR513 Å dot. ~a! Electron wave functions for vari-
ous barrier heights.~b! Hole energy levels and~c! oscillator
strengths as a function of barrier height.
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their quality in Ref. 13 as well as in the the work of Norr
et al., where a fairly satisfactory agreement was alrea
found in the range below 2.2 eV using the five curves
Ekimov et al. displayed in Fig. 1~b!. On closer inspection
though, the fit obtained there also reveals that the elect
hole interaction has not been taken into account properly
the data are plotted as in Fig. 4, then the inclusion of
electron-hole interaction results in a common stretching
the energies along thex axis@cf. Fig. 1~c!#, and hereby the fit
considerably improves.

It is remarkable that these Luttinger parameters and
comparatively simple valence-band model we have used
do a good job in the range above 2.2 eV. Although
1Eu8 level is not seen in the experiment~due to limited reso-
lution, perhaps!, the calculated levels match the experimen
data down to dots of only 13 Å radius~corresponding to a

FIG. 4. Size dependence of higher excited levels of an elect
hole pair in a CdSe quantum dot and the effect of distinct lat
structures: a fcc lattice for the zinc blende~a!, ~b! and a hcp lattice
for the wurtzite structure~c!. Thex axis gives the transition energ
to ground-state level of Fig. 2, they axis gives the excited stat
minus ground-state energy. Dashed lines connect experimental
of Norris et al. Shown are only levels wheref. f T . Dot size de-
creases with increasing energy on thex axis.
y
f

n-
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e
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e
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e
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transition energy of 2.5 eV!. Dots of this size contain only
177 atoms, so one would expect that the discreteness o
lattice would have a visible effect on the spectrum, som
thing we have already observed in Fig. 1~b!. Such an effect
can best be seen by comparing the results for different
crete lattices.

This brings us to Figs. 4~b! and 4~c!, the comparison of
the solutions to Eq.~9! for a hcp and a fcc lattice. It demon
strates — and that is the central result of this investigation
that there is no significant difference between the le
schemes for both lattices. Although a small splitting of t
2Uu8 level intoG8 andG9 is clearly recognizable, the overa
pattern of the levels in Figs. 4~b! and 4~c! remains very much
the same. We have pointed out earlier that in the case of
hcp lattice, it is neccessary to change from the three- to
two-center approximation, Eq.~16!, so thatD(RW nn) in Eq.
~13! can be determined from Eq.~15!. Naturally, with the
appropriate choice of the rotation matricesR(RW nn), expres-
sion ~15! can equally well be used for the fcc lattice@Fig.
4~b!#. We thereby ensure that the results for both lattices
compatible, i.e., based on the same approximation made
ppp in Eq. ~16!. The effect of this latter approximation ca
be estimated by comparing Figs. 4~a! and 4~b!. It turns out to
be quite small, with only minor differences between t
1Eu8 levels towards the smaller dots and hardly any diff
ences between both the 2Eu8 and the 2Uu8 levels. Summariz-
ing, we can thus conclude from Fig. 4 that in the dot-s
range considered here, the discreteness of the lattice has
tually no effect on the energy levels of the dot, and that
matter what lattice type is assumed one always finds a
agreement with the experimental data.

This is once more confirmed by Fig. 5, which displays t
oscillator strengths for each of the three calculations of F
4. To take account also of all levels with only small oscill
tor strengths@not necessarily shown in Figs. 4~b! and 4~c!#,
we have added allf values within a given interval and as
signed it to the level with the highestf value @connected in
Fig. 4 by lines#. Due to this coarse graining, the curves
5~b! and 5~c! do not show as smooth a behavior as the cur
in Fig. 5~a!. But for this artifact, we see again that the thr
calculations vary in their results only by an insignifica
amount.

Of course, one has to add thef values of the 1G8 and
1G9 levels to make them comparable to the strength of
1Uu8 level. The question then naturally arises if one can p
sibly distinguish the fcc from the hcp structure by usi
z-polarized light since such light excites only theG8 level in
the hcp lattice while being of no consequence in the
lattice. The answer to this question is negative: There is
such polarization effect. We find this from calculating th
polarization degree for each level, i.e., the quotient of thf
value in Eq.~20! to the correspondingf value for unpolar-
ized light. They turn out to be roughly 2 for the 1G8 level
and 1 for the 3G8 and 4G8 levels ~to a good approximation
size independent! so that one thus ends up with the sam
oscillator strengths as in Fig. 5~c!.

In Figs. 4 and 5, we have only given the symmetriesGh of
the hole wave functions while the overall symmetry of t
electron-hole pair follows from Eq.~21!. We see thatT states
for the Oh group split intoA and E states when theD3h
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e

ata



it

w
ly
u
r

-

v
t
u

a
p
s
a
n

and
final
uin

be-
ds,
ture
the
ent

ls
n it
e,
a

inc
f a
f an
le
are

odel
ec-
nt
ize
and
er
e
s
in
ore
nc-
nt
al-
ork

he
ood

els
tory
ob-
d
for
to
nd-
nsis-
ole
d
ap

uc-
als
ve
the
n-
and

i
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group is considered. Thus, the symmetry of the wurtz
structure explains why in the experiment of Shianget al.,21

which we mentioned in the introduction, onlyA andE but no
T states have been observed. However, while in Ref.~21!
splittings of the order of 100 meV have been measured,
by contrast see them lying in the range of a few meV on
With the results of Figs. 4 and 5, we can therefore rule o
that the observed splittings stem from the wurtzite structu
This supports the concluding conjecture of Shianget al. that
the morphology of the crystallites is more likely to be re
sponsible for the splittings.

Another implication of our findings concerns the EBOM
method22 used in Refs. 16–18 for calculating the energy le
els of CdS and CdSe dots. This method is based on
assumption that a fcc lattice can always be used even tho
the correct lattice might be different. Assuming the CdS
system to be prototypical for similar quantum dots, we c
learn from our results that the error produced by this a
proximation is indeed negligible. Another fundamental a
sumption usually made for such tight-binding models is th
it suffices to include only the bands lying nearest to the ba

FIG. 5. Oscillator strengths for each of the three calculations
Fig. 4, plotted in the same way as in Fig. 4.
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gap. This is only a good approximation as long as the b
states near the zone edge have but a minor effect on the
results. If this is the case, then the shape of the first Brillo
zone~and thus the lattice structure in real space! should like-
wise not be significant. We hence see the connection
tween the validity of the restriction to only a subset of ban
on the one hand, and the requirement that the lattice struc
should not be important, on the other. Having shown
latter to be true, we thus have confirmed the first statem
also.

Another aspect is finally noteworthy. If the energy leve
are roughly the same for the hcp as for the fcc lattice, the
also should not matter if an even simpler effective lattic
like, e.g. the simple cubic lattice, is taken. This points to
way of how to further simplify such EBOM models.

IV. CONCLUSION

We have studied the effect that a change from a z
blende to a wurtzite structure has on the energy levels o
CdSe quantum dot. This has been done with the help o
ordinary tight-binding model in which the electron and ho
transfer matrix elements between neighboring lattice sites
derived from the shape of the bands nearkW50 of the zinc-
blende CdSe band structure. The same effectives and p
bonds have been used in both a hcp and a fcc lattice to m
CdSe in the wurtzite and the zinc-blende structure, resp
tively. Within the limits of this model, we see no significa
differences between both crystal structures in the dot s
range considered here: the curves of both energy levels
oscillator strengths over dot radius are very similar in eith
structure down to dots ofR513 Å, thus suggesting that th
relevant band states come from akW region where the band
have a form that is not specific for the shape of the Brillou
zone. It is therefore unlikely that a calculation based on m
subtle band approximations for both the wurtzite and zi
blende form of CdSe will come to a dramatically differe
result. This also means that ignoring the Brillouin zones
together, i.e., choosing a continuum approach, should w
equally well.

For a whole range of dot radii, both calculations, for t
wurtzite and the zinc-blende structure, yield the same g
agreement with the absorption data of Norriset al.; and this
with respect to both the ground-state level as well as lev
of the higher excited states. For the larger dots, a satisfac
fit to the theoretical curves of Ekimov has already been
tained by Norriset al., while the underlying valence-ban
approximation has now been shown to work equally well
the smaller dots. A finite barrier for the electron was found
be the key for interpreting the as yet unexplained grou
state data. Taken together, we have thus provided a co
tent unified description of the whole series of electron-h
states observed by Norriset al.The nice agreement obtaine
is particularly satisfying since it is achieved using the g
energy as the only fitting parameter.

This good agreement is completely destroyed on introd
ing a finite barrier for the hole too. So the experiment reve
that on account of their different barriers, the electron wa
function is spread far beyond the dot’s boundary, while
hole wave function is wholly confined inside the dot. Co
sequently, the overlap between both wave functions,

n



th
to
o
ls

ng

is
fa
p
o

st
r e

21.
he

he
the
d.
ny
nu-
rt

.
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thus also the oscillator strengths depend sensitively on
electron barrier height. In this context, it is interesting
think of an experiment in which this barrier dependence
the oscillator strengths is used to ‘‘switch off’’ certain leve
in the absorption spectrum.

Our results also help to establish that the large splitti
of the T states observed in the experiment of Shianget al.
cannot originate in the wurtzite structure. They must ar
therefore as a result of the nanocrystal shape and sur
Although there are already a few works dealing with sha
effects in quantum dots,28 attention has mainly been paid t
simple boundary shapes, such as a cubic30 or cylindrical29

ones. Still missing are calculations considering more reali
but also more complicated boundary shapes such as, fo
y

d
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e
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ample, one with well-defined facets, as proposed in Ref.
This is a question which likewise can be studied within t
framework of the tight-binding model used here.
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