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Energy levels of CdSe quantum dots: Wurtzite versus zinc-blende structure
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A simple tight-binding model is used to calculate the energy levels of CdSe quantum dots for two distinct
crystal structures: the wurtzite and the zinc-blende structure. Comparison of both level schemes gives an
estimate of the shift in energies due to the interior bonding geometry of the lattice structure. Our model makes
allowance for the valence-band degeneracy, a finite barrier at the dot boundary, and the full electron-hole
interaction. Also calculated are the oscillator strengths of the dipole-allowed transitions. All results are com-
pared with recent experimental finding§0163-1827)05303-4

I. INTRODUCTION guestions left unanswered by the analysis of this experiment:
Can the levels of the smaller dots be equally well explained
The energies of electron-hole states in nanometer-sizeith the simple valence-band model applied in Ref. 13? How
semiconductor quantum détsan be regarded as made up important is the electron-hole interaction, is it allowed to
from two contributions, the electron-hole interaction energytake this as a constant in the strong confinement regime?
and an energy contribution that is due to the confinerfidnt. How can the as yet unexplained ground-state energies be
While the confinement energy dominates in very small dotgheoretically interpreted?
with a radiusR appreciably smaller than the bulk exciton = The second reason why these experimental results might
radius (strong-confinement regimethe attractive Coulomb be worth reconsidering is that the newly observed higher
interaction between hole and electron becomes the more inexcited states furnish an invaluable testing ground for theo-
portant of the two in the weak-confinement regime, when theetical predictions, which so far could only be checked with
dot radius sufficiently exceeds the exciton radius, and willrespect to ground-state data, such as, for instance, the effect
lead to the formation of the familiar bulk excitons in the limit of a finite barrier at the dot boundary. Such a barrier has
R—. Quantum dots in both size regimes have been thgroven to be essential in the case of CdS quantumlaraiﬂd
subject of numerous theoretical pafeasid various aspects it is therefore reasonable to assume that it is also important in
of this problem have been studied. We mention just a few ofhe CdSe system where it can be expected to provide the
them: While in early work&®®°the problem has been tack- missing link required to settle the open question of the
led with a simple two-band model based on the effective-ground-state energies.
mass approximatiofEMA), a multiband approach has been  However, it is mainly a puzzling inconsistency found in
made in more recent studiés® to take account of the the experimental work of Shianet al?! that has led us to
valence-band degeneracy. This has been done either by r@nalyze the data of Norrigt al. again. According to the
sorting again to the EMA23or, alternatively, by choosing theory of Ekimovet al. one would expect triply degenerate
a tight-binding approact~® Both methods are thoroughly states to occutcorresponding to the irreducible representa-
compared in Ref. 18. Other aspects of the problem are thiéon T), while the Raman depolarization data of Shianal.
dielectric mismatch at the dot boundaridsthe presence of have clearly shown that only states of the one- and two-
an external magnefitor electrid* field, and the significance dimensional representatioss and E but not of the three-
of confinement potentials that allow for finite barriers at thedimensional representation are present. A possible source
dot boundary.”*° of this apparent discrepancy might be the wurtzite structure
In a recent absorption experiment on CdSe quantum dot®f the CdSe crystal, which corresponds to a point symmetry
Norris et al?® have been able to observe not only thegroup that simply does not possess a three-dimensional irre-
electron-hole ground state but also a series of higher exciteducible representation. Using a theory where the lattice
states. They measured the size dependence of the levels fatructure is neglected and replaced by a continuum, the triply
dots in the strong-confinement regirtieetween 19 and 115 degenerate states would therefore split iAtand E states
A diametey and analyzed their data using a theoretical calwhen the lattice symmetry is properly taken into account.
culation made by Ekimoet al!® In this theory, special ac- Thus the main question to be addressed in this paper is: What
count was taken of the valence-band degeneracy and thenergetic effect is brought about by the interior bonding ge-
nonparabolicity of the conduction band, but the electron-hol@metry of the lattice structure?
interaction was approximated very crudely by a constant. Not only is this question relevant to finding a consistent
Also, these theoretical curves have been calculated for a dotiescription for both of the aforementioned experiments, but
size range different from that range actually studied in thet is also of some consequence for the tight-binding models
experiment so that the experimental data for the smalleand in particular the effective-bond-orbital meth@&BOM)
sized dots have not yet been theoretically evaluated. introduced by Charfg that have been used repeatedly for
In this paper we repeatedly refer to this experiment, forcalculating the energy levels in quantum d¥ts® All of
three reasons. The first is the obvious one and relates to thbkese models are based on the sashdocassumption origi-
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nally made by Chang that the exact lattice structure is unim¢angular momentum and spin quantum numbers
portant and that it can thus be replaced by an fcc lattice that=p,,p,,p, ando},), we first introduce the states
is easier to treat. By calculating the energy shifts induced by
the lattice structure in the prototypical CdSe system, we can |I§hpoh>=a; bo |0),
estimate the error produced by this assumption. hh

The strategy pursued in this paper to answer these ques-
tions is to compare two calculations, both based on a simple
tight-binding modelbasically the same as in Refs. 16—18,22. . _
and 23, but taking the lattice to be of the wurtzite structure in terms of which the symmetry-adapted basis is to be ex-

in the one case and of the zinc-blende structure in the otheﬁlrlezseo:'|o> IS tk('je vactuum Ztatff col;15|s(,;ung_]”:)f completely
The difference in the results of both calculations will then'"' €9 V&I€Nce and eémpty conauction bands. 1he stdteare

reveal the energetic effect of the discrete lattice, and com(2ken to be orthogonal to each other. From these states, new

parison can be made with the experimental data of Norrié10Ie states may be formed,
et al.

|Ree)=bg , [0), 2)

Unlhim)= 2 A(Uplhi g Rapoy) [Rapa),
Il. THEORY Rn(Un).P-oh €)

A. The Schradinger equation for an electron-hole pair

i transforming according to thigh row of the irreducible rep-
in a quantum dot

resentatiorl’}, of the double point group®;y; or D%, where
To calculate the energy levels of an electron-hole pairina=1, . . . ,drh with drh for the dimension of’},. The sum is
guantum dot, one has to consider the effect of confinement ; 2 :
ver all lattice vectorsR;, belonging to the same subshell

and electron-hole interaction on the otherwise free hole anah, where the term “subshell” refers to a subset of lattice

electron states. For the CdSe dot, these are derived as fovéctors of a shell. While a shell consists of all vectors having

the same distance from the origin, a subshell comprises those
vectors within a shell that span a subspace that is invariant
under all operations of the point group of the lattigeis the
multiplicity index that (for a given subshelldistinguishes

the states belonging to the same symmetry species.

From the electron expression equivalent to E3), we
retain only those states that transform like the totally sym-
[Hi+Het Ven(Ten) +Ve(Fe) + Va(F)IIN=E\[N). (1) metric representatioAy (I';) of Oy, (D). With N(U,) as

an abbreviation for the number of sites on the subdgbgll
Both the zinc-blende and the wurtzite structure can be regese are the states:
garded as consisting of two interpenetrating latti@ase for
each kind of atomdisplaced along the body diagonal of the .
cubic cell by one quarter the length of the diagonal Ul eoe) = > |Re0e). 4

[Rp= a/4 (1,1,1)]. They differ in their type of sublattice, VN(Ue)Reuo)

which i_s fcc in the zinc blende and hcp ir_1 the Wurtzit_e form. Because the spin transforms like thg (I';) representation
If we disregard all other bands and restrict our conS|derat|oQ)f the O* (D%,) group,T', can only be theE! (') repre-
exclusively to the six valence bands and the one conductiogentaﬁog A ?r:ultiplicitil irﬁdex such gs in Ea (3)7 is Now

band (which can be thought of as arising from the Corre'dispensable because for each subshell there is by definition

sponding atomip levels of the Se atoms amjlevel_s of the exactly one totally symmetric state. Of these states, just one
Cd atoms, then hole and electron are each confined to On%articular linear combination, namely

sublattice. In other words, the symmetry faf, and H, in
Eq. (1) is purely fcc or hcp, which is then, on introducing the
confinement potentials, further reduced to the point group IN8Teoe) =2, C(Ug)|Ucl e, (5)

O, or D3y, respectively, for the operatof$t,+ V(1) ] and Ve

[He+ Ve(Te)]. In this approximation the two sublattices are js of interest to us. This is the ground stéémergye;s) of

not coupled until the electron-hole interaction is switched onghe electron in the confinement potential, i.e., the ground
However, since this is a small perturbation in the strong-state for the reduced problem where in the Sdimger Eq.
confinement regime considered here, the solutions tdBq. (1) only 74, and V(i) are retained. This step of taking
may still be discussed in terms of the symmetry of the unyccount merely of the ground state and discarding all higher

derlying sublattices. _ states in the discrete level scheme of the confined electron
The eigenvalues and eigenvectors of E.can be found represents our main approximation for solving En. It is

numerically once it is transformed into a system of algebraiGade for the obvious reason of reducing the overall number
equations. To do this, we need to define a set of basis stategs states, and will be justified in Sec. Il

conveniently one that is chosen in accordance with the sym- The pasis that is to be used for K@) can now be defined
metry of the problem: Denoting the creation operator of &g pe the product states of Eq8) and (5)
conduction-band electrofspin o) at the lattice siteﬁe by

b: , and that of the valence-band hole Ry by a’ |UnTni )N TsTe0e). (6)

Reoe Rypoy,

lows: for the hole, from one of the six spin-orbit split valence
bands and for the electron from tlsdike conduction band.
With the Hamilton operatorst,, andH, for the non interact-
ing pair, Vou(ren) = — €%/ er gy, for their statically screened
Coulomb interaction and¥(ry), Vi(r},) for the confinement
potentials, the Schadinger equation assumes the form
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Only the indicesU,, and p are variable here while the set B. The tight-binding model

(FhiFgae)dspegifiefs th;zfsymmehtry (I)f tlhe electron-gole paihr It remains to be explained how the matrix elements
considered and is fixed for each calculation. Considering t = =, , =
0 ?R 0¢|He|Reae) and (Ryp’ o[ Hp|Rypoy) [and thus —

spatial dimensions to be so small that the field acting on
patia’ ! : ng on | through the transformatiof8) — (U{T i p' | Hp| Ui p)]

can be taken to be uniform over the unit cell of the crystal,
we may write the interaction operatdf,(ro;) between are obtained from the band structure of the crystal. For the
em e fcc lattice — which we first concentrate on — this has been

these basis states approximately in the form . . . .
PP Y described in detail several times befdfé’?223We there-

P fore discuss merely the case of thdike conduction band
2 RR’

e e E4(K) in order to just give an idea of how to derive transfer
__<U Lpip’ |<)\15Fe0'e|e—|)\15Fe0'e> (k) . 2 ) 9 . .
IR, — Re| elements irR from band-structure data, and leave it at a brief
5 outline for the more complicated case of the valence bands.
X |UpLpip)=— e_5U,U 8, ,P(Up) (7) E4(K) has its band extremum kt=0. Whatever might be
€ “honRH its true shape in the entire Brillouin zone, in the vicinity of
with k=0, E4(k) can always be approximated by the nearest-
neighbor tight-binding expressith
[CU* 1 E((K~E®(K)=4t(3—c,cy—C,c,~¢,c), (1D
PUN= X N B R ® , _
Ug Re(Ug) e |Ruh—Re| with c;=coska/2) (i=x,y,z) and the fcc lattice constant
a, provided only that we choosd to be equal to
where R, is any one of the vector®, of the subshell #%(2m*a?). For thenE®(K) will have the same curvature at

Uy . S|m|IarIy, we also assume that the hole confinemenk=0 asE (k) namely, that encoded by the effective mass
potential V,(r},) of Eq. (1) is purely dlagOnaI in this basis m*. We know, on the other hand, that in the original tight-

with diagonal elements given by (Ry )=Vn(Uy). Since binding theorﬁ“t is the transfer-matrix elemeris{110)

the electron-hole interaction is but a minor correction to thebetweens orbitals at adjacent fcc lattice sites, which, in our

energies compared to the effect of the confinement, the agiotation, is(RioeHe|Reoe) When R.—R, is one of the
proximations thus made are certamly very good. Note thahearest-neighbor lattice snd%,m Hence we see that by

we need not bother aboEErUh becomingR, in Eq. (8) on the ~ choosing

grounds that with the electron and hole confined each to one hz

sublattice, they cannot come closer tHag. (Reoe| HelReore) = m* a2%R.~Re RanO0 L0,
Expressing Eq(1) in terms of the basig6), we arrive at

an eigenvalue equation, we have determined the matrix element&ispace in such a

way that they are consistent with the band nieai0.
With an appropriate choice of the zero of energy, the
o Z(U,) {(615_ ?P(Uh)"'vh(uh)) IRV whole Hamilton matrix for an electron in the dot becomes
h# (Y
<§é0é| Het Ve(Te) | Iieo'e>

H(UpThi | Hp|URLpip) t (AT IT g0 s Upae”)

~{[12+V( F—ée)]&iéﬁe—t&ié_ﬁe’ﬁnn}&TéUe,
:E)\C()\FhlreO'e,Uh,u,), (9) (12)
from which — for an electron-hole pair of given symmetry which when transformed according to Eg) and diagonal-
(I'hiTeo¢) — we can calculate the energy levélg and the  ized, then provides us with both the energy used in Eq.
expansion coefficients for the final states, (9) and the coefficient€(U,) of Eq. (5).

For the valence bands, one pursues the same strategy,
though this time the fourfold degeneracy of the bands at

|)‘Fhir9‘79>zu %:u ) CONIiTeoe;Unp)[Unlni ) k=0 requires the simple effective mas# to be replaced
e by a mass tensor of rank 4, whose elements may be brought
X|Ni L eoe)- (10 into correspondence with the set of Luttinger paraméters

v1,7Y2,Y3. These parameters, along with the constaifrtom
Equation(9) is a system of equations whose dimension isthe spin-orbit(SO) splitting at the center of the Brillouin
given by the number of subshells taken into account. For altone, can now be used in a tight-binding expression, just as
confinement potentials other than hard wall potentials thén Eq. (11), to give an approximate description of the whole
radius of the outer subshell should considerably exceed thealence-band structure. From this expression, one then ob-
radius defining the quantum dot in order to avoid artificialtains the connection between the Luttinger parameter and the
size effects. Hard-wall potentials, on the other hand, camearest-neighbor tight-binding parametérs E,,(110),
most easily be realized by simply choosing the number oE,,(110), andE,,(011) (Refs. 22 and 2B In the original
subshells in consistency with the size of the quantum dot. tight-binding theory, these three quantities are transfer-
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matrix elements in & basis, a fact that suggests their use agzone for both crystal structurgslescribed bym*, the SO
an approximation for the matrix element constanta, and the Luttinger parameters of the zinc-blende
dstructure). We thereby neglect a small difference in the

RIp ol Hy| R . In this way, one has again determine 7 .
<h hP Uh', h|| hPh) e hy d i gb g conduction-band effective masses for both structures and,
the matrix elements IR from the data of the band structure e importantly, an additional crystal-field splitting of 26

atk=0, which this tir_ne are the Luttinger parameters and thefnev of the valence bands &t=0 in the wurtzite structure.
SO constantr. One finds Compared to the calculated electron-hole pair energies, this

B0’ ol 1 IR splitting energy may, however, be regarded as negligible. In

(Rnp" | Hnl Ropory) making this approximation, we focus solely on the energetic

%[Voﬁp/pb‘a'a +VSOp' ol pan) 18k effect brou'ght about by the differgntly shape.d Brillogin
hh hh zones, or, in other words, by the different interior bonding

S0 B I geometry.
+D(Ryp ’th)&Rh_Rh‘R (13 In both lattices, there are 12 nearest-neighbor sites. As-

whereV? is a constant chosen to bring the zero of energy t?Uming the ideat/a ratio for the hcp lattice, nine sites are
lie at the top of the valence bands a¥d%(p’ o};poy) an identical. The sets of the three remaining sites are connected

element of the ordinary 86 SO matrix depending solely on With each other by a rotation through 180° along thaxis
« and constructed in such a way that its eigenvaluesaare of the hcp lattice. Notice that the calculation of the matrices

and —2a. The eIementsD(F?{,p’;lihp) of the matrix 2(Rnn) using the two-center parameters in Eg5) is pos-

D(R,.) can be obtained either directly from the parameteréible for both lattices, while the fcc symmetry is required in
E (ﬂo) E,.(110), andE,(011) with the help of simple the case where these matrices are set up with the three-center
XX » xy ’ XX

: . . *  parameters.
symmetry considerations, or, in a less accurate approxm:f—
tion, through appropriate rotations of tpeorbitals by means
of the integrals ppoc and ppw, to which E,,(110),
Exy(110), andE,,(011) reduce in going from the three-  We next discuss how to determine the oscillator strengths
center to the two-center approximatith: f(E,) for a transition from the ground state to the lefzglof
Eqg. (9). We start from the expression

S
nn_ 9h%n’

C. Oscillator strength and symmetry reduction

Exx(110=3(ppo+ppm), (14)
Exx(011)=ppmr, f(ﬁw)NZ K| TP O(Ef— B~ fiw) 17)
Exy(110=3(ppo—ppm). for a dipole-allowed transitiotioperatorT) from the initial

In this latter case the elemerﬁ)s(ﬁ,’]p’;ﬁhp) are given by state_z/ri to the final statesy;), which in_ our case is the state
INT'iTco) that we have calculated in E€L0). Expressed

ppo through the creation operators introduced2j |T ;) takes
= 12 - on the form
Q(Rnn)zg 1(Rnn) ppm B(Rnn)a
ppm
(15 To)= 2 Oondgo o bE, 0, (18
U.R(U) € polZh e

whererz(ﬁnn) is a matrix rotating the Hamilton matrix from

a coordinate system whogeaxis is directed alon@einn toa
space-fixed one. To determipgo andppsr, we invert Eq.
(14) to find

and describes a transition proportional to the probability that

electron and hole are at the same site. Since in a finite-size

quantum dot, it is pointless to introduce relative electron-

hole coordinates ., as usually done for an exciton in a

crystal, the single term of the probability amplitude for

ren=0 used in exciton theory must now be replaced by a

~1 1 _ sum of these amplitudes over all sit@s,, is py, py, Or p,

PP~ Ex(01D 43 [E(110 ~E,(110], (16 depending on the polarization of the?;citing Iigh{ From this

where forppm a further approximation was made whose equation along with the Eq$2), (3), (4), (5), and(10), one

consequences will be discussed in Sec. ll. then finds

The quantitiesppo for the valence bands ant [or
E.{(110)] for the conduction band can be interpreted as ef-

ppo=E. (110 +E,(110),

fective o bonds, and, similarlyppm as aw bond. Now the (Ul Tiy= 2 c(A\ThiTeoe;Up)
essential idea of this paper is to model not only the zinc UAROD. A

blende but also the wurtzite form of CdSe crystals with the . C(U)

help of these effective bonds; i.e., we use shenebonds — XAUT i w;Rppoioe) —=
originally derived only for zinc-blende CdSe — also for the N(U)

wurtzite form and change in Eq$9), (12), (13), and (15) =K\ThiTe0ePpo) (19)

only the underlying lattice from fcc to hcp. This approxima-
tion means ink space that we assume the CdSe crystal t@o that Eq.(17) after averaging over both spin directions,
have the same band structure at the center of the Brillouilbecomes
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1 ter are combined to give |=1'")=(|E'"",1)
fEN=5 > KT 4T o eppo |2, (200 =j|E’"",2))/\2. From the products of these states and the
e states in Eq(22), we may now form the states fdr,, we
whereE; is set equal to zero. For unpolarized light this ex-were looking for. They are
pression has to be averaged over the thrggdirections.
The last few equations help establish the selection rules. |8D)|AL), [8DIA), [92)|-1"),
The O} group possesses the double-valued irreducible rep-

resentatiorE,E/,Ey,E;,Ug, U, plus the single-valued rep- 82)[+1"), |9D)[-1")

resentations Alg vAlu 7A29 1A2u 1Eg vEu leg 1T1u ,ng 1T2u ) for the CaSJhI Fg, and

while the D3, group (isomorph to theDg group has

I';,'g.I'g and A;, A7, A}, Ay, E', E” as double- and [9D[AD, |92)|AT), [9D|A), [92)|A3),
single-valued representations, respectively. The tipres-

bitals transform ad,, for the O} group and as\;+E’ for 182)[—-1"), [8D[+1")

D3 (A; for p;) so that state(18) transforms as for [',=T,. Only the first of the two possible states is given.

ArgX T1uX EgX Eg or AjX (A3 +E") XT7XT'7 while th,e fi- For theO! group and the fcc lattice, the equivalent informa-
nal states]\T',jiT' o) carry the representatiofij,x Eg Or  tion can be found elsewhefé??

XTIy [Te is eitherEg or I'z, see Eq(4)]. From this, we

easily infer(i) that for theD§h group,I';, can only bel'g if IIl. RESULTS AND DISCUSSION
z-polarized light is used, and eithEg or I'g for unpolarized ) ) )
light, but neverl'; (AzxT';=I's, E'XI'7=I'g+I'g), and Now that we have outlined its theoretical background, we

(i) that for theO? group, T, must be either thé&, or the are equipped to give the details of the calculation. This is

U, representation, irrespective of the polarization directionperformed in five steps, which arg) diagonalizing the

In view of these selection rules, we henceforth consider onl)]/; irglggg ’gn Z::j)r(ns‘lj)o flolr ffgmeéz’;trgg flc?r Iggcg%t(()vr\:g?ant
the representationkg, I'g, E/, andU/, for T',. Finally, the ' ' '

overall symmetry of the electron-hole pair can be found fromand conduction-band effective-maso determineC(U-)
the reduction of the produdt,x T, and €, (ii) usingC(U,) for evaluating the hole potential,

Eq. (8) [with the static dielectric constamt=6.1 (Ref. 27],
T (iii ) setting up the hole matrix, Eq13) (with the constant
UuXBg=Eut Taut Tau, 3a=0.42 eV (Ref. 27 for the valence-bands SO splitting

and the Luttinger parametess, v», ¥3), (iv) solving Eq.(9)
for each allowed™,, to find c(AI'iI'co;Up) andE, , and
finally (v) using c(A\I'yiT'eoe;Unu) to calculatef values
from Eg. (20) to weed out all levels with oscillator strengths
below a certain threshold valué{(=0.05). This calculation
cycle is then repeated for various dot raRliiwhere the ra-
. . . . dius of a spherical quantum dot is computed by
Returning to Eq(3), we close this section by answering R=(3N/16m)*%a from the numbeN of sites in the dot. In
the question of how to determine the coefficients . . .
R . . the choice of the Luttinger parameters we follow Ekimov
A(Unlnip;Rypay), i, how to combine the states et a113who could successfully explain their absorption mea-
|IR\pop)=|Rp)|poy) of a given subshellJ,, so that they surements on CdSe quantum dots using=2.1 and
transform likel',. The most convenient strategy is to look y,=y;=0.55.
separately for the superpositions bih> and |poy) that We first focus on the case of a fcc lattice for which Fig. 1
transform according to the irreducible representatiopand ~ shows the energy levels as a function of the dot size. An
I',, respectively, and then to determine the linear combinaexperimentally accessible range of dot radii is chosen. The
tions of |Ry)|poy) from the evaluation o gxT,. To levels are obtalned from Eq9) for ha_rd-w_all conflnemgnt
elaborate on this, let us focus on the hcp lattice for a moPotentials. Figures (@), 1(b), and c) differ in the potential

; P(U,) which is switched off P(U,,) =0 for all U] in Figs.
ment.T", is thenI'g or I'g and the states are§1) short for h h h
P 8 o 4an 1(a) and Xb). The levels displayed in Figs(d), and 1b) are

EuXEg=Ar+Tay, (21)
(F8+ FQ)XF7= E’ +(A,2,+ E’)+(A;{+ E”),

FgxT'7=Al+(AJ+E’).

g1 . . X
ITa.1)) then simply the hole energy levelwith €,,=0 being set to
18)=|p,l), [82)=|p,T), [81)=|p.]), zerg, i.e.,, the eigenvalues of hole band matrix
(UnDhi | Hu|URT i ")
[82=Ip_1), [9D=|p.T), [92=Ip_l), (22 Figure Xa) gives the first 14 hole levels dE, — and

. i U/, — symmetry for a sequence of various dot radii. Owing
[p-=(Pxipy)/V2] where the first two states stem from (4 the confinement, the average spacing between the levels
A3xT'7 and the remainder frofa’ XT';. In Ref. 26, asimple  grows with decreasing. They start off from their asymp-
computational procedure is described as to how to find theotical values of the band states of the unconfined crystal, the
linear combinations ofRy,) for the I' representation. We higher ones from the top of thg=3/2 valence bands, the
denote these new states by;), |A7), |Aj), |A) for the  lower ones from the = 1/2 band(split-off band. Those lev-
one-dimensional representations B, and by |[E’,1), els involved in transitions with & value greater thafi; are
|[E’,2), |E",1), |E",2) for the two-dimensional ones. The lat- marked by an additional symbol. In this way, a subset of
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J 10* / R2 [1/ 4%
- FIG. 2. Size dependence of the ground-state energy of an

electron-hole pair in a CdSe quantum dot as calculated from Eq.
(9). Comparison between dashed and solid lines reveals the effect
of a finite barrier at the dot boundary. Experimental data from Nor-
ris et al. (Ref. 20 is shown. Also shown is the transition energy to
the 2s electron level.

hole energy level [eV]

actual size of the ddinfinite width of the energy spectrum
while a discrete-lattice theory correctly takes account of the

- fact that with decreasing dot size there are fewer states avail-
able, which are distributed over a finite and size-independent
4 energy range. Accordingly, both theories differ less for larger

dots with a greater extension to the wave function under
consideration. This explains why in Fig(k} there is virtu-
ally no difference between the two theories for the highest
hole level(having the most extended wave functiorlow-
ever, they must necessarily differ for the deeper levels hav-
ing wave functions with growing short-wavelength contribu-
tions. This can already be observed in the range
10*/R?<25/A? in Fig. 1(b) where the deviationgthough
10*/R? [1/ A7) still small) are most prominent between thé&3 and the
lowestE/ level. Resulting from the discreteness of the lat-
FIG. 1. Hole energy levels of CdSe quantum dots for varioustice, this energetic effect must become larger if we go to
dot radii without(a), (b), and with(c) electron-hole interactioa) ~ even smaller dot radii. It is these differences that we are
First 14 allowed levels, connected to give continuous lieshed  interested in and that are to be studied more closely further
lines). Additional symbols for levels involved in transitions with pe|ow by comparing the effect of different lattices.
sufficiently high oscillator strengthsf$f;). (b) Comparison of Figure Xc) demonstrates the effect of the electron-hole
levels wheref > f; with theoretical results of Ekimoet al. (Ref. interaction. The levels calculated with the interaction
13) (c) Effect of the electron-hole interaction. Dashed lines are forg\\itched on are shifted up by 200 meV against the level
the level structure ofb). To facilitate easy comparison, energies scheme without interaction in order to make the differences
over 1R?, the zero of the x axis corresponds to the case of n?)gecome more clearly ViSib.Ie' Thg Co_mpariS(_)n reveals th_at
) ' although the electron-hole interaction is certainly of subordi-
confinement. . . . . .
nate importance in the strong-confinement regime considered
here, it is still strong enough to lead to a clearly recognizable
levels observable in an experiment can be extracted from theverall distortion of the level schemniéhe Coulomb interac-
vast number of eigenvalues of the hole matrix. They ardgion shows linear behavior in a R#-plot) and that taking
compared in Fig. (b) with the levels of Ekimowet al. based  account of this interaction by aR-independent constant as
on exactly the same input parameters, yet calculated in done in Ref. 13 may thus be regarded as a fairly crude ap-
continuum theory. The latter are marked in the plot by theproximation.
notatiot® Q¢ whereF is the total momentum of the state Having illuminated its different parts, we are ready now
and Q the momentum of the envelope function, giving ato turn to the full problem of Eq(9), taking into account all
symmetry classification that is obviously compatible to ourits components: electron, hole, and their mutual interaction.
(S1p—=A1gXE=E and Sz;p— Ao X U =U\). To begin with, we consider the case of hard-wall confine-
The main difference between a continuum based theorynent potentials and focus our attention first on the ground-
and a discrete lattice theory is that the first always assumestate levelsee Fig. 2 It is evident from the comparison of
an infinite number of states to be present, irrespective of théhis curve with the experimental data of Noresal. that the




55 ENERGY LEVELS OF CdSe QUANTUM DOTS: ... 2299
theoretical results disastrously fail to account for the experi-
mental findings, a fact that according to Noresal. might : a)
originate in the unjustified assumption of infinite potential foon
barriers at the dot boundaries. This explanation is supported
by the results of the theoretical work of Einevéliwho
showed that when a finite barrier &fg=500 meV in a
simple confinement potential is tak¢W(r)=Vg0(r —R),

with @ for the step functiol) then the ground-state energies
of an electron-hole pair in a CdS quantum dot can be nicely
reproduced by the theoretical curve. Relying on the similar-
ity of CdS and CdSe semiconductors, we repeat our calcula-
tion using for the electron in Eq12) the same confinement
potential and the same barrier height as in Ref. 17 while
keeping the infinite barrier for the hole. As can be seen from 08 T T T T
Fig. 2, we then find a curve that shows a remarkably good | e
agreement with the experimental data, thus confirming the
speculation of Norrist al. about the central role played by
the finite barrier.

Introducing the same finite barrier likewise for the hole
leads to a poorer fit for the ground state energies of Fig. 2,
and, more importantly, considerably alters the level scheme
for the higher excited states so that its good accordance with
the experimentdiscussed belowis almost completely de-
stroyed. In conclusion, we can thus learn from experiment } I ! }
that while the hole in a CdSe quantum dot is effectively
confined inside the dot boundaries, the electrons see but a
finite barrier allowing them to tunnel into the nearby vicinity
of the dot. This is shown in Fig.(8 where electron wave
functions for different barrier heights in @=13 A dot are
compared. The barrier height of 500 meV is obviously quite
low on account of which there is a comparatively high prob-
ability for finding the electron outside the volume defining
the dot. It should be possible to explain both barriers — the
effectively infinite barrier for the hole and the 500 meV bar- L L L L
rier for the electron — with the mismatch of the band edges z 4 6 8 10
of the CdSe quantum dot and its surrounding material. barrier height [eV]

In Figs. 3b) and 3c), we plotted the hole energy levels
and the corresponding oscillator strengths for a dot of FIG. 3. Effect of a finite barrier for the electron at the dot
R=13 A as a function of the barrier height. Through the boundary for aR=13 A dot. (a) Electron wave functions for vari-
potentialP(U,) in Eq. (9), the changes of the electron wave 0US barrier heights(b) Hole energy levels andc) oscillator
function on varying the barrier height also affect the holeStrengths as a function of barrier height.
levels, though only to a negligibly small extent, which is not
an unexpected result for such a strongly confined dot. Thehould be compared with the literature value of 1.84 eV
barrier has by contrast a major effect on the oscillator(Ref. 27.
strengths: With the electron wave function varying as in Fig. We next turn our attention to the higher excited electron-
3(a) and the hole wave function wholly confined to the dot, hole states of Eq(9). They are compared in Fig(& with
the overall overlap of electron and hole wave functions andhe experimental results of Norrét al. Following these au-
accordingly the oscillator strength must depend sensitivelyhors, we present our data in a somewhat unconventional
on the barrier height, as a glance at Figc)3will indeed  form plotting relative transition energiéexcited-state level
confirm. minus ground-state leveversus the transition energy to the

We make two concluding remarks relating to Fig.(@.  ground-state level. The ground-state energies are those from
Also shown there is the energy for a transition from theFig. 2 plus 1.8 eV for the gap energy. The different levels are
highest hole level to the<electron leve[from matrix(12)]  distinguished by the symmetry of the hole wave function
for the 500-meV confinement potential. It lies more than 1with an additional integer counting upwards through the lev-
eV above the ground-state level and is therefore well sepals of the same symmetry. Only the levels involved in a
rated from all the transitions to theslevel. This may justify ~ transition of sufficient strength are showhxfy).
the drastic reduction of our bagi§) where we have taken up Apart from the slight mismatch of theE3, level, we find
only the ground state of Eq12). (ii) To make them fit our rather good agreement between experiment and theory. This
theoretical curve, we had to shift the experimental points iris not surprising if one bears in mind that the decisive input
Fig. 2 by 1.8 eV. This is then the gap energy required angarameters, the Luttinger parameters, have already proven

barrier: 0.5 eV —

probability

1,

0.7 b) -

____________ 2U,
-0.9 = -

hole energy level [eV]
L)
3]
']

0.6 =

—————
-
L

/ 1E,

0.2 -

oscillator strength
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1 — r r T transition energy of 2.5 eV Dots of this size contain only
177 atoms, so one would expect that the discreteness of the
- lattice would have a visible effect on the spectrum, some-
thing we have already observed in Figbll Such an effect

. can best be seen by comparing the results for different dis-
crete lattices.

. This brings us to Figs. @) and 4c), the comparison of

the solutions to Eq(9) for a hcp and a fcc lattice. It demon-

0.8 |
0l
04}

02k .-~

- strates — and that is the central result of this investigation —
' that there is no significant difference between the level
L HHIHHN A HH IR MK schemes for both lattices. Although a small splitting of the
1 } } t : 2U/ level intol'g andT'y is clearly recognizable, the overall
(2-center approx.). b) pattern of the levels in Figs(d) and 4c) remains very much
0.8 | .

the same. We have pointed out earlier that in the case of the

hcp lattice, it is neccessary to change from the three- to the

two-center approximation, Eq16), so thatD(R,,) in Eq.

i (13) can be determined from E@15). Naturally, with the

appropriate choice of the rotation matricgsﬁnn), expres-

7 sion (15) can equally well be used for the fcc latti€Eig.

4(b)]. We thereby ensure that the results for both lattices are

b compatible, i.e., based on the same approximation made for

pp7 in Eq. (16). The effect of this latter approximation can

be estimated by comparing Figgatand 4b). It turns out to

be quite small, with only minor differences between the

1E/, levels towards the smaller dots and hardly any differ-

ences between both th&g and the 2J|, levels. Summariz-

ing, we can thus conclude from Fig. 4 that in the dot-size

. o range considered here, the discreteness of the lattice has vir-
B 8 .

I MS’ i tually no effect on the energy levels of the dot, and that no
I matter what lattice type is assumed one always finds a fine

s 1T, 1Ty agreement with the experimental data.

. , . , This is once more confirmed by Fig. 5, which displays the

1.8 2 2.2 2.4 2.6 oscillator strengths for each of the three calculations of Fig.

4. To take account also of all levels with only small oscilla-

tor strengthg not necessarily shown in Figs(b} and 4c)],

, ) , we have added alf values within a given interval and as-

FIG. 4. Size dependence of higher excited levels of an electron_

hole pair in a CdSe quantum dot and the effect of distinct IatticeSlgned itto the level with the highestvalue[connected in

structures: a fcc lattice for the zinc blen@®, (b) and a hcp lattice Fig. 4 by lineg. Due to this coarse gralnlng_, the curves in

i o . 5(b) and 5c) do not show as smooth a behavior as the curves
for the wurtzite structuréc). Thex axis gives the transition energy . Ei But for thi tifact in that the th
to ground-state level of Fig. 2, the axis gives the excited state in Fig. S(@). But for this artifact, we see again that the three

minus ground-state energy. Dashed lines connect experimental da(EQICUIa“OnS vary in their results only by an insignificant

of Norris et al. Shown are only levels where>f;. Dot size de- amount.
creases with increasing energy on thexis. Of course, one has to add ttievalues of the I'g and

1Ty levels to make them comparable to the strength of the

their quality in Ref. 13 as well as in the the work of Norris 1U|, level. The question then naturally arises if one can pos-
et al, where a fairly satisfactory agreement was alreadysibly distinguish the fcc from the hcp structure by using
found in the range below 2.2 eV using the five curves ofz-polarized light since such light excites only theg level in
Ekimov et al. displayed in Fig. tb). On closer inspection, the hcp lattice while being of no consequence in the fcc
though, the fit obtained there also reveals that the electrorattice. The answer to this question is negative: There is no
hole interaction has not been taken into account properly. ISuch polarization effect. We find this from calculating the
the data are plotted as in Fig. 4, then the inclusion of theolarization degree for each level, i.e., the quotient offthe
electron-hole interaction results in a common stretching ofvalue in Eq.(20) to the corresponding value for unpolar-
the energies along theaxis[cf. Fig. 1(c)], and hereby the fit ized light. They turn out to be roughly 2 for thd' level
considerably improves. and 1 for the ¥'g and 45 levels (to a good approximation

It is remarkable that these Luttinger parameters and thsize independentso that one thus ends up with the same
comparatively simple valence-band model we have used stibscillator strengths as in Fig(&.
do a good job in the range above 2.2 eV. Although the In Figs. 4 and 5, we have only given the symmetiigsof
1E|, level is not seen in the experimefaue to limited reso- the hole wave functions while the overall symmetry of the
lution, perhapk the calculated levels match the experimentalelectron-hole pair follows from Eq21). We see thal states
data down to dots of only 13 A radiusorresponding to a for the O, group split intoA and E states when th®,

rel. transition energy [eV]

06 -

04

transition energy to ground state [eV]



ENERGY LEVELS OF CdSe QUANTUM DOTS: ...

2301

gap. This is only a good approximation as long as the band

{Gecenter approx.) a) states near _thg zone edge have but a minor effegt on the fi.nal
os g results. If this is the case, then the §hape of the first Brllloum
’ zone(and thus the lattice structure in real spesieould like-
v wise not be significant. We hence see the connection be-

2K/,

tween the validity of the restriction to only a subset of bands,
on the one hand, and the requirement that the lattice structure

should not be important, on the other. Having shown the
latter to be true, we thus have confirmed the first statement
also.

Another aspect is finally noteworthy. If the energy levels
are roughly the same for the hcp as for the fcc lattice, then it
also should not matter if an even simpler effective lattice,
like, e.g. the simple cubic lattice, is taken. This points to a
L way of how to further simplify such EBOM models.

0.5 |-

IV. CONCLUSION

We have studied the effect that a change from a zinc
blende to a wurtzite structure has on the energy levels of a
CdSe quantum dot. This has been done with the help of an
ordinary tight-binding model in which the electron and hole
transfer matrix elements between neighboring lattice sites are

derived from the shape of the bands nkar0 of the zinc-
blende CdSe band structure. The same effecttvand
bonds have been used in both a hcp and a fcc lattice to model
CdSe in the wurtzite and the zinc-blende structure, respec-
4Tg , tively. Within the limits of this model, we see no significant
1T, 1T differences between both crystal structures in the dot size
- range considered here: the curves of both energy levels and
oscillator strengths over dot radius are very similar in either
structure down to dots dR=13 A, thus suggesting that the

relevant band states come fromZaegion where the bands
have a form that is not specific for the shape of the Brillouin
zone. It is therefore unlikely that a calculation based on more
subtle band approximations for both the wurtzite and zinc-
blende form of CdSe will come to a dramatically different

_ FIG. 5. Osc_illator strengths for e_ach_ of the three calculations incegylt. This also means that ignoring the Brillouin zones al-
Fig. 4, plotted in the same way as in Fig. 4. together, i.e., choosing a continuum approach, should work

equally well.
group is considered. Thus, the symmetry of the wurtzite For a whole range of dot radii, both calculations, for the
structure explains why in the experiment of Shiataal,?l  wurtzite and the zinc-blende structure, yield the same good
which we mentioned in the introduction, omyandE butno  agreement with the absorption data of Noetsal, and this
T states have been observed. However, while in R&f) with respect to both the ground-state level as well as levels
splittings of the order of 100 meV have been measured, wef the higher excited states. For the larger dots, a satisfactory
by contrast see them lying in the range of a few meV only fit to the theoretical curves of Ekimov has already been ob-
With the results of Figs. 4 and 5, we can therefore rule outained by Norriset al., while the underlying valence-band
that the observed splittings stem from the wurtzite structureapproximation has now been shown to work equally well for
This supports the concluding conjecture of Shiab@l.that  the smaller dots. A finite barrier for the electron was found to
the morphology of the crystallites is more likely to be re- be the key for interpreting the as yet unexplained ground-
sponsible for the splittings. state data. Taken together, we have thus provided a consis-
Another implication of our findings concerns the EBOM tent unified description of the whole series of electron-hole

method? used in Refs. 16—18 for calculating the energy lev-states observed by Norrig al. The nice agreement obtained
els of CdS and CdSe dots. This method is based on this particularly satisfying since it is achieved using the gap
assumption that a fcc lattice can always be used even thougdnergy as the only fitting parameter.
the correct lattice might be different. Assuming the CdSe This good agreement is completely destroyed on introduc-
system to be prototypical for similar qguantum dots, we caring a finite barrier for the hole too. So the experiment reveals
learn from our results that the error produced by this apthat on account of their different barriers, the electron wave
proximation is indeed negligible. Another fundamental as-function is spread far beyond the dot's boundary, while the
sumption usually made for such tight-binding models is thathole wave function is wholly confined inside the dot. Con-
it suffices to include only the bands lying nearest to the bandgequently, the overlap between both wave functions, and

Oscillator strength

0.5 | -

n\‘3:1“9 + 1Tg

2Ts, 2T,

1 1 1
2 2.2 2.4 2.6

transition energy to ground state [eV]
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thus also the oscillator strengths depend sensitively on thample, one with well-defined facets, as proposed in Ref. 21.
electron barrier height. In this context, it is interesting toThis is a question which likewise can be studied within the
think of an experiment in which this barrier dependence offramework of the tight-binding model used here.

the oscillator strengths is used to “switch off” certain levels
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