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Coexistence of weakly and strongly localized donor states in semiconductors

S. Bednarek and J. Adamowski
Faculty of Physics and Nuclear Techniques, Technical University (AGH), Krako´w, Poland

~Received 4 December 1995; revised manuscript received 20 September 1996!

A unified theoretical description is proposed for donor states of weak and strong localization. The present
approach is based on the one-band approximation and takes into account the couplings with LA and LO
phonons. The eigenvalue problem is solved in the wave-vector space by the variational method for several
donor states ofs symmetry. For each excited state, the full orthogonalization is performed, which permits us
to include all many-phonon states of lower energy. It is shown that the following two types of donor states can
coexist on the same donor impurity: weakly localized hydrogenlike states and strongly localized states. If the
energy levels of these distinctly localized donor states become close to each other under influence of some
external perturbation, e.g., hydrostatic pressure, then the extremely sharp and narrow anticrossing appears. This
effect is due to the very weak level repulsion resulting from the electron-LA phonon coupling. This finding
allows us to explain the anomalous anticrossing observed in GaAs. We have shown that the metastability of the
excited donor states is caused by the same reason. We have obtained the upper and lower bounds on the
probability of radiative transitions from the excited donor state and discussed the conditions for the metasta-
bility to appear and to vanish.@S0163-1829~96!08948-5#
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I. INTRODUCTION

Donor centers in semiconductors can bind electrons
quantum states of different localization. The potential of
donor center possesses both the long-range~Coulomb! and
short-range components. The range of the dominating c
ponent of the potential determines the localization of
electron around the donor center. The inverse of the ave
electron-donor center distance can be treated as a measu
this localization. The two types of donor states with the e
treme electron localization play an important role in sem
conductors, namely, the states of weak and strong loca
tion. For the weakly localized donor states, the aver
electron-donor center distance is much larger than the la
constant, while for the strongly localized donor states, t
distance is of the order of the lattice constant. The ene
levels of the weakly localized donor states are shallow,
the corresponding energy separations from the conduc
band bottom are much smaller than the semiconductor
ergy gap. In most cases, the energy levels of the stron
localized donor states are deep, i.e., the corresponding
ergy differences are comparable with~but less than! the en-
ergy gap. Usually, the donor states of different localizat
are observed for different impurity atom species.

This is the conventional picture of the donor states
semiconductors. However, in many semiconductors, both
types of donor states can be formed on the same impu
atom. Such states have been experimentally observed, e.
InSb,1,2 CdF2,

3,4 GaAs.5,6 The recent experimental observ
tions in GaAs6–9 give evidence of the existence of the thr
different donor states formed on the same impurity atom:~1!
weakly localized states with hydrogenlike spectrum,~2!
strongly localized state ofA1 symmetry, and~3! the DX
state. According to the ab initio pseudopotentia
calculations,10,11 the DX state is the highly localized dono
center, which is doubly occupied by the electrons and exh
its the negative-U behavior and a large lattice deformatio
550163-1829/97/55~4!/2195~12!/$10.00
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This picture is supported by the experiments.12–16

The properties of the neutral donor states of types~1! and
~2! are especially interesting if their energy levels are clo
to each other, i.e., the energy levels of the strongly locali
states are shallow. Then, the weakly localized state
slightly higher energy can be metastable with respect to
strongly localized state. The electrons activated from
ground state can occupy the excited weakly localized s
for a long time. The metastability has been observed
donors in CdF2.

3,4 It has been shown in our previou
papers17,18 that the electron-phonon coupling is of cruci
importance for understanding this property. This explanat
has been supported by the displaced-ion approach.19

Other interesting properties of the donor states have b
observed in Ge-doped GaAs crystals under hydrost
pressure.5,6 At the ambient pressure, the energy level of t
strongly localized (A1) donor state is located at 75 me
above the conduction band bottom. The applied hydrost
pressure shifts up the minimum of the conduction band
gether with the energy levels of the weakly localized~hydro-
genlike! donor states. The energy level of the strongly loc
ized donor state is weakly dependent on the pressure~its
position is determined by the average conduction ban!.
With the increasing hydrostatic pressure, the energy sep
tion between the energy levels associated with both the ty
of donor states decreases and, at the pressure of about 9
takes on very small, but nonzero, minimum value. Due to
same symmetry~both the states ares type!, the correspond-
ing energy levels do not cross but repel each other. The le
repulsion for the states of different localization is drastica
reduced by the interaction with phonons, which leads to
extremely sharp and narrow anticrossing20,21 observed as a
function of the external pressure and magnetic field.2,5 In
GaAs, the LA phonons play the most important role in th
effect.

The problem of coexisting neutral donor states of we
and strong localization requires a special theoretical
2195 © 1997 The American Physical Society



ro
on
e
rv
e
.
t
a

es
th

n
As
n
e
lyt
ec

e
te
nd
in

tic
x
he
ce
t
n
ha
e
n

e
. I
ns
et
n
an
th
bi

th
tic
h

lec
n,

cu
an

the

e

-
y of
ng-

by

tion

ith

r-
that
ent

b-
s.
is-

ian
by

2196 55S. BEDNAREK AND J. ADAMOWSKI
proach due to the very subtle effects~in the meV energy
regime!, which have to be described. The theory should p
vide a unified description of the states of the weak and str
localization and take into account the quasicontinuous sp
trum of many-phonon states, which enters the energy inte
between the discrete donor levels. For these states, thab
initio approach11,22 provides only the qualitative results
Most of the existing theoretical methods can be applied
either the weakly or strongly localized donor states. In p
ticular, the effective mass approximation~EMA! leads to the
hydrogenlike model of the weakly localized donor stat
The simple EMA models for the pressure influence on
hydrogenlike donor states can be found in the papers.23,24

The correct description of the impurity states with differe
localization has to go beyond the EMA. In the case of Ga
it should take into account the conduction-band no
parabolicity.25,26The conduction-band structure can be tak
on from either the band-structure calculations or an ana
cal model. Such model approach to magnetopolaron eff
in GaAs was proposed by Shiet al.27

In the first theoretical papers,28–30 the coordinate-spac
representation and EMA were applied to the impurity sta
of the different electron localization. The long-range a
short-range components of the impurity potential were
cluded. Toyozawa31 additionally included the coupling with
phonons in the frame of the continuous deformable-lat
model, which yielded a qualitative description of the coe
isting donor states. We proposed an anot
approach,17,18,32,33which is based on the wave-vector spa
representation for both the electron and phonon states in
Brillouin zone. Instead of the EMA, we apply the more ge
eral one-band approximation. The first paper of our work
been recently published.21 The present paper provides th
full presentation of our method, the complete results, a
detailed discussion. Section II contains the presentation
the method, applied approximations, and results for the
ergy levels and localization of the donor states in GaAs
Sec. III, we consider the probability of radiative transitio
from the excited donor state. The discussion and interpr
tion of the results is given in Secs. IV and V. Special atte
tion is paid to the description of anomalous anticrossing
metastability of donors. In the Appendix, we present
method of obtaining the estimates for the transition proba
ity considered in Sec. III.

II. EIGENVALUE PROBLEM FOR ELECTRON-DONOR-
PHONON SYSTEM

We consider the system composed of the electron,
donor center and the deformable crystal lattice. The lat
deformations are described in terms of phonon fields. T
Hamiltonian of the system has the following form:

H5H01H11H21H3 , ~1!

whereH0 describes the noninteracting conduction-band e
trons and phonons,H1 the electron-donor center interactio
H2 the electron-phonon interaction, andH3 the donor-
phonon interaction. In the present work, we apply the oc
pation number representation for both the electrons
-
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phonons and assume the one-band approximation for
electron-donor subsystem. The HamiltonianH0 takes on the
form

H05(
k
Ek
cbk

†bk1(
sq

\vsqasq
† asq , ~2!

whereEk
c is the conduction-band energy,bk

† (bk) is the cre-
ation ~annihilation! operator of the Bloch state of th
conduction-band electron,asq

† (asq) is the creation~annihi-
lation! operator of the phonon state with the energy\vsq ,
wave vectorq, and branch indexs. We take into account the
longitudinal acoustic~LA ! and longitudinal optical~LO!
phonons, i.e.,s5LA, LO. The Hamiltonian of electron-
donor center interaction has the form

H15(
kk8

Vkk8bk
†bk8 , ~3!

whereVkk85Vk2k8
C

1Vkk8
S is the potential-energy matrix el

ement between the two Bloch states. The potential energ
the electron in the donor-center field is the sum of the lo
range (VC) and short-range (VS) components. We take on
the long-range component in the Coulomb form screened
the high-frequency dielectric constant«` .

In the most general case, the electron-phonon interac
Hamiltonian can be written as

H25(
skq

Fskq~asqbk1q
† bk1H.c.! ~4!

and the interaction Hamiltonian of the donor center w
phonons as

H35(
sq

~Wsqasq1H.c.!, ~5!

where Fskq andWsq are the electron-phonon and dono
phonon interaction amplitudes, respectively. We assume
the electron-phonon interaction amplitudes are independ
of the electron wave vectork, i.e.,Fskq5Fsq .

Hamiltonian ~1! provides an example of a general pro
lem of a fermion system interacting with two boson field
Specifying the forms of the interaction amplitudes and d
persion relations, we will be able to apply Hamiltonian~1! to
the problem of donor in a semiconductor.

In the present approach, we first transform Hamilton
~1! using the canonical transformation introduced
Platzman34

UP5expH(
sq

@~Wsq /\vsq!asq2H.c.#J , ~6!

which yields the transformed HamiltonianH̄5UP
†HUP in

the form

H̄5H01H21(
kk8

V̄kk8bk
†bk82(

sq
uWsqu2/\vsq . ~7!

The matrix elements in the third term take on the form

V̄kk85V̄k2k8
C

1V̄kk8
S , ~8!
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55 2197COEXISTENCE OF WEAKLY AND STRONGLY . . .
where

V̄k2k8
C

5Vk2k8
C

2~FLO,k2k8WLO,k2k8
* /\vLO,k2k81c.c.!

~9!

and

V̄kk8
S

5Vkk8
S

2~FLA,k2k8WLA,k2k8
* /\vLA,k2k81c.c.!.

~10!

In Eqs. ~9! and ~10!, we have included the mixed term
which consist of the electron-phonon and donor-phonon
teraction amplitudes, into the matrix elements of the pot
tial energy of the electron in the donor-center field. Both
terms in Eq.~9! correspond to the long-range potentials.
we take on the Fro¨hlich coupling with LO phonons@cf. Eq.
~26!#, then V̄C becomes the potential energy of the electr
in the Coulomb field screened by the static dielectric c
stant«0. The second term in Eq.~10! results from the short-
range electron-LA phonon interaction. In the following, w
assume the short-range interaction~10! to be local, i.e.,
V̄kk8
S

5V̄k2k8
S The last term in Eq.~7! possesses the meanin

of the self-energy, which corresponds to the energy of
lattice deformation around the donor center.

Before going further, let us briefly discuss the physic
interpretation of the result of Platzman transformation~6!.
This transformation introduces the self-energy of the do
center and modifies the electron-donor center interaction
to the screening of the long-range~Coulomb! interaction and
adding the short-range interaction caused by the exchang
virtual LA phonons. These terms in transformed Hamilton
~7! yield the largest contribution to the energy, which orig
nates from the phonon field. In the convention
approach34,35 to the bound polaron problem, the self-ener
term is infinite. In the present approach, this term is fin
and determines the lattice relaxation energy around the d
center. For example, we have estimated17,18 this energy for
CdF2 to be 1.6 eV in agreement with experiment.4 The con-
stant self-energy shifts the energy levels of all the do
states by the same value. Since in the present work we
interested in the energy differences between the donor lev
we omit this term in the further considerations.

In order to solve the eigenvalue problem for Hamiltoni
~7!, we apply the variational method with the following e
pansion of the eigenvector in the many-element basis:

uC&5(
i
ci uc i&, ~11!

whereci are the linear variational parameters. For the fi
three states ofs symmetry, the satisfactory results are o
tained with the use of the ten-element basis. Each basis
in Eq. ~11! is taken to be the product of the electron a
phonon states, i.e.,

uc i&5uF i&ux i&. ~12!

The electronic state has the form

uF i&5(
k

f ikbk
†u0&el , ~13!

where u0&el is the electron vacuum state. We propose
variational form of the functions
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f ik5Ni~11k2/a i
2!22, ~14!

wherea i are the nonlinear variational parameters andNi are
the normalization constants, which assure the normaliza
of functions~14! in the first Brillouin zone. We introduce the
electron density for thei th basis state

r iq5(
k

f i ,k1q* f ik , ~15!

which possesses the following properties:

r iq5r i ,2q5r iq* . ~16!

The phonon state in Eq.~12! has the form

ux i&5Ui u0&ph , ~17!

whereu0&ph is the phonon vacuum state. The operator of
unitary transformation in Eq.~17! is proposed in the form

Ui5expS (
sq

gisqasq
† 2H.c.D , ~18!

where the phonon amplitudes have been chosen as

gisq52Fsq* r iq /\vsq . ~19!

The overlap between two phonon states~17!

Si j5^x i ux j&5expF2
1

2(sq uFsqu2ur iq2r jqu2/~\vsq!
2G
~20!

is an important auxiliary quantity in the present treatme
The overlap-matrix elements between basis states~12! are
given by

Pi j5(
k

f ik* f jkSi j ~21!

and the matrix elements of Hamiltonian~7! by

Hi j5Si j(
k FEk

cf ik* f jk1(
k8

V̄k2k8f ik* f jk8

2(
sq

uFsqu2~r iq1r jq!f ik1q* f jq /\vsqG
1Pi j(

sq
uFsqu2r iqr jq /\vsq . ~22!

Using matrix elements~21! and ~22!, we solve the eigen-
value problem for the nonorthogonal basis

(
j
Hi jCjn5En(

j
Pi jCjn . ~23!

The minimization ofEn over the nonlinear parameters
performed for eachn, separately. The variational calculatio
with the many-element basis is equivalent to the method
outer projection36 on the subspace spanned by these ba
states. Therefore, the minimization of the excited-state
ergy leads to a change of the projection operator. As a re
the corresponding trial wave function is not orthogonal to
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2198 55S. BEDNAREK AND J. ADAMOWSKI
optimized wave functions for the states of lower energy
is orthogonal to the wave functions providing the upp
bounds, which are not the best variational estimates, ne
theless, they are lying below the considered energy le
The variational estimates obtained by this method provid
set of correct upper bounds36 to the true energy eigenvalue
~cf. Appendix of Ref. 35!.

If the short-range potential is repulsive or weakly attra
tive, the effective-mass approximation~EMA! can be ap-
plied. In this case, the band energy together with the C
lomb potential energy lead to the hydrogenlike don
spectrum, provided that the conduction band minimum is
k50. If we moreover take into account the electron-phon
coupling, we obtain the classical problem of the bou
polaron.35

If the short-range potential is attractive and sufficien
strong, the highly localized donor state can be created.
wave function of such state is spread out over the en
Brillouin zone; therefore, the effective-mass approximat
is no more applicable. In order to describe these states
have to know the conduction band dispersion relation and
electron-phonon interaction amplitudes in the entire B
louin zone. For the present purpose, we cannot use the m
ods applicable for the deep-level impurity states, since
considered donor states possess the shallow energy l
~lying in the interval of a few meV below the conductio
band!. Instead, we apply the one-band approximation, wh
allows us to describe the weakly and strongly localized
nor states within the same unified approach.33 The present
method is based on the assumption that the shallow-l
donor states of arbitrary localization are formed from t
states of the lowest conduction band, which possesses
average widthD and the minimum in the center of the Bri
louin zone, and is characterized by the effective band m
me at theG point. The dispersion relation for the conductio
band is proposed in the analytical form33

Ek
c5

tk
11tk /D

, ~24!

where tk5\2k2/2me is the conduction-band form in th
EMA. For small uku, Ek

c→tk ; therefore, our approach goe
over into the EMA.

For GaAs, we take on the following values of the para
eters:D51.1 eV andme50.0656me0, whereme0 is the elec-
tron rest mass. The applicability of formula~24! to the low-
est conduction band relies on the following arguments: Fi
we have performed the empirical-pseudopotential calc
tions, the results of which are plotted in Fig. 1 and compa
with those of Eq.~24!. We see that formula~24! provides the
average conduction band for GaAs, where the averagin
performed over the entire Brillouin zone. Second, in Fig.
we have shown the several analytical forms for the low
conduction band of GaAs near the center of the Brillou
zone. In particular, we see that in the energy interval@0, 0.6
eV# above the conduction band bottom, the present analy
formula reproduces the fitted form,25 which takes into ac-
count the nonparabolicity of the conduction band in GaAs
uku increases, function~24! asymptotically tends to its valu
at the Brillouin zone boundary. On the contrary, the form25

becomes unphysical~see Fig. 2, which also shows the resu
t
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of Ruf and Cardona26 and the parabolic approximationtk).
The conduction band in GaAs possesses the global minim
at theG point and the subsidiary minima at theL and X
points ~Fig. 1!. Since these subsidiary minima are locat
considerably higher than theG minimum, they do not affect
the shallow-level donor states connected with theG point;
therefore, we neglect them in the present treatment.

In the present calculations, all the summations over
Brillouin zone in Eqs.~21! and ~22! are replaced by the
integrations over the Debye sphere of the same volume.
GaAs, the radius of the Debye sphere is taken on to
Q50.57a0

21, wherea0 is the hydrogen-atom Bohr radius
The double sums over the first Brillouin zone in Eq.~22! are
evaluated by the integration over the two independent De
spheres. When calculating the third term in Eq.~22!, we have

FIG. 1. The lowest conduction band in GaAs as a function of
wave vectork. Dashed curves show the results of the empiric
pseudopotential calculations for the directions~1,1,1!, ~0,0,1!, and
~0,1,1!, solid curve~a! corresponds to the analytical form@Eq. ~24!#.
a0 is the hydrogen Bohr radius.

FIG. 2. Comparison of several analytical forms for the lowe
conduction band in GaAs near the center of the Brillouin zo
Curve~a! corresponds to the present analytical form@Eq. ~24!#, ~b!
to the form fitted by Ekenberg@Ref. 25#, ~c! to the form of Ruf and
Cardona@Ref. 26#, and~d! to the effective-mass approximation wit
the electron band massme50.0656me0.
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55 2199COEXISTENCE OF WEAKLY AND STRONGLY . . .
to proceed with a special caution and take into account
fact that the three vectors, namely,k, q, andk1q lie within
the first Brillouin zone.

The short-range potential is taken to be a constant in
wave-vector space, i.e.,V̄k

S5g if uku<Q, which corresponds
to the Fourier transform of the Diracd-like potential in the
configurational space. The parameterg may be determined
from the difference of the atomic core potentials of the i
purity and the host crystal atoms. In the present appro
however, we treatg as a fitting parameter.

In the description of the electron-phonon interaction,
assume the deformation potential coupling with LA phono
and the polar Fro¨hlich coupling with LO phonons. The inter
action amplitude for LA phonons has the form

FLA,q5DS \

2crV D 1/2q1/2, ~25!

whereD is the deformation-potential constant,c is the veloc-
ity of sound,r is the mass density of the crystal, andV is the
quantization volume. The dispersion relation for the L
phonons is assumed to be isotropic and linear as a func
of the wave-vector length, i.e.,\vLA,q5(q/Q)\vLO . The
applicability of interaction amplitude~25! is limited to the
small q region, which is sufficient for the discussed prope
ties. In GaAs, the polar coupling with LO phonons is wea
however, it shifts the shallow energy levels by several p
cent, and has to be included in order to bring the calcula
values into agreement with experiment. The correspond
interaction amplitude is taken on in the Fro¨hlich form

FLO,q52 i F2pe2\vLO

V S 1«`
2

1

«0
D G1/21q . ~26!

The amplitude of the donor-LO phonon interaction is giv
byWLO,q52FLO,q , while that for LA phonons enters onl
the constant terms: self-energy in Eq.~7! and short-range
potential@Eq. ~10!#. Thus, itsq dependence plays no role i
the present approach.

The variational procedure for the excited states requ
the orthogonalization of the consideredmth state to the state
~labeled by n!, which possess the lower energies, i.
En,Em for n,m. The phonon field introduces addition
states to the system. If we take into account the dispers
less LO phonons, we need no special treatment, since the
phonon energy~for GaAs: 36 meV! is greater than the sepa
rations between the considered energy levels (;6 meV!. A
new problem arises if we include the LA phonons. The
below themth excited-state energy level, there exists a ba
of many-phonon energy levels corresponding to the follo
ing excited states of the system: the donor in the ground s
plus many created phonons. The consideredmth state has to
be orthogonal to all these many-phonon states. In orde
perform this orthogonalization, we proceed as follows: Fi
we define after Lo¨wdin36 the operatorOm of the outer pro-
jection onto the states orthogonal to those involving
phonons with the energy\vLA,q,Em2E0, whereE0 is the
ground-state energy. This projection operator allows us
construct the new phonon states

ux̄&5Om
† ux&, ~27!
e
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and the projected Hamiltonian36

H% 5Om
† H̄Om . ~28!

Projection~27! eliminates from the calculations the subspa
of many-phonon states, which corresponds to the phonon
the energy: 0<\vLA,q,Em2E0. The same operator ensure
the orthogonality of the consideredmth state to all excited
many-phonon states of lower energy, because their eigen
uesEn are located at the energy separation smaller than
for the ground state. In this case, the conditi
\vLA,q,Em2En is automatically fulfilled. The ground-stat
energy is calculated with the use of the full Hamiltonia
H̄; however, the calculations for themth excited state are
performed with the use of the projected HamiltonianH% ,
which guarantees the orthogonality of all the conside
states.

This procedure has been applied to the donor state
GaAs under the hydrostatic pressure. The influence of
hydrostatic pressure has been taken into account by intro
ing the pressure dependence of the material parame
known from experiment. The electron-band mass and
static dielectric constant depend on the pressurep as
follows:5 me(p)5me(0)(116.1531023p21.2231025p2)
and«0(p)5«0(0)exp(21.7331023p), wherep is expressed
in kbars. The donor energy levels are determined with
spect to the bottom of the conduction band. Therefore, w
introducing the pressure dependence of the aver
conduction-band widthD in Eq. ~24!, we take into account
the relative shift of the conduction-band minimum with r
spect to the average conduction band. The pressure co
cient of the parameterD is estimated by the similar way a
that of Ref. 10 and takes on the valuedD/dp520.0087
eV/kbar.

FIG. 3. Calculated donor energy levels in GaAs as functions
hydrostatic pressure. Solid curves show the results obtained w
both the LO and LA phonons are taken into account and the
orthogonalization is performed according to Eq.~28!; dashed curve,
those when projection~28! is omitted, and dotted curves, thos
when only the LO phonons are included. Dots correspond to
experimental points. The parameter of the short-range pote
g520.168 eV for the solid curves andg520.336 eV for the
dotted curves. Energy is measured with respect to the conduc
band minimum in donor Rydbergs (RD).
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2200 55S. BEDNAREK AND J. ADAMOWSKI
The calculated energy levels for the donor states ofssym-
metry are shown in Fig. 3 as functions of the hydrosta
pressure. The experimental data are also shown for com
son. One can notice that the position of zero on the ene
scale corresponds to the conduction-band minimum, wh
moves with pressure when determined with respect to
valence-band maximum. The results obtained with the h
of projection ~28! with both the LA and LO phonons in
cluded are shown by solid curves; the dashed curve sh
the estimate of the first excited-state energy, which is
tained if projection~28! is not performed. The solid curve
provide the correct variational upper bounds on the ene
levels, while the dashed curve can be regarded as the c
sponding lower bound. The solid curves in Fig. 3 agree v
well with the observed behavior of the donor energy levels
GaAs under hydrostatic pressure. Their characteristic sh
is due to the anticrossing between the energy level assoc
with the strongly localized donor state and the hydrogen
energy levels of the weakly localized donor states. If
increase the applied pressure, first the higher energy le
fall down and can closely approach the ground-state ene
level before this level starts to drop off. The relative chan
~with respect to the conduction-band bottom! of the energy
level of the strongly localized state is very rapid and can
traced in Fig. 3 with the help of the curve, which interpola
between the steeply descending parts of solid curves.
energy level associated with the strongly localized state
ters the energy gap at 8.5 kbar and subsequently modifie
hydrogenlike energy levels; first those of the highest ene
associated with the excited states and next that of the gro
state.

The deformation-potential interaction with LA phonons
of a crucial importance in this behavior. In order to det
mine the role of this interaction, we have shown in Fig. 3
energy levels calculated with neglected LA phonons~dotted
curves!. The omission of the short-range interaction me
ated by the virtual LA phonons shifts the anticrossing tow
high pressures (; 25 kbar!.20 In the present paper, we hav
changed the value of the electronic short-range potentiag,
which is the fitting parameter in the present approach,
shifted back the anticrossing obtained without the L
phonons to the experimentally measured pressure reg
The curves obtained with and without the LA phonons e
hibit a remarkable qualitative difference. If we neglect t
interaction with LA phonons, the 1s and 2s energy levels
gradually fall down with increasing pressure. Their an
crossing with the energy level of the highly localized state
characteristic of a strong repulsion between the energy
els. The electronic wave functions consist of the strongly a
weakly localized basis elements, which are mixed in a re
tively broad pressure regime. If we incorporate the inter
tion with LA phonons, the overlap between the phonon pa
of the wave functions for the strongly and weakly localiz
states is considerably reduced. The electronic wave funct
of strong and weak localization are mixed only in the clos
vicinity of anticrossing. As a result, the level repulsion b
comes very weak, which is responsible for the very sh
and narrow anticrossing.

The anomalous properties of the donor states are clo
connected with their localization. In order to point out th
relation, we have calculated the expectation values of
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electron-donor center distance for the considered states~Fig.
4!. The localization of the corresponding states can be
garded as to be inversely proportional to this distance. T
calculated average electron-donor separations indicate
large is the mixing of distinctly localized basis states~12!.
Outside the regions of anticrossing, the donor states
weakly localized and their average radii are close to thos
the hydrogenlike donor states, i.e., donor Bohr radii. If t
pressure approaches the values, at which the energy leve
Fig. 3 exhibit the anticrossing, the average donor radii
very rapidly changed, i.e., the localization of electron arou
the donor center is respectively changed. The horizontal
beginning at about 8.5 kbar corresponds to the strongly
calized state, for which the average electron-donor dista
takes on the constant value 0.0185aD .

III. PROBABILITY OF OPTICAL TRANSITIONS

Let us consider now the influence of the interaction w
phonons on the optical transitions between the donor sta
We will show that the electron-phonon coupling essentia
changes the probability of radiative transitions between
donor states of different electron localization. This effect
sults from the difference of lattice deformation for both t
types of donor states and can lead to the metastability of
excited states.

According to the results of Sec. II, the donor wave fun
tions are constructed as linear combinations of the b
functions of weak and strong localization. It appears, ho
ever, that only in the anticrossing regime the basis functi
of different localization are strongly mixed with each othe
This can be seen from Fig. 4, which shows that the do
radii take on the intermediate values~between those corre
sponding to either the weak or strong localization! only in
the very narrow intervals of pressure near the anticrossing
the pressure exceeds the values from this narrow anticros
regime, the ground-state donor radius rapidly decrea
reaching the small value characteristic for the highly loc
ized state, while the excited-state donor radius immedia
approaches the value corresponding to the previous we
localized state. Therefore, the ground state becomes hi

FIG. 4. Expectation values of the electron-donor center dista
calculated as functions of hydrostatic pressure for several do
states. The unit of length is the donor Bohr radiusaD .
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localized, while the excited states remain weakly localiz
For these states of different localization, one can expect
metastability to occur. Based on the results of Sec. II,
approximate the ground-state wave function by the sin
strongly localized basis function~12!. On the other hand, the
excited-state wave function is approximated by the sing
weakly localized basis function. We are interested in
probability of leaving the initial state~weakly localized 2p
donor state! and reaching one of the final states~strongly
localized donor states ofs symmetry! in one-electron transi-
tions. At low temperatures, these transitions can only
caused by an external perturbation, which is the electr
photon interaction. Thus, we consider the spontaneous ra
tive transitions from the initial state with energyE1

uC1&5uF1&ux1& ~29!

to the final states with energiesEf

uC f&5uF f&ux f&. ~30!

The set of the final states consists of all the states with
ergies lower thanE1, i.e., the highly localized ground stat
uC0&5uF0&ux0& as well as the statesuC f&5uF0&ux0N&, in
which the electron-donor subsystem is in the stateuF0& and
there exist the many-phonon states of the form

ux0N&5U0)
s

1

ANs!
)
j51

Ns

asqs j

† u0&ph . ~31!

Here,NLA andNLO are the numbers of LA and LO phonon
respectively,N5NLA1NLO is the total number of phonons
and the operatorU0 is given by Eq.~18!.

The probability of the spontaneous radiative transitio
from the initial stateuC1& to the final statesuC f& of the
discrete spectrum with the emission of the photon with
energyE12Ef can be written in the form

P5(
f
U^C1u(

kk8
wkk8bk

†bk8uC f&U2~E12Ef !, ~32!

where, in the dipole approximation, the electron-photon m
trix element is given by

wkk85A^ck
cu¹•«uck8

c &. ~33!

Here,A is the constant dependent on the material parame
but independent of the photon energy,« is the photon polar-
ization vector, andck

c is the Bloch wave function of the
conduction band.

After substituting into Eq.~32! the expressions for the
initial and final states, we get the total transition probabil
in the form of the product

P5PelPph , ~34!

of the electronic part

Pel5DEU(
kk8

f1k* wkk8f0k8U2 ~35!

and the phonon part
.
e
e
e,

,
e

e
n-
ia-

n-

s

e

-

rs,

Pph5~DE!21(
$N%

z^x1ux0N& z2DENQ~DEN!, ~36!

where

DE5E12E0 ~37!

and

DEN5DE2(
s

(
j51

Ns

\vsqs j
. ~38!

In Eq. ~36!, Q is the step function, which is equal to 1 for th
positive value of argument and 0 for the negative one. T
sum over$N% in Eq. ~36! is a shorthand for the summatio
over all the states of LA and LO phonons in the Brillou
zone, i.e., the summation over all the possible combinati
of numbers of the created phonons, and their wave vect
In particular, this means that in Eq.~36! we deal with the
manyfold summation over the Brillouin zone~cf. the Appen-
dix!. The overlap between the phonon states in Eq.~36! is
calculated to be@cf. Eq. ~20!#

^x1ux0N&5S10)
s

1

ANs!
)
j51

Ns

~g1sqs j
2g0sqs j

!* . ~39!

Inserting Eq.~39! into Eq. ~36!, we obtain

Pph5~DE!21uS10u2(
$N%

)
s

1

Ns!
)
j51

Ns

ug1sqs j
2g0sqs j

u2

3DENQ~DEN!. ~40!

If we consider only the LO phonons~with constant nonzero
energies!, then, because of theQ function, we have the finite
number of many-phonon states with energies belonging
the interval (E0 ,E1). The numberNLO takes on the values
from 0 toNLO

max which is determined by the condition

DE2NLO
max\vLO>0. ~41!

In this case, we can calculatePph exactly. If we include the
LA phonons, an arbitrary large number of low-energy L
phonons can appear in the energy interval (E0 ,E1). Then,
the sum over$N% in Eq. ~40! becomes infinite with the
infinite-fold summation over the phonon wave vectors. T
exact evaluation of this sum is impossible. Nevertheless,
have succeeded~see the Appendix! in calculating the lower
(PL) and upper (PU) bounds on the probabilityPph , i.e.,

PL<Pph<PU . ~42!

Figure 5 shows the estimated phonon factorPph of the
probability of radiative transitions from the excited 2p state
to all states with lower energies, i.e., ground state p
N-phonon states. The lower and upper bounds onPph are
plotted as functions of the energy-level separationDE
5E12E0. The two solid curves show these bounds f
GaAs and the two dashed curves, for CdF2. The calculated
lower and upper bounds lie close to each other in a large
of the transition energy interval. The results of the ex
calculation of the transition probabilityPph for the LO
phonons are shown by the dotted curve, which exhibits
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2202 55S. BEDNAREK AND J. ADAMOWSKI
characteristic steps if the transition energy is equal to
multiplicity of the LO phonon energy.

IV. DISCUSSION

Let us discuss the results of Secs. II and III shown in Fi
3–5. Figure 3 shows the energy levels of the donor state
s symmetry in GaAs as functions of the hydrostatic pressu
In the considerable intervals of pressure, the energy le
corresponding to the weakly localized donor states form
slightly distorted hydrogenlike spectrum. These energy l
els do not change with respect to the conduction-band
tom, which is a characteristic property of the states of we
localization. The properties of the strongly localized don
state are different. This state is resonant with the conduc
band for the pressures below 8.5 kbar. The correspon
energy level enters the energy gap at higher pressure, w
changes the energy spectrum in a narrow interval of press
In this discussion, we use the hydrogenic labels of ene
levels, because in this way we can trace the change of e
level in Fig. 3. We see that in the very narrow interval
pressure below 8.85 kbar, the 2s and 3s levels rapidly fall
down and the pairs of levels (1s,2s) and (2s,3s) become
very close to each other. At higher pressures, the 3s and
2s levels replace the 2s and 1s levels, respectively, and th
1s ~ground-state! energy level very steeply decreases beco
ing a deep level at very high pressure. The param
g520.168 eV has been adjusted in order to obtain the c
rect position of the anticrossing on the pressure scale.
quantitative agreement between the calculated
measured5 positions of levels that are on the energy scale
obtained without any fitting.

The energy levels that are connected with the donor st

FIG. 5. Phonon factorPph of the probability of radiative transi-
tions from the excited (2p) donor state to lower-lying states as
function of the energy separationDE5E12E0 between the 2p
state and ground state. The two upper solid curves show the u
and lower bound onPph for GaAs, the two lower dashed curve
show those for CdF2. The dotted curve shows the results of t
exact calculation for CdF2 with only LO phonons taken into ac
count. The left scale corresponds to GaAs and CdF2 (LO), the right
scale to CdF2 with both the LO and LA phonons included. The un
of energy is the LO-phonon energy, log is the logarithm to
base 10.
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of different localization approach each other under influen
of the external perturbation~in this case, the hydrostatic pres
sure!. These donor states possess the same~s! symmetry;
therefore, they repel each other~in a sense of the perturba
tion theory!. The resulting anticrossing is very sharp a
occur in the very narrow interval of pressure, which giv
evidence of the very weak level repulsion. The minimu
separation between the 1s and 2s energy levels is calculated
to be 0.1 meV, while this value fitted by Wasilewski an
Stradling5 is 0.5 meV. Our calculations show that the simil
anticrossings as well appear for higher energy levels os
symmetry.

The anomalous anticrossing results from the electron-L
phonon coupling.21 This effect appears for the donor states
the different localization, which are accompanied by the d
ferent lattice deformation. In comparison with the ioniz
donor, the crystal lattice is strongly modified for the high
localized donor state, while the lattice remains almost
changed for the donor states of the weak localization. Un
influence of the hydrostatic pressure, the energy levels
are associated with both the types of donor states bec
very close before they begin to repel each other. ‘‘T
strength’’ of this level repulsion is determined by the val
of overlap ~20! between the corresponding phonon stat
which considerably differ between themselves if the latt
distortion is so different. This yields the very small value
overlap~20!, which takes on the value of about 1023 for 9
kbar. This in turn leads to the very weak level repulsio
which is responsible for the extremely sharp anticrossing

The level anticrossing can be observed if some exte
perturbation changes the relative position of the energy
els. Besides the external pressure, the external magnetic
can also cause this effect.2 Therefore, we expect that th
similar properties of donor states can be found as a func
of the magnetic field. The hydrostatic pressure considere
this work changes the electron-band mass, static dielec
constant, and width of the conduction band. The change
the band mass and the dielectric constant affect the we
localized donor states, which leads to a slight change of
hydrogenlike spectrum. The change of the conduction-b
width is more important in the description of anticrossi
because it shifts the energy levels of both the types of do
states into the same energy range.

The present approach as well includes the coupling w
LO phonons, which has no influence on the anomalous a
crossing~cf. dotted curves in Fig. 3!. However, the Fro¨hlich
coupling considerably changes the donor properties in
ionic CdF2 crystal35 and, even in the weakly ionic GaA
crystal, possesses the remarkable influence on the sha
level donor states of weak localization. The results displa
in Fig. 3 show that taking into account this coupling leads
the 15% shift of the 1s energy level as compared with tha
obtained without LO phonons, which would be located
E52RD ~donor Rydberg with static dielectric constant!.

In Sec. II, we discussed the way of choosing the pheno
enological parameters used in the calculations. Since no
these parameters can be uniquely determined from exp
mental data, we now discuss possible effects of uncertain
in this choice.

First, we comment on the assumption made for
conduction-band shape@Eq. ~24!#. We have checked that th
results of the calculations do not change if we use ano

er
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form of dispersion relation provided thatEk
c fulfills the same

boundary conditions for small and largeuku. The correct re-
production of the conduction band in the nearest neighb
hood of theG point is important for the weakly localize
states, while the average conduction band determines
strongly localized donor states.

The results can be sensitive to the uncertainty in the p
sure coefficientdD/dp. However, we have checked that th
5% change of this coefficient in the interval 8.85 kb
<p<9.15 kbar, in which the experimental points corr
sponding to the highly localized states of the lowest ene
are located, leads to the shift of energy, which does not
ceed 0.15 meV, i.e., 0.03RD . This change would not be
visible in Fig. 3.

The present theoretical model consists of one fitting
rameterg, which determines the short-range potential of t
impurity. In some materials, e.g., the Si crystal,37 the values
of g for various donor species can be found from the m
sured chemical shifts if we introduce the so-called ‘‘centr
cell corrections.’’ However, the chemical shifts for dono
also possess other sources.38,39 In our previous papers40,41on
donors in GaAs, we analyzed the two mechanisms, which
caused by~i! short-range potential, which results from th
difference in atomic cores between the host-crystal and
purity atoms~typical ‘‘central-cell potential’’!, and~ii ! long-
range potential, which results from the redistribution of t
valence electrons around the impurity center. The chem
shifts resulting from effect~ii ! were described in ou
papers40,41 with the help of the reorthogonalisation-char
model. This long-range potential can be approximated by
Coulomb potential.40,41For the donors of the strong electro
localization, mechanism~i! is dominating, while for the very
weakly localized donor states, like these in GaAs, it
mechanism~ii !. Therefore, in GaAs, due to the very sma
electron mass and large donor Bohr radius, information
tained from the chemical shifts for the weakly localized d
nor states is less useful for the strongly localized donors
vice versa. The interpretation of the chemical shifts for
donors of weak localization in GaAs as resulting exclusiv
from the central-cell potential yields the short-range poten
wells, which are too deep.42,43 The central-cell potential ob
tained in Ref. 42 can bind the electron in the highly localiz
state of the energy lower than the energies of the core st
which is an unphysical result. On the contrary, the sho
range potential for Ge donor in GaAs fitted by us in order
get the correct value of pressure for the anticross
(g520.168 eV! leads to the negligibly small~0.002 meV!
central-cell correction for the weakly localized donor.

Because of these problems with receiving the reason
values of the central-cell corrections for donors in GaAs,
have to treatg as the adjustable parameter. Its value is tak
on from the measured value of pressure, at which the a
crossing appears for the Ge impurity. We have found that
anticrossing pressure is a nearly linear function of the par
eterg, i.e., the increase ofg by 0.1 eV leads to the growth o
this critical pressure by about 10 kbar. Nevertheless,
should realize that this parameter is connected with the
ergy of the strongly localized donor state. Therefore, wh
fitting g we compensate an eventual error in the param
D @Eq. ~24!#. The change ofD affects the average kineti
energy of the localized electron, which gives rise to the c
r-
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responding change of the average potential energy, i.e.,
rameterg. We have estimated that the increase ofD by 0.1
eV brings about the decrease ofg by 0.095 eV. The simul-
taneous change of both the parameters in such a way tha
value of the anticrossing pressure is fixed does not cha
the properties of the considered donor states.

The results shown in Fig. 4 provide an indirect proof o
possibility of using the one-element basis for the donor sta
of different localization, which is assumed in the Toyozaw
model31 of donor metastability. We see from Fig. 4 that, wi
an exception of the narrow region of anticrossing, the do
states are either weakly or strongly localized. Therefore, e
of them can be approximately described by the one func
of either weak or strong localization.

The anticrossing is closely connected with the metasta
ity of the donor states.33 The estimated phonon part@Eq.
~40!# of the transition probability allows us to discuss th
effect ~Fig. 5!. The total transition probability is dominate
by the phonon contribution, which changes it by many ord
of magnitude. Thus, in this discussion, we neglect the e
tronic contribution@Eq. ~35!#, since taking into account its
actual value would not change our conclusions. We h
calculated the lower and upper bounds on the phonon fa
of the transition probability for the donors in the two mat
rials: GaAs and CdF2. Having calculated the upper boun
we can answer the question if does the metastability oc
i.e., the transition probability is certainly less than this upp
bound. On the other hand, the calculated lower bound p
mits us to trace the disappearance of the metastability
Fig. 5, we see that the probability of radiative transitio
from the excited state increases~at least as quickly as its
lower bound! with the increasing separation between the e
ergy levels. As a result, the life time of the excited sta
becomes small and the metastability vanishes.

One can observe the considerable reduction of the tra
tion probability for CdF2, which results from the strong
electron-phonon coupling. This result allows us to expla
the observed3,4 metastability of the weakly localized excite
states of single donors. Moreover, in CdF2, the one-electron
donor states of the weak and strong localization can coe
which as well is in agreement with experiment.3,4 The two
upper curves in Fig. 5 correspond to GaAs, for which we
not expect any metastability for the one-electron don
states. However, the metastability is not excluded for
two-electron donor states~of D2 or DX type!. This sugges-
tion can be supported by the following argumentation: F
the two-electron states, we have to include the phonon in
action amplitude for each electron~i.e., twice! in the argu-
ment of exponential function in overlap~20!, which is the
multiplication factor in expression~40! for the transition
probability. This gives us the factor 4 in the exponent@Eq.
~20!# and, as a consequence, the transition probability for
two-electron donor state can be estimated as the fo
power of that value for the one-electron donor state. T
reduces the transition probability by many orders of mag
tude. We expect that taking into account the electro
electron interaction will enhance this effect. Therefore,
present mechanism of the metastability is not excluded
the two-electron donor centers in GaAs.

This mechanism provides an alternative explanation
the nature ofDX center in GaAs. Its essence is in agreem
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2204 55S. BEDNAREK AND J. ADAMOWSKI
with the Chadi-Chang model,10 since both the models tak
into account the large lattice distortion and two-electron
cupancy of the donor states. In our approach, the lattice
tortion is described with the help of phonons. On the co
trary to Toyozawa31 who assumes the continuum model
lattice deformation, the present work is based on the disc
description of the crystal lattice vibrations.

V. CONCLUSIONS

We have proposed a unified theory for the neutral do
states of different localization. The present treatment is ba
on the one-band approximation for the electron states
discrete description of the lattice vibrations. This approa
provides a realistic picture for the strongly localized don
states and goes over into the effective-mass approxima
for the weakly localized donor states. We have shown t
the states of the weak and strong localization can coexis
the same donor impurity. If the strongly localized state is
ground state of the system, there exist the excited sta
which possess the weak localization and shallow~hydrogen-
like! energy levels. The spectrum of these weakly localiz
states is nearly identical, if the strongly localized state
resonant with the conduction band. The donor states of b
the types exhibit very interesting properties if their ener
levels lie close to each other. Then, the extremely sharp
narrow anticrossing appears between the energy levels
nected with the states of the same symmetry. The result
the present paper for GaAs under high hydrostatic pres
allow us to explain the nature of the anomalous anticross
between the donor energy levels observed in this mate
This effect results from the different lattice deformatio
around the impurity center for the donor states of differ
localization. The main contribution to the lattice deformati
in GaAs results from the short-range electron-LA phon
coupling.

We have shown that there exists the close relations
between the anticrossing and metastability of donor sta
The metastability is also caused by the difference in the
tice deformation around the impurity center for the don
states of different localization and appears if the separa
of the energy levels belonging to the weakly and stron
localized donor states is small enough. We have estim
the phonon part of the transition probability from below a
from above which permits us to draw the conclusions on
appearance and disappearance of the metastable occu
of the donor states. We have shown that the metastab
disappears if the energy level of the strongly localized s
is located too low, i.e., the energy separation between
level and the shallow levels becomes considerably lar
than the LO phonon energy.

The eigenvalue problem for the electron-donor-phon
system has been solved by the variational means in
wave-vector space. We have developed the method, w
allows us to obtain the excited states being correctly ortho
nalized to all the states of lower energy, including the ma
phonon states. These many-phonon states have been
taken into account in the present estimates of the trans
probability.
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APPENDIX

The phonon factor@Eq. ~40!# of the transition probability
includes the contributions of both the LO and LA phonons
we consider the contribution of the LO phonons only, t
value of expression~40! can be evaluated analytically, whic
cannot be done for LA phonons. In the Appendix, we pres
the method of calculation of the lower and upper bounds
the transition probability~40!. We confine ourselves to th
LA phonons and omit the indexs of the phonon branch. We
introduce the following notation:

xq5ug1q2g0qu2, ~A1!

and

X5(
q
xq . ~A2!

Equation~40! can be written in the explicit form

Pph5~DE!21e2X(
N50

`
1

N! (
q1 . . .qN

)
j51

N

xqjDENQ~DEN!.

~A3!

In Sec. II, we have assumed that all the phonon quantities
isotropic, i.e., they depend on the wave-vector len
q5uqu only. So, in the Appendix, we use theq-dependent
quantities:v(q), x(q), etc. Therefore, theN-fold summation
over the Brillouin zone can be performed in order of t
decreasing wave-vector length, which for the LA phono
corresponds to the decreasing phonon energy. This m
the following replacement in Eq.~A3!:

1

N! (
q1 . . .qN

→ (
q1.•••.qN

. ~A4!

Simultaneously, each summation over the Brillouin zone
Eq. ~A3! is replaced by the integration over the Debye sph
of the radiusQ and the angle integration is performed, i.e

(
q
•••→

V

2p2E
0

Q

dqq2•••. ~A5!

In Eq. ~A3!, N is the number of LA phonons with total en
ergy belonging to the interval (E0 ,E1). Therefore,N can
take on arbitrary large values, which makes it impossible
perform theN-fold summation overq ~integration overq!. In
order to overcome this problem, we divide each Deb
sphere into M subintervals with the endpoints
qm5m(Q/M), wherem51, . . . ,M. Employing the mono-
tonicity of the LA phonon energy as a function ofq, we can
substitute into Eq.~A3! the corresponding values taken at t
upper or lower endpoints of these subintervals, which le
to lower or upper bounds onPph , respectively. If we take on
the phonon energies corresponding to the upper limits of
subintervals, we obtain the lower bound
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DEN
L5DE2(

j51

N

\v~qm j
!<DEN , ~A6!

which is a piecewise constant function ofq. For eachj, we
integrate overM subintervals ofq and introduce

Ym5
V

2p2E
qm21

qm
dqq2x~q!. ~A7!

This provides us with the following lower bound on th
probabilityPph :

PL5~DE!21e2X(
N50

N

(
m1.•••.mN

)
j51

N

Ym j
DEN

LQ~DEN
L !.

~A8!

In Eq. ~A8!, the sum overm1 runs from 1 toM and the sums
over the other indicesm j run from 1 tom j21. Since all the
terms of the sums in Eq.~A8! are positive, we can truncat
the summation for every finiteN. Therefore, for finiteN and
M, the following inequality is fulfilled:

PL<Pph . ~A9!

If N→` andM→`, thenPL→Pph .
In order to obtain the upper bound onPph , we proceed in

a similar way. However, we have to increase the terms in
right-hand side of Eq.~A3!. Now, we cannot truncate th
infinite series; therefore, we separate out the finite numbe
terms leaving the rest. The infinite sum over these rest te
can be performed, which gives the exponential function. A
result, we get the upper boundPU>Pph of the following
form:
us

ki,

at

,

ci

M
ol

k
on
e

of
s
a

PU5~DE!21e2XF (
N50

N

(
m1.•••.mN

)
j51

N

Ym j
DEN

UQ~DEN
U!

1 (
m1.•••.mN

)
j51

N

Ym j
eZnDEN

UQ~DEN
U!G , ~A10!

where

DEN
U5DE2(

j51

N

\v~qm j21!>DEN , ~A11!

and

Zn5(
j51

n

Ym j
, ~A12!

with n being determined by the two inequalities:n<mN11

and\v(qn)<DEN11
U . The first term in Eq.~A10! has the

form similar to that of the lower boundPL @cf. Eq.~A8!#; the
only difference is in the energetic argument. If the numb
M of divisions of the Debye sphere into the integration
tervals increases, both these terms, i.e.,PL and the first term
in the right-hand side of Eq.~A10! approach each other. Fo
sufficiently largeN, the second term in Eq.~A10! can be
reduced to a very small value. In the present calculations,
have obtained the closely lying lower and upper bounds
Pph for N.10 andM.12.
ev.
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