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Class of ansatz wave functions for one-dimensional spin systems and their relation
to the density matrix renormalization group
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~Received 28 June 1996; revised manuscript received 24 September 1996!

We investigate the density matrix renormalization group~DMRG! discovered by White and show that in the
case where the renormalization eventually converges to a fixed point the DMRG ground state can be simply
written as a matrix-product form. This ground state can also be rederived through a simple variational ansatz
making no reference to the DMRG construction. We also show how to construct the matrix-product states and
how to calculate their properties, including the excitation spectrum. This paper provides details of many results
announced earlier.@S0163-1829~97!04003-4#
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I. INTRODUCTION

After Wilson’s development of the renormalization grou
~RG! to solve the Kondo problem1 it was believed that RG
could be used for other problems as well. Kadanoff’s blo
ing technique combined with Wilson’s RG idea was appl
to problems like quantum lattice systems such as the H
bard and Heisenberg models but progress turned out to
surprisingly difficult. However, in 1992 White developed th
density matrix renormalization group2,3 ~DMRG! method,
which since then has had spectacular success in calcul
ground-state energies and other static properties of m
one-dimensional~1D! quantum systems. In this paper w
explore the nature and underlying principles of the DMRG
find out why the results of DMRG calculations are so
markably accurate. A summary of this work has been p
sented in an earlier paper,4 and the present paper provides
complete discussion and derivations of the results. For ba
ground information on the DMRG there are excellent artic
by White.2,3

In Sec. II we give a very brief summary of the DMRG.
Sec. III we show that if the DMRG algorithm converges to
fixed point, the DMRG ground state leads to a special an
form for the wave function, demonstrating the equivalence
the DMRG to a variational calculation. To make things mo
concrete we apply our ideas to the antiferromagnetic Heis
berg spin-1 chain with bilinear and biquadratic interactio
defined by

H5(
i51

n

Si•Si112b~Si•Si11!
2. ~1!

In Sec. IV we define a set of variational states using
special ansatz form of Sec. III. In Sec. V we extend t
ansatz to include a set of Bloch states that describe elem
tary excitations in both finite and infinite systems. These c
culations are rather lengthy and the details can be foun
Appendices. Section VI contains some numerical results
the spin-1 chain comparing our variational ansatz to m
involved calculations.

We would like to mention that all numerical work de
scribed here was programmed withMATHEMATICA running
550163-1829/97/55~4!/2164~18!/$10.00
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on an ordinary desktop workstation. Each calculation we
scribe here takes anywhere from a few seconds to a
minutes.

The behavior of the model in Eq.~1! as a function ofb
has been extensively studied.5–9 Depending on the ratio be
tween the bilinear and the biquadratic terms in the Ham
tonian, this model is believed to exhibit several differe
phases. See, e.g., Ref. 8 for a recent review of the ph
diagram.

In this paper we apply our methods to Eq.~1! with b in
the range21/3<b,1. It is believed that the model exhibit
a single phase in this range, usually called the Hald
phase. Atb50 we find the ordinary Heisenberg mode
which Haldane conjectured10 to have exponential decayin
correlations and a finite energy gap to the first excited st
This conjecture has been very well supported by numer
calculations.5,11,12 The model withb521/3 is the VBS
~valence-bond state! Hamiltonian with a unique ground stat
that can be constructed as an exact nearest-neighbor vale
bond state, as was shown by Afflecket al.13 The VBS
Hamiltonian has exponential decay of correlations and a
nite energy gap.

The valence-bond state is the exact ground state only
b521/3 but it is considered to give a reasonable picture
the ground state also for other values ofb in this phase. For
21/3<b,1 our model is thus believed to have a gap,
unique ground state, and exponentially decaying corre
tions.

The ground state in the Haldane phase is not ordere
the usual antiferromagnetic sense. It has, however, b
conjectured14 that there is a hidden topological long-rang
order. This conjecture has been supported by numer
calculations.5

From the valence-bond caricature of the ground state
the Haldane phase, there should be spin-1/2 degrees of
dom at each end of an open spin-1 chain. That these spin
edge states exist in theb521/3 model is clear from the
construction of the exact ground state.13 For the ordinary
Heisenberg model withb50, numerical calculations suppo
the spin-1/2 edge states and thus the valence-bond pictu15

At the pointb51 the model is exactly solvable using th
Bethe ansatz. The spectrum was calculated by Takhtajan
2164 © 1997 The American Physical Society
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55 2165CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE- . . .
Babujian16 and is gapless with power-law decay of corre
tions. From field theory arguments17 it is suggested that the
gap opens up on both sides of the pointb51 and that it
vanishes only at the pointb51. The numerical evidence fo
the opening of the gap is, however, inconclusive.7,8

II. DENSITY MATRIX RENORMALIZATION GROUP
„DMRG …

Since the DMRG was discovered by White2 in 1992 it has
had great success in describing 1D interacting quan
systems.3,5,11,18 Ground-state and excited-state propert
have been calculated to high accuracy with modest com
tational effort. With hindsight, it will be seen that the ide
of this paper do not logically depend on the DMRG, but th
were inspired by the DMRG and we will therefore begin th
section by summarizing some aspects of the DMRG.

In a renormalization scheme such as the DMRG one ty
cally starts with a very short 1D chain and then lets
length increase by iteratively adding a single site. After ea
new site, an approximate Hamiltonian is constructed. Thi
done by keeping only a small subspace of the Hilbert sp
to keep the Hilbert space at a manageable size as one le
chain grow. The central idea in DMRG is to keep the ‘‘mo
probable’’ states when truncating the basis in contrast to
usual old-fashioned real-space RG methods~see, e.g., Ref. 3
and references therein! where the lowest-energy eigenstat
are kept. The way to achieve this is to split a complete s
tem ~‘‘universe’’! into two parts, a ‘‘subsystem’’ and a
‘‘environment,’’ and then to construct the reduced dens
matrix for the ‘‘subsystem’’ as part of the ‘‘universe.’’ Th
state of the ‘‘subsystem’’ is then given by a linear combin
tion of the eigenstates of the density matrix with weigh
given by the eigenvalues.

The renormalization starts with a short 1D lattice with ju
a few sites. Label this systemHB . A renormalization step of
the DMRG can be described by the following algorithm:~1!
Construct the Hamiltonian for the universe,HS5HB

1H11H1
R1HB

R , whereHB comes from the previous itera
tion andH1 is a new site added. The superscriptR denotes a
second block that is reflected before joined to the other pa
The blockHB1H1 now is our ‘‘subsystem’’ andH1

R1HB
R

our ‘‘environment.’’ The Hamiltonian matrixHS for the uni-
verse is constructed with tensor products involving the
trablock partsHB andH1 and the interactions between th
blocks.~2! DiagonalizeHS to obtain the ground stateuC& of
the universe. This state is called the target state.~3! Con-
struct the reduced density matrixr i ,i 85( jC i , jC i 8, j

* , where
uC&5( i , jC i , j u i & ^ u j & and u i &,u j & are basis states of the su
system and the environment, respectively. The eigenstate
r with the highest eigenvalues correspond to the most p
able states of the subsystem when the universe is in the
uC&. ~4! Now choose them states of the diagonalized densi
matrix with highest eigenvalues to form a new reduced ba
for the blockHB1H1 . Project the Hamiltonian and othe
operators onto this basis byHB85A(HB11)A

†, whereA is
the projection operator one constructs from the kept eig
states of the density matrix from step~3! andHB11 is the
Hamiltonian matrix for the subsystem. If the single s
added hasms states in its basis,A is represented by a
m3(m*ms) matrix andHB11 by a (m*ms)3(m*ms) ma-
-
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trix. ~5! RenameHB8 to HB . This completes an iteration.

III. THE MATRIX-PRODUCT STATE

To begin the renormalization procedure one starts wit
block consisting of a short lattice whose basis states can
calculated exactly. When the renormalization proceeds
the chain described by the block gets longer we do not
the full set of basis states for describing the block but have
discard some part of the Hilbert space in each renormal
tion step.

Assume we have a block that represents a chain w
n21 sites. Letms be the number of possible states of
single lattice site. If we would treat this system exactly the
would bems

n21 states in the Hilbert space basis for this sy
tem. In the case of a spin-1 chain, we could label the
with the z component of the single spin-1, so thatms53.
The number of states in this complete basis rapidly beco
too large to handle whenn is increased. Assume therefor
that an approximation is made and our chain is represe
by a smaller set of states labeled by$ub&n21%. This set of
states has been chosen by the previous iterations of the re
malization with the aim to describe the low-energy physi
Assume there arem states in this basis, wherem<ms

n21 . If
this is the first iteration,$ub&n21% is the complete basis.

We now add a single site, labeled bysn , thez component
of spin, to the left-hand side of our block resulting in a ne
block with n sites andms3m states in its basis. The bas
states are now generated by the product representa
$usn& ^ ub&n21%. We now use a projection operatorAn to gen-
erate a new truncated basis with typicallym states that rep-
resent the ‘‘important’’ states of the longer block. Th
whole process is written as

ua&n5(
b,sn

An
a,~b,sn!usn& ^ ub&n21 , ~2!

where we have indexedA by the chain lengthn and its
matrix indicesa and (b,sn). Note that (b,sn) is thought of
as a single index labeling a tensor product of the statesusn&
and ub&n21.

In the DMRG, a specific algorithm is used to calcula
A, but this is not important in the present discussion. W
now make two crucial observations.~1! First we perform a
simple change in notation:An

a,b@sn#[An
a,(b,sn) , thus writing

the m3(ms*m) matrix as a set ofms m3m matrices.~2!
Second, we assume that the recursion leads to a fixed p
for the projection operator so that we can wri
An@s#→A@s#, asn→`. By recursively applying the renor
malization step in Eq.~2! we now find that

ua&n5 (
sn•••s1 ,b

~A@sn#A@sn21#•••A@s1# !a,busnsn21•••s1&

^ ub&0 , ~3!

whereub&0 represents some state far away fromn. We thus
see that the renormalization procedure results in a w
function that can be written in a matrix-product form. Equ
tion ~3! now suggests a natural form for the wave functi
with the following ansatz.
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FIG. 1. The gapDp to the lowest triplet exci-
tation at momentumk5p as a function ofb is
shown.
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For everym3m matrixQ, we define the~unnormalized!
stateuQ)n :

uQ)n[(
$s%

tr~QA@sn#•••A@s1# !usn•••s1&. ~4!

Thus uQ)n can be viewed as a state that is uniform in t
bulk, but with a linear combination of boundary conditio
defined by ua&n on the left andub&0 on the right.15 The
special case ofQ51, the identity matrix, leads to a state wit
periodic boundary conditions. ThisQ51 state we will later
on use as our trial ground state.

If we now demand that the projection of Eq.~2! preserves
orthonormal bases,^aua8&5da,a8, we can use the recursio
formula Eq.~2! and the orthogonality of the local spin stat
and previous block states to find

da,a85 (
b,b8,s,s8

~Aa8,b8@s8# !*Aa,b@s#^s8us&^b8ub&

5(
s

~A@s#A†@s# !a,a8. ~5!

Hence in matrix form we have(sA@s#A†@s#51. This con-
straint will be used later to reduce the number of free para
eters inA.

We now analyze the projection matrixA. The Hamil-
tonian of Eq.~1! is spin rotationally invariant since it com
mutes with all three components of the total sp
Stot5( iSi . In order that the projection in each step preser
this symmetry, our basis states of a block must form a r
resentation of total spin. Since we keep basis states
many different values of total spin as well as many sta
with the same total spin in each iteration, all the basis sta
together must form a sum of irreducible representations
total spin. Adding a spin one does not mix even or half-o
spin representations, thus the basis states must form a su
either all half-odd or all integer spin representations. M
naturally for the spin-1 chain one would work with integ
spin representations, but by placing a single spin-1/2 on
right-hand side of the entire chain one could use half-inte
spin representations to represent the blocks instead. Th
consistent with the existence of a spin-1/2 edge state15,13and
-
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we have found that working with half-odd integer represe
tations give far better numerical results.

We now discuss how the projection operatorA can be
constructed. In our numerical work, we have kept 12 ba
states in each iteration and we have used the half-odd
representations. By doing a DMRG calculation on the spi
chain we have found that when approximately 12 states
kept the blocks are represented by a sum of two spin-1/2
two spin 3/2 irreducible representations. Since there are
sets of each representations, we have to introduce a
label,g, to distinguish them. The ‘‘old’’ representations re
resenting the old block we have uniquely labeled by ordi
numberg, with the corresponding total spinj . ~See Fig. 1 in
Ref. 4 for a helpful illustration.! Implicit in the labeling of
the states is thez component of total spinm. These are thus
the 12 ‘‘old’’ states ug,m& that fall into the four different
irreducible representations of total spin.

After adding a single site and then truncating the Hilb
space we get the ‘‘new’’ basis states similarly labeled
g8 and their corresponding total spinj 8. These will thus be
the 12 basis statesug8,m8& that represent the new block wit
one more site.

Let us now examine what happens in our example wh
going from the oldg to the newg8. When adding a single
spin-1 to the old block of 12 states we get 36 ‘‘intermediat
states in the product representation of the old block sta
with a spin 1. These states fall into 10 irreducible repres
tations labeled by their total spinj 9. We then project from
these 10 representations back down to the four represe
tions that we have chosen to keep. This projection must p
serve the total spin symmetry; i.e., it cannot mix differe
j 9 and cannot depend on totalm9. We thus get only a few
nonzero projection terms. Since there is exactly one ‘‘int
mediate’’ spin-1/2 and one spin-3/2 for each of the fo
‘‘old’’ representationsg there is one projection term from
each of the ‘‘old’’g to each of the ‘‘new’’g8. There are thus
16 nonzero projection terms, which we denote byPg8,g.
These projection terms are in fact not independent, but
related by the requirement that the new states are ortho
mal. ThePg8,g are indicated by lines in Fig. 1 in Ref. 4.

Expressing all this mathematically, we let, as aboveg
uniquely label a representation of total spin of a block a
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j (g) denote the value of total spin of that representati
Each state is thus labeled byug,m& wherem is thez com-
ponent of total spin. The single spin to be added is labeled
us&, wheres is thez component of the spin 1. The new stat
are thus given by

ug8,m8&5(
g

Pg8,gug, j ~g8!,m8&, ~6!

where ug, j (g8),m8& denotes the 36 intermediate stat
formed by us& ^ ug,m& written in the total spin basis. Sinc
we demand that the projection preserves totalj andm, these
states can be explicitly constructed using the Clebs
Gordan coefficients on the form̂( j 1 ,m1)( j 2 ,m2)u j ,m& as

ug8, j ~g8!,m8&5(
m,s

^„j ~g!,m…~1,s!u j ~g8!,m8&~ us& ^ ug&).

Inserting this into Eq.~6! we find that

ug8,m8&5 (
s,~g,m!

A~g8,m8!,~g,m!@s#~ us& ^ ug,m&),

where

A~g8,m8!,~g,m!@s#5Pg8,g^„j ~g!,m…~1,s!u j ~g8!,m8&.

Thus, although the projection matricesA contain a total of
3312312 numbers, they are in fact generated by the re
tively few degrees of freedom available inPg8,g.

For this case with 12 basis states there are naively
parameters inPg8,g. Demanding normalization of all basi
states,^g1 ,m1ug2 ,m2&5dg1 ,g2

dm1 ,m2
, yields the condition

that the diagonal elements ofPTP are all 1, where the su
perscriptT denotes transpose. This gives four constrain
@cf. Eq.~5!#. Then the basis states of the two spin 1/2 and
two spin 3/2 must be orthogonal, yielding the conditi
(PTP)g1 ,g250, wheneverj (g1)5 j (g2) with g1Þg2. This
gives two more constraints. The spin-1/2 basis states are
tomatically orthogonal to the spin-3/2 states. Finally, a u
tary transformation can mix the two spin-1/2 and likewi
the two spin-3/2 states. Without loss of generality we can
this freedom, yielding two more constraints. We thus end
with only eight free parameters19 in Pg8,g. In the simpler
case of saving only six basis states, only two free parame
are available by similar arguments.

With only a few free parameters we can use a variatio
principle for the energy to determine these. At this point it
clear that the DMRG plays no essential role in the constr
tion aside from providing a guide to which representations
keep. Even this choice could be done variationally.

IV. THE SET OF STATES zQ…

A. The ground-state ansatz

To do the variational calculation we need an express
for the energy. As an ansatz for the ground-state wave fu
tion we take the translationally invariant stateQ51 from Eq.
~4!, which we denote byu1&. Thus
.
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n
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u1&[(
$sj %

tr~A@sn#•••A@s1# !usn•••s1&. ~7!

Note that although it is not explicitly written out,u1& has a
definite number of lattice sitesn. We note that̂ 1u1&51 due
to Eq. ~5!. For the Affleck-Kennedy-Lieb-Tasaki~AKLT !
model13 (b521/3) our ground-state ansatz is exact as
the matrix-product states of Refs. 20–22.

The expectation value of an operatorh, e.g., energy or
correlation function, in this state is given by

^1uhu1&5 (
$sj %,$sj8%

tr~A* @sn8#•••A* @s18# ! tr~A@sn#•••A@s1# !

3^sn8•••s18uhusn•••s1&. ~8!

To write this expression in a simpler form we define t
tensor product matrix (B^C) by (B^C)(a,b),(t,n)

5Ba,tCb,n. We will in the rest of this paper interchangeab
use ordinary matrix indicesa,b and composite indices
(a,b), where composite indices are written with parenthe
around them. This means that we can write anm3m ‘‘ma-
trix’’ A as either a matrixAa,b or as anm2 vectorA(a,b).
When the indices are not explicitly written out, the matrix
vector character of the symbol is assumed to be clear f
the context. We now use the trace and matrix-prod
identities tr(B) tr(C)5 tr(B^C) and (BCD)^ (EFG)
5(B^E)(C^F)(D^G) to find

^1uhu1&5 (
$sj %,$sj8%

tr$~A* @sn8# ^A@sn# !•••~A* @s18# ^A@s1# !%

3^sn8•••s18uhusn•••s1&. ~9!

To write this in a more compact form we define a ma

ping M̂ from 333 spin matricesM to m23m2 matricesM̂
by

M̂[(
s8,s

Ms8,s~A* @s8# ^A@s# !. ~10!

We denote byS[(Sx,Sy,Sz) the spin-1 representation of to
tal spin and thus byŜ[(Ŝx,Ŝy,Ŝz) the ‘‘hat’’ mapping of the

333 spin matricesS. By 1̂ we denote the ‘‘hat’’ mapping of
the 333 identity matrix. We now see from Eq.~9! that the
norm and the expectation value of the spin at the sitej is
given by

^1u1&5 tr~ 1̂n!,

^1uSj u1&5 tr~ 1̂n21Ŝ!,

where in the last equation we have used the cyclicity of
trace. Other expectation values are also easily obtain
Since we can factorize matrix elements such as

^sj8 ,si8uSi•Sj usj ,si&[~Si•Sj !s
j8 ,si8 ,sj ,si

5~S!s
i8 ,si

•~S!s
j8 ,sj

,

we find that expectation values of energy and spin-spin c
relation function are given by



at
o
F

in
ly
i
n-
u

e
t
u

th

lu
lu

c-
th

at
ex
w
at

ec

s.
on
he
th

ed

rity

ffi-

q.

x

ra-
op-

in the

nsor

2168 55STEFAN ROMMER AND STELLAN ÖSTLUND
^1uSj•Sj11u1&5 tr~ 1̂n22ŜŜ!,

^1uSj•Sj1 l u1&5 tr~ 1̂n2 l21Ŝ1̂l21Ŝ!. ~11!

Similar formulas have also been derived by Fanneset al.21

A more complicated operator, such as the biquadr
term (Si•Sj )

2, does not factorize as neatly and we cann
write the expectation value in as a nice form as above.
these cases we have to replace the termŜ1̂l21Ŝ inside the
trace in Eq.~11! by the more complicated expression

(
sj8 ,si8 ,sj ,si

^sj8 ,si8u~Si•Sj !
2usj ,si&~A@si8# ^A@si # !1̂l21

3~A@sj8# ^A@sj # !. ~12!

In order not to make the equations unreadable by crowd
them with indices we will in the rest of this section on
present formulas for the ordinary bilinear Heisenberg Ham
tonian@b50 in Eq. ~1!#. An interested reader can then ge
eralize the formulas to include the biquadratic term, witho
any fundamental difficulties.

An important quantity is the string correlation function14

defined by

g~ l !5K S0zS )
j51

l21

eipSj
zDSlzL . ~13!

Although the spin-1 chain does not have long-range N´el
order, it is believed to have a hidden long-range order tha
characterized by the string correlation function. In o
ground stateu1& it is easy to show that it is given by

g~ l !5 tr@ 1̂n2 l21Ŝz(eipSẑ) l21Ŝz].

We note that the spectrum of correlation lengths, i.e.,
collection of all possible exponential decay lengthsj of cor-
relation functions of the form̂O1(x)O2(y)&}e

2ux2yu/j, is
determined by the eigenvalues of 1ˆ. One can show that 1ˆ is
guaranteed to have an eigenvalue of 1 due to Eq.~5!, and
numerically we find that all other eigenvalues have abso
value less than 1. It is, however, not true that the eigenva
1 will always dominate. If each of the rows ofÔ1 or each of
the columns ofÔ2 is orthogonal to this particular eigenve
tor, another eigenvalue will determine the correlation leng
Thus, the correlation lengthj is given by

j52
1

lnx
, ~14!

wherex is the largest eigenvalue of 1ˆ not orthogonal to the
operator. Since the rows and columns of the spin oper
Ŝ turn out to be orthogonal to the eigenvalue 1 while the n
leading eigenvalue is not, the next largest eigenvalue
determine the decay of spin correlations. The string oper

eipSj
z
of Eq. ~13! turns out to have the same eigenvalue sp

trum as 1ˆ. This time, however, the eigenvalue 1 of 1ˆ is not

orthogonal toeipSẑ, giving the long-range string correlation
A possible problem with the construction of the projecti

operator is that parity is not built into the construction of t
ground state since the projectors operate from the left to
ic
t
or

g
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t
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e
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e
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or
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e

right. There is therefore the possibility that parity is violat
in the ground stateu1&. We now investigate this possibility
and show how parity is maintained.

Let P be the parity operator. We thus have

Pu1&5(
$sj %

tr~A@sn#•••A@s1# !Pusn•••s1&

5(
$sj %

tr~A@sn#•••A@s1# !us1•••sn&.

Suppose now that there exists an invertiblem3m matrix
QP such that

QPA@s#5sgn@P#~A@s# !TQP , ~15!

whereAT denotes transpose and sgn@P# is a proportionality
constant that will be seen to be the eigenvalue of the pa
operator. Then it follows that

Pu1&5(
$sj %

tr~QP
21QPA@sn#•••A@s1# !us1•••sn&

5sgn@P#n(
$sj %

tr~AT@sn#•••A
T@s1# !us1•••sn&

5sgn@P#n(
$sj %

tr~A@s1#•••A@sn# !us1•••sn&

5sgn@P#nu1&.

Thus, for the ground state to have definite parity, it is su
cient that such aQP exists. How do we find this matrix, if it
exists? We multiply both sides of the defining relation E
~15! by A†@s# and sum overs. Using Eq.~5! we find that

QP
a,b5sgn@P#(

s
~AT@s# !a,tQP

t,n~AT@s# !n,b

5sgn@P#S (
s

~AT@s# !a,tAb,n@s# DQPt,n
5sgn@P#(

s
~AT@s# ^A@s# !~a,b!,~t,n!QP

t,n .

Thus, QP , if it exists, is the eigenvector of the matri
(s(A

T@s# ^A@s#) with eigenvalue61. It is straightforward
to numerically obtain the eigenvalue spectrum of this ope
tor, and in the cases that we have looked at, this parity
erator exists.

B. The general statezQ…

We now analyze the set of statesuQ)n , for generalQ.
These states can be interpreted as states homogeneous
bulk but with nonuniformity near the boundary.

To calculate the norm we use the same trace and te
product identities as when deriving Eq.~9!. We find that
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~Q8uQ!n5(
$sj %

tr$~Q8!*A* @sn#•••A* @s1#%

3 tr~QA@sn#•••A@s1# !5 tr@~Q8* ^Q!1̂n#.

~16!

We can rewrite this trace as ordinary matrix products. To
this we first define the generalized transposeMTp1 ,p2 ,p3 ,p4 of
a matrixM by

~MTp1 ,p2 ,p3 ,p4!~a1 ,a2!,~a3 ,a4!5M ~ap1
,ap2

!,~ap3
,ap4

!, ~17!

where$p1 ,p2 ,p3 ,p4% is a permutation of$1,2,3,4%. We also
define a tilde operatorM̃ by the formula

tr@~Q8^Q!M #5 (
a8,b8,a,b

~Q8!a8,b8~M̃ !~a8,b8!,~a,b!Qa,b,

~18!

so that the tilde operator effectively generates the matrix c
responding to the inner product ofQ8 andQ with M . One
finds by writing out Eq.~18! in components that

M̃5MT3142.

Hence

„~Q8!a8,b8uQa,b
…n5Q8~a8,b8!G~n!~a8,b8!,~a,b!Q~a,b!,

~19!

with

G~n!5~ 1̂̃ n!. ~20!

The nice thing about Eqs.~19! and ~20! is that we have
effectively turned the computation of the trace in Eq.~16! for
all Q andQ8 into a matrix inner product betweenQ, Q8 and
a singlem23m2 matrixG, independent ofQ andQ8. Note
that on the right side in Eq.~19! we write Q and Q8 as
vectors of lengthm2.

Similarly we can compute the expectation value of t
Heisenberg Hamiltonian defined in Eq.~1! with b50 as

~Q8uHopuQ!n5 (
i50

n22

tr@~Q8^Q!1̂i ŜŜ1̂n222 i #, ~21!

where Ŝ denotes the hat mapping in Eq.~10! of the spin-1
matrices. Thez component of total spin (ST

z)op5( iSi
z is

given by

~Q8u~ST
z !opuQ!n5 (

i50

n21

tr@~Q8^Q!1̂i Ŝz1̂n212 i #. ~22!

If we have a more complicated Hamiltonian, like Eq.~1!
with bÞ0, the Hamiltonian matricesŜŜ in Eq. ~21! must be
replaced by an expression similar to Eq.~12!. As we did with
the norm in Eq.~19! we can rewrite Eqs.~21! and ~22! as
matrix-products by putting the summations inside the tra
and by using the tilde transformation of Eq.~18!, yielding

~Q8uHopuQ!n5Q8H~n!Q, ~23!

~Q8u~ST
z !opuQ!n5Q8ST

z~n!Q, ~24!
o

r-

s

where

H~n!5 (
i50

n22̃

~ 1̂i ŜŜ1̂n222 i !, ~25!

ST
z~n!5 (

i50

n21̃

~ 1̂i Ŝz1̂n222 i !, ~26!

where the tilde symbols indicate that the transformation
Eq. ~18! should be performed on the whole sum.

In Eq. ~19! we determined the expression (Q8uQ)n
5Q8G(n)Q for the inner product of the statesuQ)n and in
Eq. ~23! we found (Q8uHopuQ)5Q8H(n)Q. SinceG turns
out not to be proportional to the identity matrix, we see th
the naive basis states, i.e., the states (Qi , j )

a,b[d i ,ad j ,b ,
with i51,...,m and j51,...,m, are not orthonormal. It is no
only convenient to have an orthonormal set of states, we
want them to be eigenstates of the Hamiltonian. The ene
of the stateuQ)n defined by them3m matrixQ is given by

EQ~n!5
QH~n!Q

QG~n!Q
. ~27!

The eigenvalue equation we have to solve is thus

H~n!Q5EQG~n!Q. ~28!

We will now construct a set of states that are orthonorm
and satisfy Eq.~28!. SinceG is Hermitian we can define a
unitary matrixV by the transformation that diagonalizesG:

V†GV5DG , ~29!

whereDG is a diagonal matrix. We now define

u5V~DG!21/2

so thatu†Gu51, the identity matrix. We also define

h5u†Hu, ~30!

sz5u†ST
zu, ~31!

with H andST
z from Eq. ~25! and Eq.~26!. It can be verified

that @h,sz#50 so that both total spin and the energy can
diagonalized simultaneously. Numerically we diagonal
h1esz where e is a small number, so tha
w†(h1esz)w5E1esz is diagonal and we find that bothh
andsz are thereby diagonalized by

w†hw5E, ~32!

w†szw5mz , ~33!

with w†w51 and whereE and mz are diagonal matrices
containing the energy eigenvalues and the eigenvalue
total spin, respectively. Putting Eqs.~30! and ~31! into Eqs.
~32! and ~33! we see that
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(
a,b

@~uw!†#g8,aHa,b~uw!b,g5Egdg8,g , ~34!

(
a,b

@~uw!†#g8,aGa,b~uw!b,g5dg8,g , ~35!

wherea, b, g, andg8 are matrix indices. Thus, the column
of (uw) contain the orthonormal eigenvectors ofH(n) and
ST
z(n). Combining Eqs.~34! and ~35! we find

(
b

Ha,b~uw!b,g5EgGa,b~uw!b,g .

Hence the matrices

~Qg!a,b5~uw!~a,b!,g , ~36!

whereQg arem2 m3m matrices, are orthogonal with re
spect toG and are simultaneous eigenstates ofH andST

z .
We therefore define the orthonormal set of statesug& we
were looking for by

ug&[uQg).

To summarize, we finally have

^g8uHopug&5Egdg8,g ,

^g8u~ST
z !opug&5~mz!gdg8,g ,

^g8ug&5dg8,g .

The statesug& form a natural basis for describing edge sta
in finite-size calculations, a feature that is not further e
plored in this paper. Nevertheless, we will benefit from t
derivation in the next section were a set of Bloch states
defined in a similar manner.

V. BLOCH STATES

We now leave the orthonormal boundary statesuQg) and
impose periodic boundary conditions on the Hamiltonian
Eq. ~1!. We return to the statesuQ)n as defined in Eq.~4!,
whereQ is a generalm3mmatrix, to make an ansatz for th
low-lying excited states. For a translationally invariant sy
tem we can define our states to be Bloch states. A reason
ansatz for a Bloch stateuQ,k)n defined by a matrixQ and a
momentumk is given by

uQ,k)n[(
$sj %

(
j51

n

ei jk tr~A@sn#•••A@sj11#QA@sj #•••A@s1# !

3usn•••s1&. ~37!

This wave function can be viewed as the ground stateu1&
with a disturbanceQ introduced at some site, and then lettin
the disturbance run over all sites to form a state with a d
nite momentum. In this way we get a single ‘‘particle’’ ex
citation.

As was done for the boundary states in Sec. IV we n
derive expressions for expectation values of operators in
statesuQ,k)n . The calculations are more tedious and w
have therefore put the details in Appendixes A–D. The
s
-

re

-
ble

-

e

-

sulting expressions are in principle similar to the ones
obtained for the boundary states, e.g., Eq.~21!. For the norm
we find

~Q8,kuQ,k!5n trS ~Q8^ 1! (
j50

n21

ei jk 1̂n2 j~1^Q!1̂j D ,
~38!

with a similar, but more complicated, expression for t
Hamiltonian and for thez component of total spin. The re
sults can be found in Eqs.~A10! and~A21!. We see that the
general structure of all these matrix elements is that t
consist of traces with a convolution sum over matrix pro
ucts inside each trace. For finite length chains, the sum
these expressions as well as those in Eqs.~21! and ~22! can
be expediently calculated by a recursive scheme for the c
when n is a power of two. These recursive formulas a
derived in Appendix B.

One can also calculate the norm and Hamiltonian ma
ces,G(k,n) andH(k,n), defined through the formulas

~Q8,kuHopuQ,k!n5nQ8H~k,n!Q, ~39!

~Q8,kuQ,k!n5nQ8G~k,n!Q, ~40!

similar to H(n) and G(n) in Eqs. ~19! and ~23! for the
boundary states. This time they will, however, depend ok
as well as onn. A matrix ST

z(k,n) representing thez com-
ponent of total spin can be defined analogously. The p
ciples for calculating these matrices are the same as for
boundary states, i.e., one uses the tilde transformation of
~18!. Due to the number of terms in the expression for t
expectation values it is numerically cumbersome for fin
length chains.

There is, however, an elegant way to extract the lead
behavior ofH(k,n) and G(k,n) as n→`. The details of
these calculations can be found in Appendices C and D
this section we will only give a brief summary of the metho
and the results. Let us first define thez transform~sometimes
called a discrete Laplace transform! of a series$an%n50

` by
F(l)5(n50

` ane
2nl. Let us now denote the sum inside th

trace in Eq.~38! by Sn , so that

Sn5 (
j50

n21

ei jk 1̂n2 j~1^Q!1̂j .

We now define a series$Sn%n50
` , and take thez transform of

this sequence. By examining the analytical structure of
transformed series we are able to extract the leading beha
of the sumSn , asn→`. In this way we get the asymptoti
form of the norm in the limit of largen. This procedure is
then applied to all sums in the expressions for the ma
elements. In Appendix C, thez transform of a general sum i
taken and its large-n behavior is extracted. In Appendix D
we apply the results of Appendix C to the expressions for
expectation values derived in Appendix A. This whole pr
cedure finally results in the asymptotic forms

H~k,n!5n2H2~k!1nH1~k!1H0~k!1O~z!n, ~41!

G~k,n!5nG1~k!1G0~k!1O~z!n, ~42!
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with H(k,n) andG(k,n) as defined in Eqs.~39! and ~40!.
Here z represents the next leading eigenvalue of 1ˆ and we
find numerically thatuzu'0.8. There are thus very small co
rections to the asymptotic form. We also find thatH2 and
G1 are nonvanishing only when the momentumk is zero.
The eigenvalue equation that must be solved is

H~k,n!Q~k,n!5E~k,n!G~k,n!Q~k,n!,

whereQ(k,n) is anm2-dimensional vector. ForkÞ0 we
thus have

@nH1~k!1H0~k!#Q~k,n!5@nE01Dk~n!#G0~k!Q~k,n!,
~43!

whereE0 is the ground-state energy per site andDk(n) is the
excitation energy.E0 denotes the ground-state energy p
site in the limit n→`, and is therefore independent ofn.
Since we are interested in the solutions to Eq.~43! when
n→` we assumeQ andDk to be independent ofn and we
thus need to solve the simultaneous equations

H1~k!Q~k!5E0G0~k!Q~k!, ~44!

H0~k!Q~k!5DkG0~k!Q~k!. ~45!

Solving Eq.~45! yields a set of eigenstatesQ(k) and eigen-
valuesDk for eachk. These eigenstates have to be simul
neous eigenstates to Eq.~44! with the k-independent eigen
valueE0. This is in general impossible, unlessH1}G0, as
indeed happens. We thus recoverE0 by the proportionality
constant

H1~k!5E0G0~k!.

The excitation spectrum is then given by the single eig
value equation

H0~k!Q~k!5DkG0~k!Q~k!. ~46!

Similar formulas can be obtained fork50. Note that Eq.
~46! is an eigenvalue equation for the excitation spectr
that makes no explicit reference to a ground state. T
ground state enters, however, implicitly in the parameter
A@s# on whichH(k,n) andG(k,n) depends.

An asymptotic form for thez component of total spin
ST
z(k,n), similar to the form forH(k,n), containing terms up
to ordern2 is also derived in Appendix D. Numerically w
find however, that the only nonvanishing term inST

z(k,n),
for any momentumk, is the constant termS0

z(k).
How do we find the orthonormal set of statesQ(k) for a

particulark from the eigenstate equation in Eq.~46!? We can
in principle take over the discussion of the boundary sta
uQ) from Sec. IV. The only slight problem that enters here
that G0(k) is singular forkÞ0, that is, the null space o
G0(k) is nonvanishing. In order to find the inverse
G0(k) the null space must be excluded from the Hilb
space. We do this numerically using singular value deco
position. Once this has been done we can simply take o
Eqs. ~29!–~36!. In this case we identifyH0(k) with H,
G0(k) with G, andDk with E. We diagonalizeG0(k) with
Vk so that Vk

†G0(k)Vk5DG(k) is diagonal and define
uk5Vk@DG(k)#

21/2. Then we diagonalizehk1esk
z where
r

-

-

e
in

s

t
-
er

hk5uk
†H0(k)uk and sk

z5uk
†S0

z(k)uk so that wk
†(hk

1esk
z)wk5Dk1emk

z is diagonal. We then find

H0~k!Qg~k!5Dk,gG0~k!Qg~k!,

where

@Qg~k!#a,b[~ukwk!~a,b!,g

arem3m matrices labeled byg, orthogonal with respect to
G0(k) and simultaneous eigenstates ofH0(k) and S0(k).
There are less thanm2 eigenvectorsQg(k) for kÞ0 due to
the nonvanishing null space ofG0(k). However, probably
only a few of the lowest-lying energy eigenstatesQg(k) are
reasonable estimates of true excited states. Finally, we
write for the orthonormalized statesug,k&, defined by the
matricesQg(k):

ug,k&[uQg~k!,k). ~47!

Because states with different values ofk are guaranteed to b
orthogonal, we find

^g8,k8ug,k&5dg8,gdk8,k .

These represent our ‘‘single magnon’’ states. In the next s
tion we numerically determine these states along with th
energy and spin expectation values.

VI. RESULTS

We have tested the calculations on the spin-1 Heisenb
chain defined in Eq.~1!. All computations are done with
m512, i.e., keeping the 12 states as discussed in Sec.
The resultant eight-parameter family of trial ground sta
@Eq. ~7!# was explored. The projection matricesA@s# defin-
ing the ground state were computed by minimizing the
ergy of the trial ground state. The projection matrices o
tained by this variational technique were found to agree up
numerical accuracy with the projection operator obtain
from similar DMRG calculations. The result for the lowes
energy state for someb is found in Table I. The best resu
known to us forb50 comes from DMRG calculations in
Ref. 5. The exact result at the AKLT poin
b52arctan(1/3) can be found in Ref. 13. Theb51 system
was exactly solved using the Bethe ansatz in Ref. 16.
parity operator of Eq.~15! has been computed in all case
and it is found that the ground state has parity (21)n, where
n is the number of sites. For the string order parameter of
~13! we find g(`)520.3759, whereas best estimates a5

g(`)520.374 325 096(2). We find thenext leading eigen-
value of 1̂ to be 20.777, giving an asymptotic spin-spi
correlation length from Eq.~14! of l53.963, compared to
best estimates5 of l56.03(1). We believe that the severe

TABLE I. Ground-state energy per site.

b E0 Exact Best numerical

2
1
3 20.666 666 67 2

3

0 21.401 38 21.401 484 038 971(4)
0.6 22.9184
1.0 23.98455 24
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2172 55STEFAN ROMMER AND STELLAN ÖSTLUND
truncation of our basis to only 12 states has resulted in
asymptotic correlations being quite poor, although we h
verified that intermediate length spin-spin correlations
consistent with more precise calculations.18

An important issue is whether or not Eq.~37! is a good
ansatz form for the excitations. We have computed the
ymptotic forms whenn→` for the Hamiltonian and norm
matrices defined in Eqs.~39! and~40! as well as for the tota
spin matrix for differentb and momentak. The orthonormal
eigenstates of Eq.~47! are also determined, giving the sing
magnon excitations of our model. The energy andz compo-
nent of total spin for each eigenstate are also determine
particularly interesting point isb50, the pure Heisenberg
model, which has been the subject of much numerical eff
We find the single-particle spectrum shown in Fig. 2 in R
4. The low-lying triplet branch defines the gapDp

50.4094, which is very good compared to the most ac
rately known result5,11,12 of 0.410 502(1). Furthermore, we
compute the spin wave velocityv52.452 to be compared to
the calculations in Ref. 11, wherev52.49(1) was obtained
Clearly we reproduce the single-particle triplet excitatio
with high accuracy considering the few number of states
our basis. Our calculation also yields a detailed spectrum
lowest-lying ‘‘single magnon’’ excitations shown by dotte
lines in Fig. 2 in Ref. 4. Our second lowest-energy excitat
at k5p is a singlet shown by a dotted line in the same figu
with Dp(singlet)52.348.

As a function ofk, the second lowest single-particle e
citation is either a singlet or a spin-2 object, as has also b
observed in exact finite-size calculations.7 Parity of each of
the elementary excitations is verified by checking the re
tion Eq. ~15! with Q as well as with the matricesA. The
boundary to two particle excitations at a given value ofk is
computed explicitly by minimizing the sum of energies
excitations whose pseudomomentum sums tok, and simi-
larly for the three particle excitations. These results
shown by the light and dark shaded regions in Fig. 2 in R
4. The picture fits well with previously obtained results.

We have similarly computed spectra for various values
b.8,9 The result for the gap to the lowest-lying triplet
k5p is shown in Fig. 1. Nearb50.6, the excitation spec
trum atk5p crosses zero and becomes negative. Our in
pretation of this is that our ground-state ansatz is defici
and this shows up as a condensation of elementary ex
tions. It is to be noted that Oitmaa, Parkinson, and Bonn7

also found that numerically the gap appeared to vanish
idly near this value ofb, although they too were unwilling to
conclude that this persisted in the thermodynamic limit.

Our calculations are consistent with two possible s
narios of what happens nearb50.6. A special value ofb
could exist where the gap closes and signals a new phase
the gap is in fact small and persists all the way tob51 but
we do not see it due to our restricted ansatz for the gro
state. Recent DMRG calculations8 have shown to have simi
lar difficulties to estimate the vanishing gap forb close to
1. A significant issue appears to be that the DMRG fix
point seems to invariably lead to a matrix product grou
state that, although it succeeds in reproducing ground-s
energies to high accuracy, cannot strictly give a power-
decay of spin correlations. Thus, we find the ground-s
energy very accurately at the Bethe ansatz pointb51 with-
e
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out finding the expected power-law decay of correlatio
The correlation length spectrum is given by the eigenvalue21

of the matrix 1̂, and it is hard to see how this can ever gi
algebraic correlations. However, intermediate correlatio
for intermediate lengths appear to be well represented in
cases.

The Appendixes A–D contain the detailed derivations
the results presented in Sec. V.

VII. CONCLUSIONS

The present work suggests that the rapid convergenc
the DMRG is explained by the fact that the states selec
are optimally chosen eigenstates of total block spin. Prop
chosen, these states are highly efficient for building wa
functions with a small basis that have low total spin for
subblocks.

Our analysis also proposes that DMRG inherently p
dicts exponential decay of correlations. Nevertheless, fu
performed DMRG calculations on systems with power-la
decay of correlations seems to agree well with theory. H
this is consistent with our calculations is currently und
study.

A related topic is the difficulty to describe the vanishin
of the gap close to a gapless point. However, also ‘‘fu
DMRG calculations seem to suffer from this problem.8

APPENDIX A: EXPECTATION VALUES
IN THE BLOCH STATES

In this appendix we will derive expressions for expec
tion values in the trial Bloch statesuQ,k) of Eq. ~37!:

uQ,k)[ (
m51

n

eikmtr~A@sn#•••A@sm11#QA@sm#•••A@s1# !

3usn•••s1&.

Note that the summation over spins as well as the subsc
n, the number of lattice sites, are not explicitly written ou

1. Calculation of the normalization matrix

We will derive expressions for expectation values of thr
types of operators. First we calculate the norm (Q8,kuQ,k).
Then we show how to obtain the expectation value of to
spin,ST5( iSi , whereSi5(Si

x ,Si
y ,Si

z), i.e., the expectation
value of the sum of a single site operator. Finally we calc
late the expectation value of the sum of a two site opera
like the energyH5( iSi•Si11. The calculations of these
three types of expectation values differ only in details a
not in any fundamental way. For completeness all three ca
are nevertheless covered in this appendix.

We begin by calculating the norm of the statesuQ,k). Due
to the periodic boundary condition, states with differentk are
orthogonal. Using the definition ofuQ,k) we have for the
same value ofk,



Eq.
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~Q8,kuQ,k!5 (
m,m8

(
$s%

e2 ikm8eikmtr~A* @sn#•••A* @sm811#Q8A* @sm8#•••A* @s1# !tr~A@sn#•••A@sm11#QA@sm#•••A@s1# !.

~A1!

We now use the periodic boundary conditions, putm851, and change the summation indexm21→m. Using the identities
tr(A)tr(B)5tr(A^B) and (ABC)^ (DEF)5(A^D)(B^E)(C^F), where the tensor product is defined in the text after
~8!, we get

~Q8,kuQ,k!5n(
m50

n21

eikmtr$~A* @sn# ^A@sn# !~A* @sn21# ^A@sn21# !•••~A* @sm12# ^A@sm12# !~1^Q!

3~A* @sm11# ^A@sm11# !•••~Q8* ^ 1!~A* @s1# ^A@s1# !%.

By defining

RQ[1^Q,

LQ[Q* ^ 1

and using the definition 1ˆ[(sA* @s# ^A@s# from Eq. ~10! we can rewrite this as

~Q8,kuQ,k!5n(
m50

n21

eikmtr~ 1̂n2m21RQ1̂
mLQ81̂!5n(

m50

n

eikmtr~LQ81̂
n2mRQ1̂

m!2neikntr~LQ8RQ1̂
n!,

where in the last step we have added and subtracted the termm5n and used the cyclicity of the trace. Sinceeikn51 we can
now write the norm

~Q8,kuQ,k!5n(
m50

n

tr@LQ81̂
n2mRQ~eik1̂!m#2 tr~LQ8RQ1̂

n!5n trFLQ8S (
m50

n

@ 1̂n2mRQ~eik1̂!m#2RQ1̂
nD G . ~A2!
o
or

o

th

tal
ta-

t

Let us now introduce the symbolJ to represent convolution
sums like the one that appears inside the trace in Eq.~A2!.
Thus, define the two partition sumJn(x,M ,y) by

Jn~x,M ,y![ (
m50

n

xmMyn2m, ~A3!

wherex, M , andy are, in our case, square matrices. Later
in this section also three partition sums will appear, theref
define

Jn~x,M ,y,N,z![ (
m150

n

(
m25m1

n

xm1Mym22m1Nzn2m2.

~A4!

Note that the same symbol,J, is used to represent both tw
and three partition sums; the number of arguments ofJ
determine the number of summation variables. Using
definition, the norm can now be written as
n
e

is

~Q8,kuQ,k!5n tr„LQ8$Jn@ 1̂,RQ ,~e
ik1̂!#2RQ1̂

n%….
~A5!

It is easy to show thatRQ andLQ commute, so there is no
ambiguity in the order we place theQ and theQ8 in terms
with m5m8 in Eq. ~A1!.

2. Calculation of the total spin

After finding the norm, we are now interested in the to
spinST5( iSi . We thus need an expression for the expec
tion value of the single site operator,

~Q8,ku~ST!opuQ,k!5(
i51

n

~Q8,ku~Si !opuQ,k!.

The periodic boundary conditions imply tha
(Q8,ku(Si)opuQ,k) is independent ofi so let us takei51.
We then have
~Q8,ku~ST!opuQ,k!5n(
m51

n

(
m851

n

e2 ikm8eikmtr~A* @sn8#•••A* @sm811
8 #Q8A* @sm8

8 #•••A* @s18# !

3tr~A@sn#•••A@sm11#QA@sm#•••A@s1# !^sn8•••s18u~S1!opusn•••s1&.
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To rewrite this expression usingJ defined in Eqs.~A3! and
~A4! we split the sums overm andm8 in three partial sums

SA5 (
1<m<m8

,

SB5 (
1<m8<m

,

SF5 (
1<m5m8

.

Observing the double counting that appear above we see

(
m51

n

(
m851

n

5SA1SB2SF .

Define SA , SB , and SF to be the parts of
(Q8,ku(ST)opuQ,k) with values ofm andm8 corresponding
to the sumsSA , SB , andSF , respectively. In a similar way
as for the norm we now get for the sumA,
SA5n(
m51

n

(
m85m

n

eik~m2m8!tr~A* @sn#•••A* @sm811#Q8* •••A* @s2#A* @s18# !tr~A@sn#•••A@sm11#Q•••A@s2#A@s1# !

3^s18u~S1!opus1&5n(
m51

n

(
m85m

n

eik~m2m8!tr$~A* @sn# ^A@sn# !•••~A* @sm811# ^A@sm811# !~Q8^ 1!~A* @sm8# ^A@sm8# !

•••~A* @sm11# ^A@sm11# !~1^Q!~A* @sm# ^A@sm# !•••~A* @s2# ^A@s2# !~A* @s18# ^A@s1# !%^s18u~S1!opus1&

5n(
m51

n

(
m85m

n

eik~m2m8!tr~ 1̂n2m8LQ81̂
m82mRQ1̂

m21Ŝ!5n(
m51

n

(
m85m

n

eik~m2m8!tr~LQ81̂
m82mRQ1̂

m21Ŝ1̂n2m8!, ~A6!

where we have used the definition ofŜ from Eq. ~10!. By changing summation indexm21→m andm821→m8 we get

SA5n(
m50

n21

(
m85m

n21

eik~m2m8!tr~LQ81̂
m82mRQ1̂

mŜ1̂n212m8!5ntr@LQ8Jn21~e
2 ik1̂,RQ ,1̂,Ŝ,1̂!#.

In a similar way we get for the sumB

SB5n (
m851

n

(
m5m8

n

eik~m2m8!tr~A@sn#•••A@sm811#Q8•••A@s2#A@s18# !* tr~A@sn#•••A@sm11#Q•••A@s2#A@s1# !^s18u~S1!opus1&

~A7!

5n tr@LQJn21~ 1̂,Ŝ,1̂,RQ ,e
ik1̂!#. ~A8!
n
ce-
in.
It is also possible to show that

SB~Q8,Q!5@SA~Q,Q8!#* .

The sumF contains the terms that are counted twice inA
andB andSF should therefore be subtracted fromSA1SB .
We get

SF5n(
m51

n

tr~ 1̂n2mLQ8RQ1̂
m21Ŝ!

5n(
m50

n21

tr~LQ8RQ1̂
mŜ1̂n212m!

5n tr@LQ8RQJn21~ 1̂,Ŝ,1̂!#. ~A9!

We now collect the results from Eqs.~A6!, ~A8!, and~A9!.
The expectation value of the total spin is thus
~Q8,ku~ST!opuQ,k!5SA~Q8,Q!1SB~Q8,Q!2SF~Q8,Q!

5n tr$LQ8@Jn21~e
2 ik1̂,RQ ,1̂,Ŝ,1̂!

1Jn21~ 1̂,Ŝ,1̂,RQ ,e
ik1̂!

2RQJn21~ 1̂,Ŝ,1̂!#%. ~A10!

We have here not made use of the fact thatSB can be deter-
mined fromSA* .

3. Calculation of the energy

The final operator we need is the energyH5( ihi ,i11,
wherehi ,i115Si•Si11. We thus have to find an expressio
for the expectation value of a two site operator. The pro
dure to find it is analogous to how we found the total sp
We use the periodic boundary conditions to puti51. Thus
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~Q8,kuHopuQ,k!5(
i51

n

(
m51

n

(
m851

n

e2 ikm8eikmtr~A@sn#•••A@sm11#QA@sm#•••A@s1# !

3tr~A* @sn8#•••A* @sm811
8 #Q8A* @sm8

8 #•••A* @s18# !^sn8•••s18uh1,2usn•••s1&.

Since the terms withm51 and/orm851 in the expression above are special in the sense that the matricesQ andQ8 mix with
the operatorh1,2, this time we have to split the sum into six partial sums:

SA5 (
2<m<m8

, SB5 (
2<m8<m

, SF5 (
2<m5m8

, SC5 (
m51,m8

, SD5 (
m851,m

, SE5 (
m5m851

.

We note that

(
m51

n

(
m851

n

5SA1SB2SF1SC1SD1SE .

Analogous to what was done for the total spin, we defineHA ,HB , etc., to be the parts of (Q8,kuHopuQ,k) with values of
m andm8 corresponding toSA ,SB , etc. The sumHA for the two site operator is very similar toSA in Eq. ~A6! for the
single-particle operator. We find

HA5n(
m52

n

(
m85m

n

eik~m2m8!tr$~A* @sn# ^A@sn# !~A* @sn21# ^A@sn21# !•••~A* @sm811# ^A@sm811# !~Q8^ 1!

3~A* @sm8# ^A@sm8# !•••~A* @sm11# ^A@sm11# !~1^Q!~A* @sm# ^A@sm# !•••~A* @s28# ^A@s2# !~A* @s18# ^A@s1# !%

3^s28 ,s18uh1,2us2 ,s1&5n(
m52

n

(
m85m

n

eik~m2m8!tr~LQ81̂
m82mRQ1̂

m22ŜŜ1̂n2m8!, ~A11!

where we have used the hat mapping defined in Eq.~10! for the Hamiltonian matrixŜŜ. By changing summation indice
m22→m andm822→m8, and using theJ notation for the sum, we get

HA5n(
m50

n22

(
m85m

n22

eik~m2m8!tr~LQ81̂
m82mRQ1̂

mŜŜ1̂n222m8!5ntr@LQ8Jn22~e
2 ik1̂,RQ ,1̂,ŜŜ,1̂!#.

In a similar way we get for the sumHB :

HB5n (
m852

n

(
m5m8

n

eik~m2m8!tr~A@sn#•••A@sm811#Q8•••A@s28#A@s18# !* tr~A@sn#•••A@sm11#Q•••A@s2#A@s1# !

3^s28 ,s18uh1,2us2 ,s1& ~A12!

5n tr@LQJn22~ 1̂,ŜŜ,1̂,RQ ,e
ik1̂!#. ~A13!

It is also possible to show that

HB~Q8,Q!5@HA~Q,Q8!#* . ~A14!

The sumF contains the terms that are counted twice inA andB andHF should therefore be subtracted fromHA1HB . In the
same way as we foundSF in Eq. ~A9! we now find

HF5n(
m52

n

tr~ 1̂n2mLQ8RQ1̂
m22ŜŜ!5n tr@LQ8RQJn22~ 1̂,ŜŜ,1̂!#. ~A15!

The sumsC, D, andE contain terms where the matrixQ and/orQ8 mixes with the operatorh1,2. ForC we get

HC5n (
m852

n

e2 ik~m821!tr~A* @sn#•••A* @sm811#Q8* •••A* @s28#A* @s18# ! tr~A@sn#•••A@s2#QA@s1# !^s28 ,s18uh1,2us2 ,s1&

~A16!

5n (
m852

n

e2 ik~m821!tr~ 1̂n2m8LQ81̂
m822ŜRQŜ!5ne2 iktr@LQ8Jn22~e

2 ik1̂,ŜRQŜ,1̂!#. ~A17!

HD yields
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HD5n(
m52

n

eik~m21!tr~A* @sn#•••A* @s28#Q8A* @s18# !tr~A@sn#•••A@sm11#Q•••A@s2#A@s1# !^s28 ,s18uh1,2us2 ,s1& ~A18!

5n(
m52

n

eik~m21!tr~ 1̂n2mRQ1̂
m22ŜLQ8Ŝ!5ne2 iktr@LQ8ŜJn22~e

2 ik1̂,RQ ,1̂!Ŝ#, ~A19!
s

n

m
si

o-

th
-

r
.

ica-
er

is
o-

ce
he

a-
p-
the
where in the last step we usede2 ikn51. One can also show
that

HD~Q8,Q!5@HC~Q,Q8!#* .

The ‘‘sum’’ E is just

HE5n tr~ 1̂n22ŜRQLQ8Ŝ!5n tr~LQ8Ŝ1̂
n22ŜRQ!.

~A20!

We now collect the results from Eqs.~A11!, ~A13!, ~A15!,
~A17!, ~A19!, and~A20!. For the whole Hamiltonian we thu
have

~Q8,kuHuQ,k!5HA~Q8,Q!HB~Q8,Q!2HF~Q8,Q!

1HC~Q8,Q!1HD~Q8,Q!1HE~Q8,Q!

5n tr~LQ8$Jn22~e
2 ik1̂,RQ ,1̂,ŜŜ,1̂!

1Jn22~ 1̂,ŜŜ,1̂,RQ ,e
ik1̂!

2RQJn22~ 1̂,ŜŜ,1̂!

1e2 ikJn22~e
2 ik1̂,ŜRQŜ,1̂!

1e2 ikŜ@Jn22~e
2 ik1̂,RQ ,1̂!#Ŝ

1Ŝ1̂n22ŜRQ%!. ~A21!

We have not made use here of the relatio
HB(Q8,Q)5@HA(Q,Q8)#* and HD(Q8,Q)
5@HC(Q,Q8)#* .

Equations~A2!, ~A10!, and~A21! now contain the desired
expectation values, expressed in terms of convolution su
These sums can be expediently calculated using recur
relations, as we will show in the next section.

APPENDIX B: CALCULATING THE PARTITION SUMS
RECURSIVELY

Expectation values between the Bloch statesuQ,k) can be
divided into partial sums with the general forms of tw
partition and three-partition sums defined in Eqs.~A3!–
~A4!. The number of terms in the two-partition sum wi
upper limitn is n11 while the number of terms in the three
partition sum with upper limitn is (n11)(n12)/2. Both of
these sums can be calculated recursively with a numbe
operations of the order ln(n). For the two-partition sum Eq
~A3! we find that the sum with upper limit 2n can be found
from the sum with upper limitn by
s

s.
ve

of

J2n~x,S,y!5xnJn~x,S,y!1Jn~x,S,y!yn2xnSyn,

x2n5xnxn,

y2n5ynyn,

with the starting sum

J1~x,S,y!5xS1Sy.

We thus get sums wheren52 j , j integer. Each recursion
step requires a constant number of additions and multipl
tions, which implies a total computational effort of ord
ln(n). The three-partition sum, Eq.~A4!, can be done in a
similar way. Here the 2n22 sum is reached from then22
sum by

J2n22~x,S,y,T,z!5xnJn22~x,S,y,T,z!

1Jn22~x,S,y,T,z!zn

1Jn21~x,S,y!Jn21~y,T,z!,

J2n21~x,S,y!5xnJn21~x,S,y!1Jn21~x,S,y!yn,

x2n5xnxn.

with similar expressions forJ2n21(y,T,z),y
2n, and z2n.

Here we start with

J0~x,S,y,T,z!5ST,

J1~x,S,y!5xS1Sy,

J1~y,T,z!5yT1Tz,

and we get sums with upper summation boundn22, with
n52 j and j an integer. Also here the computational effort
of order ln(n). In this recursion scheme we also get the tw
partition sum with upper boundn21.

APPENDIX C: THE POLE EXPANSION

Although calculating the sums recursively is a ni
method for finite-size chains, we would like to calculate t
expectation values in the limitn→`. As we will show in
this section, it is actually possible to do this directly by an
lyzing the sums’ asymptotic form. In the next section, A
pendix D, we apply the results to the actual sums in
expectation values of Appendix A.
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1. Three-partition sums

In Appendix A expectation values were calculated a
expressed in terms of sums. These sums are of the ge
form

Sn5 (
n1 ,n2 ,n3>0

~gx!n1Sxn2Txn3dn,n11n21n3
,

wherex, S, andT arem23m2 matrices andg5eik is a phase
factor. We would like to know the asymptotic form ofSn as
so

g
t

s

d
ral

n→`. This form can be found if we take thez transform
~also known as discrete Laplace transform! of Sn and then
analyze the pole structure of the transformed sum. Define
z transform of the sumSn by

FS@l#[ (
n50

`

lnSn .

We then have
FS@l#5 (
n50

`

(
n1 ,n2 ,n3

~lgx!n1S~lx!n2T~lx!n3dn,n11n21n3
5 (

n1 ,n2 ,n3
~lgx!n1S~lx!n2T~lx!n3

5S (
n150

`

~lgx!n1DSS (
n250

`

~lx!n2DTS (
n350

`

~lx!n3D .
Let us defineU as the matrix that diagonalizesx. Let us also define a transformationMD of a generalm23m2 matrixM by

MD5U21MU.

Thus xD is a diagonal matrix with the eigenvalues ofx on the diagonal, while the transformationMD of a general matrix
M need not be diagonal. We then have

FS@l#5US (
n150

`

~lgxD!n1DU21SUS (
n250

`

~lxD!n2DU21TUS (
n350

`

~lxD!n3DU21

5US 1

12lgx1
0

0 �

D SDS 1

12lx1

�

D TDS 1

12lx1

�

D U21,
e

ed
where xi are the eigenvalues ofx. In our casexD are the
diagonalized 1ˆ and xi are eigenvalues of 1ˆ. The largest ei-
genvalue of 1ˆ is x151 and the other eigenvalues have ab
lute values less than 0.8. The order of the poles ofFS@l# will
be different fork50 andkÞ0. We will therefore have to
treat these two cases separately. We first determine the
ymptotic form in thek50 case.

a. Pole expansion for zero momentum

The transform will now have as elements

~FS@l#! i , j5(
l

~SD! i ,l~TD! l , j

3
1

~12lxi !

1

~12lyl !

1

~12lzj !
. ~C1!

Note that we have for simplicity not written out the leadin
U and the trailingU21 in the above formula. Also in the res
of this paper, theseU andU21 will be omitted. Since the
largest eigenvalue of 1ˆ is x151 and the next highest i
x2'0.8, we take as an ansatz for the behavior ofSn for large
n,
-

as-

Sn5An21Bn1C1 corrections,

where the corrections are of orderx2
n'0.8n and thus very

small. We now calculateFS@l# using this asymptotic form
of Sn . Call it F

A@l# to distinguish it from the original form:

FA@l#5 (
n50

`

ln~An21Bn1C!

5A( n2ln1B( nln1C( ln

5A
2l2

~12l!3
1~A1B!

l

~12l!2
1C

1

~12l!

5
2A

~12l!3
1

B23A

~12l!2
1
C2B1A

~12l!
. ~C2!

We see thatFA@l# in Eq. ~C2! has poles atl51.FS@l# also
has poles atl51 and is analytical in a neighborhood. W
therefore expandFS@l# around l51 and identify terms.
This will also justify the asymptotic form we have suggest
above. Noting thatx151 we define a functiong(l) by
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g~l![~12l!~12lxD!215S 1

12l

12lx2

�

D .

We then note that

~12l!3FS@l#5g~l!SDg~l!TDg~l!. ~C3!

We use the shorthand notationg[g(1), g8[g8(1), and
g9[g9(1). Combining Eqs.~C2! and ~C3! we arrive at the
central result of the pole expansion for the three-partit
sum whenk50:

2A5 lim
l→1

$~12l!3FS@l#%5gSDgTDg,

2~B23A!5 lim
l→1

S d

dl
~12l!3FS@l# D

5g8SDgTDg1gSDg8TDg1gSDgTDg8,

~C4!

2~C2B1A!5 lim
l→1

S d2

dl2 ~12l!3FS@l# D
5g9SDgTDg1gSDg9TDg1gSDgTDg9

12gSDg8TDg812g8SDgTDg8

12g8SDg8TDg.

We note that

g8~l!5S 0

2~12x2!

~12lx2!
2

�

D ,

g9~l!5S 0

22x2~12x2!

~12lx2!
3

�

D .

b. Pole expansion for nonzero momentum

We now treat the case when the crystal momentumk
Þ0. In this case the first matrixx is multiplied by a phase
factorg5eikÞ1 and we have the elements

~FS@l#! i , j5(
l

~SD! i ,l~TD! l , j

3
1

~12lgxi !

1

~12lyl !

1

~12lzj !
. ~C5!

We notice that this time there can be no poles of order th
at l51. Instead we have a pole atl5g21. The asymptotic
form now looks like

Sn5Bn1C1gnC81 corrections. ~C6!
n

e

The new termC8 will give rise to a term (l2g21)21 and to
match this term we have to expand aroundl5g21. There
can only be a simple pole atl5g21 so there will not be any
termsA8 or B8 ~i.e. terms proportional tognn2 or gnn). We
have

FA@l#5 (
n50

`

ln~Bn1C1gnC8!

5
B

~l21!2
1

B2C

~l21!
1

2C8

~lg21!

5
B

~12l!2
1

C2B

~12l!
1

C8

~12lg!
. ~C7!

By defining a functionh(l),

h~l![~12lxD!215S 1

~12lx1!

1

~12lx2!

�

D ,

and using the definition ofg(l) we writeFS@l# in the fol-
lowing two ways:

FS@l#5
1

~12l!2
h~lg!SDg~l!TDg~l!

5
1

~12lg!
g~lg!SDh~l!TDh~l!.

In a similar manner to thek50 case we now find

B5 lim
l→1

$~12l!2FS@l#%5h~g!SDgTDg,

2~C2B!5 lim
l→1

S d

dl
~12l!2FS@l# D

5gh8~g!SDgTDg

1h~g!SDg8TDg1h~g!SDgTDg8, ~C8!

C85 lim
l→g21

$~12lg!FS@l#%5gSDh~g21!TDh~g21!.

2. Two-partition sums

The pole expansion can of course also be done for
two-partition sums defined in Eq.~A3!. We will not go
through the details since the calculation is analogous to
three-partition case but for completeness only list the resu

Let us analyze the sum

Sn5 (
m50

n

~gx!mSxn2m, ~C9!

where g, x, and S are defined as before. For the ca
g5eik51 the asymptotic form asn→` is

Sn5Bn1C1 corrections, ~C10!
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with

B5gSDg,
~C11!

2~C2B!5g8SDg1gSDg8.

For the casegÞ1 we instead get the asymptotic form

Sn5C1gnC81 corrections, ~C12!

with

C5h~g!SDg,
~C13!

C85gSDh~g21!.

APPENDIX D: EXPECTATION VALUES USING THE
POLE EXPANSION

In Appendix A we derived expressions for the expectat
values of various operators in the Bloch statesuQ,k). We
found that all expectation values were expressed in term
sums of matrix products. In Appendix C we showed that
asymptotic limit of a general sum could be calculated.
doing a discrete Laplace transform of the sum and analyz
the analytical structure of the transformed sum, we arrive
a closed expression for the asymptotic behavior as a
over just a few matrices.

In this section we will combine the results of Appendix
A and C and show how the particular sums in the expecta
values of Appendix A can be analyzed with the technique
Appendix C. By doing this we will get rid of the unpleasa
sums of Appendix A and replace them with simpler expr
sions describing the asymptotic form of these expecta
values in the limit where the number of sites goes to infin

1. The normalization

We will begin with the simplest case, the norm as det
mined in Eq.~A5!,

~Q8,kuQ,k!5n tr@LQ8~Sn
G2RQ1̂

n!#, ~D1!

with
n

of
e
y
g
at
m

n
f

-
n
.

-

Sn
G5Jn~ 1̂,RQ ,e

ik1̂!.

In Appendix C we arrived at two different expressions f
the asymptotic forms depending on if the momentumk was
zero or not. Let us start withk50. According to Eq.~C10!,
the sumSn

G then has the asymptotic form

Sn
G5BGn1CG .

From Eq.~C11! we directly get

BG5gRQ
Dg,

2~CG2BG!5g8RQ
Dg1gRQ

Dg8.

The last term of Eq.~D1! is no sum and just gives an add
tional matrixRQ

Dg to the asymptotic form ofSn
G . Thus

~Q8,kuQ,k!5n tr@LQ8~BGn1CG1RQ
Dg!#, ~D2!

wherek50 in this case. Before going on to the casekÞ0 we
will rewrite this formula in a more ‘‘operatorlike’’ form.
This can be done by ‘‘pulling out’’ the matricesQ andQ8
from the trace. We note that (Q8,kuQ,k) in Eq. ~D2! has the
form

~Q8,kuQ,k!5(
a

tr~LQ8MaRQNa!,

with Ma andNa square matrices on outer product form. B
doing a generalization of the tilde transformation of Eq.~18!
we can rewrite this as

(
a

tr~LQ8MaRQNa!5(
a

Q8*MaNãQ

5Q8* S (
a

MaNãDQ ~D3!

and we find that(aMaNã gives a closed expression for th
norm operator, independent ofQ andQ8 ~but of coursek
dependent!. This transformation can be accomplished
writing
(
a

tr~LQ8MaRQNa!5~Q8* ^1!~ i , j !,~k,l !Ma
~k,l !,~m,n!~1^Q!~m,n!,~o,p!Na

~o,p!,~ i , j !

5Q8 i ,k*d j ,lQ
n,pdm,oMa

~k,l !,~m,n!Na
~o,p!,~ i , j !5Q8~ i ,k!*Q~n,p!~Ma

T2341!~n,k!,~ j ,m!~Na
T2341!~ j ,m!,~p,i !

5Q8~ i ,k!*Q~n,p!~~Ma
T2341Na

T2341!T3241!~ i ,k!,~n,p![Q8*MaNãQ,
qs.
c

where the generalized transposeMTi , j ,k,l is defined in Eq.
~17!. We can thus define aQ8 andQ independent matrix
G(k,n) for k50 by

~Q8,kuQ,k!5Q8G~k,n!Q,

where we determineG(k,n) from Eq. ~D2! and the general-
ized tilde transformation Eq.~D3!.
Likewise we can derive the expression forG(k,n) for k
Þ0. This is done in the same way by using the formulas E
~C13! and ~C12!. The sumSn

G this time has the asymptoti
form

Sn
G5CG1CG8 ,
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where we have assumedn such thateikn51. We now find
from Eq. ~C13! that

CG5gRQ
Dh~eik!,

CG8 5h~e2 ik!RQ
Dg. ~D4!

The last term of Eq.~D1! is independent ofk and therefore
gives the same contribution,RQ

Dg, as before. From Eq.~D4!
and the generalized tilde transformation we can calcu
G(k,n) also forkÞ0.

2. The Hamiltonian

Now we calculate the pole expansion of the Hamilton
in Eq. ~A21!. Let us start withkÞ0 this time. We will dem-
onstrate the procedure for the termHA(Q8,Q), just to illus-
trate the three-partition case. For the rest of the terms
will, for completeness, just list the results.

For HA we have from Eq.~A21!

HA~Q8,Q!5n tr~LQ8Sn22
A !,

where

Sn22
A 5Jn22~e

2 ik1̂,RQ ,1̂,Ŝ
DŜD,1̂!,

with the asymptotic form from Eq.~C6!

Sn22
A 5BA~n22!1CA1g22CA8,

where we have assumedn such thateikn51. From Eq.~C8!
we get

BA5h~e2 ik!RQ
DgŜDŜDg,

2~CA2BA!5e2 ikh8~e2 ik!RQ
DgŜDŜDg

1h~e2 ik!RQ
Dg8ŜDŜDg

1h~e2 ik!RQ
DgŜDŜDg8,

CA85gRQ
Dh~eik!ŜDŜDh~eik!.

We now have

HA~Q8,Q!5n tr@LQ8~BA~n22!1CA1g22CA8 !#.

We transform this as we did with the norm using Eq.~D3! to
get theHA operator

HA~Q8,Q!5Q8HA~k,n!Q.

Note the convention used here. We write them23m2 matrix
operatorHA , which is independent ofQ andQ8 ~but de-
pends onk andn), asHA(k,n) and the (Q8,Q) dependent
expectation value, which of course also depends onk and
n, asHA(Q8,Q) .

The matrix operatorHB we get fromHA by using Eq.
~A14!
te

n

e

HB~Q8,Q!5@HA~Q,Q8!#*

5(
a

Q~ i , j !MaNã
~ i , j !,~k,l !*Q8~k,l !*

5Q8* S (
a

MaNã
†DQ, ~D5!

so thatHB(k,n)5HA
†(k,n).

We now do the same procedure for the rest of the sum
Eq. ~A21! and then later also for the casek50. The results
for the coefficientsA, B, C, andC8 in the asymptotic expan
sion of different cases are listed below. Where a coeffici
is not present, it is zero. Apart from the expression Eq.~D5!
we can also get the asymptotic form of the sum inHB ,
Sn22
B 5Jn22(1̂,ŜŜ,1̂,RQ ,e

ik1̂) directly from the pole expan-
sion as

BB5gRQ
DgŜDŜDh~eik!,

2~CB2BB!5eikgRQ
DgŜDŜDh8~eik!1gRQ

Dg8ŜDŜDh~eik!

1g8RQ
DgŜDŜDh~eik!,

CB85h~e2 ik!RQ
Dh~e2 ik!ŜDŜDg.

The sumSn22
F 5Jn22(1̂,Ŝ

DŜD,1̂) of HF gives

BF5gŜDŜDg,

2~CF2BF!5g8ŜDŜDg1gŜDŜDg8.

The sumSn22
C 5Jn22(e

2 ik1̂,ŜRQŜ,1̂) of HC yields

CC5h~e2 ik!ŜDRQ
DŜDg,

CC8 5gŜDRQ
DŜDh~eik!.

The sum inHD , Sn22
D 5Jn22(e

2 ik1̂,RQ,1̂), can be derived
from the relationHD(Q8,Q)5@HC(Q,Q8)#* in the same
way as we did forHB :

HD~k,n!5HC
† ~k,n!,

or directly from the pole expansion as

CD5h~e2 ik!RQ
Dg,

CD8 5gRQ
Dh~eik!.

Finally, for HE of Eq. ~A20!, which does not contain a sum
we just replace the term 1ˆn22 by its asymptotic form,g, and
then perform the generalized tilde transform of Eq.~D3!.

The same procedure can be worked out for the Ham
tonian also whenk50. However, this time we will have to
use the formulas in Eqs.~C4! and ~C11!. The technique is
analogous to thekÞ0 case and we will not list the result
here.
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3. The energy

Collecting everything together we get for the who
Hamiltonian

H~k,n!5HA~k,n!1HB~k,n!2HF~k,n!1HC~k,n!

1HD~k,n!1HE~k,n!

and for the energy
tt
EQ8,Q~k!5
~Q8,kuHopuQ,k!

~Q8,kuQ,k!
5
Q8H~k,n!Q

Q8G~k,n!Q
,

whereH(k,n) andG(k,n) are square matrices. This is th
result we advertised in Eqs.~39! and ~40! and in Eqs.~41!
and ~42!.

Similar expressions for other expectation values like
total spin in Eq.~A10! can of course also be obtained.
er-
-
t we
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