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We investigate the density matrix renormalization gréDMRG) discovered by White and show that in the
case where the renormalization eventually converges to a fixed point the DMRG ground state can be simply
written as a matrix-product form. This ground state can also be rederived through a simple variational ansatz
making no reference to the DMRG construction. We also show how to construct the matrix-product states and
how to calculate their properties, including the excitation spectrum. This paper provides details of many results
announced earliefS0163-182607)04003-4

[. INTRODUCTION on an ordinary desktop workstation. Each calculation we de-
scribe here takes anywhere from a few seconds to a few
After Wilson’s development of the renormalization group minutes.
(RG) to solve the Kondo problehit was believed that RG The behavior of the model in Eq1) as a function of3
could be used for other problems as well. Kadanoff's block-has been extensively studied Depending on the ratio be-
ing technique combined with Wilson’s RG idea was appliedtween the bilinear and the biquadratic terms in the Hamil-
to problems like quantum lattice systems such as the Hubmnijan, this model is believed to exhibit several different
bard and Heisenberg models but progress turned out to hghases. See, e.g., Ref. 8 for a recent review of the phase
surprisingly difficult. However, in 1992 White developed the diagram.
density matrix renormalization grotip (DMRG) method, In this paper we apply our methods to Ba) with 8 in
which since then has had spectacular success in calculatirme range- 1/3<B<1. It is believed that the model exhibits
ground-state energies and other static properties of man single phase in this range, usually called the Haldane

one-dimensional1D) quantum systems. In this paper we _ ) : .
explore the nature and underlying principles of the DMRG tophase' Atp=0 we find é%e ordinary He|sen_berg model,
find out why the results of DMRG calculations are so re-Wh'Ch Haldane conjecturedto have exponential decaying

markably accurate. A summary of this work has been preg:orrelations and a finite energy gap to the first excited state.

sented in an earlier papéand the present paper provides a NS copjecttﬂelzhas been very well supported by numerical
complete discussion and derivations of the results. For bacigalculations:* The model with 8=—-1/3 is the VBS
ground information on the DMRG there are excellent articlesValence-bond statédamiltonian with a unique ground state
by White?3 that can be constructed as an exact nearest-neighbor valence-
In Sec. Il we give a very brief summary of the DMRG. In bond state, as was shown by Affle@tal’® The VBS
Sec. Il we show that if the DMRG algorithm converges to aHamiltonian has exponential decay of correlations and a fi-
fixed point, the DMRG ground state leads to a special ansatite energy gap.
form for the wave function, demonstrating the equivalence of The valence-bond state is the exact ground state only for
the DMRG to a variational calculation. To make things more8= —1/3 but it is considered to give a reasonable picture of
concrete we apply our ideas to the antiferromagnetic Heiserthe ground state also for other valuesffn this phase. For
berg spin-1 chain with bilinear and biquadratic interactions,~ 1/3<8<1 our model is thus believed to have a gap, a

defined by unigue ground state, and exponentially decaying correla-
tions.
n The ground state in the Haldane phase is not ordered in
H= ) _ ) 2 1 the usual antiferromagnetic sense. It has, however, been
Zl S Se1mAS S @ conjectured* that there is a hidden topological long-range

order. This conjecture has been supported by numerical

In Sec. IV we define a set of variational states using thecalculations’
special ansatz form of Sec. Ill. In Sec. V we extend the From the valence-bond caricature of the ground state in
ansatz to include a set of Bloch states that describe elemethe Haldane phase, there should be spin-1/2 degrees of free-
tary excitations in both finite and infinite systems. These caldom at each end of an open spin-1 chain. That these spin-1/2
culations are rather lengthy and the details can be found irdge states exist in th8=—1/3 model is clear from the
Appendices. Section VI contains some numerical results foconstruction of the exact ground stafeFor the ordinary
the spin-1 chain comparing our variational ansatz to mordieisenberg model wit[3=0, numerical calculations support
involved calculations. the spin-1/2 edge states and thus the valence-bond picture.

We would like to mention that all numerical work de- At the point3=1 the model is exactly solvable using the
scribed here was programmed WIMATHEMATICA running  Bethe ansatz. The spectrum was calculated by Takhtajan and
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Babuijiart® and is gapless with power-law decay of correla-trix. (5) RenameHg, to Hg. This completes an iteration.
tions. From field theory argumenfsit is suggested that the

gap opens up on both sides of the pog#1 and that it ll. THE MATRIX-PRODUCT STATE
vanishes only at the poif8=1. The numerical evidence for
the opening of the gap is, however, inconclusie. To begin the renormalization procedure one starts with a
block consisting of a short lattice whose basis states can be
Il. DENSITY MATRIX RENORMALIZATION GROUP calculated exactly. When the renormalization proceeds and
(DMRG) the chain described by the block gets longer we do not use

the full set of basis states for describing the block but have to

Since the DMRG was discovered by WHita 1992 ithas  discard some part of the Hilbert space in each renormaliza-
had great success in describing 1D interacting quanturtion step.
systems>*118 Ground-state and excited-state properties Assume we have a block that represents a chain with
have been calculated to high accuracy with modest compua—1 sites. Letm, be the number of possible states of a
tational effort. With hindsight, it will be seen that the ideas single lattice site. If we would treat this system exactly there
of this paper do not logically depend on the DMRG, but theywould bem? ! states in the Hilbert space basis for this sys-
were inspired by the DMRG and we will therefore begin thistem. In the case of a spin-1 chain, we could label the site
section by summarizing some aspects of the DMRG. with the z component of the single spin-1, so that=3.

In a renormalization scheme such as the DMRG one typiThe number of states in this complete basis rapidly becomes
cally starts with a very short 1D chain and then lets thetoo large to handle when is increased. Assume therefore
length increase by iteratively adding a single site. After eachhat an approximation is made and our chain is represented
new site, an approximate Hamiltonian is constructed. This isby a smaller set of states labeled f8),_}. This set of
done by keeping only a small subspace of the Hilbert spacgtates has been chosen by the previous iterations of the renor-
to keep the Hilbert space at a manageable size as one lets thylization with the aim to describe the low-energy physics.
chain grow. The central idea in DMRG is to keep the “most ossyme there arm states in this basis, whera< ml L. If
probable” stat_es when truncating the basis in contrast to thg,is is the first iteration{| 8),_4} is the complete basis.
usual old-fashioned rgal-space RG meth(e, e.g., Ref. 3 We now add a single site, labeled &y, thez component
and references thergiwhere the lowest-energy eigenstates ¢ spin, to the left-hand side of our block resulting in a new
are kept. The way to achieve this is to split a complete sysp|qc with n sites andm,x m states in its basis. The basis

tem (“universe”) into two parts, a "subsystem” and an gates are now generated by the product representation
“environment,” and then to construct the reduced denS|ty{|S )®|B)n_1}. We now use a projection operaiéy, to gen-
n n—1s-

matrix IOLth“e “sbubsyste”m” E;]S part of tge ““lﬂ"’erse-” 'Ik;he erate a new truncated basis with typicatfystates that rep-
s_tate(; }qe subsystem ;sLeréglve_n ya _mea_rhcom_lr;]a-resent the “important” states of the longer block. This
tion of the eigenstates of the density matrix with weights, ol process is written as

given by the eigenvalues.

The renormalization starts with a short 1D lattice with just
a few sites. Label this systehhg . A renormalization step of la)n= > Az‘(ﬁ’sn)lsn)@b 1B)n-_1, 2
the DMRG can be described by the following algorithihy B

Construct the Hamiltonian for the ~universéds=Hg  \here we have indexed by the chain lengtm and its
+H;+Hi+Hg, whereHg comes from the previous itera- iy indicese and (8,s,). Note that @8,s,) is thought of
tion andH, is a new site added. The superschptienotes & g 5 single index labeling a tensor product of the stiatds
second block that is reflected before joined to the other parts;,q 181

H o ” R R -4
The blockHg+H, now is our "subsystem” andi; +Hpg In the DMRG, a specific algorithm is used to calculate
our “environment.” The Hamiltonian matrixis for the uni- A pyt this is not important in the present discussion. We
verse is constructed with tensor products involving the inow make two crucial observation&l) First we perform a
trablock partsHg and H; and the interactions between the simple change in notatioss®#[s ]EAa,(B,sn) thus writing

n n n )

blocks.(2) DiagonalizeH g to obtain the ground stated’) of the mx (mm) matrix as a set ofn mxm matrices.(2)

the universe. This state is called the target stédg.Con- . X .
struct the reduced density matrix =¥, \W* ., where Second, we assume that the recursion leads to a fixed point
ol JRL for the projection operator so that we can write

(W)=2%;,[i)®[j) and|i),|j) are basis states of the sub- » 151" A[s] ‘asn—. By recursively applying the renor-
syst'em and _the enV|.ronment, respectively. The eigenstates alization step in Eq(2) we now find that

p with the highest eigenvalues correspond to the most prob-

able states of the subsystem when the universe is in the state

| ). (4) Now choose then states of the diagonalized density |a),= 2 (Alsp]A[Sh_1]- - Als1])“P|spSn_1- - - S1)
matrix with highest eigenvalues to form a new reduced basis Sn-- 51,8

for the blockHg+H; . Project the Hamiltonian and other ®|8)o, 3
operators onto this basis byg =A(Hg.;)AT, whereA is

the projection operator one constructs from the kept eigenwhere| 8), represents some state far away framwe thus
states of the density matrix from st€p) andHg,, is the see that the renormalization procedure results in a wave
Hamiltonian matrix for the subsystem. If the single sitefunction that can be written in a matrix-product form. Equa-
added hasmg states in its basisA is represented by a tion (3) now suggests a natural form for the wave function
mX (m*mg) matrix andHg,; by a (m*mg) X(m*m,) ma-  with the following ansatz.
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FIG. 1. The gap\ , to the lowest triplet exci-
tation at momentunk= 7 as a function ofg is
shown.

For everymXx m matrix Q, we define thgunnormalizedd =~ we have found that working with half-odd integer represen-

state|Q),: tations give far better numerical results.
We now discuss how the projection operatdrcan be
_ constructed. In our numerical work, we have kept 12 basis
= tr(QA[S,]- - -AlS1])|Sh: - - S1)- 4 . . . ’ .
IQn % (QALSn] [s1Dlse: 1) @ states in each iteration and we have used the half-odd spin

representations. By doing a DMRG calculation on the spin-1
chain we have found that when approximately 12 states are
kept the blocks are represented by a sum of two spin-1/2 and
two spin 3/2 irreducible representations. Since there are two
sets of each representations, we have to introduce a new
label, y, to distinguish them. The “old” representations rep-
resenting the old block we have uniquely labeled by ordinal
numbervy, with the corresponding total spjn (See Fig. 1 in
Ref. 4 for a helpful illustration. Implicit in the labeling of

the states is the component of total spim. These are thus
the 12 “old” states|y,m) that fall into the four different
irreducible representations of total spin.

Thus |Q),, can be viewed as a state that is uniform in the
bulk, but with a linear combination of boundary conditions
defined by|a), on the left and|B), on the right®> The
special case d =1, the identity matrix, leads to a state with
periodic boundary conditions. Thi=1 state we will later
on use as our trial ground state.

If we now demand that the projection of E®) preserves
orthonormal basegg|a’)= 6, ./, We can use the recursion
formula Eq.(2) and the orthogonality of the local spin states
and previous block states to find

Saar= > (Aa’,ﬁ’[sr])*Aaxﬁ[s](s’|S><[3'|/3> After adding a single site and then truncating the Hilbert
B.B' s space we get the “new” basis states similarly labeled by
v' and their corresponding total spjh. These will thus be
= (A[s]AT[ s, (5)  the 12 basis statéy’,m’) that represent the new block with
s one more site.

Let us now examine what happens in our example when
going from the oldy to the newy’. When adding a single
spin-1 to the old block of 12 states we get 36 “intermediate”
states in the product representation of the old block states
tonian of Eq.(1) is spin rotationally invariant since it com- W't.h a spin 1. These Sftates fall _|_nto 10 |rredUC|b_Ie represen-
mutes with all three components of the total Spintatlons labeled by thglr total spiff. We then project from

these 10 representations back down to the four representa-

Sot=2iS . In order that the projection in each step preserves. . L i
this symmetry, our basis states of a block must form a rep:%-Ions that we have. chosen to k??p' T.h'S projection must pre
rve the total spin symmetry; i.e., it cannot mix different

. . . . .. Se
resentation of total spin. Since we keep basis states Wltﬁ, and cannot depend on total’. We thus get only a few

many different values of total spin as well as many state onzero projection terms. Since there is exactly one “inter-
with the same total spin in each iteration, all the basis statedON? ”p I ’ i y
ediate” spin-1/2 and one spin-3/2 for each of the four

together must form a sum of irreducible representations oin . - . .
total spin. Adding a spin one does not mix even or half-odd old repreient:a}tlons;/ there is (‘)‘ne pro;rectmn term from
spin representations, thus the basis states must form a sum ggch of the “old 7 t(_) each of the r\ew v'. There are ’thus
either all half-odd or all integer spin representations. Mostl6 nonzero projection terms, which we denote By 7.
naturally for the spin-1 chain one would work with integer These projection terms are in fact not independent, but are
spin representations, but by placing a single spin-1/2 on theelated by the requirement that the new states are orthonor-
right-hand side of the entire chain one could use half-integemal. TheP?” ” are indicated by lines in Fig. 1 in Ref. 4.

spin representations to represent the blocks instead. This is Expressing all this mathematically, we let, as aboye,
consistent with the existence of a spin-1/2 edge Staand  uniquely label a representation of total spin of a block and

Hence in matrix form we hav& A[s]AT[s]=1. This con-
straint will be used later to reduce the number of free param
eters inA.

We now analyze the projection matrik. The Hamil-
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j(v) denote the value of total spin of that representation.
Each state is thus labeled lby,m) wherem is the z com- [1)=2 tr(Alsy] - Als])|sy - Sp). (7)
ponent of total spin. The single spin to be added is labeled by i)
|s), wheres is thez component of the spin 1. The new statesNote that although it is not explicitly written outl) has a
are thus given by definite number of lattice sites. We note tha{1|1)=1 due
to Eqi.Ls(S). For the Affleck-Kennedy-Lieb-TasakiAKLT)
' o mode = —1/3) our ground-state ansatz is exact as are
|7’/'m'>:Ey P72 y,j(y"),m"), ©®  the matr(if—product) stateg of Refs. 20-22.
The expectation value of an operatoy e.g., energy or
where |y,j(y'),m’) denotes the 36 intermediate statescorrelation function, in this state is given by
formed by|s)®|vy,m) written in the total spin basis. Since
we demand that the projection preserves tptahdm, these _ X[/, .. A*[o!
states can be explicitly constructed using the Clebsch-<1|h|1> {SES,} W(AT[Sn]- - -AT[S1]) tr(ALSp]- - Alsi])
Gordan coefficients on the fork{j,,m;)(j,,my)|j,m) as v

X(sp - -sy|hsy- - -sp). €S

|7’,j(7'),m’):m25 ((G(y),m)(L8)j(y"),m")(|s)@ 7). To write this expression in a simpler form we define the
' tensor product matrix BE®C) by (BeC)@®A) ()

Inserting this into Eq(6) we find that =B*"CA” We will in the rest of this paper interchangeably

use ordinary matrix indicesy,8 and composite indices
(@, B), where composite indices are written with parentheses

Iy . m)y= > AYM.M[s](|s)@|y,m)), around them. This means that we can writena® m “ma-
S(v.m trix” A as either a matribA®# or as anm? vector Al*#),
where When the indices are not explicitly written out, the matrix or

vector character of the symbol is assumed to be clear from
the context. We now use the trace and matrix-product
identities tr@) tr(C)= tr(B®C) and BCD)®(EFG)

Thus, although the projection matricAscontain a total of =(BoE)(CoF)(D®G) to find
3X12x12 numbers, they are in fact generated by the rela-

A MO em )= PY (), m)(18)]j ('), m").

tively few degrees of freedom available 7. (Ah1)= X t{(A*[s]@Als])- - - (A*[s;]®A[s1])}
For this case with 12 basis states there are naively 16 {sjhis]}
i '}’,y'}’ i i i i ! !
parameters irP” :?. Demanding normahzauon of all _b_aS|s X(s!,- - -} h|sy- - - S1). (9)
states,( 71:m1|72,m2>:5y1,«/25m1,m2- yields the condition
that the diagonal elements &P are all 1, where the su- To write this in a more compact form we define a map-

perscript T denotes transpose. This gives four constraints
[cf. Eg.(5)]. Then the basis states of the two spin 1/2 and th
two spin 3/2 must be orthogonal, yielding the condition
(PTP)71:72=0, wheneverj(y;)=](7y,) with y,# y,. This -
gives two more constraints. The spin-1/2 basis states are au- M EE Mg (A*[s']®A[S]). (10
tomatically orthogonal to the spin-3/2 states. Finally, a uni- s'.s

tary transformation can mix the two spin-1/2 and likewise\ye denote bys= (S, &, the spin-1 representation of to-

the two spin-3/2 states. Without loss of generality we can fi : o ox 2 (gt ;
this freedom, yielding two more constraints. We thus end u)[;tal sPin énd thu.s b!)’S—(SA,Sy,Sd) the f;]at“rr]‘na,[,)plng O_f the
with only eight free parametér$in P”7. In the simpler 33 spin matricess. By 1 we denote the “hat” mapping of

case of saving only six basis states, only two free paramete}ge 3X 3 identity matnx._ We now see from_qu) that_ t.he
are available by similar arguments. norm and the expectation value of the spin at the pite

With only a few free parameters we can use a variationaf'Ve" by
principle for the energy to determine these. At this point it is
clear that the DMRG plays no essential role in the construc-
tion aside from providing a guide to which representations to A A
keep. Even this choice could be done variationally. (1lgj]1)= tr(1"" 19,

ing M from 3x 3 spin matricesM to m2x m? matricesM

(111)= tr(dn),

where in the last equation we have used the cyclicity of the
IV. THE SET OF STATES |Q) trace. Other expectation values are also easily obtained.
Since we can factorize matrix elements such as
A. The ground-state ansatz
To do the variational calculation we need an expression (s/ ,s{[S- Sj|s; ,si)E(SSj)Sjr s 5= (S ,si'(s)sj’ 5

for the energy. As an ansatz for the ground-state wave func-

tion we take the translationally invariant st&@e=1 from Eq.  we find that expectation values of energy and spin-spin cor-

(4), which we denote byl). Thus relation function are given by
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(1|S;-S 1 4]1)= tr(1"~2S9), right. There is therefore the possibility that parity is violated
e in the ground stat¢l). We now investigate this possibility
(1SS 4|1)= tr(1"~'-181-15). (11  and show how parity is maintained.

Let P be the parity operator. We thus have
Similar formulas have also been derived by Faneiesl?*

A more complicated operator, such as the biquadratic
term (S-S;)?, does not factorize as neatly and we cannot Pl1y="> tr(Als,]- - -AlSi)PIsy - -S1)
write the expectation value in as a nice form as above. For {s;}
these cases we have to replace the t&ih S inside the
trace in Eq.(11) by the more complicated expression :2 tr(A[sp]- - -Als1])[S1- - - Sp)-
{sj}

1 s|(S-S)2s: s (Al 1@ Al )1 L , o ,
2 (s],s{1(S-§)%sj sp(Als 1@ AL ]) Suppose now that there exists an invertine< m matrix

!

EaAh Q5 such that
X (A[s/ 19 Als;]). (12)
In order not to make the equations unreadable by crowding QpA[s]=sgr PI(Als])'Qp, (15

them with indices we will in the rest of this section only
present formulas for the ordinary bilinear Heisenberg Hamilwhere AT denotes transpose and §Bis a proportionality
tonian[ 8=0 in Eq.(1)]. An interested reader can then gen- constant that will be seen to be the eigenvalue of the parity
eralize the formulas to include the biguadratic term, withoutoperator. Then it follows that
any fundamental difficulties.

An important quantity is the string correlation functfén

defined by AL =2 1(Qp QpAls]- - Alsilllsy---su)
Si
-1
D={ s II e |s7). 13
o <S°<;Ul ° ‘)S*> 13 =SOPI"S AT Allsy sy o)

i

Although the spin-1 chain does not have long-rangesINe

order, it is believed to have a hidden long-range order that is =sgi P]">. tr(A[s,]- - “AlspDIsi- - -sn)

characterized by the string correlation function. In our {s;}

ground statel) it is easy to show that it is given by — g P]"|1).
g(h)= 1" 15 ™' 1.
Thus, for the ground state to have definite parity, it is suffi-
We note that the spectrum of correlation lengths, i.e., thesient that such &, exists. How do we find this matrix, if it
collection of all possible exponential decay lengéhsf cor-  exists? We multiply both sides of the defining relation Eq.
relation functions of the form{O,(x)O,(y))xe" X*VV{, is (15 by A'[s] and sum oves. Using Eq.(5) we find that
determined by the eigenvalues af @ne can show that is
guaranteed to have an eigenvalue of 1 due to(&g.and
numerically we find that all other eigenvalues have absolute %‘B=sgr{7>]2 (AT[s)“"QR"(AT[s])"#
value less than 1. It is, however, not true that the eigenvalue S
1 will always dominate. If each of the rows 6f; or each of T .
the columns of0, is orthogonal to this particular eigenvec- =sgri 7] ES (AT[s])""AP'[s] QR
tor, another eigenvalue will determine the correlation length.

Thus, the correlation length is given b o
e =sgrPIS (ATs]oAls]) ¥ IQ5".
1
&= (14)

Inx Thus, Qp, if it exists, is the eigenvector of the matrix

wherex is the largest eigenvalue ofriot orthogonal to the Zs(AT[S]®A[s]) with eigenvalue= 1. It is straightforward
operator. Since the rows and columns of the spin operatdf numerically obtain the eigenvalue spectrum of this opera-
Sturn out to be orthogonal to the eigenvalue 1 while the nexf©r: and in the cases that we have looked at, this parity op-
leading eigenvalue is not, the next largest eigenvalue wilFTator exists.

determine the decay of spin correlations. The string operator

i mSF

e'™ of Eq. (13) turns out to have the same eigenvalue spec- B. The general state|Q)

trum as 1 Thﬂme, however, the eigenvalue 1 ofslnot We now analyze the set of stat®),, for generalQ.

orthogonal tee' ™2, giving the long-range string correlations. These states can be interpreted as states homogeneous in the
A possible problem with the construction of the projectionbulk but with nonuniformity near the boundary.

operator is that parity is not built into the construction of the To calculate the norm we use the same trace and tensor

ground state since the projectors operate from the left to thproduct identities as when deriving E@). We find that
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where
(QQ0n=2 t{(Q)*A*[snl- - A*[sa]}
K o
X QA+ Als]) = tT(Q"*®Q)1"]. H(n)= 2, (1SS, (25
|=
(16)
We can rewrite this trace as ordinary matrix products. To do n=T o .
this we first define the generalized transpt&:.p, s.p, of SHn)= 2 (1'san—270, (26)
1

a matrixM by =0

(M Tpypy.ps pa) (@1:02):(03,08) = ) (apypp,)o(apap,)  (17) where the tilde symbols indicate that the transformation in

Eq. (18) should be performed on the whole sum.

where{p,,p,,P3,P4} iS a permutation 0f1,2,3,4. We also In Eq. (19) we determined the expressioQ{(|Q),
define a tilde operatdv by the formula =Q’'G(n)Q for the inner product of the stat¢®), and in
Eq. (23) we found Q'|HqQ)=Q'H(n)Q. SinceG turns
out not to be proportional to the identity matrix, we see that
the naive basis states, i.e., the stat@,jQ“'BE i,a% 8
(18 withi=1,..mandj=1,..m, are not orthonormal. It is not

so that the tilde operator effectively generates the matrix cor(—)nIy convenient to have an orthonormal set of states, we also
responding to the inner product @ andQ with M. One want them to be eigenstates of the Hamiltonian. The energy

finds by writing out Eq(18) in components that of the statdQ),, defined by thanxm matrix Q is given by

t[(Q @QM]= > (Q)*F (M) B)@pQus,
o' B’ a,B

M = M Ta142 B QH(N)Q
Hence Fol= QG(MQ’ a
o ;o ;o The eigenvalue equation we have to solve is thus
Q"™ B |Qa’ﬁ)n:Q/(a B )G(n)(“ B )V(H,B)Q(a,ﬁ)’
(19 H(NQ=EyG(n)Q. (28)

with
_ We will now construct a set of states that are orthonormal
G(n):(i”). (20) and satisfy Eq(28). SinceG is Hermitian we can define a

_ _ _ unitary matrixV by the transformation that diagonaliz€s
The nice thing about Eq919) and (20) is that we have

effectively turned the computation of the trace in ELp) for vigv=D (29)
all Q andQ’ into a matrix inner product betwedp, Q' and G

a singlem?x m? matrix G, independent of andQ’. Note whereDy is a diagonal matrix. We now define
that on the right side in Eq19) we write Q and Q' as

vectors of lengthm?, U=V(Dg) 2
Similarly we can compute the expectation value of the G
Heisenberg Hamiltonian defined in EQ) with 3=0 as so thatu'Gu=1, the identity matrix. We also define
n-2
! ! ticean—2—i = t

(Q'[HodQ)p= 2, #1(Q'8QISSI 7], (21 h=u"Hu, (30
whereS denotes the hat mapping in EQ.0) of the spin-1 s,=u'stu, (31)
matrices. Thez component of total spin$f)e,=2S  is

with H andS7 from Eq.(25) and Eq.(26). It can be verified
that[ h,s,]=0 so that both total spin and the energy can be
n-1 . _ diagonalized simultaneously. Numerically we diagonalize
(Q'|(SPop Q)= E tr[(Q'®Q)1'S11" '], (220 h+es, where € is a small number, so that
=0 wi(h+es,)w=E+es, is diagonal and we find that both
If we have a more complicated Hamiltonian, like Ed)  ands; are thereby diagonalized by
with B8+ 0, the Hamiltonian matriceSS in Eq. (21) must be

given by

replaced by an expression similar to Et2). As we did with w'hw=E, (32
the norm in Eq.(19) we can rewrite Eqs(21) and (22) as
matrix-products by putting the summations inside the traces w's,w=m,, (33

and by using the tilde transformation of E38), yielding
with w'w=1 and whereE and m, are diagonal matrices
(Q'|H0p|Q)n:Q,H(”)Qv (23 containing the energy eigenvalues and the eigenvalues of
total spin, respectively. Putting Eg&0) and (31) into Egs.
(Q'[(SPod Q)n=Q’SHN)Q, (24 (32) and(33) we see that
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sulting expressions are in principle similar to the ones we

> [uw) 1, Ha p(uw) g ,=E 5,0, (34 obtained for the boundary states, e.g., &1). For the norm
“p we find
uw) 1., .G, g(UW) g =8, ., 35 oo N
;ﬁ[( )1y .aGa p(UW) g, =8, (35 (Q" k|Q,k=ntr (Q'®1) Y, €1 i(1eQ)1|,
j=o0

wherea, B, y, andy’ are matrix indices. Thus, the columns (38
of (uw) contain the orthonormal eigenvectorstéfn) and . _ . :
S4(n). Combining Eqs(34) and (35) we find with a similar, but more complicated, expression for the

Hamiltonian and for the component of total spin. The re-
sults can be found in Eq§A10) and (A21). We see that the

> Hy p(uw)g . =E,G, g(UW)g . general structure of all these matrix elements is that they
B consist of traces with a convolution sum over matrix prod-
Hence the matrices ucts inside each trace. For finite length chains, the sums in
these expressions as well as those in EB$). and (22) can
(Q)) ap=(UW) (4 5) 5, (36)  be expediently calculated by a recursive scheme for the case

’ ) ) when n is a power of two. These recursive formulas are
where Q,, are m* mXxXm matrices, are orthogonal with re- derived in Appendix B.

spect toG and are simultaneous eigenstates-bfnd St. One can also calculate the norm and Hamiltonian matri-
We therefore define the orthonormal set of stdtegs we ces,G(k,n) andH(k,n), defined through the formulas
were looking for by
|’y>=|Q ) (Q’!k|H0p|Q1k)n:nQ’H(k1n)Q1 (39)
=|Q,).
To summarize, we finally have (Q".k|Q,k)n=nQ'G(k,n)Q, (40)
(y'[Hod ) =E, 5, similar to H(n) and G(n) in Egs. (19) and (23) for the
o ey boundary states. This time they will, however, dependkon
"<z =(m,) .. ., as well as om. A matrix S;(k,n) representing the com-
b |(ST)°p| 7= (Ma)y0y .y ponent of total spin can be defined analogously. The prin-
(y'ly)=45, ciples for calculating these matrices are the same as for the
YY

boundary states, i.e., one uses the tilde transformation of Eq.
The state$y) form a natural basis for describing edge states(18). Due to the number of terms in the expression for the
in finite-size calculations, a feature that is not further ex-expectation values it is numerically cumbersome for finite
plored in this paper. Nevertheless, we will benefit from thislength chains.

derivation in the next section were a set of Bloch states are There is, however, an elegant way to extract the leading

defined in a similar manner. behavior ofH(k,n) and G(k,n) as n—oo. The details of
these calculations can be found in Appendices C and D. In
V. BLOCH STATES this section we will only give a brief summary of the method

and the results. Let us first define th&ransform(sometimes
called a discrete Laplace transforof a series{a,},_o by
F(\)=2,_,a,e"™. Let us now denote the sum inside the
trace in Eq.(38) by S, so that

We now leave the orthonormal boundary std@§) and
impose periodic boundary conditions on the Hamiltonian in
Eqg. (1). We return to the state®), as defined in Eq(4),
whereQ is a generamxX m matrix, to make an ansatz for the

low-lying excited states. For a translationally invariant sys- n—1
tem we can define our states to be Bloch states. A reasonable S,=> €k1n-i(1eQ)1.
ansatz for a Bloch stai®,k), defined by a matrixQ and a j=0

momentummk is given b , . w
g y We now define a serigsS,},,_,, and take the transform of

n this sequence. By examining the analytical structure of the
1Q.k) =2, > €Xtr(A[s,]---Als;11]1QAls]---Als;])  transformed series we are able to extract the leading behavior
{sj 1=1 of the sumS,, asn—o=. In this way we get the asymptotic
form of the norm in the limit of largen. This procedure is
X|sq- - -sp). (37) . . . ,
then applied to all sums in the expressions for the matrix
This wave function can be viewed as the ground staje  elements. In Appendix C, thetransform of a general sum is
with a disturbance€) introduced at some site, and then letting taken and its large- behavior is extracted. In Appendix D
the disturbance run over all sites to form a state with a defiwe apply the results of Appendix C to the expressions for the
nite momentum. In this way we get a single “particle” ex- expectation values derived in Appendix A. This whole pro-

citation. cedure finally results in the asymptotic forms
As was done for the boundary states in Sec. IV we now
derive expressions for expectation values of operators in the H(k,n)=n?H,(k)+nH;(k)+Ho(k)+O(2)", (41)

states|Q,k),. The calculations are more tedious and we
have therefore put the details in Appendixes A—D. The re- G(k,n)=nG;(k) +Gy(k)+0(2)", (42
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with H(k,n) and G(k,n) as defined in Eqs(39) and (40). TABLE |. Ground-state energy per site.
Here z represents the next leading eigenvalue antl we

find numerically thatz|~0.8. There are thus very small cor- # Eo Exact Best numerical
rections to the asymptotic form. We also find théf and  _1 —0.666 666 67 2
G, are nonvanishing only when the momentkis zero. —1.401 38 —1.401 484 038 971(4)
The eigenvalue equation that must be solved is 0.6 — 29184

1.0 —3.98455 -4

H(k,n)Q(k,n)=E(k,n)G(k,n)Q(k,n),

where Q(k,n) is an m?-dimensional vector. Fok#0 we + N +
thus have hy=ugHo(K)u, and s;=u,S{(k)u, so that wy(hy

+ esp) W= A+ emj, is diagonal. We then find

[NH1(K) +Ho(k)JQ(k,n)=[nEo+ Ay(n) ]Go(k)Q(k,Nn),
(43 Ho(K)Q,(K) =4y ,Go(k)Q,(k),

whereE, is the ground-state energy per site angn) isthe ~ where

excitation energyE, denotes the ground-state energy per

site in the limitn—co, and is therefore independent of [Q(K) ], p= (UkWi) (), v

Since we are interested in the solutions to E4f) when  aremxm matrices labeled by, orthogonal with respect to
n—o we assum& andA, to be independent af and we G (k) and simultaneous eigenstates téf(k) and So(k).

thus need to solve the simultaneous equations There are less tham? eigenvector®. (k) for k#0 due to
the nonvanishing null space @g(k). However, probably
H1(k)Q(k)=EoGo(k)Q(k), (44) only a few of the lowest-lying energy eigensta@s(k) are
reasonable estimates of true excited states. Finally, we can
Ho(K)Q(K) =A,Go(K)Q(K). (49 write for the orthonormalized statgy,k), defined by the

Solving Eq.(45) yields a set of eigenstat€¥(k) and eigen- MatricesQ,(k):

valuesA, for eachk. These eigenstates have to be simulta- _

neous eigenstates to E@4) with the k-independent eigen- l7.k)=1Q,(Kk),k) (47)
value E,. This is in general impossible, unlebs <Gy, as  Because states with different valueskadre guaranteed to be
indeed happens. We thus reco¥®y by the proportionality orthogonal, we find

constant
<’y’ ,k,| ’y,k>: 57’,76k’,k .

H,(k) =EqGo(k). :
1(K)=EoGol(k) These represent our “single magnon” states. In the next sec-
The excitation spectrum is then given by the single eigention we numerically determine these states along with their

value equation energy and spin expectation values.
Ho(K)Q(K) =AGo(k)Q(K). (46) VI. RESULTS
Similar formulas can be obtained fér=0. Note that Eq. We have tested the calculations on the spin-1 Heisenberg

(46) is an eigenvalue equation for the excitation spectrunthain defined in Eq(1). All computations are done with
that makes no explicit reference to a ground state. Then=12 je., keeping the 12 states as discussed in Sec. IlI.
ground state enters, however, implicitly in the parameters ifrpe resultant eight-parameter family of trial ground states
A[s] on whichH(k,n) andG(k,n) depends. ~ [Eq. (7)] was explored. The projection matricas] defin-

] An asymptotic form for thez component of total spin, ing the ground state were computed by minimizing the en-
St(k,n), similar to the form forH (k,n), containing terms up  ergy of the trial ground state. The projection matrices ob-
to ordern? is also derived in Appendix D. Numerically we tained by this variational technique were found to agree up to
find however, that the only nonvanishing term$#(k,n),  numerical accuracy with the projection operator obtained
for any momentunk, is the constant terr8(k). from similar DMRG calculations. The result for the lowest-

How do we find the orthonormal set of stat®@¢k) for a  energy state for somg is found in Table |. The best result
particulark from the eigenstate equation in E46)? We can  known to us forB=0 comes from DMRG calculations in
in principle take over the discussion of the boundary stateRef. 5. The exact result at the AKLT point
|Q) from Sec. IV. The only slight problem that enters here isB= —arctan(1/3) can be found in Ref. 13. TBe=1 system
that Gy(k) is singular fork+0, that is, the null space of was exactly solved using the Bethe ansatz in Ref. 16. The
Go(k) is nonvanishing. In order to find the inverse of parity operator of Eq(15) has been computed in all cases
Go(k) the null space must be excluded from the Hilbertand it is found that the ground state has parityl()", where
space. We do this numerically using singular value decomn is the number of sites. For the string order parameter of Eq.
position. Once this has been done we can simply take ovel3) we find g(«)=—0.3759, whereas best estimates®are
Egs. (29—-(36). In this case we identifyHy(k) with H, g(e0)=—0.374 325 09¢2). We find thenext leading eigen-
Go(k) with G, andA, with E. We diagonalizeG,(k) with  value of 1to be —0.777, giving an asymptotic spin-spin
Vi so that VIGO(k)Vk=DG(k) is diagonal and define correlation length from Eq(14) of |=3.963, compared to
U=V Dg(k)] Y2 Then we diagonalizeh,+es? where best estimat@sof |=6.031). We believe that the severe
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truncation of our basis to only 12 states has resulted in theut finding the expected power-law decay of correlations.

asymptotic correlations being quite poor, although we havdhe correlation length spectrum is given by the eigenvélues

verified that intermediate length spin-spin correlations aredf the matrix 1 and it is hard to see how this can ever give

consistent with more precise calculatidfis. algebraic correlations. However, intermediate correlations
An important issue is whether or not E@7) is a good for intermediate lengths appear to be well represented in all

ansatz form for the excitations. We have computed the agsases.

ymptotic forms whem—« for the Hamiltonian and norm The Appendixes A—-D contain the detailed derivations of

matrices defined in Eq$39) and(40) as well as for the total the results presented in Sec. V.

spin matrix for different8 and moment&. The orthonormal

eigenstates of Eq47) are also determined, giving the single

magnon excitations of our model. The energy antbmpo- VIl. CONCLUSIONS

nenF of totallspin fo-r each_eigenstate are also defcermined. A The present work suggests that the rapid convergence of
particularly interesting point i$8=0, the pure Heisenberg the pMRG is explained by the fact that the states selected
model, which has been the subject of much numerical effortyre ptimally chosen eigenstates of total block spin. Properly
We find the single-particle spectrum shown in Fig. 2 in Ref.cpgsen, these states are highly efficient for building wave
4. The low-lying triplet branch defines the gaf,  fynctions with a small basis that have low total spin for all
=0.4094, which is very good compared to the most accuzpplocks.
rately known resuft'**?of 0.410 5021). Furthermore, we Our analysis also proposes that DMRG inherently pre-
compute the spin wave velocity=2.452 to be compared 0 gicts exponential decay of correlations. Nevertheless, fully
the calculations in Ref. 11, whete=2.49(1) was obtained. performed DMRG calculations on systems with power-law
Clearly we reproduce the single-particle triplet excitationsgecay of correlations seems to agree well with theory. How
with high accuracy considering the few number of states inhjs is consistent with our calculations is currently under
our basis. Our calculation also yields a detailed spectrum ofydy.
lowest-lying “single magnon” excitations shown by dotted A related topic is the difficulty to describe the vanishing
lines in Fig. 2 in Ref. 4. Our second lowest-energy excitationof the gap close to a gapless point. However, also “full”
atk= m is a singlet shown by a dotted line in the same figurepMRG calculations seem to suffer from this probl&m.
with A _(singlet)=2.348.
As a function ofk, the second lowest single-particle ex-
citation is either a singlet or a spin-2 object, as has also been
observed in exact finite-size calculationBarity of each of APPENDIX A: EXPECTATION VALUES
the elementary excitations is verified by checking the rela- IN THE BLOCH STATES
tion Eq. (15 with Q as well as with the matriced. The
boundary to two particle excitations at a given valuea
computed explicitly by minimizing the sum of energies o
excitations whose pseudomomentum sumt@and simi-
larly for the three particle excitations. These results are n
shown by the light and dark shaded regions in Fig. 2 in Ref. |Q,k)= >, €*™r(A[s,]-- - AlSm+1]QASm]- - -A[S{])
4. The picture fits well with previously obtained results. m=1
We have similarly computed spectra for various values of
B.89 The result for the gap to the lowest-lying triplet at
k= is shown in Fig. 1. NeaB=0.6, the excitation spec- ) _ )
trum atk= 7 crosses zero and becomes negative. Our interNOte that the summation over spins as well as the subscript
pretation of this is that our ground-state ansatz is deficient). the number of lattice sites, are not explicitly written out.
and this shows up as a condensation of elementary excita-
tions. It is to be noted that Oitmaa, Parkinson, and Bohner
also found that numerically the gap appeared to vanish rap-
idly near this value o3, although they too were unwilling to
conclude that this persisted in the thermodynamic limit. We will derive expressions for expectation values of three
Our calculations are consistent with two possible scetypes of operators. First we calculate the noi@T k|Q,k).
narios of what happens ne@=0.6. A special value of3 Then we show how to obtain the expectation value of total
could exist where the gap closes and signals a new phase. @Rin, S;=2,S, whereS§=(S,5,5)), i.e., the expectation
the gap is in fact small and persists all the wayBte 1 but  value of the sum of a single site operator. Finally we calcu-
we do not see it due to our restricted ansatz for the grounthte the expectation value of the sum of a two site operator
state. Recent DMRG calculatidhsave shown to have simi- like the energyH=2,S-S,;. The calculations of these
lar difficulties to estimate the vanishing gap fBrclose to  three types of expectation values differ only in details and
1. A significant issue appears to be that the DMRG fixednot in any fundamental way. For completeness all three cases
point seems to invariably lead to a matrix product groundare nevertheless covered in this appendix.
state that, although it succeeds in reproducing ground-state We begin by calculating the norm of the stal€sk). Due
energies to high accuracy, cannot strictly give a power-lawto the periodic boundary condition, states with differkertre
decay of spin correlations. Thus, we find the ground-stat@rthogonal. Using the definition diQ,k) we have for the
energy very accurately at the Bethe ansatz pgintl with-  same value ok,

In this appendix we will derive expressions for expecta-
¢ tion values in the trial Bloch state®,k) of Eq. (37):

X|sp: - s1).

1. Calculation of the normalization matrix
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(Q'KQK= 2, 3, e "M Mr(A 5ol - A*[si 4 1JQ'A* [S ] - A [SDUCALS] -~ Alsm+11QALS]- - ALS1]).
,m (Al)

We now use the periodic boundary conditions, puit=1, and change the summation index- 1—m. Using the identities
tr(A)tr(B)=tr(A®B) and ABC)® (DEF)=(A®D)(B®QE)(C®F), where the tensor product is defined in the text after Eq.
(8), we get

n-1
(Q".KQ.k)= an:O e Mtr{(A* [y 1@ Al 1) (A*[S1-1]®A[Sy-1]) - - (A*[Sis 2] @ Al S+ 2] (10 Q)

X(A*[smr1]@AlSmi1]) - (Q™* @) (A*[s1]®@A[s1])}-
By defining
Ro=1®0Q,
Lo=Q*®1
and using the definitioﬁéEsA*[s]@)A[s] from Eq. (10) we can rewrite this as

n—-1 n

(Q'.klQ.k) = ”mzo ekMr(1" M 1RG1ML o, 1) = an:O e Mr(L g 1" MRG1™) — ne*Mtr(L o/ Ry1"),

where in the last step we have added and subtracted themermand used the cyclicity of the trace. Sine&"=1 we can
now write the norm

n

(Q',K|Q,k)=n 20 t Lo 1" ™Ro(e™*1)™ — tr(Lg/RolM =n tr

LQ(Z 1" MRy 'ki)m]—RQif‘”. (A2)

Let us now introduce the symb& to represent convolution (Q",K|Q,K)=n tr(Lo {E.[1,Rs,(e¥1)]— Ro1™).
sums like the one that appears inside the trace in(&8). | o {=nl1Re ]~ Rel’} (A5)

Thus, define the two partition su@,(x,M,y) by ] ]
It is easy to show thaR, andL, commute, so there is no

n ambiguity in the order we place th@ and theQ’ in terms
En(x,M,y)= EO xMMy"" ™, (A3)  with m=m’ in Eq. (AL).
m=
wherex, M, andy are, in our case, square matrices. Later on 2. Calculation of the total spin
in this section also three partition sums will appear, therefore

After finding the norm, we are now interested in the total
spinS;=%,5 . We thus need an expression for the expecta-
tion value of the single site operator,

define

En(M.y.N z>—m20 mE XM Y™z N 2, n
(A4) (Q"KI(Sr)od QK= 2, (Q".KI(S)epl QK-

Note that the same symbd, is used to represent both two

and three partition sums; the number of argumentsZof The periodic boundary conditions imply that
determine the number of summation variables. Using thigQ’,k|(S)0pQ.k) is independent of so let us take =1.
definition, the norm can now be written as We then have

(Q',K|(Sp)odQ.k) = nZ 2 e kM ekmr(A*[s ] A*[s,,  1Q'A*[s] ]+ - - A*[s]])

m=1 =1

XU(AlS]- - - AlSm+1]QA[Sm] - - - AlS1 1S} - - S1|(Sp)oplSn” * -
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To rewrite this expression usirig defined in Eqs(A3) and  Observing the double counting that appear above we see that
(A4) we split the sums ovem andm’ in three partial sums

E _ E n n
A e > 3 -EaHze-Te
2 = E 1
° 1<m’<m Define S,, Sg, and S to be the parts of
(Q'.kI(Sr)opl Q.k) with values ofm andm’ corresponding
Se= > to the sums 5, 25, andX ¢, respectively. In a similar way
l<m=m’ as for the norm we now get for the sufy

Sa=n>, X XM mMig(A*[s ] A*[s51]1Q"* - A*[S]A* [ Dr(A[Sy]- - Al 1]Q- - - AlS,]ALS:])

m=1pm=—m

X(sil(Spads)=n 2 2 XM Mu{(A*[5)]@AlS]) - (A*[Sny 4 1] @ AlSty +1])(Q" @ D(A* [ 19 AL S ])
2 (A" S 1] AlSm 1) (18 Q)(A* [S] @A) - (A*[ 2] ALS,]) (A* [51]@ AL (S| (Sp)opl 1)

n n
=nm21 Z kMM (10 o, 1™ TMRGIMTIG) =n Dy Y kMM (Lo, 1M T MRG 1M 1S1N M), (A6)
- m =m

m=1m'=m

where we have used the definition $ffrom Eq. (10). By changing summation index—1—m andm’ —1—m’ we get

n-1 n-1

Sa=n> > eMm ML, 1™ T "RHIMSIN ™ ) =nt Lo 2, 1(e *1,Rg,1,S,1)].

m=0 m/=m

In a similar way we get for the suid

Se=n > X XM Mir(Als ] - AlSy1]Q - - Al AL ) * tr(Als,]- - - AlSms1]Q- - - AlSp A1 1)(S1[(Sy) opl S1)

m'=1 m=m’
(AT)
=ntfLo=, 1(151,Rg,e*1)]. (A8)
|
It is also possible to show that (Q',K[(S1)op Q,K)=Sa(Q",Q) +Ss(Q",Q) —Se(Q',Q)
S5(Q",Q)=[SA(Q.Q")]*. =nt{lo[Z, 1(e ¥Ry, 15D
The sumF contains the terms that are counted twiceAin +En,1(1,AS, 1,RQ,e”<1)
andB and S should therefore be subtracted frép+ Sg . _ o
We get —RoE,-1(1,S, D]} (A10)
i e PP We have here not made use of the fact tBaican be deter-
SF:”mZ:ltr(l Lo'Ro1™ ™S) mined fromS}.
n-1
=n z tr(LQ,RQiméin_l_m) 3. Calculation of the energy
m=0 The final operator we need is the energy=3;h; i, 4,
=n tr[LQ/RQEn,l(i,AS,i)]. (A9) whereh; ;,;=5-S;. We thus have to find an expression

for the expectation value of a two site operator. The proce-
We now collect the results from EqEA6), (A8), and(A9). dure to find it is analogous to how we found the total spin.
The expectation value of the total spin is thus We use the periodic boundary conditions to pstl. Thus
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(Q',leoplQ,lo:El El > e kmekmyr(Als ] AlSpi1]1QAISR] - AlS;])
I=lm=1mn=1

Xtr(A*[sp]- - - A*[s7, 4 JQ A*[s[,]- - - A*[S1])(sh- - - S1|hy dSn- - -S1).

Since the terms witln=1 and/orm’ =1 in the expression above are special in the sense that the m&reedQ’ mix with
the operatoih, ,, this time we have to split the sum into six partial sums:

EAZZ!EBZEaEFZEvEC:EvEDzzazE:

We note that

n n
Y =Sa+3p—3p+3c+3p+3e.
m=1 =1
Analogous to what was done for the total spin, we defihgHg, etc., to be the parts ofd’,k|H | Q,k) with values of
m andm’ corresponding t& ,,2g, etc. The sunmH, for the two site operator is very similar 8, in Eq. (A6) for the
single-particle operator. We find

Ha=n2, > XM mu{(A*[s]@ ALs]) (A*[Sh-1]@A[S 1] (A*[Smy 1@ Alsm 1 )(Q' @)
X (A LS ] @Al 1) (A* [Smr1] @ Alsms1 ) (19 Q)(A* [sm] ®Als]) - (A*[s]@ Also]) (A*[57] @ Alsy )}
X<5£’Si|h1,2|52151>:n2_2 > eik(mim,)tr(LQ'1m,7mRQ1m72ASASin7m’), (Al11)

where we have used the hat mapping defined in (E@). for the Hamiltonian matrixss. By changing summation indices
m—2—m andm’—2—m’, and using the& notation for the sum, we get

n-2 n-2
Ha=n>, > e M mr(Lo, 1" MRy IMSSI 2™ ) =ntr{Lo E, (e ¥1,Rq,1,5S,1)].

m=0 m'=m

In a similar way we get for the suig:

Hg=n > X XM Mitr(A[s] - Alspy1]Q - - - AlSp]A[S{])* tr(AlS,]- - AlSms1]1Q- - - AlS,]As1])

m’'=2 m=m’
X(s3,51|h1.4s2,81) (A12)
=ntfLoZ, (1,55 1Re.e*1)]. (A13)

It is also possible to show that

Hg(Q',Q)=[HA(Q,Q")]*. (A14)

The sumF contains the terms that are counted twicéiandB andHg should therefore be subtracted fratn +Hg . In the
same way as we foun§: in Eqg. (A9) we now find

n

He=n>, tr(1" "LoRol™ 28S)=ntLoRoE, 2(1,55,1)]. (A15)
m=2

The sumsC, D, andE contain terms where the matrfg and/orQ’ mixes with the operatoh, ,. For C we get

n

He=n X e MM Dir(A*[s,]- - - A*[ S 1]Q"* - - - A*[)]A*[5;]) tr(A[S,]- - - AlS21QALS;1)(S},S1 |1 dS2,51)
m'=2
(A16)

n
=n 22 e KM = Dyr(1n=M' 1M 28R, S) =ne ¥t Lo, a(e *1,5R0S, 1)]. (A7)
m' =

Hp yields
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Hp= nmE:Z M Itr(A*[s,]- - - A*[55]Q" A*[s DUr(ALSy] - - - AlSn+1]Q- - - A[S2]AS11)(S3,51 1 dS2,81)  (AL8)

n

= nmE:Z eik(m*l)tr(1”*mRQim*2ASLQ/§) = ne*”‘tr[LQ/ASEn_z(e*“‘i,RQ ,1)S],

where in the last step we used'"=1. One can also show
that

Hp(Q",Q)=[Hc(Q,Q")]*.
The “sum” E is just

HE: n tr(in_z’\SRQLQIAS) =n tr(LQréin_zéRQ)
(A20)

We now collect the results from EqeA11), (A13), (A15),
(A17), (A19), and(A20). For the whole Hamiltonian we thus
have

(Q',k[H[Q,k)=HA(Q",Q)Hg(Q",Q)—Hr(Q",Q)
+Hc(Q',Q)+Hp(Q",Q)+He(Q",Q)
=n tr(LQ/{En,z(e*‘ki, RQ,i,ASAS,A)
v, L85 1Rg )
~RgE, 2(1,88,1)
+e"kEn,2(e*‘k1,ASRQAS,i)

+e *YE, (e *1,Ry,1)]S

(A19)

Eon(X,S)Y)=X"E(X,Sy) + En(X,Sy)y"—x"SY,

X2n: Xan,

y2n:ynyn
with the starting sum
E1(X,S,y)=xS+Sy.

We thus get sums whene=2!, j integer. Each recursion
step requires a constant number of additions and multiplica-
tions, which implies a total computational effort of order
In(n). The three-partition sum, EqA4), can be done in a
similar way. Here the 2—2 sum is reached from the—2

sum by

EZn—Z(XvSvyaTaZ) = XnEn—Z(X!S!nyvz)
+En_2(%,Sy,T,2)2"
+ Enfl(X,S,y)En,l(y,T,Z),
Eanl(Xis!y) :XnEn,l(X,S,y) + En,l(X,S,y)y”,

x2N=x"x",

+A81“*2ASRQ}). (A21)  with similar expressions foi=,,_41(y,T,2),y*", and z*".
Here we start with
We have not made use here of the relations
He(Q',Q)=[HA(Q,Q")]* and Hp(Q'.Q) Eo(x,Sy,T,2)=ST,
=[Hc(Q,QN)]*.

EquationgA2), (A10), and(A21) now contain the desired

411

1(X,S,y) =xS+ Sy,

expectation values, expressed in terms of convolution sums.

These sums can be expediently calculated using recursive

relations, as we will show in the next section.

APPENDIX B: CALCULATING THE PARTITION SUMS
RECURSIVELY

Expectation values between the Bloch sta@k) can be
divided into partial sums with the general forms of two-
partition and three-partition sums defined in E@A3)-
(A4). The number of terms in the two-partition sum with
upper limitn is n+ 1 while the number of terms in the three-
partition sum with upper limin is (n+1)(n+2)/2. Both of

2.y, T,2)=yT+Tz

and we get sums with upper summation boumd2, with
n=2! andj an integer. Also here the computational effort is
of order Inf). In this recursion scheme we also get the two-
partition sum with upper bound—1.

APPENDIX C: THE POLE EXPANSION

Although calculating the sums recursively is a nice
method for finite-size chains, we would like to calculate the
expectation values in the limihi—o~. As we will show in

these sums can be calculated recursively with a number ghis section, it is actually possible to do this directly by ana-

operations of the order In). For the two-partition sum Eq.
(A3) we find that the sum with upper limitr2can be found
from the sum with upper limit by

lyzing the sums’ asymptotic form. In the next section, Ap-
pendix D, we apply the results to the actual sums in the
expectation values of Appendix A.
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1. Three-partition sums n—oo. This form can be found if we take the transform
In Appendix A expectation values were calculated and@/SC known as discrete Laplace transforofi S, and then

expressed in terms of sums. These sums are of the gene,adpalyze the pole structure of the transformed sum. Define the
form z transform of the sunsg, by

S= 2 (')’X)nlSXnZTanan,nl+n2+n31 FS[)\]EHEO \"S;.

nqy,ny,n3=0

wherex, S, andT arem?x m? matrices andy=e'¥ is a phase
factor. We would like to know the asymptotic form 8f as  We then have

oo

FIN=2 2 0SS 2TONX) 8800 inyen= 2 (AyX)MSAX)"2T(AX)"

n=0 nq,ny,n3 ny,Ny,Ng
=( > (m)fh) S< > (m)“z)T( > (m)“s).
ni=0 n,=0 n3=0
Let us definelU as the matrix that diagonalizes Let us also define a transformatith® of a generam?x m? matrix M by
MP=U"*MU.

Thus xP is a diagonal matrix with the eigenvalues xfon the diagonal, while the transformatida® of a general matrix
M need not be diagonal. We then have

[} o o

FS[)\]=U( ZO ()\ny)”i)Ulsu( > ()\XD)”Z)UlTU( 20 (xxD)“s)ul

ni= n,=0 n3=
1 1 1
=U| 1—-AyX; SPl 1—Ax; TPl 1—AXq Ut
0 . . .
|
wherex; are the eigenvalues of. In our casexP are the S,=An?+Bn+C+ corrections,

diagonalized landx; are eigenvalues of.IThe largest ei-

genvalue of lis x;=1 and the other eigenvalues have_abso-where the corrections are of orde}~0.8" and thus very
lute \(alues less than 0.8. The order of the poleB%h ] will small. We now calculat&S[ A ] using this asymptotic form
be different fork=0 andk#0. We will therefore have 0 4t 5 call it FA[\] to distinguish it from the original form:
treat these two cases separately. We first determine the as-

ymptotic form in thek=0 case.

oo

Ary 1— 2
a. Pole expansion for zero momentum F [)\]_r;o \"(An“+Bn+C)

The transform will now have as elements
=AD n2A"+BD n\"+C>, A"

(FIADM =2 ()T o A
) ) —A—g(l_)\) +(A+B)(1_)\)2+C(l_)\)
(C1) 2A B—-3A C-B+A

“T=x) A=y (1-rz)

oo tavtawn s @
Note that we have for simplicity not written out the leading

U and the trailingJ ~* in the above formula. Also in the rest We see thaEA[\] in Eq.(C2) has poles ak=1. FS\] also

of this paper, thes&) and U~* will be omitted. Since the has poles ah=1 and is analytical in a neighborhood. We
largest eigenvalue of 1s x;=1 and the next highest is therefore expand=S[\] aroundA=1 and identify terms.
X,~0.8, we take as an ansatz for the behaviogpfor large  This will also justify the asymptotic form we have suggested
n, above. Noting thak;=1 we define a functiog(\) by
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gN)=(1-N\)(1-AxP) 1=

We then note that

(1=M)%FAIN]=g(M)SPg(M) TPg(N). (C3

We use the shorthand notatian=g(1), g’'=g'(1), and
g”"=g"(1). Combining Eqs(C2) and (C3) we arrive at the

central result of the pole expansion for the three-partition

sum whenk=0:

2A=lim{(1—\)*F{A]}=gS g TPy,

A—1
_(d
—(B—3A)=lim (—(1—)\)3F5[)\])
A—1 dx
=9'SPgTPg+9S’g'T°g+9S°gTg’,
(C4

d2
2(C—B+A)=Ilim (W(l—)\F‘FS[)\]
A—1

— glrSDgTDg+ gSDgr/TDg+ gSDgTDgN
+29SPg'TPg’ +2g’SPgTPg’

+2g'SPg’'TPg.
We note that
0
)= —(1-Xp)
e N C S L
0
—2X5(1—X5)

g'(N)= FESvAY

b. Pole expansion for nonzero momentum

We now treat the case when the crystal momentim

#0. In this case the first matrix is multiplied by a phase
factor y=€e'*#1 and we have the elements

<F5[x]>iv"=2I (SP)HI(TP)!

« 1 1
(1=Nyx) (1-Ay) (1-Az)°

(CH
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The new termC’ will give rise to a term k —y 1) ! and to
match this term we have to expand aroung y 1. There
can only be a simple pole at=y~ ! so there will not be any
termsA’ or B’ (i.e. terms proportional tg"n? or y"n). We
have

FA[)\]ZHZO A"(Bn+C+9"C’)

__ B _BC -C
S (A=D1 (v
B c-B C

oo tan ooy @

By defining a functiorh(\),
1
(1—AXy)
h(\)=(1-axP)~t= 1
(1-AXp)

and using the definition of(\) we write FS{\] in the fol-
lowing two ways:

1
FIN]= mh(h ¥)SPg(N)TPg(N)

=m9(7\7)5Dh(7\)TDh(>\)-

In a similar manner to thk=0 case we now find

B=lim{(1—\)2FS\]}=h(y)SPgT g,
A—1

d
_ _ — I . _ 2
(C—B) )!IT:L d}\(l N)2FEIA]
=yh'(y)S°gT°g
+h(y)SPg’'TPg+h(y)SPgTPg’, (C8)

C'= lim {(1-Ay)FA]}=gS’h(y HTPh(y ).
)\—>771

2. Two-partition sums

The pole expansion can of course also be done for the
two-partition sums defined in EqA3). We will not go
through the details since the calculation is analogous to the
three-partition case but for completeness only list the results.

Let us analyze the sum

sq=m220 (yx)"SX ™, (C9)

We notice that this time there can be no poles of order three

atA=1. Instead we have a pole gt= y 1. The asymptotic
form now looks like

S,=Bn+C+ y"C’ + corrections. (Co)

where y, x, and S are defined as before. For the case
y=e*=1 the asymptotic form as—» is

S,=Bn+ C+ corrections, (C10
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with

B=g< g,

Ci1
—(C-B)=g'S’g+9Sg". cH

For the casey+# 1 we instead get the asymptotic form

S,=C+ +"C’ + corrections, (C12
with
C=h(y)S"g,
(C13
C'=gSPh(y ).

APPENDIX D: EXPECTATION VALUES USING THE
POLE EXPANSION

In Appendix A we derived expressions for the expectation

values of various operators in the Bloch stat€sk). We

2179

Se=E,(1,Ro.e*1).

In Appendix C we arrived at two different expressions for
the asymptotic forms depending on if the momentkiwas
zero or not. Let us start witk=0. According to Eq(C10),
the sumS¢ then has the asymptotic form

SS: BGn+CG .
From Eq.(C11) we directly get
Bs=9gR3g,

—(Cs—Bg)=9'Rgg+gRag’.
The last term of Eq(D1) is no sum and just gives an addi-
tional matrixR3g to the asymptotic form oSS . Thus

(Q".KQ,K)=ntLq (Bgn+Cs+R30)],

wherek= 0 in this case. Before going on to the ckse0 we

(D2)

found that all expectation values were expressed in terms afiill rewrite this formula in a more “operatorlike” form.
sums of matrix products. In Appendix C we showed that theThis can be done by “pulling out” the matrice® and Q’

asymptotic limit of a general sum could be calculated. Byfrom the trace. We note tha€( ,k|Q,k) in Eq. (D2) has the
doing a discrete Laplace transform of the sum and analyzingprm
the analytical structure of the transformed sum, we arrived at

a closed expression for the asymptotic behavior as a sum

over just a few matrices.

In this section we will combine the results of Appendixes

(Q'KIQ,k)=2 tr(Lqg:M4RoN,),

A and C and show how the particular sums in the expectatioiith M, andN, square matrices on outer product form. By
values of Appendix A can be analyzed with the technique ofloing a generalization of the tilde transformation of Etf)
Appendix C. By doing this we will get rid of the unpleasant We can rewrite this as

sums of Appendix A and replace them with simpler expres-

sions describing the asymptotic form of these expectation
values in the limit where the number of sites goes to infinity.

1. The normalization

We will begin with the simplest case, the norm as deter-

mined in Eq.(A5),
(Q',K|Q,k)=ntr[Lg/(SE—Ro1M], (D1)

with

> tr(LoM RN =2 Q'*M,N,Q

=Q'*(2 M)Q (D3)

and we find tha&® ,M ,N, gives a closed expression for the
norm operator, independent @ and Q' (but of coursek
dependent This transformation can be accomplished by
writing

z tr(LQ,M aRQNa) =(Q"*® 1)(i,i),(k,|)M a(k,l),(m,n)(1® Q)(m,n),(o,p)Na(o,p),(i,j)

=Q'iK* 8,1Q"P S oM LD mmy P10 = 7 (K QNP (\  Taaat) (MK).(1.M)(N_Tasaz)(.m).(p.1)

= Q’(irk)*Q(”:P)((M aT2341NaT2341)T3241)(i,k),(n,p)EQ/* M,N,Q,

where the generalized transpobt'iik! is defined in Eq.
(17). We can thus define ' and Q independent matrix
G(k,n) for k=0 by

(Q".KIQ,k=Q'G(k,n)Q,

where we determin&(k,n) from Eq.(D2) and the general-
ized tilde transformation EqD3).

Likewise we can derive the expression f8fk,n) for k
#0. This is done in the same way by using the formulas Egs.
(C13 and(C12. The sumSnG this time has the asymptotic
form

Se=Cg+Cg,
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where we have assumedsuch thate’*"=1. We now find
from Eq.(C13) that

Co=gRoh(e"),
Cs=h(e"™)R3g. (D4)
The last term of Eq(D1) is independent ok and therefore
gives the same contributioﬁigg, as before. From EqD4)

and the generalized tilde transformation we can calculat
G(k,n) also fork+0.

2. The Hamiltonian

Eq
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He(Q",Q)=[HA(Q,Q")]*
=S QUM N (D qriki*
=Q'*<2 MT)Q, (05)

so thatHg(k,n)=HA(k,n).

We now do the same procedure for the rest of the sums in
. (A21) and then later also for the cake=0. The results

for the coefficient®, B, C, andC’ in the asymptotic expan-
sion of different cases are listed below. Where a coefficient
is not present, it is zero. Apart from the expression @&p)

Now we calculate the pole expansion of the Hamiltonianwe can also_get the asymptotic form of the sumHag,

in Eq. (A21). Let us start withk#0 this time. We will dem-
onstrate the procedure for the tekin(Q’,Q), just to illus-

SE_,=E, 2(1,SS,1,Rg,e™1) directly from the pole expan-
sion as

trate the three-partition case. For the rest of the terms we

will, for completeness, just list the results.
For H, we have from Eq(A21)

HA(Q",Q)=ntr(Lo/Sy-»),
where
S ,=E. a(e *1,Ry,1,8PSP, 1),
with the asymptotic form from Eq.C6)
Sh 2=Ba(N=2)+Cp+ 7 °Cy’,

where we have assumedsuch thae'“"=1. From Eq.(C8)
we get

Ba=h(e )R3gS"SPg,

—(Ca—Ba)=e"*h’(e *)R3gSS g
+h(e‘ik)Rgg’§DéDg
+h(e”")R3gS"SPg’,

CA=gRBh(e")SPSPh(e™).
We now have

Ha(Q',Q)=ntrLq (Ba(N—2)+Ca+y 2Cp)].

We transform this as we did with the norm using E93) to
get theH , operator

HA(Q",Q)=Q"Ha(k,n)Q.

Note the convention used here. We write th&x m? matrix
operatorH,, which is independent o and Q' (but de-
pends ork andn), asH(k,n) and the Q’,Q) dependent
expectation value, which of course also dependsand
n, asHA(Q",Q) .

The matrix operatoHg we get fromH, by using Eg.
(A14)

Be=gR3gS°SPh(e™),
—(CB—BB)=eikgRggéDéDh’(e‘k)+gR8g’éD§Dh(e‘k)
+g’Rgg§D§Dh(eik),
Cg=h(e")R3h(e~ )PPy
The sumS,_,==,_,(1,5°SP,1) of H gives
BFzgéDéDg,
—(Cp—Bp)=g'SPSPg+gPPy'.

The sumSS_,==, ,(e *1,SRS,1) of H yields
Cc=h(e *)SPRESPg,
Ce=gSPRESPh(e™).

The sum inHp, SP_,==,_»(¢e *1,Ro,1), can be derived

from the relationHp(Q’,Q)=[Hc(Q,Q')]* in the same

way as we did foHg:
Hp(k,n)=HE(k,n),
or directly from the pole expansion as

Cpo=h(e"™Rqg,

Cp=gRah(e™).

Finally, for He of Eq. (A20), which does not contain a sum,
we just replace the tern'12 by its asymptotic formg, and
then perform the generalized tilde transform of HG3).

The same procedure can be worked out for the Hamil-
tonian also wherk=0. However, this time we will have to
use the formulas in EqgC4) and (C11). The technique is
analogous to th&+0 case and we will not list the results
here.



3. The energy

Collecting everything together we get for the whole

Hamiltonian
H(k,n)=Ha(k,n)+Hg(k,n)—Hg(k,n)+Hc(k,n)
+Hp(k,n)+Hg(k,n)

and for the energy
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(Q".k[HodQ.k) _ Q"H(k,n)Q
(Q"klQk)  Q'G(kn)Q’

whereH(k,n) and G(k,n) are square matrices. This is the
result we advertised in Eq$39) and (40) and in Egs.(41)
and(42).

Similar expressions for other expectation values like the
total spin in Eq.(A10) can of course also be obtained.
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