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Monte Carlo study of the growth of L 1,-ordered domains in fccA3;B binary alloys
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A Monte Carlo study of the late time growth bfl,-ordered domains in a fo&;B binary alloy is presented.
The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system
exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and
curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom
exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both
methods are compared. In particular we study the time evolution of the excess energy, the structure factor and
the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been
found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancy-
atom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments
in CuzAu and theories for anisotropic growtf50163-182097)08801-3

[. INTRODUCTION For instance it is well acknowledged that quenched disorder
gives rise to logarithmic growth-lawsand that excitations
Kinetics of phase transitions is a problem of great interestocalized on the interfaces give rise to exponents greater than
not only because its fundamental importance in nonequilib4/2 and 1/3 for the nonconserved and conserved cases,
rium statistical physics, but also because its many implicalfespectivelyﬁ.’7 Moreover other parameters such as the
tions in different areas of material science and technoit?gy. ground-state degeneracy, nonstoichiometry or anisotropic ef-
The phenomenon is a consequence of the far fromfects could modify the exponents. The exponertl/2 in
equilibrium initial conditions induced by the sudden changenonconserved order parameter systems is theoretically based
of the imposed thermodynamic parameters on time scalesn a curvature-driven interface motiriThis is the well-
much shorter than the time scales characterizing the proceksown Allen-Cahn growth law. A special curvature driven
towards the equilibrium situation. Typically, the system iscase leading to an exponemt=1/4 has been found for an-
guenched through its equilibrium ordering temperature. Im4isotropic systems with a mixture of perfectly flat and curved
mediately after the quench, domains of the ordered phasgomain walls’
appear. As time goes on, they grow in size in order to reduce In this paper we will focus on the domain-growth problem
the excess free energy of the walls. This growth shows disin a fcc AzB binary alloy undergoing an order-disorder tran-
tinct regimes from early to late times. At late times, in the sition from a disordered tolal, structure. This has been the
so-called domain-growth regime, it is usually assumed thasystem most widely used to perform experiments intended to
the domain size is much larger than all microscopic lengthstudy ordering kinetics in nonconserved order parameter
in the system. Then, inspired by the situation in equilibriumsystems~8 In spite of that, theoretical studies of domain
critical phenomena, it is assumed that the system shows dgpgrowth in fcc systems are really scarce and, as far as we
namical scaling. This means that at different times the do- know, only a recent paper by L'iis specifically devoted to
main structure looks the same when lengths are measured the study of such kind of systems. Concerning computer
units of the characteristic length. Furthermore, the averagsimulation no data has, to our knowledge, been published.
domain size is supposed to increase with time according to @&his is a rather surprising fact since Monte Carlo simulations
power law with an exponem characteristic of the univer- have been of seminal importance in providing much of the
sality class to which the system is supposed to befolig. quantitative insight into ordering kinetic problems. This is
these universality classes really exist, the important point iprobably due to the complexity of ordering problems in fcc
to identify the distinctive features of a given class. In thelattices and also to the demanding computer time. Actually
simplest case, they are supposed to depend only on whethétre ground state is fourfold degenerate and there exist two
or not the order parameter is conserved. A typical examplelifferent kinds of antiphase boundaries: high and low excess-
for the conserved case is a phase separation process while @anergy boundaries. Then, two characteristic lengths may
order-disorder transition in a binary alloy corresponds to thegrow following different laws(anisotropic growthand this
nonconserved situation. In the first case 1/3 has been pre- can, in some way, question the validity of scaling properties
dicted while n=1/2 is the expected value in the secondin such a system. In fact, related problems have been consid-
case® Nevertheless, the concept of universality is not firmly ered in two-dimensional lattices. For example, the fcc prob-
established and is still under discussion. The above classiflem has some similarities with the problem of island growth
cation, just based on the order parameter conservation propt a system of hydrogen adsorbed on a (110) iron surface
erty, seems to apply only when no disorder is present in thavith coverage 2/3° In this case an exponent smaller than
system and the excitations are homogeneously distributed/2, which is indicative of interface diffusion effects, has
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been found. Also some indications on anisotropic growth are  We have focused on the cabl=3Ng>N,, in order to
reported in the same refereri@Concerning the experimen- simulate anA;B alloy such as CyAu, with little concentra-
tal situation, among a rich literature, it is worth mentioningtion of vacancies. It is well known that fa’>0 and no
the pioneer x-ray diffraction work by Cowl&ydevoted to  vacancies Ily=0) this system exhibits a discontinuous
the study of the superstructure peak inj8u single crystals order-disorder phase transition when temperature is
close to equilibrium. Much more recently, a very completeincreased® 32 The ordered phase is the so-callet}, struc-
time-resolved x-ray scattering study in a single crystal ofture. Hamiltonian(2.1) without vacancies has been repeat-
CugAu,'® has been published. The authors obtais1/2  edly used to model such order-disorder transition in metallic
with a high degree of accuracy for the growth of the highalloys(see Ref. 32 and references thejelRegarding the fcc
energetic boundaries and with less accuracy for the low enlattice as four interpenetrated simple cubic sublattices
ergetic ones. This led them to the conclusion that scalingnamedea, 8, y, and 8); the perfectL1, order consists in
holds in this anisotropic system in agreement with the theothree sublattices occupied by species whereas the other
retical predictions by Lat? one is occupied by species so that it is fourfold degener-

Our interest in this paper is to present extensive Monteated. The four equivalent kinds of ordered domains will be
Carlo simulations of the domain-growth process performectalled a, 3, ¥, and § domains according to the sublattice
in a fcc A;B alloy. Since we model the system assumingwhich contains the minority specieB. The order is de-
pairwise interactions between nearest-neighbor atoms onlgcribped by means of the three following long-range order
the low-energy boundaries have exactly zero excess energyarameters®
We expect that this extreme situation emphasizes any ten-
dency of the system to show anisotropic growth effects. In 2 :
addition we will perform simulations in systems either with \Plzﬁi.gg Sijkene(—1)%,
and without vacancie@n this last case only vacancy-atom feem
exchanges will be allowedn order to investigate the effect

. . S S 2

of the vacancy mechanism in the kinetics of ordering in fcc V,=— 2 Sikend(—1)7,
lattices. This mechanism has been shown to play a very im- Nijgype 7
portant role in bcc lattice®%3

We have restricted the present study to stoichiometric al- 2 [
loys. It is known that the coupling between the order param- Ts:ﬁijg,,g Sikene(— D)%, 2.2
eter and the excess of concentration gives rise to interesting
phenomen&*?® Moreover, in fcc binary alloys, nonstoichi- where Sikene 18 the spinlike variable at position
ometry may also favor the apparition of modulated phaSes. Fijkgv;gza(i +E2,j+ pl2,k+¢12): 1,j,k range from 1 toL

The paper is organized as follows. In the next section wend the vector & n,0) takes the values (0,0,0), (0,1,1),
introduce the model and describe some of the features of tlﬂﬁlo,l), and (1,1,0) pointing to the position of the four sub-

ground state and the domain walls. In Sec. lll we explain thQatticeSa, B, v, and 5, respectively.
details of the Monte Carlo simulations and define the differ-  afier g quench through the equilibrium transition tem-

ent magnitudes used to describe the ordering process. TrﬂferatureTO, the four possible degenerated domains appear

results are presented in Sec. IV and discussed in Sec. g compete during the domain-growth regime. It is well

F_inally, in Sec. VI, we give a summary of the main conclu- owitt3334that two kinds of antiphase domain boundaries
sions. (APDB) exist:
(1) The first type(named type-1 or “half diagonal glide”
Il. MODEL AND GROUND STATE wglls) qf APDB corresponds to a displaqement vector con-
tained in the plane of the APDB. This kind of boundaries
The binary alloy is modeled by a set Nfy A atoms,Ng maintains the same number 8f—B NN bonds as in the
B atoms, and\y vacancies on a “perfect” fcc lattice with ordered bulk. Hence, in our model with NN interactions
spacinga, linear sizeal, and periodic boundary conditions. only, such boundaries do not suppose any excess of energy.
The number of lattice sites N=4L3=N,+Ng+Ny. As- It is also interesting to remark that they can only appear in
suming nearest-neighbo(BIN) interactions only, a general specific directions depending on the two adjacent domains:
ABV Hamiltoniarf’ can be writen as a Blume- for instance they can appear perpendicular to diredt®o]
Emery-Griffith€® model, as explained in Refs. 23,29. In the betweena and 8 domains and between and 5 domains.
case of low vacancy concentration®Ny<N,,Ng) this  Table | shows the directions of the type-1 walls for all the
Hamiltonian can be approximated by a spin-1 Ising model: possible neighboring domains. Moreover, it is possible to
build up a structure combining the different kinds of ordered

NN domains with only type-1 walls, i.e., without excess of en-
H=JD, SS, (2.1)  ergy. At low temperatures, such structure would not evolve
(o in time.

(2) The second type of APDRBype-2 wallg corresponds
where the sums extend over all NN pairs dndndj are to a displacement vector not contained in the boundary
generic indexes sweeping all the lattidgj&1,...N). The  plane. Since it does not conserve the numbeAefB NN
spin variabless; can take three values: 1, —1, and 0 when bonds as in the bulk, it contributes with a positive excess of
the ith position of the lattice is occupied by akatom, a energy. It should also be mentioned that these boundaries
B atom, or a vacancy, respectively. contain a local excess of particlésither A or B).
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TABLE I. Directions of the nonenergetic type-1 walls between possible pairs of neighboring domains.

o B b% o
(V,,¥,,¥,5) (-1-1,-1) (-1,11) (1~-1,1) (1,1-1)
o [100] [010] [001]
B [10Q] [001] [01Q]
vy [01Q] [001] [10Q]
S [001] [01Q] [100Q]

I1l. MONTE CARLO SIMULATION DETAILS 1
A. Dynamics AR()= N[H(t) H(t==)], 32
We have performed two kinds of simulation studies: where H(t—) is the equilibrium energy at the quenching
(1) The first kind includes the simulations of the ordering temperatureT .
processes without vacancigs\{(=0), which have been per- (2) Structure factor:
formed using the standard Kawasaki dynamics proposing ex-
changes between NN atoms. - 1 2m. .
(2) The second kind includes the simulations with vacan- S(k,)= Nijgg Sijkfv@’“( '?k‘ rijk§n§)
cies. In this case we have used a restricted Kawasaki dynam- 7
ics proposing NN vacancy-atom exchangescancy jumps  Where the sum extends over the whole lattics, the imagi-
only. This dynamics is more realistic, in the sense that, alnary constant, and is the dimensionless reciprocal vector.
though approximately, it takes into account the role playedrhe discreteness of the real space makes the structure factor
by vacancies in ordering kinetics in binary alloys. The con-to be invariant under thé200) translations in the reciprocal
csntrati.on of vacancies has bee5n taken the same in all théhace. The periodic boundary conditions imply that the re-
simulations €y=Ny/N=3.1x10""). ciprocal space is discrete on a cubic lattice on khspace

By both dynamics, the concentration of particles is pre,ih spacing 1. Figure 1 shows the reciprocal space with
served while the order parameters are not. In both cases

fi ition of the fund tal and th truct ks.
have accepted or refused the proposed exchange using mee position ot the findamental and the Superstructure peaks

usual Metropolis acceptance probability:

2
, (33

C. Domains and superstructure peak

1 if AH=<O, The temporal evolution of the domain structure is illus-
D(AH)= AH 3.1) trated in Figs. 2a)—2(c). Three snapshots, at selected times,
exp[ - —] if AH>0, corresponding to a section parallel to ttE00) planes are
KeT presented. The four different ordered regions are indicated

whereA is the energy change associated with the proposelith different colors. Flattype-1) and curvedtype-2 inter-
exchange. We define the unit of time, the Monte Carlo Stegaces can be observed. It is worth mentioning the similarities
(mcs, as the trial of N exchanges(either atom-atom or bgtween such snapshots an_d the _experlmental rssults ob-
vacancy-atom exchangesn all the cases we have started f&ined for CwAu using dark field microscopy technigd.

the simulations from a completely disordered state, whichl'he mean distance between such walls is related to th_e shape
would correspond to the configuration of a systenT at. of the superstructure peaks of the structure factor. Dlsc_rep-
The system is then rapidly quenched at a final temperatur@nCies in the shape of these peaks have been reported in the
T, below the transition temperatufig,. To prepare the dis- literature. Old x-ray measurements by Cov@Feyuggested
ordered states we fill up the system withatoms and ran- that the peaks are square shap_ed. More recently it has been
domly replaceN/4 of them byB atoms; when it is necessary, SyggeStEd that the peaks are disk shapeur s|mulat|ons

we also choose at randoNy, lattice sites to place the vacan- 91V€ squareor even starlikeshaped peaks as it can be seen

cies.

B. Measures of growth

Our main interest is the description of the time evolution
of the ordered domains. Usually, the domain size is mea-
sured as the inverse of the excess energy, which is propor-
tional to the total amount of interfade Nevertheless, in our
case, there are two coexisting types of interfaces and only the
total amount of type-2 walls might be related to the excess
energy since type 1 does not contribute to the excess-energy.
Consequently for fcc lattices W|th12 order it is convenient FIG. 1. Reciprocanz space showing the fundamentdilled
to simultaneously measure both the excess energy and tlacles and the superstructufequares peaks. The average of the
structure factor. These two quantities are defined as followsstructure factor on the thick solid lines$s(q,t) and the average on

(1) Excess energy per site: the thick dashed lines i§,(q,t).
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{d)

(e]

FIG. 2. Snapshots of the system evolution in real sg&ae (b), and (c)] and in reciprocal spacgd), (e), and (f)]. The real space
pictures, corresponding to a section perpendicularl@®) direction, show in four different colors the structure of ordered domains. The
reciprocal space maps show the logarithm of the structure factor iil®® plane. Color scale increases from violet to yellow. Data
corresponds to a simulation using the atom-atom exchange mechanigp 410, system sizé =64, and times =18 mcs[(a) and (d)],
t=198 mcs[(b) and(e)] andt=1998 mcd(c) and (f)].

in the temporal sequence presented in Figd)-2(f). Such  superstructure peak at tH&00 position accounts for the
anisotropy in the peak shape does not necessarily imply thdbng-range order parametdr,. This order parameter does
the ordered domains are needle shaped, but arises from thet discriminate betweem and 8 domains(both having
correlation between the ordered domains. For instance th#,=—1) nor betweeny and & domains (both having
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. ‘ whereq=0,1, ... L is the distance from the superstructure
% peak(in units of 1L). Following the notation in Ref. 18, we

1.0

5]

=]

i

!
#

will refer to this profile as the radial scan of the structure
factor. It corresponds to the average on the three thick con-
tinuous lines of Fig. 1. The measuremenigtas been done

by analyzing the profile of

0.8

+5|(1,0,0

0.2

1 1

T 1 1
o | | B —E(O,O,q),t)+S((0,1,Q+E(q,0,0),t)

0.0 0.5 1.0 2.0 25 3.0

1
+S (1,1,Q—E(q,0,0),t +85( (0,0,

FIG. 3. Equilibrium order parameter as a function of tempera-
ture for L=20 using atom-atom exchange mechanism. The inset

shows in detail the hysteresis due to the discontinuous character of 1 _ E

the transition. It can be concluded th&gT./J=1.81+0.03. + L (00,0.t)+5 (0.1.9 L (09,0).t}1,

Squares correspond to a heating process while circles to a cooling

one. (3.9
whereg=0,1,...,L/2. We will refer to it as a transverse

W¥,=1). The tendency of the domains to locate in such ascan of the structure factor. It corresponds to the average on
way that the interface does not have extra energy favors thiée two symmetric parts of the three thick dashed lines of
formation ofa-B and y-8 boundariegtype 1) perpendicular Fig. 1. It can be easily shown that due to the symmetries of
to the [100] direction. Therefore the regions with a high the structure factor the average over the continUdashed
value of the order parametdr, are anisotropic, producing thick lines is equal to the average over all the continuous
the anisotropy of the (100) peak. The same happens for thglashedllines of Fig. 1. In addition, at every time both pro-
other peaks at (010) and (001). files have been averaged over a certain number of indepen-
The inverse of the amplitudes of the superstructure peakent runs(about 25 forL =64 and 40 for the other system
along both, the radiald,) and the transversex{) directions,  Sizeg. This last average is indicated by means of angular
are related to the mean distance between type-2 and typebrackets (- - -)). The finite-size effects have been studied by
walls, respectively. The measuremenwgfhas been done by simulating systems of linear sizés=20, 28, 36, and 64
analyzing the profile of (N=32 000, 87 808, 186 624, and 1 048 576 sites, respec-
tively). We have also preliminarily studied the effect of the
quenching temperature by performing simulations at

L 1 Ty=100/ksg (Tq/Tp=0.55) and T,=150/ks (T4/To
S(at=3 3( (1,0,0 - E(q,o,O),t) + s( (0,1,0 ~0.83).
- E(Oq ot]+5 0.0.2- E(O o).t D. Fitting procedure for o, and o
L k) ’ L) 1 1 L ) k) ) 1)

We have measured, and o; using the two following
(3.9 methods.

(o) |

T,= 1.50k,

10 12 mes FIG. 4. Linear-log and log-lodinsets plots

00 30 mes of the scaled radial scan of the structure factor at
<& 66 mes . . .

1 A 150 mes different times and quenching temperatures
<1342 mes Tq=1.Q0/kg (a) and Tq=1.50/kg (b). Data cor-

V 774 mcs . .

1> 1746 mes responds to systems of linear size=64 for the
+2622 mes atom-atom exchange mechanism. The solid thick
| 5 3930 mas line corresponds to a fit of expressié&7) with

a=1.5 ando=1. The dashed lines in the insets

show the Porod’s lavB,(§)~G 4, while solid
lines show the slope & 3.

5, x(S(q.t)

-10

0 ‘ }
q/c

r
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A

A A
. A
10" | A 1F 4
© . Mﬂmﬁ FIG. 5. Time evolution, in the case of atom-
atom exchange mechanism, OAE(t)) (filled
10° | EI .

T,=1.00k, (@) 1 8 o T=1.50k, (b)
A

symbolg and of o,(t) (open symbolg for

C O
M L] > Tq=1.00/kg () andT,=1.50/kg (b) for systems
\-\-\-\4\4\‘ .\-\'\'\.\4\-\ of L =20 (circles, L =28 (square} L=36 (dia-

<&
&

E monds, andL =64 (triangles. The solid lines are

o the best power-law fits. Data corresponding to
different sizes have been vertically shifted to
clarify the picture.

*

O

/

t(mcs) t(mcs)

(1) The first method is based on the evaluation of the We have analyzed the validity of both methods for the

second moment of the scan: two scans of the structure factor. The first method turns out
to be adequate only for the radial scans. This is because the
zqgfgq%s(q,t)) largeq tail of the transverse scan decays very slowly and,
a?(t)= qqma— (3.6 therefore,o, is strongly affected by the choice gf,... The
quox<s(q’t)> second method can be used for both scans. Moreover, both

methods give equivalent results for radial scans. Therefore

: ) we will estimateo, using method 1 and; using method 2.
value for which(S(q,t)) is lower than a background thresh- Concerning the exponent we have triede=1, 2, and 3/2

old. The value of this background has been taken as t.W'C?or both scans. In general the best fits to the radial scan have
the mean value of the structure factor of a completely dlsorbeen obtained withv=3/2. while for the transverse scans
dered systengexcluding the fundamental peak a=1 gives the best resuI'Es
(2) The second method is based on the fitting of a Lorent- '
zian function to the data of the corresponding scan. In order
to account for the largeg-tail of the structure factor we have
fitted log/(q,t)) to the three-parametera,g,B) function: We have tested the existence of dynamical scaling in both
the radial and the transverse directions by plotting the corre-
sponding scaling functios(q) defined from the following
atBl., 37  expression:

where S represents eithe®, or S;, and qax IS the firstq

E. Dynamical scaling

log(S(q,t))=log 2

1+

o(t)

1 ~_
(S(q,t)>=WS(Q), (3.9
whereo is an estimation of the widtiB is the background, o
a is the fitted intensity and is an exponengnot fitted that  whereq=gq/o(t) is the scaling variable and(=3) is the
we discuss in the next paragraph. dimensionality of the space. Scaling has been tested by

0.7 T T T T
| () | (b)

T,=1.0J/k, T,= 1.5J/k,
06 | it :
FIG. 6. Exponentx (@) from the excess en-

ergy per site AE), y (O) from the second mo-
ment of the radial scan of the superstructure peak
o, and z (O) from the fitted amplitude of the
transverse scan of the superstructure pegkas
functions of 1L with the atom-atom exchange
mechanism. Data correspond to temperature
Tq=1.00/kg (&) andT 4= 1.50/Kkg (D). Lines show
the best fits of Eq.(5.2 to the exponentsx
(solid), y (dashegl andz (dot-dasheg

“o 0.02 0.04 0.06 0 0.02 0.04 0.06
1L 1L
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TABLE Il. Fitted exponents of the power-law evolution of the excess energy per/sig, (of the second
moment of the radial scans{) and of the fitted amplitude of the transverse scay).(Data correspond to
simulations with the atom-atom exchange mechanism.

L
20 28 36 64 L—oo

AE 0.46+0.02 0.41-0.03 0.43-0.03 0.40-0.02 0.40-0.03

1.0 o, 0.44+0.02 0.42-0.03 0.42-0.02 0.41-0.02 0.41-0.03

oy 0.25+0.03 0.25-0.04 0.29-0.02 0.25-0.03 0.26-0.04

AE 0.50=0.06 0.49-0.03 0.56:0.02 0.44£0.03 0.46£0.06

15 o 0.50=0.05 0.48-0.03 0.48-0.03 0.39£0.02 0.42£0.05
r

oy 0.41+0.05 0.45:0.04 0.45£0.06 0.470.05 0.470.06

checking the overlap of the data corresponding to differentafter ~12x 10° mcs) and have obtained the equilibrium
times and also to different system sizes. Theoretical pl’ediCenergy’]—((t_)oo) and the mean |0ng_range order parameter

tions for the scaling functior’é(ﬁ) are availablé;'® espe- defined as
cially concerning the behavior for large valuesgpf
W [+ [
V= . 4.1
IV. RESULTS 3

For the sake of clarity the results are presented in the The temporal average of this order parameter is presented
following order: first, the results corresponding to equilib-jn Fig. 3 as a function of temperature. No differences have
rium simulations(Sec. IV A); second, those concerning the peen found between the presented case corresponding to
evolution of the system using the atom-atom exchangeszo (with the atom-atom exchange mechanisand the
meChanism(Sec. AV B), and thll‘d, the results Obtained by case W|thNV:1 (W|th the Vacancy_atom exchange mecha_
means of the vacancy-atom exchange mechaniS®c. nism). Our results confirm that the transition is first order and
IV.C). The results in Secs. IVB and IV C are always giventhat the heating-cooling cycle shows hysteresis. The transi-
at quenching temperaturelg;=1.00/kg and T;=1.80/kg.  tion temperature has been estimated to bR,

The structure factor profiles are only presented lfer64 =3 81+0.03)/kgy compatible with the Monte Carlo results
although data corresponding to smallerhave also been given in Ref. 32.

analyzed.

B. Atom-atom exchange mechanism

A. Equilibrium Figures 4a) and 4b) show the profiles, at different times,

of the radial scan of the structure factor for the two studied
have step-by-step heated them from=0.50/kg to  quenching temperatures, scaled according to Bd). In
T=23.00/kg and cooled them again down To=0.5J/kg. At  general, the overlap of the different curves is quite good. It
each temperature we have let the system reach equilibriutnas been checked that data corresponding to different system

Starting from perfectly ordered systems with=20, we

o
T,= 1.50k,

Z 80 mes

<& 66 mes

A 150 mes
1<1342 mes
V 774 mes
> 1764 mcs
+ 2622 mes

FIG. 7. Linear-log and log-lodinsets plots
of the scaled transverse scan of the structure fac-
tor at different times and quenching temperatures
Tq=1.Q0/kg (8@ andT4=1.5J/kg () with atom-
atom exchange mechanism. Data correspond to
systems of linear sizé.=64. The solid thick
lines correspond to fits of expressi¢d.7) with
a=1 ando=1. The~dashed lines in the insets
show the Porod’s la&(q) ~q ~*, while the solid
lines show the slope & 2.
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‘ (@) (b)
T,= 1.00k, T,= 1.50k,

A
10" :A%%%MA 1 r E FIG. 8. Log-log plot of the mean distance be-
tween type-1 walls fol=20 (O), L=28 (O),
AAAD L=36 (¢), L=64 (A) with atom-atom ex-
"R change mechanism. Data correspond to quench-
¢ oo ing temperatures T,=1.00/kg (@ and
10° | Sooq : Tq=1.50/kg (b). Solid lines show the best
\\O\D\O\O\Q Uogg power-law fits.
C 0o
0o OO0 oo
’ 10 10

L
1 4

10

107 3 4

10° 10 10 10 10° 10

t (mcs) t(mcs)

sizes also fall on the same curve. Nevertheless, deviatiorte decrease when increasing the system size is observed. Ex-
from this scaling can be well appreciatediat O in Fig. 4a)  trapolation toL — <, following the method explained in Sec.
(Tq=1.Q0/kg). We will come back to this point in the dis- V, rendersx=y=0.40 for T,=1.00/kg andx=y=0.44 for
cussion. The continuous lines show fits of Lorentzian func-Tq: 1.5)/kg .
tions [Eq. (3.7)] with @=3/2 ando=1 which corroborates Figure 7 shows linear-log plots of the transverse scan of
the validity of such kind of fitting function for all the indi-  the scaled structure factor for the two studied quenching tem-
vidual profiles. The insets in Figs(a&} and 4b) display log-  peratures, at different times. The overlap of the curves is
log plots of the scaled radial scans: for largevalues  ather satisfactory, however it is not as broaden in time as for
S:(q) decays a§ ~*, as indicated by a continuous line.  the radial scan case. Note that in Figb)7the lack of scaling
Figures $a) and 3b) show log-log plots of the time evo- at q=0 is clearly evident. As for the radial scan case, we
lution of (AE(t)) and o (t) for different system sizes and phaye also verified the overlap of the data corresponding to
the two studied quenching temperatures. Solid straight linegystems with different sizes. The continuous lines show fits

are the following fitted power laws: of Lorentzian function$Eq. (3.7)] with a=1 ando=1. The

(AE(t))~t™> insets displjly log-log plots of these scaled transverse scans:
’ in this caseS,(q) decays a§ ~2 for largeq, as indicated by
o (t)~t7Y. (4.2)  the continuous line.

Log-log plots of the time evolution of(t) for different
The behavior of the growth-exponentandy for the two  system sizes and the two studied quenching temperatures are
guenching temperatures are presented in Fig. 6 as a functigmesented in Fig. 8. Solid straight lines correspond to the
of 1/L. The corresponding numerical values are listed infitted power law:
Table Il. The estimations of the two growth exponemtand
y, are coincident within the error bars. A general tendency of
the exponent to increase when temperature is increased and o(t)~t7 % (4.3

T,= 1.00/k,

10 12mes
C 30 mes
< 66 mes
A 150 mes
<1342 mcs

’Zj;jén,f,is FIG. 9. Same as for Fig. 4 but for the

+ 2622 mos vacancy-atom exchange mechanism.
~ X 3936 mcs

5.’ x(5(q,)

0.0 25.0 50.0 0 25 50
g/c

r
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| 7 N M ]
" " -.\\“\ FIG. 10. Same as for Fig. 5 but for the
-l @M%@ 1L 0 op | vacancy-atom exchange mechanism.

10’ 10° 10° 10 10° 10° 10

t(mcs) t (mes)

The values of the growth exponents are listed in Table Il and The profiles of the transverse scan of the scaled structure
plotted in front of 1L in Fig. 6. In this case, the extrapola- factor are plotted in Fig. 12. Notice that the scaling is again
tions toL—oo (following the method explained in Sec.)V satisfied atg=0. Scaling also holds for data corresponding
render z=0.26 for T,=1.00/kg and z=0.47 for to different system sizes. The continuous lines show fits of

Tq=1.5J/Kg. Lorentzian functiondEg. (3.7)] with @=1 ando=1. The
behavior of the tail isS,(§)=q 2, as we obtained for the
C. Vacancy-atom exchange mechanism atom-atom exchange case.

The profiles of the radial scans of the scaled structuref The time evolution ofr(t) can be seen in Fig. 13 and the
factor can be seen in Fig. 9. The overlap of the different itted exponents according to E.3) are plotted in Fig. 11

; ; . . _and listed in Table Ill. The extrapolations to—o render
curves corroborates the scaling hypothesis. It is worth notmgwO 34 forT.= 1.0J/ke andz—0.44 forT.—1 5J/k
_— . q_ . B —_ . q_ . B .

that scaling holds even gt=0, contrary to the case of atom-
atom exchange mechanism at low quenching temperature.
Scaling of data corresponding to different system sizes has
also been checked. The continuous lines show fits of Lorent-
zian functiond Eq. (3.7)] with a=3/2 ando=1. The log-log The analysis of the growth exponents for finitereveals
plots shown in the insets of Fig. 9 reveal that, for lamye that, independently of the mechanism and the temperature,
S.(q) decays a§ ~3, as indicated by the continuous line. the exponentsx and y corresponding to(AE(t)) and
Figure 10 shows a log-log plot of the time evolution of ¢, (t), respectively, coincide within errors bars. The numeri-
o(t), (AE(t)), and the best fits of the power laws definedcal value obtained at low temperaturg,& 0.55T) is, for
by Eq. (4.2). The resultingx andy exponents, are listed in both mechanisms, lower than the Allen-Cahn growth-
Table Ill, and plotted as a function of1/in Fig. 11. Ex-  exponent 1/2. This may be mainly attributed to the presence
trapolations toL—o renderx=y=0.36 for T,=1.00/kg  of planar(exactly zero curvatujenterfaces, which is known
andx=y=0.44 forT,=1.5J/kg . to globally slow down the dynamicsAt the highest tem-

V. DISCUSSION

0.7

T,= 1.00k,

0.6

FIG. 11. Same as for Fig. 6 but for the
vacancy-atom exchange mechanism.

0 0.02 0.04 0.06 0 0.02 0.04 0.08
1L 7L
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10 ‘ | T —
(a) (b)
T,= 1.0k, T,= 1.5J/k,
10"
Z 30 mes
< 66 mes
A 150 mes
107 1 <1342 mes
’:..D: vV 774 mcs
~ > 1764 mcs .
o 4 2622 mos FIG. 12. Same as for Fig. _7 but for the
"’\X/w’a | 3936 mes vacancy-atom exchange mechanism.
5
10
10’5 L L i
0 10 20 30 0 10 20 30

perature considered in this study 4=0.83T,) we obtain  definitively conclude about the potentially realistic vacancy
that such numerical value for the exponents becomes largenechanism.

and closer to the Allen-Cahn value. Indeed, one expects that From the values of the exponents obtained for different
as the temperature increases, the pinning effect of the planaystem sizes we have performed a finite-size analysis follow-
interfaces becomes weaker enabling larger exporfémts: ing the method proposed in Ref. 23. This analysis assumes a
tually the valuey=1/2 has been obtained experimentally for first-order correction to the asymptotic growth law according
CusAu (Ref. 18 with high accuracy at quenching tempera- to

turesT, ranging from 0.9, to 0.99T, (our greatest simu-
lated value isT;=0.83T).

Concerning the exponemt characterizing the evolution
of o, we globally obtain the same behavior than for the
other exponents. That ig,increases with temperature. How-
ever, the low temperature behavior, is such thak=y for
the atom-atom exchange mechanism, whemas=y for
the vacancy-atom exchange mechanism. When increasing n_=n.+bL™ "=, (5.2
temperature we obtain that, for both mechanismsx=y.

Experimentally, no clear differences have been observed be- Fits of this equation to the obtained exponents are plotted
tweeny andz.'®*2 This could be either due to the fact that (solid lineg in Figs. 6 and 11. The resulting values for are

the experiments are performed at temperatures too close ghown in Tables Il and Ill. These extrapolated values con-
T, to observe any anisotropic effect, or that the relevanfirm the points discussed in the previous paragraph. The val-
physical mechanism for the growth is closer to the vacancyues of the first-order correction coefficielntare shown in
atom exchange. Notwithstanding, we suggest that experiFable IV. For the case of atom-atom exchange mechanism
ments at low temperature would be interesting in order tahe sign of the coefficients corresponding to the exponents

b
R(t)~t“(1—?), CRY
wheren stands for any of the growth exponemtsy, or z.

This implies that the finite-size dependence of the exponent
n_ follows:

(a
T= 1.0J/k, T,= 1.5J/k,

FIG. 13. Same as for Fig. 8 but for the
vacancy-atom exchange mechanism.
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TABLE Ill. Same as Table Il for the vacancy-atom exchange mechanism.

L
20 28 36 64 Lo
KTq/d
AE 0.50+0.02 0.46-0.03 0.42:0.03 0.35:0.02 0.38:0.03
1.0 o, 0.50+0.02 0.46:0.03 0.38:0.02 0.34:0.02 0.34:0.03
oy 0.41+0.03 0.35:0.04 0.36:0.02 0.34-0.03 0.34-0.04
AE 0.68+0.05 0.60-0.05 0.52-0.04 0.43-0.05 0.44-0.05
15 o, 0.64+0.03 0.54-0.02 0.49-0.02 0.43-0.02 0.43-0.03
oy 0.53+0.05 0.52-0.04 0.50-0.06 0.41-0.05 0.44-0.06

z are negative reinforcing the suggestion that the growth lavef the vacancy mechanism. This problem will be studied in a
with the standard Allen-Cahn exponent does not hold in thiguture work.
case. It is also interesting to remark that, in general, the The behavior of the tail of the structure factor along the
coefficient b is greater for the vacancy-atom exchangeradial and the transverse directions is markedly different.
mechanism than for the atom-atom exchange one. This cor-his can be clearly seen by comparing the insets of Figs. 4
firms that in the former case the exponents exhibit a greateand 9 corresponding to the radial scans and those of Figs. 7
dependence with finite size. This is in agreement with previand 12 corresponding to the transverse scans. For such an-
ous results reported for two-dimensional square latites. isotropic peaks, the Porod's LaW, (S(q))~q @Y,
Concerning the scaling of the structure factor, it is worth(d+1=4 in our casgis not expected to be satisfied. Inde-
noting that it holds in a broad range of time for all the stud-pendently of the dynamical exchange mechanism we have
ied cases indicating that the domain-growth regime, in whicfound that for large values ofg, (S/(q))~q ° and
the evolution of the system is governed by two characteristi¢S,(q) )~ q~ 2. This is in agreement with the fact that the best
lengths proportional, respectively, to; > and o; !, is  Lorentzian fits are obtained far=3/2 anda=1 for radial
clearly reached in our simulations. Whether or not bothand transverse scans, respectively, as explained in Sec. lll.
lengths obey the same growth law can be detected by thé&/e have also studied the dependencé3{ig)) for largeq

scaling of the structure factor &=0. At this g position,  along the diagonal directic[ﬂ?z(l,l,O)Jr 1/L (q,9,0)]. Fig-
scaling holds only ifo(t)>oy(t). For the case of vacancy- yre 15 compares the decay along this direction with the
atom exchange mechanism, scalingjatO is satisfied, indi-  transverse and radial ones. For the diagonal direction, results
cating that a single growth law governs the evolution of theare consistent with @2 decay. This reveals the singular
system consistently with an unique value of the growth excharacter of the behavior along the transverse direction. It is
ponents x=y=2). Contrary, for the case of atom-atom ex- interesting to remark that the present simulation results are
change mechanism, a lack of scalingyatO can be clearly not in agreement with the theory for ordering dynamics in
seen in Figs. 4 and Tcompare with Figs. 9 and 12 at CuzAu proposed by Lat? In that theory it is found that the
q=0). This indicates that the two independent lengths areorod’s Law is satisfied for both radial and transverse scans.
needed to characterize the evolution of the system in thiFhis important difference between Lai's theory and the

case. _ present simulation probably arises from the fact that in our
The time evolution of the structure factor @=0  model type-1 walls have exactly zero excess energy.
[(S/(q=01))=(S(q=0))=((¥2+ W3+ ¥2)/3)], is In relation to the anisotropic character of the growth, we

shown in Fig. 14 for the two studied temperatures and fohave obtained that, at low temperature, in the case of the
both mechanisms. They are in qualitative good agreemerdtom-atom exchange mechanism two different lengths are
with the experimental results for GAu (see Fig. 18 in Ref. needed whereas for the vacancy-atom exchange mechanism
18). Even the existence of a possible delay time due to am single length is enough to describe the ordering process in
incubation period for nucleation, that has been found experifcc-A;B alloys. Actually, for the case of atom-atom ex-
mentally, can be observed as an inflection point in our
curves. In our model the disordered phase is metastable
down to zero temperature due to frustration effééthere-
fore the evolution, in our simulations, initiates via nucle- 1 ;3
ation, as expecté@®8for CugAu in the experimentally stud- ——°

TABLE IV. Fitted coefficientsb of Eq. (5.2).

Atom-atom mechanism Vacancy-atom mechanism

ied temperature rand&. Also in agreement with AE 98.7 386.1
experiments, the delay time increases with increadigg 1.0 o 45.4 1003.9
The experimentalist§ suggest an explanation for this delay oy —-12715 495.6
based on the influence of the elastic energy in the nucleation

process. Although our model does not account for elastic AE 31.2 212.3
effects it reproduces such results, indicating that a full expla4.5 o, 106.2 233.3
nation cannot rely only on elasticity arguments. Moreover, in oy —347 88.4

Fig. 14, it seems that the delay is more important in the case
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change mechanism the need of two characteristic lengths thange mechanism on ordering dynamics. For two-
not surprising since it has been found in several studies odimensional squaf€and bcc lattice$® vacancies are known
anisotropic growth. For instance, in a two-dimensionalto accelerate the growth leading, at low temperatures, to an
model for a martensitic transformatidrihe existence of two exponent greater than the Allen-Cahn 1/2. This is because
relevant lengths arises as a consequence of the hierarchicghen temperature decreases more vacancies are constrained
evolution of a mixture of planar and curved interfacesto move preferentially along the interfaces so that the exci-
present in the system. By hierarchical evolution one meantations become inhomogeneously distributed. As temperature
that the curved interfaces have to wait for the planar ones tincreases, the excitations become homogeneous and the
disappear before they can decrease in length. This kind dkllen-Cahn value is recovered. In the present model, the ten-
interrelated movement between walls is also present in oudency for the vacancies to sit on the interfaces is quite low:
simulations. It is, however, worth mentioning that in the some of the interface@ype 1) are not energetic and, among
above mentioned model for martensitic transformation, thehe energetic onedype 2, only those with an excess of the
anisotropy is explicitly introduced in the Hamiltonian, while majority species represent a significant energy gain for the
in the present case the anisotropy in the growth appears duacancies compared to the bulk. Then, as we obtain in our
to the topology of the fcc lattice. In Ref. 9 it is found, in results, the acceleration of the domain growth pro¢esm-

quite good agreement with our results at Idy using the  pared to the atom-atom exchange mechapnly shows up
atom-atom exchange mechanism, that the mean distance ben the mean distance between type-1 walls due to a speed up
tween planar interfaces grows €4 and that the mean dis- in the motion of the curved wallgtype 2. The reason why
tance between curved interfaces growst¥& Now, the the evolution of type-2 walls is not sensitive to the dynamics
guestion to be answered is: Why in the case of vacancy-atois because it does not proceed independently: it is subordi-
exchange mechanism, the growth can be described by rmated to the evolution of the type-1 walls. The consequence
single length? Before answering this question let us comef this acceleration is that the interrelated wall movements
ment on some of the consequences of the vacancy-atom egan, in this case, be described by a single length.

=
i
O

FIG. 15. Log-log plot of the structure factor
decay in the radiall(), transversal {), and di-
agonal (©O) directions. Data, obtained with the
atom-atom exchange mechanism, correspond to
t=1998 mcs,T,=1.0)/kg, andL =64.

Structure factor

-
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Concerning previous studies of the order-disorder dynamthe growth process has to do with the interrelated interface
ics by means of the vacancy-atom exchange mechanism waotion between the two different domain walls. As proposed
want to finally point out another important difference. In thein a recent theory,this leads toy=1/2 andz=1/4 in rather
case of the two-dimensional square lattice and bcc latticegood agreement with our present results. Contrary, for the
the accelerations only appear if the vacancy has a finite probracancy-atom mechanism, the two relevant length$ and
ability to jump to NNN positions. Such jumps prevent the 4! evolve following the same power-law. The disappear-
vacancy to be trapped in the ordered regions. When onlgnce of the anisotropic character in the growth when using
jumps to NN positions are permitted, the growth becomesghe vacancy-atom exchange mechanism arises as a conse-

logarithmic(at low T,). Although in the present simulations

on fcc lattices we only allow vacancy jumps to NN positions,

guence of the speed up of typei@irved interfaces which,
in turn, accelerates the elimination of the typéplana) in-

trapping does not appear since for such fcc lattices the okerfaces. Moreover, the evolution of type-2 walls, always
dered regions can be crossed without energy barriers. Weubordinated to the evolution of type-1 walls, does not seem
have tested, by performing simulations allowing the vacancyo be sensitive to such acceleration. Finally,~o, and a
to jump to NNN positions, that the growth exponents do notsingle length is enough to describe the ordering process.

change significantly in this case.

VI. SUMMARY AND CONCLUSIONS

In this paper extensive Monte Carlo simulationsLdf,
ordering kinetics in a fcé\3;B binary alloy are presented. We
have focused on the study of the evolution of the superstru

ture peak and the excess energy. We have followed the ev
lution up to 1¢ mcs in systems with linear sizes ranging

from L=20 to L=64. Two different dynamics have been

used: first the standard atom-atom exchange mechanism apagd
second the more realistic vacancy-atom exchange mech
nism. In this last case a very small concentration of vacan
cies is introduced in the system. Finite-size scaling tech-

nigues have been used in order to extrapolate-tex the
growth exponents evaluated at finlte We have found that

The effect of the temperature has also preliminarily been
studied. For both mechanisms the expongrasdz increase
when the transition temperature is approached from below.
To our knowledge, all the experiments have been performed
at T,~Ty, so that no conclusive results about the relevant
ordering mechanisms can be deduced. The results in this

aper suggest that more experimental studies of the ordering

%’ynamics, especially at low temperatures, are desirable in

order to clarify the existence of such anisotropic growth and
which is the relevant mechanism for ordering. Synchrotron
iation facilities seem to be very promising for the obtain-
fhent of the needed structure factor maps in the late time

regime.
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