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Monte Carlo study of the growth of L12-ordered domains in fccA3B binary alloys
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A Monte Carlo study of the late time growth ofL12-ordered domains in a fccA3B binary alloy is presented.
The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system
exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and
curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom
exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both
methods are compared. In particular we study the time evolution of the excess energy, the structure factor and
the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been
found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancy-
atom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments
in Cu3Au and theories for anisotropic growth.@S0163-1829~97!08801-2#
es
ilib
ca
y.
m
g
al
ce
is
Im
a
uc
di
he
h
th
m
d
o-
d
ag
to
-
.
t
he
t
p
ile
th
-
nd
ly
s
ro
th
te

der

than
ses,
he
ef-

ased

n
-
ed

m
n-
e
d to
ter
in
we

ter
ed.
ns
the
is
cc
lly
two
ss-
ay

ies
sid-
ob-
th
ace
n
s

I. INTRODUCTION

Kinetics of phase transitions is a problem of great inter
not only because its fundamental importance in nonequ
rium statistical physics, but also because its many impli
tions in different areas of material science and technolog1,2

The phenomenon is a consequence of the far fro
equilibrium initial conditions induced by the sudden chan
of the imposed thermodynamic parameters on time sc
much shorter than the time scales characterizing the pro
towards the equilibrium situation. Typically, the system
quenched through its equilibrium ordering temperature.
mediately after the quench, domains of the ordered ph
appear. As time goes on, they grow in size in order to red
the excess free energy of the walls. This growth shows
tinct regimes from early to late times. At late times, in t
so-called domain-growth regime, it is usually assumed t
the domain size is much larger than all microscopic leng
in the system. Then, inspired by the situation in equilibriu
critical phenomena, it is assumed that the system shows
namical scaling.3 This means that at different times the d
main structure looks the same when lengths are measure
units of the characteristic length. Furthermore, the aver
domain size is supposed to increase with time according
power law with an exponentn characteristic of the univer
sality class to which the system is supposed to belong4 If
these universality classes really exist, the important poin
to identify the distinctive features of a given class. In t
simplest case, they are supposed to depend only on whe
or not the order parameter is conserved. A typical exam
for the conserved case is a phase separation process wh
order-disorder transition in a binary alloy corresponds to
nonconserved situation. In the first casen51/3 has been pre
dicted while n51/2 is the expected value in the seco
case.1 Nevertheless, the concept of universality is not firm
established and is still under discussion. The above clas
cation, just based on the order parameter conservation p
erty, seems to apply only when no disorder is present in
system and the excitations are homogeneously distribu
550163-1829/97/55~1!/212~14!/$10.00
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For instance it is well acknowledged that quenched disor
gives rise to logarithmic growth-laws,5 and that excitations
localized on the interfaces give rise to exponents greater
1/2 and 1/3 for the nonconserved and conserved ca
respectively.6,7 Moreover other parameters such as t
ground-state degeneracy, nonstoichiometry or anisotropic
fects could modify the exponents. The exponentn51/2 in
nonconserved order parameter systems is theoretically b
on a curvature-driven interface motion.8 This is the well-
known Allen-Cahn growth law. A special curvature drive
case leading to an exponentn51/4 has been found for an
isotropic systems with a mixture of perfectly flat and curv
domain walls.9

In this paper we will focus on the domain-growth proble
in a fccA3B binary alloy undergoing an order-disorder tra
sition from a disordered to aL12 structure. This has been th
system most widely used to perform experiments intende
study ordering kinetics in nonconserved order parame
systems.10–18 In spite of that, theoretical studies of doma
growth in fcc systems are really scarce and, as far as
know, only a recent paper by Lai19 is specifically devoted to
the study of such kind of systems. Concerning compu
simulation no data has, to our knowledge, been publish
This is a rather surprising fact since Monte Carlo simulatio
have been of seminal importance in providing much of
quantitative insight into ordering kinetic problems. This
probably due to the complexity of ordering problems in f
lattices and also to the demanding computer time. Actua
the ground state is fourfold degenerate and there exist
different kinds of antiphase boundaries: high and low exce
energy boundaries. Then, two characteristic lengths m
grow following different laws~anisotropic growth! and this
can, in some way, question the validity of scaling propert
in such a system. In fact, related problems have been con
ered in two-dimensional lattices. For example, the fcc pr
lem has some similarities with the problem of island grow
in a system of hydrogen adsorbed on a (110) iron surf
with coverage 2/3.20 In this case an exponent smaller tha
1/2, which is indicative of interface diffusion effects, ha
212 © 1997 The American Physical Society
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55 213MONTE CARLO STUDY OF THE GROWTH OFL12- . . .
been found. Also some indications on anisotropic growth
reported in the same reference.20 Concerning the experimen
tal situation, among a rich literature, it is worth mentioni
the pioneer x-ray diffraction work by Cowley21 devoted to
the study of the superstructure peak in Cu3Au single crystals
close to equilibrium. Much more recently, a very comple
time-resolved x-ray scattering study in a single crystal
Cu3Au,

18 has been published. The authors obtainn51/2
with a high degree of accuracy for the growth of the hi
energetic boundaries and with less accuracy for the low
ergetic ones. This led them to the conclusion that sca
holds in this anisotropic system in agreement with the th
retical predictions by Lai.19

Our interest in this paper is to present extensive Mo
Carlo simulations of the domain-growth process perform
in a fcc A3B alloy. Since we model the system assumi
pairwise interactions between nearest-neighbor atoms o
the low-energy boundaries have exactly zero excess ene
We expect that this extreme situation emphasizes any
dency of the system to show anisotropic growth effects.
addition we will perform simulations in systems either wi
and without vacancies~in this last case only vacancy-ato
exchanges will be allowed! in order to investigate the effec
of the vacancy mechanism in the kinetics of ordering in
lattices. This mechanism has been shown to play a very
portant role in bcc lattices.22,23

We have restricted the present study to stoichiometric
loys. It is known that the coupling between the order para
eter and the excess of concentration gives rise to interes
phenomena.24,25 Moreover, in fcc binary alloys, nonstoich
ometry may also favor the apparition of modulated phase26

The paper is organized as follows. In the next section
introduce the model and describe some of the features o
ground state and the domain walls. In Sec. III we explain
details of the Monte Carlo simulations and define the diff
ent magnitudes used to describe the ordering process.
results are presented in Sec. IV and discussed in Sec
Finally, in Sec. VI, we give a summary of the main concl
sions.

II. MODEL AND GROUND STATE

The binary alloy is modeled by a set ofNA A atoms,NB
B atoms, andNV vacancies on a ‘‘perfect’’ fcc lattice with
spacinga, linear sizeaL, and periodic boundary conditions
The number of lattice sites isN54L35NA1NB1NV . As-
suming nearest-neighbors~NN! interactions only, a genera
ABV Hamiltonian27 can be written as a Blume
Emery-Griffiths28 model, as explained in Refs. 23,29. In th
case of low vacancy concentrations (NV!NA ,NB) this
Hamiltonian can be approximated by a spin-1 Ising mod

H5J(
^ i , j &

NN

SiSj , ~2.1!

where the sums extend over all NN pairs andi and j are
generic indexes sweeping all the lattice (i , j51, . . .N). The
spin variablesSi can take three values:11,21, and 0 when
the i th position of the lattice is occupied by anA atom, a
B atom, or a vacancy, respectively.
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We have focused on the caseNA.3NB@NV in order to
simulate anA3B alloy such as Cu3Au, with little concentra-
tion of vacancies. It is well known that forJ.0 and no
vacancies (NV50) this system exhibits a discontinuou
order-disorder phase transition when temperature
increased.30–32The ordered phase is the so-calledL12 struc-
ture. Hamiltonian~2.1! without vacancies has been repea
edly used to model such order-disorder transition in meta
alloys~see Ref. 32 and references therein!. Regarding the fcc
lattice as four interpenetrated simple cubic sublattic
~nameda, b, g, and d); the perfectL12 order consists in
three sublattices occupied byA species whereas the othe
one is occupied byB species so that it is fourfold degene
ated. The four equivalent kinds of ordered domains will
called a, b, g, and d domains according to the sublattic
which contains the minority speciesB. The order is de-
scribed by means of the three following long-range ord
parameters:19

C15
2

N (
i jk jhz

Si jk jhz~21!j,

C25
2

N (
i jk jhz

Si jk jhz~21!h,

C35
2

N (
i jk jhz

Si jk jhz~21!z, ~2.2!

where Si jk jhz is the spinlike variable at position
rW i jk jhz5a( i1j/2,j1h/2,k1z/2); i , j ,k range from 1 toL
and the vector (j,h,z) takes the values (0,0,0), (0,1,1
(1,0,1), and (1,1,0) pointing to the position of the four su
latticesa, b, g, andd, respectively.

After a quench through the equilibrium transition tem
peratureT0, the four possible degenerated domains app
and compete during the domain-growth regime. It is w
known11,33,34that two kinds of antiphase domain boundari
~APDB! exist:

~1! The first type~named type-1 or ‘‘half diagonal glide’’
walls! of APDB corresponds to a displacement vector co
tained in the plane of the APDB. This kind of boundari
maintains the same number ofA2B NN bonds as in the
ordered bulk. Hence, in our model with NN interactio
only, such boundaries do not suppose any excess of ene
It is also interesting to remark that they can only appear
specific directions depending on the two adjacent doma
for instance they can appear perpendicular to direction@100#
betweena andb domains and betweeng and d domains.
Table I shows the directions of the type-1 walls for all t
possible neighboring domains. Moreover, it is possible
build up a structure combining the different kinds of order
domains with only type-1 walls, i.e., without excess of e
ergy. At low temperatures, such structure would not evo
in time.

~2! The second type of APDB~type-2 walls! corresponds
to a displacement vector not contained in the bound
plane. Since it does not conserve the number ofA2B NN
bonds as in the bulk, it contributes with a positive excess
energy. It should also be mentioned that these bounda
contain a local excess of particles~eitherA or B).
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TABLE I. Directions of the nonenergetic type-1 walls between possible pairs of neighboring domain

a b g d
(C1 ,C2 ,C3) (21,21,21) (21,1,1) (1,21,1) (1,1,21)

a @100# @010# @001#
b @100# @001# @010#
g @010# @001# @100#
d @001# @010# @100#
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III. MONTE CARLO SIMULATION DETAILS

A. Dynamics

We have performed two kinds of simulation studies:
~1! The first kind includes the simulations of the orderi

processes without vacancies (NV50), which have been per
formed using the standard Kawasaki dynamics proposing
changes between NN atoms.

~2! The second kind includes the simulations with vaca
cies. In this case we have used a restricted Kawasaki dyn
ics proposing NN vacancy-atom exchanges~vacancy jumps!
only. This dynamics is more realistic, in the sense that,
though approximately, it takes into account the role play
by vacancies in ordering kinetics in binary alloys. The co
centration of vacancies has been taken the same in al
simulations (cV[NV /N.3.131025).

By both dynamics, the concentration of particles is p
served while the order parameters are not. In both case
have accepted or refused the proposed exchange usin
usual Metropolis acceptance probability:

p~DH!5H 1 if DH<0,

expH 2
DH
kBT

J if DH.0,
~3.1!

whereDH is the energy change associated with the propo
exchange. We define the unit of time, the Monte Carlo s
~mcs!, as the trial ofN exchanges~either atom-atom or
vacancy-atom exchanges!. In all the cases we have starte
the simulations from a completely disordered state, wh
would correspond to the configuration of a system atT5`.
The system is then rapidly quenched at a final tempera
Tq below the transition temperatureT0. To prepare the dis-
ordered states we fill up the system withA atoms and ran-
domly replaceN/4 of them byB atoms; when it is necessary
we also choose at randomNV lattice sites to place the vacan
cies.

B. Measures of growth

Our main interest is the description of the time evoluti
of the ordered domains. Usually, the domain size is m
sured as the inverse of the excess energy, which is pro
tional to the total amount of interface.35 Nevertheless, in our
case, there are two coexisting types of interfaces and only
total amount of type-2 walls might be related to the exc
energy since type 1 does not contribute to the excess-ene
Consequently for fcc lattices withL12 order it is convenient
to simultaneously measure both the excess energy and
structure factor. These two quantities are defined as follo

~1! Excess energy per site:
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DE~ t ![
1

N
@H~ t !2H~ t→`!#, ~3.2!

whereH(t→`) is the equilibrium energy at the quenchin
temperatureTq .

~2! Structure factor:

S~kW ,t ![U 1N (
i jk jhz

Si jk jhzexpS i2p

a
kW•rW i jk jhzDU2, ~3.3!

where the sum extends over the whole lattice,i is the imagi-
nary constant, andkW is the dimensionless reciprocal vecto
The discreteness of the real space makes the structure f
to be invariant under thê200& translations in the reciproca
space. The periodic boundary conditions imply that the
ciprocal space is discrete on a cubic lattice on thekW space
with spacing 1/L. Figure 1 shows the reciprocal space wi
the position of the fundamental and the superstructure pe

C. Domains and superstructure peak

The temporal evolution of the domain structure is illu
trated in Figs. 2~a!–2~c!. Three snapshots, at selected time
corresponding to a section parallel to the~100! planes are
presented. The four different ordered regions are indica
with different colors. Flat~type-1! and curved~type-2! inter-
faces can be observed. It is worth mentioning the similarit
between such snapshots and the experimental results
tained for Cu3Au using dark field microscopy technique.36

The mean distance between such walls is related to the s
of the superstructure peaks of the structure factor. Discr
ancies in the shape of these peaks have been reported i
literature. Old x-ray measurements by Cowley21 suggested
that the peaks are square shaped. More recently it has
suggested that the peaks are disk shaped.18 Our simulations
give square~or even starlike! shaped peaks as it can be se

FIG. 1. ReciprocalkW space showing the fundamental~filled
circles! and the superstructure~squares! peaks. The average of th
structure factor on the thick solid lines isSr(q,t) and the average on
the thick dashed lines isSt(q,t).
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FIG. 2. Snapshots of the system evolution in real space@~a!, ~b!, and ~c!# and in reciprocal space@~d!, ~e!, and ~f!#. The real space
pictures, corresponding to a section perpendicular to~100! direction, show in four different colors the structure of ordered domains.
reciprocal space maps show the logarithm of the structure factor in the~100! plane. Color scale increases from violet to yellow. Da
corresponds to a simulation using the atom-atom exchange mechanism atTq51.0, system sizeL564, and timest518 mcs@~a! and ~d!#,
t5198 mcs@~b! and ~e!# and t51998 mcs@~c! and ~f!#.
th

t

s

in the temporal sequence presented in Figs. 2~d!–2~f!. Such
anisotropy in the peak shape does not necessarily imply
the ordered domains are needle shaped, but arises from
correlation between the ordered domains. For instance
at
the
he

superstructure peak at the~100! position accounts for the
long-range order parameterC1. This order parameter doe
not discriminate betweena and b domains ~both having
C1521) nor betweeng and d domains ~both having
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216 55FRONTERA, VIVES, CASTÁN, AND PLANES
C151). The tendency of the domains to locate in such
way that the interface does not have extra energy favors
formation ofa-b andg-d boundaries~type 1! perpendicular
to the @100# direction. Therefore the regions with a hig
value of the order parameterC1 are anisotropic, producing
the anisotropy of the (100) peak. The same happens for
other peaks at (010) and (001).

The inverse of the amplitudes of the superstructure p
along both, the radial (s r) and the transverse (s t) directions,
are related to the mean distance between type-2 and ty
walls, respectively. The measurement ofs r has been done by
analyzing the profile of

Sr~q,t !5
1

3 FSS ~1,0,0!2
1

L
~q,0,0!,t D1SS ~0,1,0!

2
1

L
~0,q,0!,t D1SS ~0,0,1!2

1

L
~0,0,q!,t D G ,

~3.4!

FIG. 3. Equilibrium order parameter as a function of tempe
ture for L520 using atom-atom exchange mechanism. The in
shows in detail the hysteresis due to the discontinuous charact
the transition. It can be concluded thatkBTc /J51.8160.03.
Squares correspond to a heating process while circles to a co
one.
a
he

he

k

-1

whereq50,1, . . . ,L is the distance from the superstructu
peak~in units of 1/L). Following the notation in Ref. 18, we
will refer to this profile as the radial scan of the structu
factor. It corresponds to the average on the three thick c
tinuous lines of Fig. 1. The measurement ofs t has been done
by analyzing the profile of

St~q,t !5
1

6 FSS ~1,0,0!1
1

L
~0,0,q!,t D1SS ~1,0,1!

2
1

L
~0,0,q!,t D1SS ~0,1,0!1

1

L
~q,0,0!,t D

1SS ~1,1,0!2
1

L
~q,0,0!,t D1SS ~0,0,1!

1
1

L
~0,q,0!,t D1SS ~0,1,1!2

1

L
~0,q,0!,t D G ,

~3.5!

whereq50,1, . . . ,L/2. We will refer to it as a transvers
scan of the structure factor. It corresponds to the averag
the two symmetric parts of the three thick dashed lines
Fig. 1. It can be easily shown that due to the symmetries
the structure factor the average over the continuous~dashed!
thick lines is equal to the average over all the continuo
~dashed! lines of Fig. 1. In addition, at every time both pro
files have been averaged over a certain number of inde
dent runs~about 25 forL564 and 40 for the other system
sizes!. This last average is indicated by means of angu
brackets (̂•••&). The finite-size effects have been studied
simulating systems of linear sizesL520, 28, 36, and 64
(N532 000, 87 808, 186 624, and 1 048 576 sites, resp
tively!. We have also preliminarily studied the effect of th
quenching temperature by performing simulations
Tq51.0J/kB (Tq /T0.0.55) and Tq51.5J/kB (Tq /T0
.0.83).

D. Fitting procedure for s r and s t

We have measureds r and s t using the two following
methods.

-
et
of

ng
at
es

ick

ts
FIG. 4. Linear-log and log-log~insets! plots
of the scaled radial scan of the structure factor
different times and quenching temperatur
Tq51.0J/kB ~a! andTq51.5J/kB ~b!. Data cor-
responds to systems of linear sizeL564 for the
atom-atom exchange mechanism. The solid th
line corresponds to a fit of expression~3.7! with
a51.5 ands51. The dashed lines in the inse
show the Porod’s lawS̃r(q̃);q̃ 24, while solid
lines show the slope ofq̃ 23.
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FIG. 5. Time evolution, in the case of atom
atom exchange mechanism, of^DE(t)& ~filled
symbols! and of s r(t) ~open symbols!, for
Tq51.0J/kB ~a! andTq51.5J/kB ~b! for systems
of L520 ~circles!, L528 ~squares!, L536 ~dia-
monds!, andL564 ~triangles!. The solid lines are
the best power-law fits. Data corresponding
different sizes have been vertically shifted
clarify the picture.
th

-
ic
o

n
d
e

he
out
the

nd,

both
fore

ave
s

oth
rre-

by
~1! The first method is based on the evaluation of
second moment of the scan:

s2~ t ![
(q50
qmaxq2^S~q,t !&

(q50
qmax^S~q,t !&

, ~3.6!

whereS represents eitherSr or St , andqmax is the firstq
value for which^S(q,t)& is lower than a background thresh
old. The value of this background has been taken as tw
the mean value of the structure factor of a completely dis
dered system~excluding the fundamental peak!.

~2! The second method is based on the fitting of a Lore
zian function to the data of the corresponding scan. In or
to account for the large-q tail of the structure factor we hav
fitted loĝS(q,t)& to the three-parameters (a,s,B) function:

log^S~q,t !&. logH a

F11S q

s~ t ! D
2Ga 1BJ , ~3.7!

wheres is an estimation of the width,B is the background,
a is the fitted intensity anda is an exponent~not fitted! that
we discuss in the next paragraph.
e

e
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t-
er

We have analyzed the validity of both methods for t
two scans of the structure factor. The first method turns
to be adequate only for the radial scans. This is because
large-q tail of the transverse scan decays very slowly a
therefore,s t is strongly affected by the choice ofqmax. The
second method can be used for both scans. Moreover,
methods give equivalent results for radial scans. There
we will estimates r using method 1 ands t using method 2.
Concerning the exponenta we have trieda51, 2, and 3/2
for both scans. In general the best fits to the radial scan h
been obtained witha53/2, while for the transverse scan
a51 gives the best results.

E. Dynamical scaling

We have tested the existence of dynamical scaling in b
the radial and the transverse directions by plotting the co
sponding scaling functionS̃(q̃) defined from the following
expression:

^S~q,t !&5
1

s~ t !d
S̃~ q̃!, ~3.8!

where q̃5q/s(t) is the scaling variable andd(53) is the
dimensionality of the space. Scaling has been tested
ak

e
re
FIG. 6. Exponentsx (d) from the excess en-
ergy per site (DE), y (s) from the second mo-
ment of the radial scan of the superstructure pe
s r and z (h) from the fitted amplitude of the
transverse scan of the superstructure peaks t , as
functions of 1/L with the atom-atom exchang
mechanism. Data correspond to temperatu
Tq51.0J/kB ~a! andTq51.5J/kB ~b!. Lines show
the best fits of Eq.~5.2! to the exponentsx
~solid!, y ~dashed!, andz ~dot-dashed!.
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TABLE II. Fitted exponents of the power-law evolution of the excess energy per site (DE), of the second
moment of the radial scan (s r) and of the fitted amplitude of the transverse scan (s t). Data correspond to
simulations with the atom-atom exchange mechanism.

L
20 28 36 64 L→`

kBTq /J

DE 0.4660.02 0.4160.03 0.4360.03 0.4060.02 0.4060.03
1.0 s r 0.4460.02 0.4260.03 0.4260.02 0.4160.02 0.4160.03

s t 0.2560.03 0.2560.04 0.2960.02 0.2560.03 0.2660.04

DE 0.5060.06 0.4960.03 0.5060.02 0.4460.03 0.4660.06
1.5 s r 0.5060.05 0.4860.03 0.4860.03 0.3960.02 0.4260.05

s t 0.4160.05 0.4560.04 0.4560.06 0.4760.05 0.4760.06
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checking the overlap of the data corresponding to differ
times and also to different system sizes. Theoretical pre
tions for the scaling functionS̃(q̃) are available,3,19 espe-
cially concerning the behavior for large values ofq.

IV. RESULTS

For the sake of clarity the results are presented in
following order: first, the results corresponding to equili
rium simulations~Sec. IV A!; second, those concerning th
evolution of the system using the atom-atom excha
mechanism~Sec. IV B!; and third, the results obtained b
means of the vacancy-atom exchange mechanism~Sec.
IV C!. The results in Secs. IV B and IV C are always giv
at quenching temperaturesTq51.0J/kB and Tq51.5J/kB .
The structure factor profiles are only presented forL564
although data corresponding to smallerL have also been
analyzed.

A. Equilibrium

Starting from perfectly ordered systems withL520, we
have step-by-step heated them fromT50.5J/kB to
T53.0J/kB and cooled them again down toT50.5J/kB . At
each temperature we have let the system reach equilib
t
c-

e

e

m

~after ;123103 mcs) and have obtained the equilibriu
energyH(t→`) and the mean long-range order parame
defined as

C[
uC1u1uC2u1uC3u

3
. ~4.1!

The temporal average of this order parameter is prese
in Fig. 3 as a function of temperature. No differences ha
been found between the presented case correspondin
NV50 ~with the atom-atom exchange mechanism! and the
case withNV51 ~with the vacancy-atom exchange mech
nism!. Our results confirm that the transition is first order a
that the heating-cooling cycle shows hysteresis. The tra
tion temperature has been estimated to beT0
51.8160.03J/kB compatible with the Monte Carlo result
given in Ref. 32.

B. Atom-atom exchange mechanism

Figures 4~a! and 4~b! show the profiles, at different times
of the radial scan of the structure factor for the two stud
quenching temperatures, scaled according to Eq.~3.8!. In
general, the overlap of the different curves is quite good
has been checked that data corresponding to different sy
ac-
es

to

ts
FIG. 7. Linear-log and log-log~insets! plots
of the scaled transverse scan of the structure f
tor at different times and quenching temperatur
Tq51.0J/kB ~a! andTq51.5J/kB ~b! with atom-
atom exchange mechanism. Data correspond
systems of linear sizeL564. The solid thick
lines correspond to fits of expression~3.7! with
a51 ands51. The dashed lines in the inse
show the Porod’s lawS̃(q̃);q̃ 24, while the solid
lines show the slope ofq̃ 22.
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FIG. 8. Log-log plot of the mean distance be
tween type-1 walls forL520 (s), L528 (h),
L536 (L), L564 (n) with atom-atom ex-
change mechanism. Data correspond to quen
ing temperatures Tq51.0J/kB ~a! and
Tq51.5J/kB ~b!. Solid lines show the bes
power-law fits.
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s are
the
sizes also fall on the same curve. Nevertheless, deviat
from this scaling can be well appreciated atq50 in Fig. 4~a!
(Tq51.0J/kB). We will come back to this point in the dis
cussion. The continuous lines show fits of Lorentzian fu
tions @Eq. ~3.7!# with a53/2 ands51 which corroborates
the validity of such kind of fitting function for all the indi
vidual profiles. The insets in Figs. 4~a! and 4~b! display log-
log plots of the scaled radial scans: for largeq̃ values
S̃r(q̃) decays asq̃

23, as indicated by a continuous line.
Figures 5~a! and 5~b! show log-log plots of the time evo

lution of ^DE(t)& ands r(t) for different system sizes an
the two studied quenching temperatures. Solid straight li
are the following fitted power laws:

^DE~ t !&;t2x,

s r~ t !;t2y. ~4.2!

The behavior of the growth-exponentsx andy for the two
quenching temperatures are presented in Fig. 6 as a fun
of 1/L. The corresponding numerical values are listed
Table II. The estimations of the two growth exponents,x and
y, are coincident within the error bars. A general tendency
the exponent to increase when temperature is increased
ns

-

s

ion
n

f
nd

to decrease when increasing the system size is observed
trapolation toL→`, following the method explained in Sec
V, rendersx.y.0.40 forTq51.0J/kB andx.y.0.44 for
Tq51.5J/kB .

Figure 7 shows linear-log plots of the transverse scan
the scaled structure factor for the two studied quenching t
peratures, at different times. The overlap of the curves
rather satisfactory, however it is not as broaden in time as
the radial scan case. Note that in Fig. 7~b! the lack of scaling
at q50 is clearly evident. As for the radial scan case,
have also verified the overlap of the data corresponding
systems with different sizes. The continuous lines show
of Lorentzian functions@Eq. ~3.7!# with a51 ands51. The
insets display log-log plots of these scaled transverse sc
in this caseS̃t(q̃) decays asq̃

22 for largeq̃, as indicated by
the continuous line.

Log-log plots of the time evolution ofs t(t) for different
system sizes and the two studied quenching temperature
presented in Fig. 8. Solid straight lines correspond to
fitted power law:

s t~ t !;t2z. ~4.3!
e
FIG. 9. Same as for Fig. 4 but for th
vacancy-atom exchange mechanism.
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FIG. 10. Same as for Fig. 5 but for th
vacancy-atom exchange mechanism.
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The values of the growth exponents are listed in Table II a
plotted in front of 1/L in Fig. 6. In this case, the extrapola
tions to L→` ~following the method explained in Sec. V!
render z.0.26 for Tq51.0J/kB and z.0.47 for
Tq51.5J/kB .

C. Vacancy-atom exchange mechanism

The profiles of the radial scans of the scaled struct
factor can be seen in Fig. 9. The overlap of the differ
curves corroborates the scaling hypothesis. It is worth no
that scaling holds even atq50, contrary to the case of atom
atom exchange mechanism at low quenching tempera
Scaling of data corresponding to different system sizes
also been checked. The continuous lines show fits of Lor
zian functions@Eq. ~3.7!# with a53/2 ands51. The log-log
plots shown in the insets of Fig. 9 reveal that, for largeq̃,
S̃r(q̃) decays asq̃

23, as indicated by the continuous line.
Figure 10 shows a log-log plot of the time evolution

s r(t), ^DE(t)&, and the best fits of the power laws defin
by Eq. ~4.2!. The resultingx and y exponents, are listed in
Table III, and plotted as a function of 1/L in Fig. 11. Ex-
trapolations toL→` render x.y.0.36 for Tq51.0J/kB
andx.y.0.44 forTq51.5J/kB .
d

e
t
g

re.
as
t-

The profiles of the transverse scan of the scaled struc
factor are plotted in Fig. 12. Notice that the scaling is ag
satisfied atq50. Scaling also holds for data correspondi
to different system sizes. The continuous lines show fits
Lorentzian functions@Eq. ~3.7!# with a51 ands51. The
behavior of the tail isS̃t(q̃)}q̃

22, as we obtained for the
atom-atom exchange case.

The time evolution ofs t(t) can be seen in Fig. 13 and th
fitted exponents according to Eq.~4.3! are plotted in Fig. 11
and listed in Table III. The extrapolations toL→` render
z.0.34 forTq51.0J/kB andz.0.44 forTq51.5J/kB .

V. DISCUSSION

The analysis of the growth exponents for finiteL reveals
that, independently of the mechanism and the temperat
the exponentsx and y corresponding to^DE(t)& and
s r(t), respectively, coincide within errors bars. The nume
cal value obtained at low temperature (Tq50.55T0) is, for
both mechanisms, lower than the Allen-Cahn grow
exponent 1/2. This may be mainly attributed to the prese
of planar~exactly zero curvature! interfaces, which is known
to globally slow down the dynamics.9 At the highest tem-
e
FIG. 11. Same as for Fig. 6 but for th
vacancy-atom exchange mechanism.
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FIG. 12. Same as for Fig. 7 but for th
vacancy-atom exchange mechanism.
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perature considered in this study (Tq50.83T0) we obtain
that such numerical value for the exponents becomes la
and closer to the Allen-Cahn value. Indeed, one expects
as the temperature increases, the pinning effect of the pl
interfaces becomes weaker enabling larger exponents.41 Ac-
tually the valuey51/2 has been obtained experimentally f
Cu3Au ~Ref. 18! with high accuracy at quenching temper
turesTq ranging from 0.96T0 to 0.99T0 ~our greatest simu-
lated value isTq50.83T0).

Concerning the exponentz, characterizing the evolution
of s t , we globally obtain the same behavior than for t
other exponents. That is,z increases with temperature. How
ever, the low temperature behavior, is such thatz,x.y for
the atom-atom exchange mechanism, whereasz.x.y for
the vacancy-atom exchange mechanism. When increa
temperature we obtain that, for both mechanisms,z.x.y.
Experimentally, no clear differences have been observed
tweeny andz.18,42 This could be either due to the fact th
the experiments are performed at temperatures too clos
T0 to observe any anisotropic effect, or that the relev
physical mechanism for the growth is closer to the vacan
atom exchange. Notwithstanding, we suggest that exp
ments at low temperature would be interesting in order
er
at
ar

ng

e-

to
t
-
ri-
o

definitively conclude about the potentially realistic vacan
mechanism.

From the values of the exponents obtained for differ
system sizes we have performed a finite-size analysis foll
ing the method proposed in Ref. 23. This analysis assum
first-order correction to the asymptotic growth law accordi
to

R~ t !;tnS 12
b

t D , ~5.1!

wheren stands for any of the growth exponentsx, y, or z.
This implies that the finite-size dependence of the expon
nL follows:

nL5n`1bL21/n`. ~5.2!

Fits of this equation to the obtained exponents are plo
~solid lines! in Figs. 6 and 11. The resulting values forn` are
shown in Tables II and III. These extrapolated values c
firm the points discussed in the previous paragraph. The
ues of the first-order correction coefficientb are shown in
Table IV. For the case of atom-atom exchange mechan
the sign of the coefficientsb corresponding to the exponen
e
FIG. 13. Same as for Fig. 8 but for th
vacancy-atom exchange mechanism.
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TABLE III. Same as Table II for the vacancy-atom exchange mechanism.

L
20 28 36 64 L→`

kBTq /J

DE 0.5060.02 0.4660.03 0.4260.03 0.3560.02 0.3860.03
1.0 s r 0.5060.02 0.4060.03 0.3860.02 0.3460.02 0.3460.03

s t 0.4160.03 0.3560.04 0.3660.02 0.3460.03 0.3460.04

DE 0.6860.05 0.6060.05 0.5260.04 0.4360.05 0.4460.05
1.5 s r 0.6460.03 0.5460.02 0.4960.02 0.4360.02 0.4360.03

s t 0.5360.05 0.5260.04 0.5060.06 0.4160.05 0.4460.06
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z are negative reinforcing the suggestion that the growth
with the standard Allen-Cahn exponent does not hold in
case. It is also interesting to remark that, in general,
coefficient b is greater for the vacancy-atom exchan
mechanism than for the atom-atom exchange one. This
firms that in the former case the exponents exhibit a gre
dependence with finite size. This is in agreement with pre
ous results reported for two-dimensional square lattices.29

Concerning the scaling of the structure factor, it is wo
noting that it holds in a broad range of time for all the stu
ied cases indicating that the domain-growth regime, in wh
the evolution of the system is governed by two characteri
lengths proportional, respectively, tos r

21 and s t
21 , is

clearly reached in our simulations. Whether or not bo
lengths obey the same growth law can be detected by
scaling of the structure factor atq50. At this q position,
scaling holds only ifs r(t)}s t(t). For the case of vacancy
atom exchange mechanism, scaling atq50 is satisfied, indi-
cating that a single growth law governs the evolution of
system consistently with an unique value of the growth
ponents (x.y.z). Contrary, for the case of atom-atom e
change mechanism, a lack of scaling atq50 can be clearly
seen in Figs. 4 and 7~compare with Figs. 9 and 12 a
q50). This indicates that the two independent lengths
needed to characterize the evolution of the system in
case.

The time evolution of the structure factor atq50
@^Sr(q50,t)&5^St(q50,t)&5^(C1

21C2
21C3

2)/3&#, is
shown in Fig. 14 for the two studied temperatures and
both mechanisms. They are in qualitative good agreem
with the experimental results for Cu3Au ~see Fig. 18 in Ref.
18!. Even the existence of a possible delay time due to
incubation period for nucleation, that has been found exp
mentally, can be observed as an inflection point in o
curves. In our model the disordered phase is metast
down to zero temperature due to frustration effects.32 There-
fore the evolution, in our simulations, initiates via nucl
ation, as expected37,38 for Cu3Au in the experimentally stud
ied temperature range.18 Also in agreement with
experiments, the delay time increases with increasingTq .
The experimentalists18 suggest an explanation for this dela
based on the influence of the elastic energy in the nuclea
process. Although our model does not account for ela
effects it reproduces such results, indicating that a full exp
nation cannot rely only on elasticity arguments. Moreover
Fig. 14, it seems that the delay is more important in the c
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of the vacancy mechanism. This problem will be studied i
future work.

The behavior of the tail of the structure factor along t
radial and the transverse directions is markedly differe
This can be clearly seen by comparing the insets of Fig
and 9 corresponding to the radial scans and those of Fig
and 12 corresponding to the transverse scans. For such
isotropic peaks, the Porod’s Law,39 ^S(q)&;q2(d11),
(d1154 in our case! is not expected to be satisfied. Ind
pendently of the dynamical exchange mechanism we h
found that for large values ofq, ^Sr(q)&;q23 and
^St(q)&;q22. This is in agreement with the fact that the be
Lorentzian fits are obtained fora53/2 anda51 for radial
and transverse scans, respectively, as explained in Sec
We have also studied the dependence of^S(q)& for largeq
along the diagonal direction@kW5(1,1,0)1 1/L (q,q,0)#. Fig-
ure 15 compares the decay along this direction with
transverse and radial ones. For the diagonal direction, res
are consistent with aq23 decay. This reveals the singula
character of the behavior along the transverse direction.
interesting to remark that the present simulation results
not in agreement with the theory for ordering dynamics
Cu3Au proposed by Lai.19 In that theory it is found that the
Porod’s Law is satisfied for both radial and transverse sca
This important difference between Lai’s theory and t
present simulation probably arises from the fact that in
model type-1 walls have exactly zero excess energy.

In relation to the anisotropic character of the growth, w
have obtained that, at low temperature, in the case of
atom-atom exchange mechanism two different lengths
needed whereas for the vacancy-atom exchange mecha
a single length is enough to describe the ordering proces
fcc-A3B alloys. Actually, for the case of atom-atom e

TABLE IV. Fitted coefficientsb of Eq. ~5.2!.

kBTq /J Atom-atom mechanism Vacancy-atom mechani

DE 98.7 386.1
1.0 s r 45.4 1003.9

s t 21271.5 495.6

DE 31.2 212.3
1.5 s r 106.2 233.3

s t 234.7 88.4
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FIG. 14. Log-log plot of the value of the
structure factor at the superstructure peakq50
for a system with L564 and two different
quenching temperatures. Open symbols cor
spond to atom-atom exchange mechanism a
filled symbols correspond to the vacancy-ato
exchange mechanism.
s
o
a

h
es
an
s
d
o
e
th
le
d
n

e
-

to
y
m
e

o-

an
use
ained
ci-
ture
the

ten-
w:
g
e
the
our

d up

ics
rdi-
nce
nts
change mechanism the need of two characteristic length
not surprising since it has been found in several studies
anisotropic growth. For instance, in a two-dimension
model for a martensitic transformation,9 the existence of two
relevant lengths arises as a consequence of the hierarc
evolution of a mixture of planar and curved interfac
present in the system. By hierarchical evolution one me
that the curved interfaces have to wait for the planar one
disappear before they can decrease in length. This kin
interrelated movement between walls is also present in
simulations. It is, however, worth mentioning that in th
above mentioned model for martensitic transformation,
anisotropy is explicitly introduced in the Hamiltonian, whi
in the present case the anisotropy in the growth appears
to the topology of the fcc lattice. In Ref. 9 it is found, i
quite good agreement with our results at lowTq using the
atom-atom exchange mechanism, that the mean distanc
tween planar interfaces grows ast1/4 and that the mean dis
tance between curved interfaces grows ast1/2. Now, the
question to be answered is: Why in the case of vacancy-a
exchange mechanism, the growth can be described b
single length? Before answering this question let us co
ment on some of the consequences of the vacancy-atom
is
n
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ical

s
to
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e

ue

be-

m
a
-
x-

change mechanism on ordering dynamics. For tw
dimensional square40 and bcc lattices,23 vacancies are known
to accelerate the growth leading, at low temperatures, to
exponent greater than the Allen-Cahn 1/2. This is beca
when temperature decreases more vacancies are constr
to move preferentially along the interfaces so that the ex
tations become inhomogeneously distributed. As tempera
increases, the excitations become homogeneous and
Allen-Cahn value is recovered. In the present model, the
dency for the vacancies to sit on the interfaces is quite lo
some of the interfaces~type 1! are not energetic and, amon
the energetic ones~type 2!, only those with an excess of th
majority species represent a significant energy gain for
vacancies compared to the bulk. Then, as we obtain in
results, the acceleration of the domain growth process~com-
pared to the atom-atom exchange mechanism! only shows up
on the mean distance between type-1 walls due to a spee
in the motion of the curved walls~type 2!. The reason why
the evolution of type-2 walls is not sensitive to the dynam
is because it does not proceed independently: it is subo
nated to the evolution of the type-1 walls. The conseque
of this acceleration is that the interrelated wall moveme
can, in this case, be described by a single length.
r

e
to
FIG. 15. Log-log plot of the structure facto
decay in the radial (h), transversal (n), and di-
agonal (s) directions. Data, obtained with th
atom-atom exchange mechanism, correspond
t51998 mcs,Tq51.0J/kB , andL564.
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Concerning previous studies of the order-disorder dyna
ics by means of the vacancy-atom exchange mechanism
want to finally point out another important difference. In t
case of the two-dimensional square lattice and bcc latt
the accelerations only appear if the vacancy has a finite p
ability to jump to NNN positions. Such jumps prevent th
vacancy to be trapped in the ordered regions. When o
jumps to NN positions are permitted, the growth becom
logarithmic~at low Tq). Although in the present simulation
on fcc lattices we only allow vacancy jumps to NN position
trapping does not appear since for such fcc lattices the
dered regions can be crossed without energy barriers.
have tested, by performing simulations allowing the vaca
to jump to NNN positions, that the growth exponents do n
change significantly in this case.

VI. SUMMARY AND CONCLUSIONS

In this paper extensive Monte Carlo simulations ofL12
ordering kinetics in a fccA3B binary alloy are presented. W
have focused on the study of the evolution of the superst
ture peak and the excess energy. We have followed the
lution up to 104 mcs in systems with linear sizes rangin
from L520 to L564. Two different dynamics have bee
used: first the standard atom-atom exchange mechanism
second the more realistic vacancy-atom exchange me
nism. In this last case a very small concentration of vac
cies is introduced in the system. Finite-size scaling te
niques have been used in order to extrapolate toL→` the
growth exponents evaluated at finiteL. We have found that
finite-size effects are more important in the case of
vacancy-atom exchange mechanism. For the atom-atom
change mechanism we have found evidences for anisotr
growth at lowTq : the width of the superstructure peak in th
transverse direction evolves according tos t;t2z with z
smaller than the exponenty characterizing the evolution o
the width in the radial directions r;t2y. Such anisotropy in
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the growth process has to do with the interrelated interf
motion between the two different domain walls. As propos
in a recent theory,9 this leads toy51/2 andz51/4 in rather
good agreement with our present results. Contrary, for
vacancy-atom mechanism, the two relevant lengthss t

21 and
s r

21 evolve following the same power-law. The disappe
ance of the anisotropic character in the growth when us
the vacancy-atom exchange mechanism arises as a co
quence of the speed up of type-2~curved! interfaces which,
in turn, accelerates the elimination of the type-1~planar! in-
terfaces. Moreover, the evolution of type-2 walls, alwa
subordinated to the evolution of type-1 walls, does not se
to be sensitive to such acceleration. Finally,s t;s r and a
single length is enough to describe the ordering process

The effect of the temperature has also preliminarily be
studied. For both mechanisms the exponentsy andz increase
when the transition temperature is approached from bel
To our knowledge, all the experiments have been perform
at Tq;T0, so that no conclusive results about the relev
ordering mechanisms can be deduced. The results in
paper suggest that more experimental studies of the orde
dynamics, especially at low temperatures, are desirable
order to clarify the existence of such anisotropic growth a
which is the relevant mechanism for ordering. Synchrotr
radiation facilities seem to be very promising for the obta
ment of the needed structure factor maps in the late t
regime.
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