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One-dimensional fermions with é-function repulsion in the Brueckner theory
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The single-particle energies for a one-dimensional system of interacting fermions via a repulsive
S-function potential are self-consistently calculated using the Brueckner and Gammel method. The breakdown
of the usual Fermi liquid picture is signaled in this approach by the occurrence of a negative g&p at
between the lowest energy of a particle stdid¥kg) and the highest energy of a hole statk|€kg); a
normal ground-state configuration with all the hole states double occupied is thus unstable. Two possible
pictures getting account of the rearrangement of the particles in a stable configuration are digdussed:
effective potential simulating a normal Fermi liquid behavi®) a condensate of fermions and a reduced
Fermi sea normally occupied. The ground-state energy computed within these schemes is in remarkable
agreement with the Bethe-Ansatz results for all values of the model paranj&@i63-18206)07048-§

I. INTRODUCTION sea with an effective Fermi momentum. The GSE of the 1D
RDM calculated within these two pictures is in excellent
It is well known that the Landau quasiparticle descriptionagreement with the numerical Bethe-Ansatz resUfisr all
of the Fermi liquids breaks down in one dimensiab).! An  values of the model parameters.
alternative theory, based on an exactly soluble nfoolethe
bosonization techniquéleads to the concept of the Luttinger Il. ONE-DIMENSIONAL REPULSIVE & MODEL
liquid,* with distinct properties. A quite rich picture of the o _ _ _
1D systems can be obtained in the renormalization group 'he Hamiltonian forN particles confined to a chain of
approactf. Exact results are available for certain 1D mode|s|ength|_— and interacting _between tgem throu_gh a repulsive
by the Bethe-Ansatz methddthe model considered here é-function potential(in units wheres “/2m=1) is
—1D8f9ermions with §-function repulsion, belonging to this N2
class?” Nevertheless, the use of the traditional methods of _
the many-body theory in 1D can be interesting for at least H_El axiz +202 o=, ¢=0. @
two reasons: to determine the range of their applicability ) ) ) o
and, if possible, to get a more intuitive picture of the specifictOr SPin-1/2 particles, the interaction is only between those
phenomena. A repulsivé-function interaction between the With opposite spin; the particles with the same spin never
fermions suggested to us the us of a well-known methodn€et due to the exclusion principle. In t_hls case the model
introduced in nuclear physics many years ago in order t&@n be solved by Bethg-Ansétﬁ_.ln particular, the GSE
overcome the difficulties associated with the hard-core interEg can be found by solving an integral equatibfihe nu-
actions: theBrueckner theory®~14We shall apply here the merical  results  for thg dimensionless ~ Quantity
Brueckner and Gammel methi8e- slightly improved by an E=(2/3m)E4/Eqq (the lower index O corresponding to the
additional self-consistency requirement, to determine selfloninteracting casen terms of the dimensionless coupling
consistently the single-particle energi€8PE’S for the 1D  constantC=c/ke [ke=(m/2)N/L] havg been compared
repulsive 5 model (RDM). The numerical solution of the With other approximate schem&s,® the T-matrix
corresponding integral equations for the SPE’s indicates th@PProximation® giving the best agreement with the Bethe-
breakdown of the usual Fermi liquid picture: the occurrence®nsatz solution. _ o
of a negative gap at-ke makes the presumed Fermi sea The second quanpzed form of the Hamiltonidn in mo-
unstable; it determines a finite phase shift in the forwardNentum representation reads

i<j

scattering of two particles — an argument used by
Andersort® to conjecture Luttinger liquid properties for the HZE SO(k)CE +Cko
2D Hubbard model. A stable configuration can be reached k.o o

only by assuming an abnormal occupation of khre&tates. We

Q|scuss at first howlthe redlst_nbu'qon of the particles can be +C D Cll+k3,acl27k3,ﬂrckz,*ockl,o1 2)
included in aneffective potential picturea normal behavior ki-3.0

is s[mulated_by a reduced effectl\_/e repulsion betweer_1 th%vhere, in the chosen units,

particles, a picture that should be viewed merely as a suitable

scheme to compute the ground-state en_e(l@(ﬁE_) of_ the eo(k)=k2, ke(—w,+) 3)
system. The instability of the normal configuration is inter-

preted after that within dermion condensation picturehe  and cT(c)k,,, denotes the usual Fermi creatiannihilation
particles from the top of the unstable Fermi sea have theperator of a one-particle state with a given momenkugim
tendency to condense atkg, the rest form a reduced Fermi units of the Fermi momenturkg) and spinoc==*=1/2. Al-
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FIG. 2. The energy of a hole or a particle state in terms of the
FIG. 1. Diagrammatic representation of the reaction matrix'®action matrix; this Hartree-Fock expression for the SPE together
equation. with the G-matrix equation pictured in Fig. 1 should determine, in
principle, both theG matrix and the SPE.

though it was assumed 1) and(2) that the system is en-

closed in a box of finite length, we shall consider only the [ky ko) if |Kql|,|ko|>ke
thermodynamic limit N—c, L—c, N/L="finite). Qlkika) =) 0" Ciherwise. (6)
Ill. OVERVIEW OF THE BRUECKNER THEORY In the initial formulation of the theor}’ the Q operator did

_ ) not appear. Usually, the Pauli operator makes superfluous the
The idea of the Brueckner theory can be easily understoogyndition of principal part: if the particle energies are greater

by comparing it with the Hartree-Fock methtd®if the last  than the hole energie@ natural assumption for a normal
one considers the motion of a particle in'the average fielgermi liquid), then thee denominators are always positive
produced by the other$|ndependent-_partlcle_ approxima- qyantities(evident for OnES propagation and also true for
tion), in the Brueckner’s approach the interaction of any twogfes oné?). But one cannot sag priori if it is so or not,
particles is treated exactly and the effect of the rest of thgne SPE’s are still not determined; it is the task of the theory
particles on the interacting pair is replaced by an averagg, find them and only after that we can conclude if the sys-
(independent-pair approximatipnThe main ingredient of {om pehaves as a normal Fermi liquid or riptovided a
the Brueckner theory is theaction matrix G describing the  ggjution can be found Consequently, the action of the
effective interaction between two particles: it replaces theoperator may be no superfluous in general.

bare potentiaV by an infinite series which takes into ac-  The connection between the reaction matrix and the two-

count the two-body interaction to all orders of the potential.particle scattering can be seen by definingoarelatedtwo-
Finding the reaction matrix is equivalent to solving a Sehro gy wave function?’ (Ref. 20

dinger equation which describes the scattering of two par-
ticles in the presence of all the others. However, by neglect- 1
ing the three-body scatterings, the Brueckner theory can give Vi k=P k,~ ZPQGDy i, (7
confident results only when the range of the potential is e
much less than the particle separation.

The reaction matrix obeys an integral equation written
formally as

From Egs.(4) and (7) it follows G®=VV¥ and replacing it
back in Eq.(7) we get

1
G[W]=V—V%PQG[W], (4) Y= Phy o™ gPRW g iy ®

and is pictured in Fig. 1. All the operato®, P, Q, V, ein Equation(8) computed OnES is called tH&ethe-Goldstone
Eq. (4) act in the two-particle space spanned by tmper-  equation?® It becomes identical with the integral equation
turbedtwo-body wave funCﬁO”@kl,kZE|k1,kz>- Thee de- for the two-particle scattering in empty space by replacing

nominator in Eq.(4) is defined by the PQ operator with unity and taking the energiesn the
e denominator to be the kinetic energies. The scattering
elky ko) =[e(kq) +e(kp) —W][Kq ,Ky), (5)  states, given by the zeros of tieeoperator and expressing

the energy conservation in the two-body scattering, are ex-

wheree denotes thdstill undeterminedl SPE(Ref. 19 and  cluded in the Brueckner theory by tHeQ operator. The
W represents the “starting energy.”i.e., the sum of the consequence for a normal Fermi liquid is the absence of any
hole energies|k|<kg) minus the sum of the particle ener- scattered wave at large distanc@#sapproache® so rapidly
gies (k|>kg) in a given configuration, excepting the pair that all phase shifts are zetba phenomenon known as the
under consideratiotexamples are given in the next seclion “healing” of the two-body wave functio* The healing oc-
The reaction matrix depends parametrically on the startingurs when the ® operator has no singularities in the corre-
energy: whenW coincides with the total energ® of the  sponding domain determined by tl@@ operator(as for a
initial (final) two-particle state, we say that tii& matrix is  normal Fermi liquid, i.e., no energy-conserving momentum
calculated on-energy-sheiDnES, otherwiseG is said to be  states are available for scatteritfighe presence of singulari-
calculated off-energy-she(OffES). ties in the 1¢ operator gives rise to a finite phase shift and

In the Brueckner theory, thedenominators never vanish: indicates the breakdown of the usual Fermi liquid picture.
P in Eqg. (4 means the principal part operator. If the Pauli  The self-consistency is treated in the Brueckner theory by
principle is taken into account, then the intermediate stateassuming the SPE's in Ed5) to have the Hartree-Fock
below the Fermi level must be excluded and consequentljorm, with the one-particle potential given in terms of the
the Pauli operatof has been introducét'2° G-matrix elements aésee Fig. 2
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The GSE is computed frorfsee Fig. 3

a) b)

FIG. 5. (@ A second order ground-state energy insertion

(10) [obtained by assuming the particte, from Fig. 4b) already
experienced an interaction with the medium—see Figs. 2 dnd 1

The diagonal part of the reaction matrix is thus related to thevhere the G’ matrix is computed OffES because

forward scattering from the potentislt when the interaction W'=Q+¢&(l3)— e(hy); (b) Brueckner and Gammel approximation:

is only between particles with opposite spin, as for ourW' =Wps=Q—A, whereA denotes an average excitation energy

model, the exchange ternjthe last ones in Eq9) and  and should be a small parameter.

(10)] do not appear.

Formally, the problem reduces to finding a solution for particles; if we consider the propagation in particle states to
the SPE from the coupled equatio® and (9); however, be the same as in hole states, i.ese, the problem is
while there is a unique prescription to calculate the energwlready solved(and only OnES propagation occlursin
¢ of a hole state, the energyof a particle statéand begin- improved approximation is to consider distinct pro-
ning now we adopt a distinct notation for this casannot be  pagation in particle and hole states. For example,
uniquely defined and this is a major difficulty in the Brueck- ¢(h,;h,,Q), assumed to have the same Hartree-Fock form

1
Eq=Eog+ 5 > (kK[Gk, kY= (k,K'|G|K' k).
K| I | <ke

ner theory. (9), can be found, in principle, from another reaction matrix
G'[W'] obeying the same Ed4) but computed OffES, as
IV. BRUECKNER AND GAMMEL METHOD can be understood from the diagram considered in R@. 5

e (obtained by assuming that thg line has a “history”):
In order to see where the difficulty comes from, let “SW’=Q+8(I3)—e(h2'h1 Q). Now, energies of excited par-
suppose we wish to calculate the GSE from Bd) and for ticles with a more complicated history are required, as

simplicity let us consider only the direct terfig. 4(a)]: for ’. / ;

this, we need the matrix elementsd,,l,|G|l,,l,) with ;(,lzl’hs’évar)r’]ggg S0 ggpigg:ﬁ]ﬁeeg F|g.ﬂ$52)]. Brdui?f(;tgsée
[L4], 15| <Kg. The G-matrix corresponding to this process e(hp:h;.Q)—e(ls) by a constant quantityA, ie.,
can be found in principle from Ed@4) with G[ W] computed W' =Weg=0— A. A similar approximation is made in any

ONnES: W=Q=¢(l;)+¢(l,), as can be seen from the . .
ground-state energy insertion considered in Figh) 40b- order, where the difference between the energy of a given

tained by replacing th& matrix from Fig. 4a) with the last
term from Fig. 3. However, in order to finds[ W] we need 1
not only the energies(l,) ande(l,) — defined themselves .
in terms of the sam& matrix through Eq(9) (see Fig. 2, by
but also the energieg(h;;h,,Q) and e(h,;h,,Q) with .
|h4],|ho|>ke, depending on the actual configuration of the m by

hy

a) b) k ¥ ¥

a) b)

FIG. 4. (a) The contribution of the direct term to the interaction
energy;(b) a first order ground-state energy insertion obtained by FIG. 6. (a) A third order ground-state energy insertion, dbg
replacing theG matrix from (a) with the second term from Fig. 1. the corresponding Brueckner and Gammel approximation. The dia-
The starting energyV equals the total energy of the initial two- gram(b) here is equivalent to the diagram from Figbpby virtue
particle stated=¢(l,) +&(l,) and thus theG matrix is computed  of the integral equation satisfied Iy’ matrix (see Fig. 1; conse-
OnES. quently, the ladder is terminated in the second order.
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number of particle lines and the same number of hole lines iproblem reduces thus to the study of only one pair of par-
replaced also byA. The consequence of this approximation ticles, with a different propagation in particle and hole states
is that all particle states remember from the history only thgunlike the simplest version of the independent-pair mpdel
energy() of the initial state. Now the OffES propagation can The effective interaction between the partners in particle
be solved: we can find at firss’ in terms of e from the  states is given by a reaction matrix computed slightly OffES
reaction matrix equation and thenfrom its Hartree-Fock and depending on the initial hole states left by the particles;
form. We get thus a family of curvegh;Q) labeled by the the total momentum of the interacting pair (i absolute
total energy() of the initial two-hole state A enters as a value less than R, as the particles were initially below the
parameter in the whole calculation of battande, a depen-  Fermi level. The approximations made in the Brueckner and
dence which will be not explicitly specifigd Once the Gammel method are thus justified for small values\opa-
OffES propagation is determined, we can find the energyameter. The problem is this parameter is not determined by
e(l) of a hole state in a similar manner. the theory; Brueckner and Gamrielefined A as taking
Let us discuss now when the approximation is justified.values between two limits: the energy required to bring one
Of course the difference between the energy of a particlgarticle on the first exciteharticle state from the top of the
state and the energy of a hole state, i.e., the excitation er=ermi sea and from its bottom, respectively. We shall come
ergy, can be arbitrary bigdepending on the values of the back to this problem in Sec. VI.
momenta and there seems to be no reason to consider it as
constant; however, the results should depend only on some V. THE SPE EQUATIONS FOR THE 1D RDM
average of these differences because we have to sum over all ) ) o
the intermediate states. If the main effects come from the !N the particular case of a constant interaction in khe
correlations of therea) particles in states around the Fermi SPace, th&-matrix equation is solved immediately indepen-
level (as it is assumed also, for example, in the bosonizatio§l€Nt on the SPE form. The resulting integral equations for
method, then we expect small values for the average exci£ @nde corresponding to the 1D RDM in the Brueckner and
tation energy parametey; in this case it could be assumed Gammel method are

that the hole linel; in Fig. 5@ almost compensates the _
contribution of the particle linda, and the diagram changes e(D=eo)+UM), <L,
as in Fig. %b); similarly in higher ordergsee Fig. 6. Physi- e(h:Q)=so()+2U(h;Q),  |h|>1, (11)

cally it means that we include the effect of the third particle
on the interacting pair in the propagation of the partners; thevhere the one-particle potentidls andi/ are given by

e C dg |7' o
U(l)—;f_l[ugfmm} dl’, K=+,

L{(h'Q)—C ' 1+ Cj dg 7ldl K=Il+h (12
' T |K7\22 ) p&(q; K, Q) ' '
with the notations

e(q:l,1") = [ K2+ q; Q0,1 ]+ e[ KI2—q; Q(1,1) - Q(1,17),

e(q;K, Q)= e(K/2+q; Q)+ e(KI2—q; Q) — Q +A. (13)

In the first(secondl line of Eq.(13), K=1+1"(K=h+1) and in Eq. (12); if it is the case, only the principal part of the

correspondingy integrals has to be taken.
Q1M =e()+e(l’),

0 e[2(0),25(1)]. (14 VI. AVERAGE EXCITATION ENERGY
The rangeDy in the second integrals from E¢L2), defined The parameteA has been introduced as an average exci-
by tation energy of a particle. In the nuclear matter calculations

_ it was considered an arbitrary quantity taking values from
D= (=22, = [K[2= HU([K|/2+ 1 +22), 19 Zero toe(1)—¢(0), limits corresponding to the minimum
follows from the action of the Pauli operat@ only; it re-  energy required to excite a particle from the top and the
stricts all the intermediate scatterings to the states above tHmttom of the Fermi sea, respectively. Let us note that the
Fermi level. The principal part operatér has been omitted above range ofA implicitly assumes that the energy of the
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lines. For the OffES propagation only two curves have been
Cooo drawn: the lower(uppey one corresponds td)= .
/) (Qmin)- For|k|>3 the OffES curves join the free dispersion
’ law g4(k), a consequence of the restrictifi| <2 in inter-
OfES A, mediate states; the same happens in nuclear nfaiteflect-

; ing the fact that the high excited statéar from the Fermi
onES | ,/ level) are not altered by the interaction. But the most impor-
/ tant remark is the shift betweer(1) ande(1;Q .0 at the
‘ Fermi momenturm(1 in our unitg, corresponding to aega-

’ tive gapand leading to singularities in the next iterations. In
: , order to see if such a gap is a real effect or only an artifact of

P ot the starting conditions, the iteration procedure must be con-

_ “ —— 308, case tinued; only a convergent solution can have a physical mean-

=, i . 4 ing. The difficulties created by the negative gap can be
Momentum avoided in two ways: either to adjust the value/ofat every

iteration step so that no shift occurs, or to take the principal

FIG. 7. The SPE versus momentuin units ofkg) for the 1D  value of the improper integrals, as discussed in the end of
RDM with an infinite coupling constar@ in the T matrix approxi-  Sec. V. By proceeding in the first manner we can find a
mation (TMA) and the self-consistent solutig8CS. convergent solution, but the minimum value/frequired to

vanish the shift is much greatéat least for strong couplings
first excited statéthe lowest particle stateés almost equal to  than the value indicated by the right side of E&j0), i.e., we
the energy of the highest unexcitéuble) state, i.e., there is cannot find a full self-consistent solution. It follows that we
no shift at the Fermi level between the OnES and OffEShave to take only the principal part of tleintegrals in Eq.
propagation. Brueckner and Gammelorked with A=0  (12), i.e., theP operator cannot be dropped. The solution of
and found no significant gap, the results depending onlythe coupled equationd 1) and(17) in the C=c case, rep-
weakly onA and justifying, in their opinion, the introduced resented in Fig. 7 by continuous lines, corresponds to
approximations; late?? an appreciable upward shift of the A =0 and to a value of the gap= —0.6. For smaller values
SPE for states above the Fermi surface, coming from finitef the interaction constar@, bothe ande get closer to the
values ofA, has been found. If we interprét as an average free dispersion lawey, concomitantly with a reduction of
of the minimum excitation energies for the particles in the|A| and an increase oA; in the C—0 limit, A—0 and
Fermi sea, as it has been understood in the original work oA —0.5. From the results presented in Fig. 7 it follows also
Brueckner and Gammét,the range of this parameter should that the main effect of the interaction on the OnES propaga-
be defined in general as tion is to shift the values oy by a constant quantity, i.e.,

the average potentidl experienced by a fermion in the

Ae[e(1;:Qma) —2(1),6(1;Qma)—2(0)],  (16)  ground-state depends very weak on its momentum; this is of

course a consequence of tkendependence of the bare po-
tential in the momentum representation.

From the full self-consistent solutiofconvergence in
both SPE’s and\) it follows the negative gap is unavoidable
and thus the original Fermi level becomes unstable: the high-
est hole stategassumed filled in a normal ground-state con-
figuration have greater energies than the lowest particle
states. The occurrence of a negative gap: &t in the exci-
tation spectrum, a consequence of the kinetic restrictions im-
posed by the momentum conservation on the two-body scat-

1 terings, destroys the usual Fermi liquid picture in 1D; it
A= E(l;Qmax)—E[s(O)-i-s(l)]. (17)  determines a singular forward scattering in any order of the
G-matrix expansion and gives rise to a finite phase shift in

This choice corresponds to a minimum average excitatiohe Scattered wavésee Sec. I), an argument used previ-
energy(assumings a convex function of its variable, as it ously |lr23 predicting a similar breakdown in the 2D Hubbard
follows from the numerical computationand it is consistent model:

with the way in which this quantity has been introduced.

Equation(17) represents another condition on the SPE deter- VIII. POSSIBLE INTERPRETATIONS

mining self-consistently the paramet&r

©

=]
T
~

(7]

Single—particle energies
‘\
A\
W
~

where() ., denotes the maximum value ©f (we shall use
also Q i, with a similar meaning However, the definition
of A is still ambiguous: the limits of the rang&6) depend
themselves on the initial value ¢f used in the determina-
tion of bothe and e. In a full self-consistent treatment
should be uniquely determined from its definition; this can
be done by averaging the momentum dependence mfer
the hole states. We consideradto be the arithmetical mean
of the two limits of its rang€16):

The form of the SPE given by the Brueckner and Gammel

VIl. BREAKDOWN OF FERMI LIQUID THEORY method shows clearly that a gropnd—state configuration with
all the hole states double occupied and the others empty, as

The integral equation€l1) can be solved numerically by for a normal Fermi liquid, is unstable, the fermions tending
iteration, starting with the free expressié8) for the SPE to spread over states outside the original Fermi surface. The
and with A =0; the first iteration resultsT-matrix approxi- obtained solution indicates also a possible interpretation: we
mation in the C=« case are represented in Fig. 7 by dashedcan assume that beginning from the top of the presumed
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G— i 5 FIG. 9. Schematic representation of the ground-state configura-

3
Momentum tion for the 1D RDM in the fermion condensation picture: the

shaded regions correspond to the excited states of the particles from
FIG. 8. The one-particle potentials as function of momentum forthe reduced Fermi sea; the two dashed rectangles show the position
the 1D RDM with an infinite coupling constar@ in the self-  of the condensate in the determined spectrum.
consistent solutionNSCS and in the effective potential picture

(EPP. Fermion condensation pictur&Ve shall assume now that

the unstable particle@bove( /2 leve) make a transition
Fermi sea, the unstable particles fall down on their lowestq gnother phase — let us call éondensate— while the
“excited” states. However, before discussing this scenariostaple ones remain at the same positions as before. The tran-
we shall use the particular form of the determined SPE tajtion to the condensed phase could be imagined as the fall of
introduce an effective one-particle potential simulating a northe unstable particlehroughK =0 virtual scatteringsin
mal Fermi qul_Jid behavior, a picture suitable maybe only forinheir lowest “excited” states located atke, as it is shown
GSE calculations. . _ in Fig. 9. Let us note that such a configuration, with more
Let us remark first that the obtained solution for the harticles at the samie is, in principle, possible: in the linked
OffES propagatior(coupled to the OnES one only through cjyster expansion one has to take into account processes vio-
the parametef), but not depending on the form ef) indi-  |ating the exclusion principle and consequently a state with
cates an upper limif};,, for the total energy of a stable |k|>k_ can be occupied by more than two particlésn a
two-particle state OnES: it is defined by the condition normal Fermi liquid, such a distribution of the particles can
be realized only during virtual scatterings where both initial
Qjim = 2€(1;Qjm) (18) and final states are below the original Fermi surface; the
and tells us that the highest occupied state in a stable groung@bPtained solution indicates a final configuration with a pref-
state configuration should have the energy equdbtdess erential occupation Qf certain partlcle states, a fact WhICh can
than its lowest excited state. be used, in our opinion, to anticipate some properties of the
Effective potential pictureLet us consider that the most NeW ground state. The particles from one comportlesit or
unstable particles, initially with the energy(1), will go  fight) of the condensate have all the same momentum, sug-
down on theQ);,/2 level at the same value of the momen- gestmg .thus a po_ssmle Qescnpuon of the fermions close to
tum. Something similar happens with the rest of the particlegh® original Fermi level in terms of bosons, a fact already
which will loose energy not only due to their unstable posi-known from the bosonization theory; they can be V'%WEd
tions, but also as an effect of the particles already fallea  2!S0 @s fermions with an additional quantum numt@) ¢
effective repulsion between the particles decreasesother ~ 1he stable particles form @duced Fermi seaith an effec-
words, we introduce aeffective one-particle potential &  tive Fermi momenturk, determined by
instead of the original on&J, describing the rearrangement
of the particles induced by the occurrence of the negative Qjim=2&(kE). (20
gap. In the|l|=1 limit, the OnES potential o is deter- . . .
mined by th|e|conditiom18) of continuity with thg OFfES one They can be excited in states from the shaded regions of

; ; T - Fig. 9.
U at the Fermi level; we can define it ff <1 as the shifted :
values ofU with the same quantity as fdF =1, i.e., by The two pictures presented above are based on the already

obtained solution which shows, in fact, that the particles are
Ua(D=U()—AU, AU=(Q0u—Qim)/2 (19 too compressed in a norma_l configurati@m k §pacee: some
of them have to condense in a less energetic pkfasmion
an assumption justified by the weak dependence of the origcondensation pictuje they should have been stable if the
nal one-particle potentidl on the momentum. The effective effective interparticle repulsion was smalleffective poten-
one-particle potentials, both OnES and Offimly the de- tial picturg. There is, in principle, another possible way to
limiting curves, are represented in Fig. 8 by dashed lines,study the rearrangement of the particles in a stable configu-
where the same quantities given by the self-consistent soluation: to modify the original SPE equations such that an
tion (the original one-particle potentials andi/) are drawn abnormal occupation of the states are considered from the
by continuous lines. beginning. For example, we can assume the particles fill uni-
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parametet € [ 0,1] describing the continuous transformation
08 from {I,U(1)} att=0 to {14 1;2¢(1)]} att=1; the range
[ kg,1] is mapped for any#1 in another ong «;,1], with
ko=« and lim_ k=1, while the transformed values of
U(l) are finite at anyt. It follows that the second term goes
to zero, i.e., the contribution of the condensate to the GSE is
the same as that corresponding to the free particles above the
kg level; if we imagine the condensate as composed of
bosons, it means they can be considered as noninteracting in
the ground state. In th€=o case we obtaine=0.849
(with kz=0.876), i.e., a numerical coincidence with the
o Bethe-Ansatz result; at smaller couplings, the values afe
—— EPR.FCP practically the same as those obtained in the effective poten-
0.2 4 " tial picture (in the weak coupling regime, the negative gap

Interaction constant C becomes irrelevant for the GEE

ol
@
T

Ground-state energy E
o
a

FIG. 10. The GSE of the 1D RDM fo€=c/k<6 in the
T-matrix approximationTMA), effective potential picturédEPP, X. CONCLUSIONS
and fermion condensation pictu(ECP); the last two schemes give
practically the same results as the Bethe-Ansatz method at all val-
ues of the model parametersand kg .

The results of this paper can be summarized as follows:
(i) One implicit assumption of the Brueckner theory,
namely, all particle states have greater energies than the hole
states, can be, in principle, relaxed by restoring the action of

could be determined from the condition of stability, i.e., thethe principal part operator in the réaction matrix equation.

disappearance of the negative gap; a self-consistent solutiq (ii) In Iterms pfl_thgdBr_ueckner theory,hthe kr)]rea‘\‘I?]dovl\_/n (,),f
with x>Kkg is expected, by analogy with the Bethe-Ansatz '€ ustja fF%r]m' IOIUIl t)l((:jtutre obccgrs W enft et' e?'”g

results which indicate, for an infinite coupling constant, aProperty ot ihe correlated two-body wave function 1s de-
GSE as for free spinless fermioHsThis approach will be stroyed, i.e., when a finite phase shift in the scattering of the

. . ) two particles appears.
discussed in a forthcoming work. (ili) When applied to the 1D RDM, the Brueckner and

Gammel method gives a solution for the SPE with a negative
gap between the OffES propagation and OnES one, indicat-
The GSE for the 1D RDM is computed frofisee Eq. ing the instability of a ground-state configuration with all

(10)], states between kg and + kg double occupied. The approxi-
mations introduced by Brueckner and Gammel are justified
2 1 (1 by the small values of the average excitation energy param-
E= §+ EJﬂU(I)dI, @) etera (determined by a natural self-consistency condjtion
in comparison with the values of the SPE around the Fermi
where E represents the density of the GSE in units of|evel.
Kreo(Kg). (iv) The solution given by the Brueckner and Gammel

The values oE for C<6 in theT-matrix approximation, method has been used to put forward two possible pictures
i.e., in the first iteration, are along the dashed line from Figthat could get account of the particle redistribution in a stable
10; they coincide with the results obtained previod§ifhe  ground-state configuratioiil) an effective potential simulat-
maximum (relative) deviation from the Bethe-Ansatz ing a normal Fermi liquid behaviof2) a condensate of par-
values!’ realized whenC=w, is 20%. Using now in Eq. ticles in coexistence with a reduced Fermi sea normally oc-
(21 the expression dfl given by the self-consistent solution cupied.
and ignoring the instability of the original Fermi level, the  (v) The two pictures give practically the same results for
results for the GSE get closer to the exact ones: for an infithe GSE of the 1D RDM, in remarkable agreement with the
nite coupling constant, the relative deviation decreases tBethe-Ansatz predictions at all values of the model param-
9%. eters.

Within the effective potential picture, the GSE has been The same qualitative behavior of the SPE, as described
calculated from the same E@1) but with U replaced by here for the 1D RDM, has been noticed also in the case of
Ues defined as in Eq.(19); for C=x we obtained the 1D repulsive Hubbard mod&the occurrence of a nega-
E=0.856, i.e., a relative difference from the exact resulttive gap in the excitation spectrum of a Fermi liquid could be
E=8/(3m) less than 1%. FOE=<6 the results are along the relevant in the dispute about a possible breakdown of the
continuous line from Fig. 10; they cannot be distinguishedusual quasiparticle picture in 2D.
from the Bethe-Ansatz ones at the figure scale. A fermion condensation mechanism has been recently

In calculating the GSE in the fermion condensation pic-discusset? for a class of Fermi systems with strongly repul-
ture, we divided the integral from E¢R1) in two parts: over sive interactions which do not obey the usual Landau theory;
the reduced Fermi sedl(<«g) with U given by the self- possible connections between this approach and our results
consistent solution, and the rest{<|l|<1). The contribu- could be an interesting subject for further investigations.
tion of the second term was assumed to change with some One might have expected perhaps to get reliable results

formly a sea with an unknown Fermi momentugg that

IX. GROUND-STATE ENERGY
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