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One-dimensional fermions withd-function repulsion in the Brueckner theory
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The single-particle energies for a one-dimensional system of interacting fermions via a repulsive
d-function potential are self-consistently calculated using the Brueckner and Gammel method. The breakdown
of the usual Fermi liquid picture is signaled in this approach by the occurrence of a negative gap at6kF
between the lowest energy of a particle state (uku.kF) and the highest energy of a hole state (uku,kF); a
normal ground-state configuration with all the hole states double occupied is thus unstable. Two possible
pictures getting account of the rearrangement of the particles in a stable configuration are discussed:~1! an
effective potential simulating a normal Fermi liquid behavior;~2! a condensate of fermions and a reduced
Fermi sea normally occupied. The ground-state energy computed within these schemes is in remarkable
agreement with the Bethe-Ansatz results for all values of the model parameters.@S0163-1829~96!07048-8#
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I. INTRODUCTION

It is well known that the Landau quasiparticle descripti
of the Fermi liquids breaks down in one dimension~1D!.1 An
alternative theory, based on an exactly soluble model2 by the
bosonization technique,3 leads to the concept of the Luttinge
liquid,4 with distinct properties.5 A quite rich picture of the
1D systems can be obtained in the renormalization gr
approach.6 Exact results are available for certain 1D mod
by the Bethe-Ansatz method,7 the model considered her
—1D fermions withd-function repulsion, belonging to thi
class.8,9 Nevertheless, the use of the traditional methods
the many-body theory in 1D can be interesting for at le
two reasons: to determine the range of their applicabi
and, if possible, to get a more intuitive picture of the spec
phenomena. A repulsived-function interaction between th
fermions suggested to us the us of a well-known meth
introduced in nuclear physics many years ago in order
overcome the difficulties associated with the hard-core in
actions: theBrueckner theory.10–14We shall apply here the
Brueckner and Gammel method15— slightly improved by an
additional self-consistency requirement, to determine s
consistently the single-particle energies~SPE’s! for the 1D
repulsived model ~RDM!. The numerical solution of the
corresponding integral equations for the SPE’s indicates
breakdown of the usual Fermi liquid picture: the occurren
of a negative gap at6kF makes the presumed Fermi s
unstable; it determines a finite phase shift in the forw
scattering of two particles — an argument used
Anderson16 to conjecture Luttinger liquid properties for th
2D Hubbard model. A stable configuration can be reac
only by assuming an abnormal occupation of thek states. We
discuss at first how the redistribution of the particles can
included in aneffective potential picture: a normal behavior
is simulated by a reduced effective repulsion between
particles, a picture that should be viewed merely as a suit
scheme to compute the ground-state energy~GSE! of the
system. The instability of the normal configuration is inte
preted after that within afermion condensation picture: the
particles from the top of the unstable Fermi sea have
tendency to condense at6kF , the rest form a reduced Ferm
550163-1829/97/55~4!/2114~8!/$10.00
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sea with an effective Fermi momentum. The GSE of the
RDM calculated within these two pictures is in excelle
agreement with the numerical Bethe-Ansatz results17 for all
values of the model parameters.

II. ONE-DIMENSIONAL REPULSIVE d MODEL

The Hamiltonian forN particles confined to a chain o
length L and interacting between them through a repuls
d-function potential~in units where\2/2m51) is

H5(
i51

N
]2

]xi
2 12c(

i, j
d~xi2xj !, c.0. ~1!

For spin-1/2 particles, the interaction is only between tho
with opposite spin; the particles with the same spin ne
meet due to the exclusion principle. In this case the mo
can be solved by Bethe-Ansatz.8,9 In particular, the GSE
Eg can be found by solving an integral equation.9 The nu-
merical results for the dimensionless quant
E[(2/3p)Eg /E0g ~the lower index 0 corresponding to th
noninteracting case! in terms of the dimensionless couplin
constantC[c/kF @kF5(p/2)N/L# have been compare
with other approximate schemes,17,18 the T-matrix
approximation18 giving the best agreement with the Beth
Ansatz solution.

The second quantized form of the Hamiltonian~1! in mo-
mentum representation reads

H5(
k,s

«0~k!ck,s
† ck,s

1C (
k123 ,s

ck11k3 ,s
† ck22k3 ,2s

† ck2 ,2sck1 ,s , ~2!

where, in the chosen units,

«0~k!5k2, kP~2`,1`! ~3!

andc†(c)k,s denotes the usual Fermi creation~annihilation!
operator of a one-particle state with a given momentumk ~in
units of the Fermi momentumkF) and spins561/2. Al-
2114 © 1997 The American Physical Society
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55 2115ONE-DIMENSIONAL FERMIONS WITHd- . . .
though it was assumed in~1! and ~2! that the system is en
closed in a box of finite length, we shall consider only t
thermodynamic limit (N→`, L→`, N/L5finite!.

III. OVERVIEW OF THE BRUECKNER THEORY

The idea of the Brueckner theory can be easily underst
by comparing it with the Hartree-Fock method:12,13if the last
one considers the motion of a particle in the average fi
produced by the others~independent-particle approxima
tion!, in the Brueckner’s approach the interaction of any t
particles is treated exactly and the effect of the rest of
particles on the interacting pair is replaced by an aver
~independent-pair approximation!. The main ingredient of
the Brueckner theory is thereaction matrix G, describing the
effective interaction between two particles: it replaces
bare potentialV by an infinite series which takes into a
count the two-body interaction to all orders of the potent
Finding the reaction matrix is equivalent to solving a Sch¨-
dinger equation which describes the scattering of two p
ticles in the presence of all the others. However, by negl
ing the three-body scatterings, the Brueckner theory can
confident results only when the range of the potentia
much less than the particle separation.

The reaction matrix obeys an integral equation writt
formally as

G@W#5V2V
1

e
PQG@W#, ~4!

and is pictured in Fig. 1. All the operatorsG, P, Q, V, e in
Eq. ~4! act in the two-particle space spanned by theunper-
turbed two-body wave functionsFk1 ,k2

[uk1 ,k2&. Thee de-
nominator in Eq.~4! is defined by

euk1 ,k2&5@«~k1!1«~k2!2W#uk1 ,k2&, ~5!

where« denotes the~still undetermined! SPE~Ref. 19! and
W represents the ‘‘starting energy,’’14 i.e., the sum of the
hole energies (uku,kF) minus the sum of the particle ene
gies (uku.kF) in a given configuration, excepting the pa
under consideration~examples are given in the next section!.
The reaction matrix depends parametrically on the star
energy: whenW coincides with the total energyV of the
initial ~final! two-particle state, we say that theG matrix is
calculated on-energy-shell~OnES!, otherwiseG is said to be
calculated off-energy-shell~OffES!.

In the Brueckner theory, thee denominators never vanish
P in Eq. ~4! means the principal part operator. If the Pa
principle is taken into account, then the intermediate sta
below the Fermi level must be excluded and conseque
the Pauli operatorQ has been introduced11,12,20

FIG. 1. Diagrammatic representation of the reaction ma
equation.
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Quk1 ,k2&5H uk1 ,k2& if uk1u,uk2u.kF

0 otherwise.
~6!

In the initial formulation of the theory,10 theQ operator did
not appear. Usually, the Pauli operator makes superfluous
condition of principal part: if the particle energies are grea
than the hole energies~a natural assumption for a norma
Fermi liquid!, then thee denominators are always positiv
quantities~evident for OnES propagation and also true f
OffES one12!. But one cannot saya priori if it is so or not,
the SPE’s are still not determined; it is the task of the the
to find them and only after that we can conclude if the s
tem behaves as a normal Fermi liquid or not~provided a
solution can be found!. Consequently, the action of theP
operator may be no superfluous in general.

The connection between the reaction matrix and the tw
particle scattering can be seen by defining acorrelatedtwo-
body wave functionC ~Ref. 20!

Ck1 ,k2
5Fk1 ,k2

2
1

e
PQGFk1 ,k2

. ~7!

From Eqs.~4! and ~7! it follows GF5VC and replacing it
back in Eq.~7! we get

Ck1 ,k2
5Fk1 ,k2

2
1

e
PQVCk1 ,k2

. ~8!

Equation~8! computed OnES is called theBethe-Goldstone
equation.20 It becomes identical with the integral equatio
for the two-particle scattering in empty space by replac
thePQ operator with unity and taking the energies« in the
e denominator to be the kinetic energies. The scatter
states, given by the zeros of thee operator and expressin
the energy conservation in the two-body scattering, are
cluded in the Brueckner theory by thePQ operator. The
consequence for a normal Fermi liquid is the absence of
scattered wave at large distances:C approachesF so rapidly
that all phase shifts are zero,20 a phenomenon known as th
‘‘healing’’ of the two-body wave function.21 The healing oc-
curs when the 1/e operator has no singularities in the corr
sponding domain determined by theQ operator~as for a
normal Fermi liquid!, i.e., no energy-conserving momentu
states are available for scattering;14 the presence of singulari
ties in the 1/e operator gives rise to a finite phase shift a
indicates the breakdown of the usual Fermi liquid picture

The self-consistency is treated in the Brueckner theory
assuming the SPE’s in Eq.~5! to have the Hartree-Fock
form, with the one-particle potential given in terms of th
G-matrix elements as~see Fig. 2!:

x

FIG. 2. The energy of a hole or a particle state in terms of
reaction matrix; this Hartree-Fock expression for the SPE toge
with theG-matrix equation pictured in Fig. 1 should determine,
principle, both theG matrix and the SPE.
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2116 55F. D. BUZATU
«~k!5«0~k!1 (
uk8u,kF

~^k,k8uGuk,k8&2^k,k8uGuk8,k&!.

~9!

The GSE is computed from~see Fig. 3!

Eg5E0g1
1

2 (
uku,uk8u,kF

~^k,k8uGuk,k8&2^k,k8uGuk8,k&!.

~10!

The diagonal part of the reaction matrix is thus related to
forward scattering from the potentialV; when the interaction
is only between particles with opposite spin, as for o
model, the exchange terms@the last ones in Eqs.~9! and
~10!# do not appear.

Formally, the problem reduces to finding a solution f
the SPE from the coupled equations~4! and ~9!; however,
while there is a unique prescription to calculate the ene
« of a hole state, the energye of a particle state~and begin-
ning now we adopt a distinct notation for this case! cannot be
uniquely defined and this is a major difficulty in the Bruec
ner theory.

IV. BRUECKNER AND GAMMEL METHOD

In order to see where the difficulty comes from, let
suppose we wish to calculate the GSE from Eq.~10! and for
simplicity let us consider only the direct term@Fig. 4~a!#: for
this, we need the matrix elementŝl 1 ,l 2uGu l 1 ,l 2& with
u l 1u,u l 2u,kF . The G-matrix corresponding to this proces
can be found in principle from Eq.~4! with G@W# computed
OnES: W5V[«( l 1)1«( l 2), as can be seen from th
ground-state energy insertion considered in Fig. 4~b! ~ob-
tained by replacing theG matrix from Fig. 4~a! with the last
term from Fig. 1!. However, in order to findG@W# we need
not only the energies«( l 1) and«( l 2) – defined themselve
in terms of the sameG matrix through Eq.~9! ~see Fig. 2!,
but also the energiese(h1 ;h2 ,V) and e(h2 ;h1 ,V) with
uh1u,uh2u.kF , depending on the actual configuration of t

FIG. 3. The ground-state energy as computed in the Bruec
theory from the reaction matrix.

FIG. 4. ~a! The contribution of the direct term to the interactio
energy;~b! a first order ground-state energy insertion obtained
replacing theG matrix from ~a! with the second term from Fig. 1
The starting energyW equals the total energy of the initial two
particle stateV[«( l 1)1«( l 2) and thus theG matrix is computed
OnES.
e

r

r

y

particles; if we consider the propagation in particle states
be the same as in hole states, i.e.,e[«, the problem is
already solved~and only OnES propagation occurs!. An
improved approximation is to consider distinct pr
pagation in particle and hole states. For examp
e(h1 ;h2 ,V), assumed to have the same Hartree-Fock fo
~9!, can be found, in principle, from another reaction mat
G8@W8# obeying the same Eq.~4! but computed OffES, as
can be understood from the diagram considered in Fig. 5~a!
~obtained by assuming that theh1 line has a ‘‘history’’!:
W85V1«( l 3)2e(h2 ;h1 ,V). Now, energies of excited par
ticles with a more complicated history are required,
e(h18 ;h3 ,W8), and so on endless@see Fig. 6~a!#. Brueckner
and Gammel15 approximated the difference
e(h2 ;h1 ,V)2«( l 3) by a constant quantityL, i.e.,
W8.WBG[V2L. A similar approximation is made in an
order, where the difference between the energy of a gi

er

y

FIG. 5. ~a! A second order ground-state energy inserti
@obtained by assuming the particleh1 from Fig. 4~b! already
experienced an interaction with the medium—see Figs. 2 and#,
where the G8 matrix is computed OffES becaus
W85V1«( l 3)2e(h2); ~b! Brueckner and Gammel approximation
W8.WBG5V2L, whereL denotes an average excitation ener
and should be a small parameter.

FIG. 6. ~a! A third order ground-state energy insertion, and~b!
the corresponding Brueckner and Gammel approximation. The
gram~b! here is equivalent to the diagram from Fig. 5~b! by virtue
of the integral equation satisfied byG8 matrix ~see Fig. 1!; conse-
quently, the ladder is terminated in the second order.
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55 2117ONE-DIMENSIONAL FERMIONS WITHd- . . .
number of particle lines and the same number of hole line
replaced also byL. The consequence of this approximatio
is that all particle states remember from the history only
energyV of the initial state. Now the OffES propagation ca
be solved: we can find at firstG8 in terms of e from the
reaction matrix equation and thene from its Hartree-Fock
form. We get thus a family of curvese(h;V) labeled by the
total energyV of the initial two-hole state (L enters as a
parameter in the whole calculation of bothe and«, a depen-
dence which will be not explicitly specified!. Once the
OffES propagation is determined, we can find the ene
«( l ) of a hole state in a similar manner.

Let us discuss now when the approximation is justifie
Of course the difference between the energy of a part
state and the energy of a hole state, i.e., the excitation
ergy, can be arbitrary big~depending on the values of th
momenta! and there seems to be no reason to consider
constant; however, the results should depend only on s
average of these differences because we have to sum ov
the intermediate states. If the main effects come from
correlations of the~real! particles in states around the Ferm
level ~as it is assumed also, for example, in the bosoniza
method!, then we expect small values for the average ex
tation energy parameterL; in this case it could be assume
that the hole linel 3 in Fig. 5~a! almost compensates th
contribution of the particle lineh2 and the diagram change
as in Fig. 5~b!; similarly in higher orders~see Fig. 6!. Physi-
cally it means that we include the effect of the third partic
on the interacting pair in the propagation of the partners;
t
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problem reduces thus to the study of only one pair of p
ticles, with a different propagation in particle and hole sta
~unlike the simplest version of the independent-pair mod!.
The effective interaction between the partners in parti
states is given by a reaction matrix computed slightly Off
and depending on the initial hole states left by the partic
the total momentum of the interacting pair is~in absolute
value! less than 2kF , as the particles were initially below th
Fermi level. The approximations made in the Brueckner a
Gammel method are thus justified for small values ofL pa-
rameter. The problem is this parameter is not determined
the theory; Brueckner and Gammel15 definedL as taking
values between two limits: the energy required to bring o
particle on the first excited~particle! state from the top of the
Fermi sea and from its bottom, respectively. We shall co
back to this problem in Sec. VI.

V. THE SPE EQUATIONS FOR THE 1D RDM

In the particular case of a constant interaction in thek
space, theG-matrix equation is solved immediately indepe
dent on the SPE form. The resulting integral equations
« ande corresponding to the 1D RDM in the Brueckner a
Gammel method are

«~ l !5«0~ l !1U~ l !, u l u,1,

e~h;V!5«0~h!1U~h;V!, uhu.1, ~11!

where the one-particle potentialsU andU are given by
U~ l !5
C

pE21

1 F11
C

pEDK
dq

e~q; l ,l 8!G21

dl8, K5 l1 l 8,

U~h;V!5
C

pE 21
uKu,2

1 F11
C

pEDK
dq

e~q;K,V!G21

dl, K5 l1h, ~12!

with the notations

e~q; l ,l 8!5e@K/21q;V~ l ,l 8!#1e@K/22q;V~ l ,l 8!#2V~ l ,l 8!,

e~q;K,V!5e~K/21q;V!1e~K/22q;V!2V1L. ~13!
e

ci-
ns
m

the
the
e

In the first~second! line of Eq.~13!, K5 l1 l 8(K5h1 l ) and

V~ l ,l 8!5«~ l !1«~ l 8!,

VP@2«~0!,2«~1!#. ~14!

The rangeDK in the second integrals from Eq.~12!, defined
by

DK5~2`,2uKu/221!ø~ uKu/211,1`!, ~15!

follows from the action of the Pauli operatorQ only; it re-
stricts all the intermediate scatterings to the states above
Fermi level. The principal part operatorP has been omitted
he

in Eq. ~12!; if it is the case, only the principal part of th
correspondingq integrals has to be taken.

VI. AVERAGE EXCITATION ENERGY

The parameterL has been introduced as an average ex
tation energy of a particle. In the nuclear matter calculatio
it was considered an arbitrary quantity taking values fro
zero to «(1)2«(0), limits corresponding to the minimum
energy required to excite a particle from the top and
bottom of the Fermi sea, respectively. Let us note that
above range ofL implicitly assumes that the energy of th
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2118 55F. D. BUZATU
first excited state~the lowest particle state! is almost equal to
the energy of the highest unexcited~hole! state, i.e., there is
no shift at the Fermi level between the OnES and Off
propagation. Brueckner and Gammel15 worked with L50
and found no significant gap, the results depending o
weakly onL and justifying, in their opinion, the introduce
approximations; later,22 an appreciable upward shift of th
SPE for states above the Fermi surface, coming from fi
values ofL, has been found. If we interpretL as an average
of the minimum excitation energies for the particles in t
Fermi sea, as it has been understood in the original wor
Brueckner and Gammel,15 the range of this parameter shou
be defined in general as

LP@e~1;Vmax!2«~1!,e~1;Vmax!2«~0!#, ~16!

whereVmax denotes the maximum value ofV ~we shall use
alsoVmin with a similar meaning!. However, the definition
of L is still ambiguous: the limits of the range~16! depend
themselves on the initial value ofL used in the determina
tion of both « and e. In a full self-consistent treatmentL
should be uniquely determined from its definition; this c
be done by averaging the momentum dependence of« over
the hole states. We consideredL to be the arithmetical mea
of the two limits of its range~16!:

L5e~1;Vmax!2
1

2
@«~0!1«~1!#. ~17!

This choice corresponds to a minimum average excita
energy~assuming« a convex function of its variable, as
follows from the numerical computations! and it is consistent
with the way in which this quantity has been introduce
Equation~17! represents another condition on the SPE de
mining self-consistently the parameterL.

VII. BREAKDOWN OF FERMI LIQUID THEORY

The integral equations~11! can be solved numerically b
iteration, starting with the free expression~3! for the SPE
and withL50; the first iteration results (T-matrix approxi-
mation! in theC5` case are represented in Fig. 7 by dash

FIG. 7. The SPE versus momentum~in units of kF) for the 1D
RDM with an infinite coupling constantC in theT matrix approxi-
mation ~TMA ! and the self-consistent solution~SCS!.
S

ly

te

of

n

.
r-

d

lines. For the OffES propagation only two curves have be
drawn: the lower ~upper! one corresponds toV5Vmax
(Vmin). For uku.3 the OffES curves join the free dispersio
law «0(k), a consequence of the restrictionuKu,2 in inter-
mediate states; the same happens in nuclear matter,15 reflect-
ing the fact that the high excited states~far from the Fermi
level! are not altered by the interaction. But the most imp
tant remark is the shift between«(1) ande(1;Vmax) at the
Fermi momentum~1 in our units!, corresponding to anega-
tive gapand leading to singularities in the next iterations.
order to see if such a gap is a real effect or only an artifac
the starting conditions, the iteration procedure must be c
tinued; only a convergent solution can have a physical me
ing. The difficulties created by the negative gap can
avoided in two ways: either to adjust the value ofL at every
iteration step so that no shift occurs, or to take the princi
value of the improper integrals, as discussed in the end
Sec. V. By proceeding in the first manner we can find
convergent solution, but the minimum value ofL required to
vanish the shift is much greater~at least for strong couplings!
than the value indicated by the right side of Eq.~17!, i.e., we
cannot find a full self-consistent solution. It follows that w
have to take only the principal part of theq integrals in Eq.
~12!, i.e., theP operator cannot be dropped. The solution
the coupled equations~11! and ~17! in theC5` case, rep-
resented in Fig. 7 by continuous lines, corresponds
L50 and to a value of the gapD520.6. For smaller values
of the interaction constantC, both« ande get closer to the
free dispersion law«0 , concomitantly with a reduction o
uDu and an increase ofL; in the C→0 limit, D→0 and
L→0.5. From the results presented in Fig. 7 it follows al
that the main effect of the interaction on the OnES propa
tion is to shift the values of«0 by a constant quantity, i.e.
the average potentialU experienced by a fermion in th
ground-state depends very weak on its momentum; this i
course a consequence of thek independence of the bare po
tential in the momentum representation.

From the full self-consistent solution~convergence in
both SPE’s andL) it follows the negative gap is unavoidab
and thus the original Fermi level becomes unstable: the h
est hole states~assumed filled in a normal ground-state co
figuration! have greater energies than the lowest parti
states. The occurrence of a negative gap at6kF in the exci-
tation spectrum, a consequence of the kinetic restrictions
posed by the momentum conservation on the two-body s
terings, destroys the usual Fermi liquid picture in 1D;
determines a singular forward scattering in any order of
G-matrix expansion and gives rise to a finite phase shift
the scattered wave~see Sec. III!, an argument used previ
ously in predicting a similar breakdown in the 2D Hubba
model.16

VIII. POSSIBLE INTERPRETATIONS

The form of the SPE given by the Brueckner and Gamm
method shows clearly that a ground-state configuration w
all the hole states double occupied and the others empty
for a normal Fermi liquid, is unstable, the fermions tendi
to spread over states outside the original Fermi surface.
obtained solution indicates also a possible interpretation:
can assume that beginning from the top of the presum
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55 2119ONE-DIMENSIONAL FERMIONS WITHd- . . .
Fermi sea, the unstable particles fall down on their low
‘‘excited’’ states. However, before discussing this scena
we shall use the particular form of the determined SPE
introduce an effective one-particle potential simulating a n
mal Fermi liquid behavior, a picture suitable maybe only
GSE calculations.

Let us remark first that the obtained solution for t
OffES propagation~coupled to the OnES one only throug
the parameterV, but not depending on the form of«) indi-
cates an upper limitV lim for the total energy of a stabl
two-particle state OnES: it is defined by the condition

V lim52e~1;V lim! ~18!

and tells us that the highest occupied state in a stable gro
state configuration should have the energy equal to~or less
than! its lowest excited state.

Effective potential picture.Let us consider that the mos
unstable particles, initially with the energy«(1), will go
down on theV lim/2 level at the same value of the mome
tum. Something similar happens with the rest of the partic
which will loose energy not only due to their unstable po
tions, but also as an effect of the particles already fallen~the
effective repulsion between the particles decreases!. In other
words, we introduce aneffective one-particle potential Ueff
instead of the original oneU, describing the rearrangeme
of the particles induced by the occurrence of the nega
gap. In theu l u51 limit, the OnES potentialUeff is deter-
mined by the condition~18! of continuity with the OffES one
U at the Fermi level; we can define it foru l u,1 as the shifted
values ofU with the same quantity as foru l u51, i.e., by

Ueff~ l !5U~ l !2DU, DU[~Vmax2V lim!/2 ~19!

an assumption justified by the weak dependence of the o
nal one-particle potentialU on the momentum. The effectiv
one-particle potentials, both OnES and OffES~only the de-
limiting curves!, are represented in Fig. 8 by dashed lin
where the same quantities given by the self-consistent s
tion ~the original one-particle potentialsU andU) are drawn
by continuous lines.

FIG. 8. The one-particle potentials as function of momentum
the 1D RDM with an infinite coupling constantC in the self-
consistent solution~SCS! and in the effective potential pictur
~EPP!.
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Fermion condensation picture.We shall assume now tha
the unstable particles~aboveV lim/2 level! make a transition
to another phase — let us call itcondensate— while the
stable ones remain at the same positions as before. The
sition to the condensed phase could be imagined as the fa
the unstable particles~throughK50 virtual scatterings! in
their lowest ‘‘excited’’ states located at6kF , as it is shown
in Fig. 9. Let us note that such a configuration, with mo
particles at the samek, is, in principle, possible: in the linked
cluster expansion one has to take into account processes
lating the exclusion principle and consequently a state w
uku.kF can be occupied by more than two particles.13 In a
normal Fermi liquid, such a distribution of the particles c
be realized only during virtual scatterings where both init
and final states are below the original Fermi surface;
obtained solution indicates a final configuration with a pr
erential occupation of certain particle states, a fact which
be used, in our opinion, to anticipate some properties of
new ground state. The particles from one component~left or
right! of the condensate have all the same momentum, s
gesting thus a possible description of the fermions close
the original Fermi level in terms of bosons, a fact alrea
known from the bosonization theory; they can be view
also as fermions with an additional quantum number (V).23

The stable particles form areduced Fermi seawith aneffec-
tive Fermi momentumkF determined by

V lim52«~kF!. ~20!

They can be excited in states from the shaded region
Fig. 9.

The two pictures presented above are based on the alr
obtained solution which shows, in fact, that the particles
too compressed in a normal configuration~in k space!: some
of them have to condense in a less energetic phase~fermion
condensation picture!; they should have been stable if th
effective interparticle repulsion was smaller~effective poten-
tial picture!. There is, in principle, another possible way
study the rearrangement of the particles in a stable confi
ration: to modify the original SPE equations such that
abnormal occupation of thek states are considered from th
beginning. For example, we can assume the particles fill u

r

FIG. 9. Schematic representation of the ground-state config
tion for the 1D RDM in the fermion condensation picture: th
shaded regions correspond to the excited states of the particles
the reduced Fermi sea; the two dashed rectangles show the po
of the condensate in the determined spectrum.
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formly a sea with an unknown Fermi momentumkF that
could be determined from the condition of stability, i.e., t
disappearance of the negative gap; a self-consistent solu
with kF.kF is expected, by analogy with the Bethe-Ansa
results which indicate, for an infinite coupling constant
GSE as for free spinless fermions.17 This approach will be
discussed in a forthcoming work.

IX. GROUND-STATE ENERGY

The GSE for the 1D RDM is computed from@see Eq.
~10!#,

E5
2

3p
1

1

2pE21

1

U~ l !dl, ~21!

where E represents the density of the GSE in units
kF«0(kF).

The values ofE for C<6 in theT-matrix approximation,
i.e., in the first iteration, are along the dashed line from F
10; they coincide with the results obtained previously.18 The
maximum ~relative! deviation from the Bethe-Ansat
values,17 realized whenC5`, is 20%. Using now in Eq.
~21! the expression ofU given by the self-consistent solutio
and ignoring the instability of the original Fermi level, th
results for the GSE get closer to the exact ones: for an
nite coupling constant, the relative deviation decreases
9%.

Within the effective potential picture, the GSE has be
calculated from the same Eq.~21! but with U replaced by
Ueff defined as in Eq.~19!; for C5` we obtained
E50.856, i.e., a relative difference from the exact res
E58/(3p) less than 1%. ForC<6 the results are along th
continuous line from Fig. 10; they cannot be distinguish
from the Bethe-Ansatz ones at the figure scale.

In calculating the GSE in the fermion condensation p
ture, we divided the integral from Eq.~21! in two parts: over
the reduced Fermi sea (u l u,kF) with U given by the self-
consistent solution, and the rest (kF,u l u,1). The contribu-
tion of the second term was assumed to change with s

FIG. 10. The GSE of the 1D RDM forC[c/kF<6 in the
T-matrix approximation~TMA !, effective potential picture~EPP!,
and fermion condensation picture~FCP!; the last two schemes giv
practically the same results as the Bethe-Ansatz method at all
ues of the model parametersc andkF .
ion
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parametertP@0,1# describing the continuous transformatio
from $ l ,U( l )% at t50 to $1,U@1;2«( l )#% at t51; the range
@kF,1# is mapped for anytÞ1 in another one@k t,1#, with
k05kF and limt→1k t51, while the transformed values o
U( l ) are finite at anyt. It follows that the second term goe
to zero, i.e., the contribution of the condensate to the GS
the same as that corresponding to the free particles abov
kF level; if we imagine the condensate as composed
bosons, it means they can be considered as noninteractin
the ground state. In theC5` case we obtainedE50.849
~with kF50.876), i.e., a numerical coincidence with th
Bethe-Ansatz result; at smaller couplings, the values ofE are
practically the same as those obtained in the effective po
tial picture ~in the weak coupling regime, the negative g
becomes irrelevant for the GSE!.

X. CONCLUSIONS

The results of this paper can be summarized as follow
~i! One implicit assumption of the Brueckner theor

namely, all particle states have greater energies than the
states, can be, in principle, relaxed by restoring the action
the principal part operator in the reaction matrix equation

~ii ! In terms of the Brueckner theory, the breakdown
the usual Fermi liquid picture occurs when the ‘‘healing
property of the correlated two-body wave function is d
stroyed, i.e., when a finite phase shift in the scattering of
two particles appears.

~iii ! When applied to the 1D RDM, the Brueckner an
Gammel method gives a solution for the SPE with a nega
gap between the OffES propagation and OnES one, indi
ing the instability of a ground-state configuration with a
states between2kF and1kF double occupied. The approxi
mations introduced by Brueckner and Gammel are justifi
by the small values of the average excitation energy par
eterL ~determined by a natural self-consistency conditio!
in comparison with the values of the SPE around the Fe
level.

~iv! The solution given by the Brueckner and Gamm
method has been used to put forward two possible pictu
that could get account of the particle redistribution in a sta
ground-state configuration:~1! an effective potential simulat
ing a normal Fermi liquid behavior;~2! a condensate of par
ticles in coexistence with a reduced Fermi sea normally
cupied.

~v! The two pictures give practically the same results
the GSE of the 1D RDM, in remarkable agreement with t
Bethe-Ansatz predictions at all values of the model para
eters.

The same qualitative behavior of the SPE, as descri
here for the 1D RDM, has been noticed also in the case
the 1D repulsive Hubbard model;24 the occurrence of a nega
tive gap in the excitation spectrum of a Fermi liquid could
relevant in the dispute about a possible breakdown of
usual quasiparticle picture in 2D.

A fermion condensation mechanism has been rece
discussed25 for a class of Fermi systems with strongly repu
sive interactions which do not obey the usual Landau theo
possible connections between this approach and our re
could be an interesting subject for further investigations.

One might have expected perhaps to get reliable res

al-
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from the Brueckner theory even in 1D, as long as the sys
under consideration is a dilute Fermi liquid~short-range in-
teractions!; nevertheless, a comparison between the pre
tions of the independent-pair approximation and known
sults for other relevant quantities, such as the correla
functions, remains to certify its applicability to 1D system
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